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¥ASS DISTRIBUTION AND PERFORMANCE OF FREE FLIGHT :IODELS.

By Hax Scherberg and R. V. Rhode.

Summa Ty

This note deals with the mass distribution and perform-
ance of free flight models. An airpléne model which is to be
used in free flight tests must be balanced dynamically as well
as statically, e.g., it must not only have a given weight and
the proper center of gravity but also a given ellipsoid of in-
ertia. Equations which relate the motions of an airplane and
its model are given. Neglecting scale effect, these equations
may be used to predict the performance of an airplane, under the
action.of gravity alone, from data obtained in making dropping .
tests of a correctly balanced model.

It is shown how a light model, built with little regard to
its mass distribution, may be loaded with masses of predeter—
mined weight, shape, position and attitude to give the distri-
bﬁtion desired.

It is indicated how this method of distributing the mass
in a body to obtain a desired distribution, together with the

model dropping tests may pe used to determine the most desirable

inertia characteristices of an airplane of givean shape.
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Introduction

lodel dropﬁing tests were recently instituted at the
Langley Memorial Aeronautical Laboratory as a means of studying
the spimning characteristics of airplanes. The model was dropped
in the spinning aittitude from approximately 100 feet height and
notion pictures were taken of its descent. (results soon %o be
published).

In free flying mocdels, the mass forces and thelr moments _
greatly affect the performance, and therefore the quantity end
distribution of wmass cammot be overlooked in the construction
of the model. ©Since any motion may e considered as made up
of a series of stecady helical motions which take place during
infinitesimal time increments, the kinetics of the problem will
be dealt with in two parts. First, the mass distribution ro-
quired for the simulation of a steady helical motion of the
airplane will bec developed. Second, it will then be shown
that the distribution found for this case is satisfactory for
the simulation of any motion whether steady or not and whatever:
the path.

The equations relating to the motions of the airplane end
1ts model are given and it is shown how a model may be static—
ally and dynamically balanced by means of two simple blocks of

loading material.
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PART I.

Lkass Distribution for a Stcady Helical Motion

It will be considered that this type of motion is obtained
in the normal tail spin. Hence this treatment will indicate
the distribution desired for the imitation of a nommal tail

‘Spin.

It is desired to so adjust the quantity armd distribution
of the mass of a model having linear dimensions N +times those
Ef the full-sgcale airplene that the model will be in kinetic

. T
equilibrium in a steady helical motion which is geometrically

similar to that described by the airplane.

In order that the motions shall be sgimilar the helix angles
of homologous point paths must be equal.

Hence

R Ay w VN g (1)

= or — = ([
v c W Vs

in which V is the vertical velocity, @ the angular velocity
about the spin axis and 1 a representative linear dimengion;

the subscript m refers to the model. The directions of the
vectors representing the gravitational, centripetal and aerody-
namic forces are identical in both cases because the motions are
similar. Thelr resultants must be zero as the motions are steady.
The vector diagrams of the forces are therefore similar triangles.
As the aerodynamic forces are proportional to 1® V® (scale ef-

® Tect neglected), the gravitational forces proportional to the
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mass (M), and the centripetal forces to M w31,

~ Y ' | (2)

‘M
I = 2 .
and o 2y
o b = (3)
Uy O~ Iy tm™ Vi ' ]

From the equations (1), (2), and.(3):

) w = wm A/F . - (4)

and Moo= My /N B _ (&)

The relationships which must exist bebtween the angular and

linear velocities and the masses have now been esgtablished.
The relations, however, suffice only to igsure zero resultant
forces; the conditions which must exist in order that the re-
sultant moments corresponding to these forces shall be zero *
have yet to be established.

As the aerodynamic moment must be equilibrated Ey the iner—
tia couple and as the direction of the aerodynamio moment vec—
tor is fixed by the air flow over the airplane or'model, the in-
ertia couple vector has the mame directions in both cases.

Thus, if the equations for equality of the inertia couple and
aerodynamic moment in one plahe through the spin axis be satis-
fied, the components of the resultant moments in all other

planes will likewise sum up to zero and all the conditions for a
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steady helical motion will have been satisfied. During steady
motion, the inertia couple is a reaction couple due to forced
rotation about an axis other than a principal one. For a set of
components, which must not be zero, corresponding to any one

plane through the spin axis, the following equation holds
' : -

2 2 3
2o @Y (&) (&) @
P and Py, are the products of inertia for the plane in which
the components were taken. The product of inertia taken as
designated in Figure 1, corresponds to moment~cqmponents para1f1
lel to the 1 j plane.j The left side of the equation expresses
the ratio of the centrifugal couples while the right side gives
the ratio of the aerodynamic moments. Introducing the ratios

derived above, it is found that

= A o . (8)

édrd
12
41}

Hence it may be concluded that.af corresponding points the mo-
mental ellipsoid of the model must be similar in shape and par—
rallel in attitude to that of the full size alirplane and have a
‘linear scale ratio to it of N°. The model must be effectively
an exact model, that is, one having the mass equivalent of the

exact model (Reference 1).
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PART II.

Mass Distribution for any lMotion

The problem may now be generalized. It will be shown that
a model so balanced may be used fto simulate all no thrust power
mnaneuvers and that equations (4) and (5) are applicable thereto.

It may be assumed to begin with that at some instant (1),
(4), and (5) are true and that the gravity vectors for the mod-
el and the airplane are similarly located. This assumption
merely presupposes corresponding initial conditions according.to
(1), (4), and (5).

The forces and moments are similarly located, and as before
- the forcé and moment diagrams must be similar. This means of
course, the accelerating forces and couples bear the pzopor—
tionalities of the diagrams and are similarly located. By equat-
ing the ratios of representative vectors in the two diagrams, i?

is found that

F = Ma N\ =M¥g = 1 )
Fn \Hm am / ¥ g N 8 ;;
‘ &
a = &y, 7
( te
5
and F 1 = I a — o4 \
e e
Fr lm In Op. N~ apy - J
R —
@ = N o, (10)

where I 1ig the moment of inertia for the instantaneous axils

about which the mass 1is undergoing an angular acceleration «;
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F 1is the accelerating force through the center of gravity of
the mass which is being given a linear acceleration a; 1 1is a
representative length on the force diagram and hence the product
F 1 may be used as representative of the moment vector diagram.
During the incroments of time At and Aty the motion will
be, to the first degree of approximation, similar. steady heli-
cal motions. Hence the displacement increments of thé mass par—
ticles will be

Ady = NAQ (11)

in which d is either a linear or circular (ilw) dieplacement.

Dividing (11) by (4) or (5) gives the equation
JE AL = A gy - (12)

The new velocities, accelerations and positions at the end

of the time intervals fulfill the conditions previously assumed.

Vpat = V4 aV=V+adt - (13)

Vpty = Vo + AVp = /EV+ /Naat (14)
Hence . '

7, v

7l = == or vy = Al -(15)

Mn JE VI

In 1like manner it may be shown that all the other condi-—
tions will repeat themselves. Thus, equations (4) and (5) com—
pletely correlate, nezlecting for scale effect, the relation-

ships between the motion of an airplane maneuvering under the
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action of gravity alone and that of its model which has an equiv-

alent quantity and distribution of nmass.

PART III.

Obtaining the Desired Mass Distribution

A model has an equivalent quantity of mass if this quantity
satisfies equation M = M,/N°.

The criterions for equivalent distributions of mass in a
model may be stated as follows: '

The model must have a center of gravity which is similarly
located to that of the modeled body. It must have a momental
ellipsoid at its center of gravity which is an ¥° scaled im-
age of the momental ellipsold at the center of gravity of the-
modeled pody.

The ellipsoids must have similar attltudes relative to the
shapes of the body and its model.

An exact model obviougly satisfies the above conditions.
However, to build a model geometrically scaled down in mass den—
sity dlstribution would be difficult, impractical, and unneces-
sary. It is only necessary to build a light model and so load
it as to obtain the desired quantity and distribution of mﬁss.

Let it be assumed first, that a light NP scale model of
mass Ms; has been built; second, that the mass M, , of the
full size airplane is known; and third, that the expresslons

for thelr momental ellipsoids ¢ and ¥ at corresponding points
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(say the c.g. of the full sized airplane and the corresponding
point in the model) have been computed (Reference 3). Figure 3
is a sketch of the momental ellipsoid for a typical airplane.

Let I, and I3 De the moments of inertia for represent-
ative axes of the airplane and light model, respectively.

Figure 3 represents, superimposed uvon each other, a light

model whose center of gravity is (0s;) and an exact model

whose center of gravity is (D5). (0.} is the center of grav-
ity of & load (¥,) which is to be so disposed as to bring the
center of gravity of the light model to 0Oz and fo malke its
momental ellipsoid iagentical with that of the exact model.

The exact model has a mass N° ¥, and moments of inertia N5 I
at O0,. The position, mass and momental ellipsoid (6;) of

My at Oz are ;eadily computed.

They are
M, = N° M, - M (18)
Mz (Oz Oa
& = 0p 0s= 2(3 o) (17)
N° M, - ¥,
6z = NS V¥ -d (18)

To determine the shape and attitude of M, it is best to
compute iis momental ellipsoid (€_.) at O,.

g:bz”ﬂsw = Aza® 3+ BxF° + C2Y® — 2D 0B — 3E, Y — 2FBY

‘ = N° I, (19)

Ll =0 = A, + BsB® + 037 — 2D30P — 2Es 0¥ — 2FPY = I,

(20)




~

H.A.C.A. Technical Note No. 288 - 10

‘Hence

B2 = N° — & = (A - Az)a® + (Ba - Bs)Bz + (Ca ~ Cs)‘Ya

-~ 3Dz ~D3)aB -2 (B - Ezg)a ¥ ~
-3(E -FiBY (21)

a, B and ¥ are the direction cosines with the usual reference
axes taken for an airplans (Figure 1). =r, and r, are the radii
vectors of the ellipsoids. Again, 1e5 the direction cosines of
the line 0, O3 be (1, m, n) whils (i, , m, n,), (15, mg,
Ng) — — — — — — — {lg , mg, ng) are the direction cosines for
six arbitrary axes through O,. The moments of inertia for
these axes are obtained by subtracting from the corresponding

moments of inertia at Op the following expressions:
M, &° sin® cos™? (11, 4 mm, + nn,) (22)
M, & sir® cos™® (11, + mm, + nng)
My &® sin® cos™' (llg + mmg + nng)

This will give six equations of the type

8 (14, m, n,) - ¥, & sin2 cos™ (11, + mmy + nny) (23)
= A4 ?;12 + B4 mlz + C.g, n13 — 2:)‘ ?,1 m, =-— 8E4 ?'1 n, - 8F4 m; 1;
in which A4, By, C4 — - - - —3E. are the coefficients of the

momental ellipsoid (¢,) of #, a% 0, with the reference

axes translated to Og.
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For simplicity, the six axes may be chosen by the direction

cosinmes (0, 0,1), (0, 1, 0), (1, 0, 0), (}./2, %./2, 0),

(3./2, o, -wagj and (O, %«/éz %Mféj. When placed in the

z
equations (23) six simultaneous equations containing the con-
stants Ags, By - - - — - -~ ¥, are obtained. On solving, it
is found that

Cs =0z ~ 03 — ¥ R® (1 —- n2) (24)

ME (1~ n2)

td
&
Il
o
[
|
hg!
{

A, = A, - A, - M R (1~ 1®)

MR 1 m

(]
N
Il
(=]
[V
i
o
(4]
|

E, =E; -~ E; -H R 1 n

%,° (0, 0,)
M, N° — M,

2

where ¥R =

The principal moments and axes of the ellipsoid may be com—
puted from these coefficients. The airplane in general has a
nlane of symmetry, the X Z plane, and therefore D, and F,
are zero while B, 1s a principal moment of inertia. The Y
aXis is a principal axis. The other two principal axes are in,
the X Z ,plane anG make the angles H;, and Hx with the X
axis; these angles are given by %the equations

2 E,

S s 25
TR (25)

tan 3 H, =
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Substituting the direction cosines of the three principal

axes in the equation for 6,, the three principal moments of

inertia are obtained. They are

Ip = B, (26)
I = A, cos® — 3, cos H; win H, + 04 sin® H,

Hl
I, =4, cos® &, — B2, cos H;, sin H; + C, sin® H,

The subscripts a, b, and ¢ indicsive the principal cen—

troidal axes of M,.

It is necessarvy to state Shat the coefficients given by
(24) will not always be those of .a momental ellipsoid. Care
must be taken in building the light model. The surface of ©
must not intersect that of N° Vv and therefore the mass of the
1ight model should be kept as close to tae desired c.g. (03)
as possible. A

+s Bs, and G, must each be positive. No one

of them must be greater than the sum of the other two and the

expression A, - E:A must be greater than zero.

There is considerable choice regarding the dimensions of
Mys. First a loading material with a mass density great enough
to insure complete concezlment must be chosen. This choice is
chiefly influenced by the quantity of mass to be added. Having
decided upon the density (p ) a further choice as to the
shapo 1s present. Construction will be the chief guide here.

Ags an exomple, the two simple blocks shown in Figure 4 will Dbe

considered.
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¢

The three centroidal principal moments of inertia of this

system are

\f H

Ip = 12 (a2 + &) + 1 (c + K (27)
M

I, =35 (&2 + ¥l

- M M
Iy = i%- (B + ®)by® (e + K)®

M, =23 abcp

Solving for a, b, c, and X ' it is seen tuat

a =J/§_; (1'0 + Ip - :a.)_ (28)

b = /&—- (Ia+ 10. - .1:0).

-r
)
kA

°T ZTAabe
/'Z"i—‘ 1
=43 1 b= b2) -
K v/ T Lc2® + ) c

Inserting the values (28) into (28) the dimensions of the
bvlocks are obtained. The light model when loaded with two
blocks in a manne£ prescribed by the above results will then
becorme eifectively an exact moael since it will have the equiv-
alent quantity end distribution of mass of the airplane for
-which 1t was modeled.

It will often occur that the dimensions of the loading

blocks as determined by the first solution will be such as %o
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destroy the acrodynamic characteristics of the model (see Appen—
dix). In such cases the mass distribution of the light model
must be altered by the addition of small masses in order to
bring it closer to that required. The first solution will give
a clue as to the proper disposition of tliese sdded masees. A
second solution will then detcrmine loading dlocks which will
be completely concealed within the model.

To determine the most desirable ineztla characteristics
for a given airplane shape, a model may be constructed with an
adjustable loading, permitting an arbitrarily chosen mass dis—
tribution, and dropping tests made until a distribuftion is fin-
ally obtained which gives the model the most desired gravity
performanée. The useful load of the airplane might then be lo—
cated to obtain a like distribution. For a distrivuted useful
load the dimensions of the pattern of distribution could readily
be computed from the inertia characteristics of the individual
loads.

Conclusion

The maneuvers of a full scale airplanc under the action of
gravity alone may be completely simulated by a model which has
been prepvared to contain a mass quantity ¥° +times the nass
quantity of the full scalc airplane; to have a center of gravity
which is similarly located to that in the full scale airplane,

to have a centroidal ellipsoid of inertia whose linear dimen-
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sions are Y¥° +times those of the centroidal ellipsoid of the
full scale airplane and whose attitude in the model is similar
to that of the momental ellipsoid in the full scale airplane.

™~ .The simulation will be in accordance with the following equa~

tions: —
v = Vm/J N }/ DD
/ = /
w T Wp A,/ q u‘“ m
t = tp/ /N

im= N1,

.V and Vy are the linear velocities at homologous points
of the paths, © and @y, the angular velocities at these
points. 1 and ﬂm are representative dimensions cf their
paths while t and 4, are the times occupied in traversing

" homologcus path increments.
) These relations may be used to compute the velocities, the

turns, the times and the distances for complete maneuvers, or

homologous portions of maneuvers.
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Definition of Symbols
PART I.
The subscript »m designates symbols referring to the bal-

anced model.

N = scale ratio of model to airplanc.
Vv = 1linear velocity.
w = gangular velocltyr.
1 = a rcpresentativc lincar dimeﬁsion.
I = mass.
P = product of inertia.
PART 1II.
F = force.
a = linear acceleravion.
1 = a representative length on force diagram.
a = angular acceleration.
t = <time.
Ad = displacement increment of mass particle.

M, a, N, and V as in I.

PART III.

- The subscripts -1, 2, 3, and 4 designate the full scale

airplane, exact model, light model, and lcading mass, respectively.

M, = mass of full scale airplane.

M, = mass of light model.

E
P
i

mass of loading material.
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PART III (Cont.)

V¥ = desipgnation for momental ellipsoid of full
scale airplane.

® = designation for momental ellipsoid of 1light
model.

I, = moments of inertia of full scale airplane.

I = moments of inertia of light model.

Oz = center of gravity of exact nocel. _

Oz = center of gravity of light models

O+ = center of gravity of M,. |

2 = designation for momental ellipsoid of U, at & .

94 = designation for momental ellipsoid of Y, at O.

a, B, ¥ = direction cosines.

l, m, n = direction cosines.

4, Ba, Cz = moments of inertia of exact model about
XX, YY, and 272, respectively.

Dz, E;, F; = oproducts of inertia of exact model for
the plarnes XZ and Y2, XY and ZY, and
YX and ZX.

A;, By, C; = moments of inertia of light model about
XX, YI, and 2z, respectively.

Ds, Eg, F; = products of inertia of light model for
the planes X2 and YZ, XY and ZY, and
¥X end ZX.

A,, By, T4 = nriomenss of ineriia of M, with. respect
to reference axes translated to 0O4. _

Dy, B, F, = products of inertia of ¥, with respect
to reference axes translated to Oa.

Ia, Ip, Ig = principal nmoments of inertia of M,.

a, o, ¢, K = dimensions of M,.

p = density of loading material.
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Appendixzx

Proccdure for the Construction and Loading of the Hodel

A light model is built with its mass content as close to
the desired c.g. Oz, as is possible. Its XZ plane must be
a plane of symmetry. The coefficient of the mdmenﬁal ellip—
solds of the light model and the full scale airplane must next
beaﬂ&mhwm

The coefficients D,, Db, R, and 5 of the equations (19)
and (20) will be zero because of the plane of symmetry (the XZ
plane). To detemine the other 6Qefficients it is necessary to
measure the moments of inertia for four arbitrary axes (not in
one plane) through Oz in the light model and for four axes |
through the c.g. of the full scale airplane (References 2 and 3).
The values are substituted in (19) and (20) and the coeffici-
ents determined.

Equations (16) and (17) will give the mass quantity and the
position in the model of the center of gravity of the load M..
If the block shapes are chosen, equations (24), (25), (26), and
(28) are to be used in the order indicated to determine the di-
mensions of the mass M, and the angles that the edges a, Db,
and ¢ make with the reference axes of the model. b 1is paral-
lel to the Y axis while a and c¢ -make the angles H; and Hz
with the X axis (Figure 5).

If other shapes arc chosen the equation (80) nust be

changed accordingly. The equations (237) corresponding to the
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particular shapes chogen must next be set down and the corre-

sponding equations (28) obtained from them.
Problen

The following case is worked out to make clear the process
of solving for the dimensions and position of the mass M,.

The data have been deternined experimentally and are given
as follows:

For the full scale airplane (0-2 observation),

A, = Ixy = 5090 slugs feet®
B, = Iyy = 4800 slugs feet?
. C. = Iz, = 8360 slugs feet®

5370 slugs feet®

where the XZ axis is inclined +7° 45! +to the XX axis.

M, =.%=%§"Z§i = 145.3 slugs.

For the light model,

Bas = Iyy = .0130 slugs feet®
Cz = Izyz = .0340 slugs feet®

Itz = .0180 slugs feet®

where the XZ axis is inclined +45° to the XX axis.

Mg = ¥ =1.15 = oz57 .
3 z 555 - 57 slugs
N = gecale of nmodel = 1 full size.

12
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The ellipsoid of inertia for the fuil scale airplane 1is

given by equation (19),

A,0%2+ B B+ C.Y¥® - 2B ¥ = Ixz-

pal

Substituting and solving for kK,

5090 cos® 7.75° + 8260 cose (90 - 7.75)° — 2E, cos 7.75° cos

(90 — 7.75)° = B370
E, = -837.5

The ellipsoid of inertla for the light model ie given by
equation (20),

Ag02 + ByB® + Ga¥® — 3Bz o Y = Ixg.

&

Substituting and solving for Ej,
.0140 cos® 45° + .0240 cos® 45° — 2E, cos? 45° = .0180

E; = .0005

The mass quantity of the load M, 1is

M, = ¥ M¥ - (16)

= 145:8 _ 0357
iz

= .0482 slugs

The position of M4 1is

¢ = 5o - 2% 0 (17)
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where 0O, Oy has been found to be .3635 f+%.

. g = 0857 x .3605

. 0482

= 1200 f.t'

The coefficients of the ellipsoid cf inertia of ¥, are

siven by equation (24),
Ce = N° 0y - O3 — MR® (1 - n2)

.2 (02 0)°
where MR = o8 F.SOs }?{:)_ = .00177
1 = -

and n is the direction cosine of the line 0. 0Oz with respect

to the ZZ axis, found by measurement to be cos 99.8° = —.1€68.
. o 1‘€
+ « G2 = (55 ) %8260 - .0240 - .001L77 (1 ~ .1868%)

= .00738

Ba

it

N® B, — By — MR® (1 - nm®)

——

where m  1is the direction cosine of the 1line 0= Os with respect

to the YY axis (1.00).

L ] 5
.« By = (§5) x 4800 - .0130 - .00177
= .00449 .
Ay = N A — A - MR (2 - 19

where 1 1is the direction cosine of the line O, O; with re-

spect to XX axis (cos — 9.8° = .986).

Jooa, = (LY X 5090 - .0140 — .00L77 (1 — .986")
: 13, Yo '
.00840
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Es = N°E, - B - MR® (1 n)
B8
= %g) x (-837.5) - .0C05 — .00177 X .986 X .1668

The direction of the principal axis of Ms is given by

equation (25),

2
tan 2 Hy = ‘a;—:EiK:
_ 2 x (=.00354) = =.00708 < _v. o3

2 Hy, = tan~? (-7.23) = -83.11°
H, = -41.06°
Trom which

H, = 90° - 41.086° = 48.94°
' :
Ig, Ip, and I;, +the three principal moments of inertia of

Ms at Os, are found from equations (28),

Ip = Ba = .00449 slugs feet’

I, = Ay cosg® Hy — ZE4 cos H; sin H, + Cs sin® H;
=,0084 X .6567° 4+ .00708 X .6567 X .7541 +

+ .00723 X .7541%

= ,01046 slugs feet® |

Io = Ay co82 Ho — 3Es cos Hy sin Hz + C¢ sin® He
= .0064 X .7541° + .00351L + .00738 X .6567°
= ,0103% slugs feet?®
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The dimensions of the mass ¥4 are found from equations

(38), B
E=X = 'ﬁ' <IO -+ .Ib - Ia_) ......
J —ooss (-01083 + .00449 - .01046)
= 736 f%.
- 8
/ 6 P
J Toags (-01046 + .01033 - .00449)
= 1.43 ft. )
c = Mo = _ . 0483
= Z2abP . B X.736 X 1.43 X p

If lead is used as the loading material, p can be taken as

11.§9X862.4 slugs per équt;,'and & becomes .00104 f1. .

~

- /a4l
¥ = //:Méa - 5.(e® +1%) - o
A

Il

/ j 2
J & ‘0485046 _.% (700104° + T1.43 ) — .00104

«430_f%. _ _ .

The solution has given us two sheets of lead .736 feetb
high, 1.43 feet wide, and .00104 feet thick spaced .430 feet
apart. These sheets, if mounted on the model given, will pro-
ject out of the sides of the fuselage and greatly affect the

aerodynamic characteristics of the model. To obviate this
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difficulty it will be necessary to alter the mass distribution
of the light model and try the solution again. The above solu-
tion suggests that small masses plaged within the wings néar
the tips at the leading edge will change the inertia character—-
istics in the desired direction. When this is done, the four
moments of inertia for the alteored model are determined and &
second solution made. If the blocks are too thin, a less dense

material will be used.
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a,b,and ¢ are principal axes
Y X,Y,and Z are airplane axes

Fig.23 Quadrant of momental ellipsoid.
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Figs.3,4




