TECHNICAL NOTES
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

No. 232

THE IATERAI FAIIURE OF SPARS
Stevens Bromley and William F. Robinson, Jr.

Washington
March, 1926

NATIONAL ADVISORY COMITTTEE FOR AERONAUTICS.

TECHIICAI NOTE NO. 232.

THE LATERAT FAILURE OF SPARS.

By Stevens Eromley and William H. Robinson, Jr.

In the design of spars it often happens that the ajrfoil section will permit the use of a decper spar than necessary for sufficient strength if the depth-oreadth ratio is to be kept within the limits conventional in beams, limits generally obscrved as permitting the uso in computation of the ordinary beam formula:

$$
f=\frac{\mathbb{M} Y}{I}
$$

In the case of rectangular sections

$$
f=\frac{M \frac{d}{2}}{\frac{b d^{3}}{12}}=\frac{6 M}{b d^{2}}
$$

where

$$
\begin{aligned}
& b=\text { spar breadth } \\
& d=\text { spar depth }
\end{aligned}
$$

From the above it is observed that the strength of a spar varies as the square of its depth. Since the weight of a spar varies as the first power of the dopth, tho maximum strenothweight ratio will be gainod by the uso of as decp a spar as possiblc, other factors being equal.

* Work done as a thesis in aeronautical ongineering at the Massachusetts Institute of Technology.

When a spar of very large depth-breadth ratio is subjected to bending, for a time it acts as a beam according to beam formulae. At some point as the load is increased, however, that part of the spar under compression from the bending begins to buckle as a column and deflects laterally. More lateral deflection accompanies any further increase in the load until a maximum load is reached and the beam fails, a load considerably below that directly computed from the beam formula.

The fibers of the spar under maximum tension from the bending remain straight. As viewed from the end there is no apparent distortion of the sectional form at any point, but a simpile torsion.

If the stress-strain diagram be plotted, it is found to be of the general shape shown in Fig. I.

Fig. 1

From O to A the spar acts like an elastic material. At A, where the calculated stress is still well below the elastic
limit, lateral deflection sets in and continues until the spocimen fails either under compression from the primary bending or a combination of primary and lateral bending, or under tension or, most probably, until the excossive deflection causes secondary structural members to fail and the structure to disintegrate.

But little rescarch has been made on this subject so far as could be ascertaincd. There are, however, a few sets of tests which covered some parts of the present work.

As for the mathematical analysis of this subject, there has been one treatment specifically directed to the attention of the deronautical engineer. In "Flight," May 30, 1918, there appeared a note by J. Prescott, M.A., D.Sc., entitled "The Sideways Buckling of Loaded Beams of Deep Section." The details of his work are not available, but the method implied suggested a mechanical analysis of the question rather than any experimental work. To quote Prescott, "The buckling load depends on the flexural rigidity for sideways bending, and on the torsional rigidity of the bcam." The latter is true in that a beam could not buckle without twisting (Reference l). Prescott published a very interesting formula by which the ultimate load can be computed, and which takes, for a simply loaded beam, the form

$$
P=\frac{16.94 \sqrt{E I \mathbb{N}}}{I^{2}}
$$

where

$$
\begin{aligned}
& P=\text { concentrated load at the center. } \\
& L=\text { length of the beam. } \\
& \mathbb{E}=\text { modulus of elasticity. } \\
& I=\text { smallest moment of inertia of the section. } \\
& \mathbb{N}=\text { modulus of rigidity. } \\
& \mathrm{KN}=\text { torsional rigidity. }
\end{aligned}
$$

From the theory of the torsion of prisms, approximately:

$$
\left.K=\frac{3 b^{3} y^{3}}{10\left(b^{2}+h^{2}\right)} \text { (Reference } 2\right)
$$

$$
b=\text { breadth of beam. }
$$

$$
h=\text { depth of beam. }
$$

In all cases Prescott considerod the load applied at the center line of the beam.

Nature of Experiments

Prescott's theory prescribes conditions of loading, and in order to check this formula experimentally, special precautions were taken to insure these conditions. For the determination of the relation between depth-breadth ratio and lateral failure the specimens were supported at the ends so that they were free to deflect in their own plane, and partially free to deflect laterally. The ends were mounted on rollers so that there could be no external horizontal forces apolied to the bcara.

In studying the offect of span only threc specimens wore used, each being tested at several different lengths. The apparatus was as described above, and the span (l) was shortened by moving both end yokes toward the center. This was possible because failures by lateral collapse occurred at stresses below the elastic limit of the material, and repeated tosts could therefore bo made on a singlo specimen.

For the determination of the effect of load applied at more than one point, undamaged specimens were tested with loads at the third points.

The wood used in these tests was western spruce, kiln dried, but only of fair quality. Although all specimens came from the same source and apparently from the same tree, some of the grain slopes werc excessive.

The sizes selected were such as to fit the apparatus. Three specimens of each size were used. Proportions were varied through a range wido cnough to insure that both lateral and direct failures would occur. In general, the dimensions of tho sections within any group were varied so that the section modulus would remain substantially constant.

All specimens were 48 inches in length, except the ones used for the span tests, which were 58 inches long. All told, 54 tests were made on 27 specimens.

The load was transmitted to the specimen through a yoke and distributed by steel and wooden blocks over a portion of
the length of the beam sufficient to prevent local crushing. The effect of this distribution of load, reducing the maximum bending moment by approximately one percent, is negligible when compared to factors such as the variation in the wood, etc. The yokes fitted closely along the sides of the specimens to prevent lateral deflection at any point of load application, being further filled in with paper shims. Some of the load was therefore transmitted through the sides of the specimen. The supporting yokes were similar, but usually no distribution of the load was necessary at those points.

When lateral deflection set in it continued until the boam of the testing-machine dropped. Beyond this point no more load could be applicd, the beam simply distorting further and further. The point at which the beam dropped therefore gave the maximum load.

If the specimen failed in tension the failure load was recorded. If it showed evidence of crushing, more load was applied until the beam failed in tension or a maximum load was reached.

In testing some of the heavier specimens crushing appcared at the end supports. Wooden blocks $1 / 2^{\prime \prime} \times 3^{\prime \prime} \times 1 / 16^{\prime \prime}$ were used for wider distribution of the load with these supports, and when heavier loads yet were applied steel ones $1^{\prime \prime} \times 5^{\prime \prime} \times$ 1/2" were introduced. The wooden blocks are tabulated as 1-1, stecl 3-3.

Corroction of Data

In the correction of the data for the modulus of rupture, the following assumptions have boen made:
(1) That specific gravity is a function of percent summer growth and rate of growth, and that a correction for specific gravity will include the two latter.
(2) That moisture content, grain slope, and specific gravity, while affecting the modulus of rupture, do not alter the tendency to fail laterally. This assumption means that lateral failure is governed only by the dimensions of the specimen and the manner of loading:
(3) That moisture, grain slope, and specific gravity affect the modulus of rupture the same, whether the specimen fails laterally or not.

The above assumptions apply also to the modulus of elasticity corrections. The methods of correction used were drawn from Bulletin No. 70 and Project Report No. 2284 of the Forest Products Laboratory. Views of the Laboratory and testingmachine are shown in Figs. 2 and 3. From this corrected moduIus of rupture a corrected maximum bending moment (M_{C}) was obtained. This was further corrected $\left(M_{c}{ }^{1}\right)$ to a standard. sectional area by multiplying by the three halves power of the ratio between the sectional area of the specimen and a standard value.

Standard Values

The average moisture content of the specimens was 7.36%, the average specific gravity .396. All results were corrected to these values and to a zero grain slope.

Discussion of Results

In the plots which were constructed all values to the left of the dotted vertical line which has been drawn represent tension or compression failures, while those to the right represent lateral failures. There were no overlaps, the division betwoon the two types of failure in terms of depth-breadth ratio being sharply defined.

Fig. 4 is a plot of the depth-breadth ratio against corrected modulus of rupture for beams of constant span with a concentrated load at the center. The low points at depthbreadth ratio of about 4 and 10 represent single specimens, presumably of poorer than average material.

The curve best representing the points on this plot is, it will be observed, one nearly horizontal to the left of the dotted line and dropping sharply down to the right in the lateral failure region. Fig. 5 is a like plot for the span tests and is quite similar.

Fig. 6 is a plot of the depth-breadth ratio vs. the corrected modulus of rupture for the tests with third-point load-
ing. The curve is of like trend as the two preceding. The spocimon indicated by the cross and arrow failed in tension instead of laterally. The failure occurred in a region of sapwood, presumably before lateral deflection had started. The mean curve in Fig. 6, so far as it extends, is almost identical with that in Fig. 4.

In like manner Fig. 7 has been plotted for corrected bending moments reduced to a constant sectional area of 2.46 sq .in., the average for the specimens. It will be observed from Fig. 7 that the moment reaches a maximum at a depth-breadth ratio of about 7. It would therefore be inadvisable to permit the ratio to exceed this figure in a beam, however great the depth that might be available. In a wing spar, however, a still larger ratio would be permissible because of the added lateral support given by the ribs. There is no explanation excepting a defective specimen, as to why the bending moment should again fall off at depth-breadth ratio of 4 .

Fig. 9 was plotted to show the modulus of elasticity variation with depth-breadth ratio for the single-load tests.

Fig. 10 is a plot of depth-breadth ratio Vs. span-breadth ratio (l / b) for all the specimens loaded at the middle point. The number adjacent to each point represents in approximate thousands of pounds per square-inch, the modulus of rupture of that specimen. The dotted line is drawn through the point which represents specimen 9 B of 30 -inch span which failod in
compression and laterally at the same time. A negatively sloping line such as the dotted one shown, dividos the causes of failure prociscly, those above and to the right boing latcral failures and those below and to the loft boing either tonsion or comprossion failuros.

An attompt was mado to chock Prescott's formula for a beam simply loaded and failing laterally:

$$
P=\frac{16.94}{I^{2}} \sqrt{E I N K}
$$

Three representative tests were chosen, and in all cases the specimen failed at a much lower load than that computed from Prescott's formula, ranging from one-half to one-fifth the computed value (N being taken as 90,000). This is somewhat surprising, as tests on steel beams have shown excellent agrecment with the figures given by the formula. Tho discrepancy so may be due to the homogencous and isotropic nature of the metal and the quite different structure of the wood. Such other lateral failure tests as have previously been made on wood seem to agree with this work in making the importance of lateral failure appear greater in practice than the theory would indicate.

From Fig. 4 it is seen that the strength of tho specimen as denoted by its modulus of rupture increases as the depthbreadth ratio decreases. From Fig. 5 the modulus of rupture increases as the span-depth ratio decreases.

From Fig. 10 it is observed that the tendency to fail laterally does not bear a constant relation to the modulus of rupture.

The conclusion from those tosts is that after the critical span or depth-breadth ratio has boen roached, the modulus of rupturc varios approximately inversely as the first power of the span and of the depth-breadth ratio.

The direction of lateral deflection is alternate botwoon succossive supports by theory and all tests. For this reason we believe that rib spacing along the spar is more important in reducing latoral doflcction than the distance botween supports at the strut points. Furthermore, we belicve that within the limits of modern dosign any increase in distance botwoen strut points can well be compensated for by spacing the ribs closcr togethor, providing tho ribs do furnish lateral support.

Tablo I.

Charactoristics of the Specimens

$\begin{aligned} & \text { Spec- } \\ & \text { imen } \end{aligned}$	b	h	h / b	y/I	I S	Slope	\%SG	\% 1	RG	SG
$1 \mathrm{~A}^{\prime}$. 53	6.00	11.32	. 315	9.54	50	40	10.20	18	. 397
10^{\prime}	. 50	5.88	11.76	. 347	8.47	200	25	5.26	8	. 373
$1 A^{\prime \prime}$. 53	5.98	11.27	. 316	9.46	100	60	11.11	28	. 382
2 A	. 51	4.97	9.75	. 476	5.22	50	35	5.15	7	. 362
$2 B$. 51	4.94	9.69	. 482	5.12	30.3	50	8.23	24	. 396
20	. 50	4.90	9.80	. 500	4.89	21.8	50	5.26	30	. 415
3A	. 48	3.72	7.75	. 893	2.06	15.9	30	6.39	25	12
3B	. 47	3.70	7.87	. 933	1.99	11.0	40	5.82	28	. 433
3 C	. 48	3.71	7.73	. 908	2.04	6.9	50	6.05	33	. 425
4 A	. 71	5.00	7.04	. 338	7.40	71.7	15	7.07	9	405
4 B	. 72	5.00	6.94	. 333	7.50	33.3	40	8.94	18	
40	. 73	4.99	6.84	. 330	7.55	25.0	50	8.70	12	. 392
5A	. 7	3.	5.32	. 503	3.97	9.1	20	6.84	30	887
5B	. 74	3.98	5.38	. 512	3.89	10.5	40	6.61	32	. 380
5 C	. 75	3.98	5.31	. 505	3.94	8.3	40	6.61	39	. 384
6 6.	. 7	2.92	3.90	. 936	1.56	10.5	30	11.11	40	. 384
6 B	. 75	2.95	3.93	. 917	1.61	50.0	45	6.38	40	. 39
6 C	. 74	2.91	3.94	. 957	1.52	8.0	50	6.83	28	. 402
7 A	. 74	2.00	2.70	2.03	. 494	33.3	40	6.38	7	36
7 B	. 75	2.01	2.68	1.99	. 506	18.2	60	13.62	14	452
70	. 76	2.03	2.67	1.92	. 528	100.0	60	11.72	28	418
8 A	. 35	5.88	16.8	. 497		66.7	30	5.26	10	.391
8B	. 35	5.90	16.8	. 492	6.01	66.7	30	5.26	9	38
8 C	. 3	5.89	16.8	,	5.95	200.0	30	5.54	10	. 39
9 A	. 37	3.00	8.12	1.80	. 833	200.0	25	6.95	18	. 391
9 B	. 40	3.00	7.70	1.67	. 900	100.0	30	6.95	21	. 391
9 C	. 38	3.00	8.01	1.78	. 843	1 67.0	25	6.95	22	40

Symbol
b Breadth of specimen inches
h Depth of specimen inches
h/b Depth-breadth ratio
y/I Section modulus -
I Moment of inertia of

Symbol Significance

Slope Number of inches for l-inch rise of grain \%SG Percent summer growth Percent moisture Rate of growth - rings per inch
Specific gravity section - (inches) ${ }^{4}$

Table II.
Single Load Tests

	Failure		Apparent		h / b
specimen	Load Manner		E	\pm	
1 A :	1660	lat.	1062	6140	11.32
10^{1}	1450	lat.	873	5920	11.76
$1 \mathrm{~A}^{\text {P }}$	1925	lat.	1043	71.50	11.27
2A	1060	lat.	1220	5900	9.75
2B	1515	lat.	1310	8600	9.69
20	1565	lat.	1230	9200	9.80
	830	lat.	1330	8700	7.75
3B	830	lat.	1280	9100	7.87
30	770	lat.	1220	8200	7.73
4 A	2240	ten.	1360	8900	7.04
4B	2360	com.	1280	9300	6.94
4 C	2320	com.	1440	9000	6.84
5 A	1580	ten.	1190	9300	5.32
5B	1500	ten.	1300	9050	5.38
50	1660	ten.	1240	9850	5.31
6A	870	ten.	1470	9570	3.90
6 B	690	ten.	1342	7420	3.93
60	930	ten.	1356	10410	3.94
		com.	1570	10730	2.70
7 B	460	com.	1990	10760	2.68
70	420	com.	1310	9490	2.67
	600	lat.	1220	3500	16.8
8 B	510	lat.	1125	2950	16.8
80	720	lat.	1383	4190	16.8

Load is maximum scale reading in pounds.
Lat. signifies lateral failure.
com. " compression failure.
ten. " tension failure.
E is Modulus of Elasticity calculated from plot made as the specimen was loaded - pounds/square-inch.
f is apparent modulus of rupture figured from the load given here - pounds/square-inch.
h / b is the depth-breadth ratio of the specimen.

Table III.
Original Test Data
Span Tests (Single Load)
Failure

Span	Failure Load Manner		$\begin{aligned} & \text { Appa } \\ & \mathrm{E} / 1000 \end{aligned}$	f	h / b	Specimen
57	230	lat.	1830	5910	8.12	9 A
57	260	lat.	1750	6180	7.50	9 B
57	245	lat.	2055	6210	8.01	90
51	270	lat.		6200		9A
51	290	lat.		6170		93
51	290	lat.		6580		90
45	370	lat.		7480		9 A
45	440	lat.		8250		9 B
45	375	lat.		7510		90
40	440	lat.		7920		9 A
40	520	lat.		8670		9 B
40	490	lat.		8720		90
35	570	lat.		8970		9A
35	680	lat.		9920		9 B
35	600	lat.		9360		90
30	810	lat.		10930		9 A
30	960	lat.		12000		93
30	910	lat.		12150		90
25	970	com.		10900		9 9
25	1120	com.		11670		9 B
25	1025	com.		11400		90

Load is the maximum scale reading in pounds.
Lateral failure is signified by lat.
Compression
E is modulus of elasticity in pounds per square-inch calculated from plot made as the specimen was loaded with 57-inch span.
f is apparent modulus of rupture, figured from the load given here - pounds/square-inch.
h / b is the depth-breadth ratio of the specimen.

Table IV.

Two Point Loading Tests

Spec- imen	Failure Ioad Manner		${\underset{f}{\text { Apparen }}}^{\text {far }}$	h / b	Span	a	Chips
8A	910	lat.	3540	16.8	47	15.67	
8 B	950	lat.	3660	16.8	47	15.67	
8 C	950	lat.	3690	16.8	47	15.67	
3 A	1065	lat.	7450	7.75	4.7	15.67	
3 B	1160	lat.	8490	7.87	47	15.67	
3 c	870°	*	6200	7.73	47	15.67	
2 A	1770	lat.	6600	9.75	47	15.67	1-1
$1 A^{\prime}$	3380	lat.	7540	11.32	44	14.17	3-3
10^{1}	2560	ton.	6300	11.76	44	14.17	3-3

* tension at a knot.

Load is the maximum scale reading in pounds.
lat. signifies lateral failure.
ton.
f is tho apparont modulus of rupture figured from the loads given here - pounds/square-inch.
h / b is the depth-breadth ratio.
Chips noted are the ones uscd to prevent orushing at the supports.
a is the arm used in computing the moment in calculating the modulus of rupture - inches.

Table V.
Dopth Breadth Tests Corrected Values

Specimen	f_{0}	M_{C}	MC^{\prime}	E_{c}	h / b
$1 A^{\prime}$	6970	22100	15000	1173000	11.32
10^{\prime}	5800	16700	12800	858000	11.76
$1 A^{\prime \prime}$	8660	27400	18500	1235000	11.27
2 A	5770	12100	11600	1234000	9.75
2 B	9210	18700	18000	1345000	9.69
2 C	8620	17200	17400	1219000	9.80
3 A	9010	10100	14900	1358000	7.75
3 B	9380	10100	15500	1397000	7.87
30	10880	12000	17800	1621000	7.73
4 A	8550	25300	14600	1345000	7.04
4 B	10350	30900	17500	1441000	6.94
4 C	10060	30500	17000	1508000	6.84
5A	11710	23300	17400	1556000	5.32
5B	11170	21900	16700	1628000	5.38
50	12660	25100	18800	1675000	5.31
6 A	12970	13400	15500	1966000	3.90
6.3	7230	7900	9000	1321000	3.93
60	12860	13400	15800	955000	3.94
7 A	11400	5600	10400	1677000	2.70
73	11960	6000	10900	1757000	2.68
70	10190	5300	9400	1417000	2.67
8 A	2880	5800	7200	1151000	16.8
83	2500	5100	6300	1074000	16.8
80	3450	7000	8700	1301000	16.8

f_{c} is the corrected modulus of rupture in pounds per square-inch, the sum of the apparent modulus of rupture from Table II and the corrections.
\mathbb{M}_{C} is the maximum bending moment calculated from f_{C} in pouna inches.
\mathbb{M}_{c}^{\prime} is \mathbb{M}_{c} corrected to a constant sectional area of 2.46 square inches, in pound-inches.
E_{C} is the corrected modulus of elasticity.
h / b is the depth-brcadth ratio.

Table VI.
Span Tests Corrected Values

Specimen	f_{C}	M_{C}	$\mathrm{M}_{6} \mathrm{C}^{1}$	E_{C}	Span	h / b
$\begin{aligned} & 9 A \\ & 9 B \\ & 9 C \end{aligned}$	$\begin{aligned} & 5900 \\ & 6170 \\ & 5760 \end{aligned}$	$\begin{aligned} & 3280 \\ & 3700 \\ & 3230 \end{aligned}$	$\begin{array}{r} 10070 \\ 10700 \\ 9790 \end{array}$	$\begin{aligned} & 1799000 \\ & 1719000 \\ & 2072000 \end{aligned}$	$\begin{aligned} & 57 \\ & 57 \\ & 57 \end{aligned}$	$\begin{aligned} & 8.12 \\ & 7.50 \\ & 8.01 \end{aligned}$
$\begin{aligned} & 9 \mathrm{~A} \\ & 9 \mathrm{~B} \\ & 9 \mathrm{C} \end{aligned}$	$\begin{aligned} & 6190 \\ & 6160 \\ & 6130 \end{aligned}$	$\begin{aligned} & 3440 \\ & 3690 \\ & 3440 \end{aligned}$	$\begin{aligned} & 10550 \\ & 10650 \\ & 10470 \end{aligned}$		$\begin{aligned} & 51 \\ & 51 \\ & 51 \end{aligned}$	
$\begin{aligned} & 9 A \\ & 9 B \\ & 9 \mathrm{C} \end{aligned}$	$\begin{array}{r} 7470 \\ -8240 \\ 7060 \end{array}$	$\begin{aligned} & 4150 \\ & 4933 \\ & 3960 \end{aligned}$	$\begin{aligned} & 12720 \\ & 14250 \\ & 12000 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \\ & 45 \end{aligned}$	
$\begin{aligned} & 9 \mathrm{~A} \\ & 9 \mathrm{~B} \\ & 9 \mathrm{C} \end{aligned}$	$\begin{aligned} & 7910 \\ & 8660 \\ & 8270 \end{aligned}$	$\begin{aligned} & 4390 \\ & 5190 \\ & 4640 \end{aligned}$	$\begin{aligned} & 13500 \\ & 15000 \\ & 14070 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \\ & 40 \end{aligned}$	
$\begin{aligned} & 9 A \\ & 9 B \\ & 9 \mathrm{C} \end{aligned}$	$\begin{aligned} & 8960 \\ & 9910 \\ & 8910 \end{aligned}$	$\begin{aligned} & 4980 \\ & 5940 \\ & 5000 \end{aligned}$	$\begin{aligned} & 15300 \\ & 17150 \\ & 15150 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$	
$\begin{aligned} & 9 A \\ & 9 B \\ & 9 C \end{aligned}$	$\begin{aligned} & 10920 \\ & 11990 \\ & 11700 \end{aligned}$	$\begin{aligned} & 6070 \\ & 7180 \\ & 6570 \end{aligned}$	$\begin{aligned} & 18600 \\ & 20700 \\ & 20200 \end{aligned}$		30 30 30	
$\begin{aligned} & 9 A \\ & 9 B \\ & 90 \end{aligned}$	$\begin{aligned} & 10890 \\ & 11660 \\ & 10950 \end{aligned}$	$\begin{aligned} & 6050 \\ & 6980 \\ & 6150 \end{aligned}$	$\begin{aligned} & 18600 \\ & 180150 \\ & 18650 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$	

f_{C} is the corrected modulus of rupture in pounds per squareinch, the sum of the apparent modulus of rupture from Table III and the corrections.
M_{C} is the maximum bending moment in pound-inches calculated from f_{c}.
$M_{C}{ }^{1}$ is M_{C} corrected to a constant sectional area of 2.46 square-inches, in pound-inches.
E_{C} is the corrected modulus of elasticity.
h / b is the depth-breadth ratio.

Table VII.

f_{c} is the corrected modulus of mature in pounds per square-inch, the sum of the apparent modulus of mature from Table IV and the corrections.
\mathbb{M}_{C} is the maximum bending moment in pound-inches calcurated from f_{C}.
M_{C} ' is M_{C} corrected to a constant sectional area of 2.46 square-inches, in pound-inches.
h / b is the depth-breadth ratio.

References

I. A. G. M. Michell: Elastic Stability of Long Beams Under Transverse Forces. Phil. Mag. 1899, p. 298.
J. Prescott: Buckling of Deep Beams. Phil. Mag. 1918, p. 297; 1920, p. 194.
A. E. H. LOVE:
2. J. Prescott:

Buckling of Deep Beams. Phil. Mag. 1918, p. 297; 1920. p. 194.

Fig. 4 Depth-breadth ratio vs. corrected modulus of rurture.

Fig. 5 Span vs.corrected modulus of rupture.

Fig. 6 Depth-breadth ratio va. corrected modulus of rupture.

Fig. 7 Depth-breadth ratio vs corrected maximum mornent.

Fig. 8 Span vs. corrected maximum moment.

Fig. θ Depth-breadth ratio vs. corrected modulus of elasticity.

Fig. 10 Deoth-oreadth ratio vs. span-breadth ratio.

