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TECHNICAL NOTE NO.

MASS DISTRIBUTION AND PERFORMANCE

By Max Scherb erg and E.

Summary

26S.

OF FFMZ “FLIGHT LIODEIJS.

V. Rhode.

.

This note deals w~th the mass distribution and perform–

ante of free flight models. An airplane model which is to be

used in free flight tests must be ba”lanced dynamically as well

as statically, ,e.g., it must not only have a given weight arii
1

the proper center of gravity but also a given ellipsoid of in–

● ertia. Equations which relate the motion6 of an ai=,~lane and

its model are given. Neglecting scale effect, these equations

may be used to predict the performance of an airplane, under the
*

action of gravity alone, from data obtained in making dropping

tests of a correctly balanced model.

It is shown how a light model, built with little regard to

its mass distribution, may be loaded with masses of predeter–

.—

,

mined weight, shape,
.

bution desired.

It is indicated

position and attitude to ~ive the distri-

how this method of distributing the mass ..

in a body to obtain a desired distribution, together with the
●

model dropping tests may be used to determine the most desirable

i~.ertia characteristics of an airplane of given shape. -.
●

b
p

I.>-
_.
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2

Introduction .
.

*
Kodel dropp”ing te~ts were recently instituted at the

Langley Xemorial Aeronautical Laboratory as a mearis of studying

the spinning characteristics of airplanes. The model was dropped

I in the spinning attitude from

motion pictures were taken of

published) .

approximately 100 feet height and
.—

its descent (results soon to be ,

In free flying models, the mass forces and their moments, ,.

greatly affect the performance, and therefore the quantity afid

distribution of mass cannot be overlooked in the construction

of the model. Since any notion may be considered as made up

●

of a series of steady helical motions which take place during —

infinitesi3nal time increments, the kinetics of the problem will

4
be dealt with in two parts.

quired for the s~imulation of

airplane will bc developed.

that the distri?mtion

the simulation of any

the path.

First, the mass distribution ro-

a ~tea&y helical motion of the

Second,

found for this

motion whether

it will then be ~hown
.-

case is satisfactory for —

steady or not and whatever”

The equations relating to the motions of the airplane and

its model are given and it is shown how a model may be static–

ally and dynamically balanced by mearm of two simple blocks of
n

loading material. .,

*

-.
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PART 1.

MLss Distribution for a Steady Helical Mot ion

It will be considered that this type of motion is obtained

in the normal tail spin. Hence this treatment will indicate

the distribution desired for the imitation of a normal tail

8

●

e

.
sp lno

It is de~ir~ to so adjust the quantity cLrddistribution

of the sass of a model having linear dimensions N times those
.

of the full–scale airplane that the model will be in kinetic —
\

equilibrium in a steady helical motion which is geometrically
.

fiimilar to that described-by the airplane. ..-

In order that the motions shall be sim$lar the helix angles ..

of homologous point paths must be equal.

Hem e

(1)

in -which V is the vertical velocity, w the angular velocity

about the spin axis and Z a representative linear dimen~ion;

the subscript m refer= to the model. The directions of the

vectors representing the gravitational, centripetal and aerody-. ..

narfliGforces are identical in both cases because the motions are

similar. Their resultants must be zero as the motions are steady.

The vector diagrams of the forces are therefore similar trian~les.

As the aerod:mmie forces are proportional to Z2 V2 (scale ef-

fect neglected), the gravitational forces proportional to the

.,
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‘h
mass (M}, a.adthe centripetzl forces

4

.
to M 022,

and

MU(!J ‘“”ML02’ z’ .V2

m2“I* = tm2 V*2

(2)

(3)

Fr”om the equations (l), (2), and.(3) :

Ll) = rCIIn N (4) -

v= VJ Jr (5)

and M= M# N3.. (6)

The relationships which must exist between the angular and
*

linear velocities and the masses have now been established.

● The. relations, however, suffice only to i~sure zero resultant
.

b forces; the conditions which must exist in order that the re-

sultant moments corresponding to these forces shall be zero “

have yet to be established.

As the aerodynamic moment must be equilibrated by the ine~

t ia couple and as the direction of the aerodynamiol moment vec-

tor. is fixed by the air flow over the airplane or model, the ir+

ertia couple vector has the game directions in both cases. ‘

Thus, if the equations for equality of the inertia couple and

aerodynamic moment in one plahe through the spin axis be sati’s-

i fied, the components of the resultant monents in all other
..

planes will likewise sum up to zero and all the con&itions for a
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steady helical motion-mill

motion, the inertia couple

.

have been satisfied. During steady

is a reaction couple due to forced

rotation about an axis other than a principal one. For a set of

components, which must not be zero, corresponding to any one

plane through the spin axis, the following equation holds
., - 1.

(7)

P and Pm are the products of inertia for the plane in which

the components were taken. The product of inertia taken as

designated in Figare 1, corresponds to moment. components paral-

lel to the i j plane. ‘ The

the ratio of the centrifugal

the ratio of the aerodynamic

. ..__

left side of the equation expresses

couples while the right side gives

mcm ents. Introducing the ratios

derived above, it is found that

~ 1.= - (8)
% 1?=-

Hence it may b e concluded that .at corresponding points the mo–

mental ellipsoid of the model must b e simil.arin shape ati par-

allel in attitude to that of

linear scale ratio to it of

an erect aodel, that is, one

. exact model (Reference 1).

the full size airplane and have a

Ns . The model must be effectively

having the mass equivalent of the

.
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PART 11.

Mass Distribution for any Motion
.

* The problem may now be generalized. It will be shown that

a model so balaaced may be used to simulate all no thrust power

maneuvers and that equations (4) and (5) are applicable thereto.

It may be assumed to begin with that at some instant (1),
.

(4) , and (5) are true and that the gravity vectors for the mod-
,“

el and the airplane are similarly located. This assumption

“merely presupposes corresponding initial conditions according to

(1), (4), and (5).

The forces andmments are similarly located, and as before

the force and moment diagrams must be similar. This means of%

course, the accelerating forces and couples bear the pxopor– -

tonalities of the diagrams and are similarly located. By equat-

*.
ing the ratios .of represent”ative vectors in the two diagrams, it

#

is found that

and

,.
— . .

a ‘%, . ( f“~“
\

FZ = Ia = ,q ‘\
Fm Zm Im am. N ~ -’

/“}

(lo)

.

where I is the moment of inertia for the instantaneous axis

about which the mass is undergoing an a~.~lar acceleration a; .
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% F is the accelerating force through the center of gravity of ,-

the mass which is being given alinear acceleration a; Z is a

representative length on the force diagram and hence the product
?

FI may be used as representative of the moment vector diagram.

During the increments of time At and Atm the motion will .-

be, to the first degree of approximation, similar: steady heli-

cal motions. Hence the displacement increments of the mass par-

ticles will be

Adm =NAd (11)

in which d is either a linear or circular (ZU) displacement. -

Dividing (11) by (4) or (5) gives the equation
●

✎
‘/—* ~NAt ‘Atm (12)

The new velocities, accelerations and positions at the end

k of the time intervals fulfill the conditions previously assumed.

VA* = v+ Lv =V+ aAt (13)

In like manner it may be

tions will repeat themselves.

pletely correlate, neglecting

(14)

-(15)

shown that all the other condi-

Thus, equations (4) and (5) tom-” .

for scale effect, the relation- —

ships between the motion of an airplane maneuvering under the

●
.
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% act ion of gravity alone and that of its model which has an equiv-

al ent quantity and distribution of mass.

Obtaining the

A model has an

satisfies equation

The criterions

model may be stated

The model must

PART III.

Desired Mass Distribution
. .

equivalent quantity of mass if this quantity

M = Mm/?J3.

for equivalent distributions of mass in a

as follows:

have a center of gr,avitywhich is similarly

located to that of the modeled bo~y. It must have a momental

ellipsoid at its center of gravity which is an N5 scaled im-
k

age of the momental ellipsoid at the center of gravity of the .

modeled body.

k ‘ The ellipsoids must have similar attitudes relative to the
.

shapes of the body and its model.

An e~ct model obviously satisfies the above conditions.

T40wever, to build a model geometrically scaled down in mass den-

sity tiistribution would be difficult, impractical, and unneces-

sary. It is only necessary to build

it as to obtain the desired quantity

Let it be assumed first, that a

a light model and so load

and distribution of mass.

light I?th scale model of

. mass M3 has been built; seoond, that the USES Ml, of the

full size airplane is known; and third, that the expressions

for their momental ellipsoids Q and ~ at corresponding points
a

. 9
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&
, (say the e.g. of the full sized airplane and the corresponding

point in the model) ‘havebeen computed (Reference 2). Figure 2

K- is a sketch of the mor.ental ellipsoid for a typical airplane.

Let II and 13 be the moments of inertia for represent-

ative axes of the airplane and light model, respectively. .—

Firgurc3 represents, superimposed upon each other, a light

model whose center of gravity is (0s) and an exact model

whose center of gravity is (~~). (04) is t-hecenter of grav-

ity of a load (M4) which is to be so disposed as to bring the

center of gravity of the light model to 02 and to Hake its

momental ellip~oid itienticalwith that of the exact model.

The exact model has a mass Ns Ml and moments of inertia N 5 I
.

at 02. The position, mass and mcmental ellipsoid (62) of

M* at OZ are readily computed.

They are

M4 = N3M1-M3
—

M3 (Oz 03)
d= Oz 04 =

N3 Ml - 1!3

(16)

(17)

To determine the shape and attitude of M4 it is best to

compute its momental ellipsoid (@&) at 04.

Let

1 = @’1#—2 =Aza2+ B2& + C2Y2- 2D2@- 2E2cfY- 2F2&Y
. r?

= Ns II (=)

and ~=@ = A3a2+B3p2 + C3’Y2- 2Dsa~ - Z&d - 2Fs~y = &
ra2

h (20)
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a, ~ and Y are the direction c~sinc~ with the usual reference

axes taken for an airplane (F5:2&re1:}. Tz and r~ are the radii

vectors of the ellipsoids. A-gain, 195 the direction cosines of

the line Q’ 03 be (2, m, n) wkils (11, ml, n.), (la, mz,9

n=) – - – – – – –(T6 , mG. ~

six arbitrary axes through

t~ese axes are obtained by

*
moments of inertia at 02

M4 da sinz

1$4 d2 6i~

n~) are the direction cosines for

.04. The moments of ineztia for

subtracting from the corresponding

the following e.~ressions:

___ ___ — etc.--––--–- .-—_

L14d2 sins Cos-l (tz= +tin, +nn6)

This will give six equations of the type

e (Zl, ~, nl) – M+ d2 sinz Cos-l,(Ztl + mm. + nnl) (23)

= A4 Z12 + B4 m12 + C4 nle - 22,:ZI ml - 2Z4 ~ nl - 2F4 ml nl

in which AA, B4, C4 – – – – -2Q are the coefficients of the

m omental ellipsoid [(’4) Gf .M4 at 0.4 with the reference

axes translated to 04.

&
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simplicity, the six axes may be chosen by the direction

(0, 0,’1), (o, 1, 0), (1, 0,0), (*J2i. +& 0),

equatioris (23) six simultaneous equations containing the con–

stants AA, E. - – – – – - F& are obtained. On solving, it

is found that

c4=c~-u=- MFP(l-ZF) (24)

where

B4 = B2 -% -M R?(l-m2)

A4 =A2– A3-MR=(I-Z2)

DA= Dz-D3-MR21m

Q= Ez-Z, -bIFzn

F~ =F2-Fa-MR2mn

--- -.

.

The prine ipal moments and axes

puted from these coefficients. The

pla.rieof symmetry, the X Z plane,

Ml N“ - MS

of the ellipsoid may be

airplane in general has

and therefore D ~ and

are zero while B4 is a principal moment of inertia. The

axis is a principal axis. The other two principal axes are

the X Z plane and make the angles Hl and H2 with the

axis; theGe angles axe ~~ivenby the equations

.-

C=

a

F4 “‘“

Y

in,

x

(25)
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Substituting the direction cosinbs of the three principal .

axes in the equation for 64, the three principal moments of
.

inertia are obtained. They are

The subscripts

troidal axes of MA.

It is necessary

(24) will not always

a, b, and c indic~’tiethe principal cem

.

to s%ate ihat the coefficients given by

be those of~a momenta.1 ellipsoid. Oare

.
must be taken in building the light model. The surface of @ —

must not intersect that of N5 ~ and therefore the mass of the

light model should be kept as close to the desired e.g. (02).
as possible. AA-, B4, and CA must each be positive. No one

of them must be greater than the sum of $he other two and the
~42

expression A4 - ~ must be greater than zero.
‘4.

There is considerable choice regardin~ the dimensions of

M4 . First a loading material with a mass density great enough

to insure complete-concealment must be chosen. This choice is

chiefly influenced by the quantity of mass to ‘oeadded. Having

decided upon the density ( P ) a further choice as to the
.

shapo is present. Consty,~ction will be the chief guide here.

As an exmple, the tvo simple blocks shown in Figure 4 will be

m considered.
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●

The three

system are

~b =

Ic =

Ia =

Y=‘4

centroidal principal moments of inertia of this

2a?3cp”

Solving for a, b,” c, and K “it is seen that

/’6 (Ic+ Ib - ~a)a=J~ ““””

(28)

.—— .— - . . . —.. — . —

/ 41a
K. —J b14

-+ (c’ +b’)=c

Inserting the values (26) into (28) the dl~ensions of the

bloc”ks are obtained. The light model when

blocks in a manner prescribed by the above

b eco~’e eif ectively an exact moael since it

al ent quantity and Listribut ion of mass of

which it was modeled.

loaded with two .-

results will tlnen

will have the equiv-

the airplane for

it will often occur that the dimensions of the loading

blocks as determined by the first solution will be such as to

G .
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destroy the aerod-ynamic characteristics of tne model (see Appe&

dix) . In such cases the mass distribution of the light model
*

must be altered by the addition of small &,asses in order to

bring it closer to that required. The first solution will give

a clue as to t’heproper disposition of -tLeseadded masses. A

second solution will then determine loading blocks which will

be completely concealed within the u.odel.

To determine the most desirable ine~:ia characteristics

for a given airplane shape, a model may be constructed with an

adjustable loatiing, perrritting an arbitrarily chosen mass dis-

tribution, and droppimg tests nade until a distrib~tion is fin-

. ally obtained which givec the model the most desired gravity

performance. The useful load of the airplane might then be lc-

cated to obtain a like distribution. For a distributti useful
.

load the dimensions of the pattern of distribution could readily

be computed from the inertia characteristics of the individual

loads.

Conclusion

The maneuvers of a full scale airplano under the action of

gravity alone may be completely sizmlated by a model which has

‘ been prepared to contain a mass quantity f times the mass ...—

quantity of the full scale airplane; to have a center of gravity -,--

which is similarly located to that in the full scale airplane,

to have a centroidal ellipeoid of inertia whose linear dime~
&
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sions are Ns times those of the centroidal ellipGoid of the

full scale airplane and whose attitude in -the

to that of the momental ellipsoid in the full

~ ,The simulation will be in accordance with tune

tions:
v= v&/%

.— )1

model is similar

scale airplane.

following equa-

1; d
w-= h

.V and Vm are the lin=r velocities at homologous points

o“f the paths, u ~.~.d~m the ang~lar velocities at these
“3

points. Z and ~m arc representative dimen~ions cf their

‘paths while t and” ~ are the times occupied in traversing ._

homologous path incrcmenta. “
●

-,
These relations may be used to compute the velocities, the

turns, the times and the distances for complete naneuver~, or

homologous portions of maneuvers.

.
.

.
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Definition of S~bols

PART 1.

The subscript n designate~ symbols referring to the bal- ._

anced mdel.

~ = scale ratio of nodel to airplane.

v= linear velocity.

w = angular v elocit:~.

-1 = a representative linear dimension.

y.: = mass .

P = product of inertia.

PART II.

F= force.

a = linear acceleration.

1 = a representative length on force diagram.

c. = angular acceleration.

t = t~e.

Ad = displacement increment of mass particle.

M, a, N, and V as in I.

. -.

4

PART III.

. The subscripts lj 2, 3, and 4 designate the full scale

airplane, exact m.odel$ light model, and l@ading mass> re~pectivelY~.._

Ml = mass of full scale airplane..

& = mass of light ~.odel.

MA = mass of loading material.
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:4

PART 111 (Cont.)

designation for rmmental ellipsoid of full
scale airplane.

de~ignation for momental ellipsoid of light
model.

moments Gf inertia of fUi.1 scale airplane.

moments of inertia of liEht model.

center of gravity of exact ‘wodel.

center of’g~avity of li~ht mtiel~

center of gravity of MA.

designation for momcntal ellipsoid of

designation for rnomental ellipsoid of

●

D2, E2, F2

Ia~ Ib,

a, “o, c, K

P

direction cosines.

dizection cosines.

l$4atQ.

M4 at 04.

= mouents of inertia of exact moael about

xx, YY, aznd ZZ, respectively.

= products of inertia of exact model for
the plaries XZ andYZ, XY and ZY, and
YX and ZX.

= moments of inertia 0> light model about
xx, YY, and ZZ, respectively. .—

= products of inertia af light model for
the mlanes XZ and YZ. ST and ZY. and. .

c.fidZX.

rioments of iner ia of Mq with.respect
reference axes 1ranslated to 04.

products of inertia of M4 with respect
reference axes translated to 04.

principal moments of inertia of M4.

dimensions of MA.

density of loading material.
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Appendix

Procedure for the Construction and Loading of the Model

A light model is built with its mass content as close to

the desired e.g. 03, as is possible. Its XZ plane must be. .—

a plane of symmetry. The coefficient of the momental eilip–

soids of the light model and the full scale airplane must next

be determined.

The coefficients Dl, Q , F1 , and Fe of the equations

and .(20)will be zero because of the plane of symmetry (the XZ

plane) . To determine the other coefficients it is necessary to

measure the r.oments of inertia for four arbitrary axes (not in

* one plane) through 03 in the light model and foz four axes

through the e.g. of the full scale

The values are substituted in (19)
.

ents determined.

airplane (References 2 and 3).

and (20) and the coeffici-

Equations “(16) and (17) mill give the mass qua’ntity and the

position in the model of the center of gravity of the load MA.

If the block shapes are chosen, equations (24), (25), (26), and

(28) are to be used in the ozder indicated to determine the di-

mensions of

and c make

lel to the
●

with the X

the mass MA and the angles that the edges a, b,

with the reference axes of the model. b is paral-

Y axis while a and c -make thq angles

axis (Figure 5).

If other shapes

9 changed accordingly.

are chosen the equation (~0) must

The ecyuations (27) corresponding

Hl and H2.

be ‘

to the .-
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particular shapes chosen nust next be set down and the corre-

sponding equations

●

The following

of solving fo~ the

The data have

as follows:

(28) obtained from them.

Problcxl

case is wozked out to make clear the process

dimensions and position of the nass M4.

been determined experbentally and are given

For the full scale airplane (O–2 o-oservtition),

Al = Ixx = 5090 slugs feetz

BI .= ~yy = 4800 slugs feetz

cl = Izz = 8260 =lugs feetz

IX2 = 5370 slugs feet2

w
where the ~ axis is inclined +7° 451 to the ~ axis..

MI = W– 4676..-—— =
.% 32.2

145.2 slugs.

.
For the light nodelj

Aa = Ixx = .0140 slugs feet2

BS = ~yy = .0130 slugs feetz
.

c= = ~zz = .0240 slugs feetz

In = .0180 slugs feet2

—
where the XZ axis is inclined +4& to t’he XX axis.

*

x= = ~=~= .0357 slugs.
g 32.2 .

N = scale of model = & full size.
.

\“
-k -—
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;

The ellipsoid of inertia for the full scale airplane iB

given by equation (19),

●

Ala2+ Bl~2+ 0~Y2- 2EIa Y = Ixz”

Substituting and solving for El ,

5090 CO# 7.75° + 8260 CO* (90 - 7.75)0 - 2Z1 COS 7.75° COS

(90 - 7.75)0 = 5370
I

.
El = -827.5

The ellipsoid of inertia for the light model is given by

equation (20),

A3~2 + ~f32 + C&Y2 - 2E3*LXY = Ixz.

Substituting and solving for Es,

.01’40COS2 45° -!-.0240 COS2 45° - 2EJ COS2 45° = .0180

The mass quantity of the load lfA is

= .0482 slugs

The position of MA is

d— .QQ= %!(}403)

(16)

(17)

.
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where Q 0=> has been found to be .2695 ft. *

.
4. (&. .0357 x .2695 “

.0492

22

= .200 ft.

The coefficients of the ellipsoid cf inertia of Mz are

:iven by equation (24),.

X32 (0, 05)2
where ER2 = MIIf -l&

and n is the direction cosine

= .00177

of the line & 03 with respect

to the ~ axis, found by measurement to be cos 99.6° = -.1E68.

.,
.

~~ ~’ X 8260- .024Q - s00177 (1 - .1568’). . c~ = ,.,~,.—

= ~00738 .._..

B4 = N~131-&-MR2(l-mz)

where n is the direction cosine of the lino 02 03 with respect

to the ~ axis (l.OO).
h.

●

● * (1)B4=~: x 4800 - .0130 - .00177. .

where t is the direction cosine of the line ~ ~ with re-

spect to ~ axis (Cos - 9.6° = .986).

●

A& == ‘*)6 x 5090 -. .
(

.0140 - .00177 (1 - ●

= .00640
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E4 = N5E1–~– MR2(Zn)

~’r X (-827.5) -=
(12}

.0005 - .00177 x .986 X .1668
●

= -000354

The direction of the principal axis of M4 is given by

equation (25),

tan 2&=

2H2=

Hz =

f roiiw’nich
m

Hz =

)

1~, Ib, and lc,
●

M4 at 04, are found

Ib =

Ia =

Ic =

s

2 E-b
c4-A4

2 .x (-.00354)
.00738 - .00640

tan-l (-7.22) =

.-41.06°

—

-.00708=
.00038

= -7.22

-82.11°

90° - 41.06° = 48,94°
——

the three principal moments of inertia of

from equations (26),

B4 = .00449 slugs fee~

AA Cosz HI - 2E4 COs HI

.0064 X .65672 + .00708

-1-.00738

.01046 slugs feet2

AA COS2 & – 2E4 COS Ha

.0064 x .75412 i- .00351

.01033 slugs feetz

sin HI + CA sin2 HI

X .6567 x .7541 +

x .75412 .—
9

sin Ha + CA sin2 Ha

+ .00738 X .656P
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.

The dimensions of the mass MA are found fr~ eq~tions.. . . . .

(28),
#

,-
&= 1 .&.(. Ic,+,Zb -la),,,., . ...

= r .&2 (.01033 + .00449 - .01046)

.’735ft.’ “’ .

‘6=
J — (.01046 + .01033 -..00449)

.0482

. .._

.

= 1.43 ft. —.

U*~ =
2ab P

If lead is used as the

.0482
.= 2 x.736x1.43 XP

loading material, P can be taken as —

11.4 x 62.4
,. ,.

slugs per cu.ft. ~ afi Q becomes .00104 ft.. 32.2
r

/

~ .“ #%-+, (cz +bz).-.c . ...
i

= ~/%x .01046 - * (.001042 + 1:432) - .00104
.0482

= .430 ft.

The solution has

high, 1.43 feet wide,

. apart. These sheets,

ject out of the sides

given us two sheets of lead .736 feet

and .00104 feet thick spaced .430 feet

if mounted on the model given, will pro-

of the fuselage and greatly affect the

—
—

To obviate thisaerodynamic characteristics of the model.
s
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w
difficulty it will be necessary

25

to alter the mass distribution

of the light model and try the sOlution again. The above solu-

● tion suggests that saall masses placed within the wings near

the tips at the leading edge will change the inertia ch..racter-

istics in the desired direction. When this is done, the four

moments of inertia for the altered model are determined and ~

second solution made. If the blocks are too thin, a less dense

material will be used.

.
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