THCEIIGAI NOTES

HATIONAI ADYISORY COMMITME卫 FOR AERONAUTICS

TAE GOLPRBSSIVE STRTNGTH OF DURAIUIIIN COLUMGS OF RQUAT ANGEE SECTION By Eugen $\begin{gathered}\text { F. Iundquist }\end{gathered}$ Jangley Kemorial Aeronautical Jaboratory

HATIONAI ADVISORY COMMITTEE FOR AERONAUTICS

TEGENICAI NOTE NO. 413

THE COMPRESSIVE STRMMGTH OF DURAIUMIN COLUMNS
OF EQUAL ANGLE SECTION
By Eugene E. Iundquist

SUMIIARY

This report presents a chart giving the compressive strength of duralumin columns of equal angle section. The data used in the construction of the chart were obtained from various published sources and were correlated with theory in the range where secondary failure occurred.
.. Appendices are included giving excerpts from Army and Navy specifications for duralumin and approximate formulas for the properties of the equal angle section.

INTRODUCTION

In the present trend toward all-metal airplane construction there is an increasing need on tio part of dem signers for charts giving the compressive strength of verious open sections now frequently used as compression members in trusses and as stiffeners in stressed-skin structures. At present, the only column chart in general use for open sections is the one for duralumin chennels first published by the Army Air Corps (reference l) and republisned in the book entitled "Airplane Structures," by Niles and Newell.

In an effort.to compile additional charts of this type, the National Advisory Committee for Aeronautics at Langley Field, Va., made a study of the results of numerous column tests reported in technical literature. In the course of this study it was observed that the test data of references 2, 3, and 4 for equal duralumin angles were fairly consistent and that the column curves were generalIy similar to theoretical curves plotted from a formula given in reference 5. By the introduction of an empirical
constant, the theoretical curves were made to fit the points plotted from the tests. The present report develops a column chart for equal duralumin angles basod upon the test data and the theory of the abovermentioned referm ances.

Beca"xe the strength properties of the materialo used Fere not Given in any of the references containing test data, some difficulty was experienced in reducing the test results to the results of a specification material. In this connection, valuable assistance in the form of com ments and data was obtained from Dr. J. B. Tuclrerman and Captain.S. H. Petrento of the Bureai. of Standards. The columi chart, as finally constructed, is intended to apply, insofer as the"strength properties are concerned; to material which conforms to Army Specification 57-187-1 Trpe B material, Navy Specification 44T21-Trpe B material, or to Nevy. Specification 47ABa - Type 3 material. Excorpts trom tilese specifications are given in Appendix A.

For the convenience of designers, a list of approximate formulas for the section properties of equal angles is Given in Appendix B.

SYMBOIS
Symbols Used in the Following Discussion
b, width of les, in. (Seefie, I)
t, thickness of leg., in. (See fig. 1)
t, length of column, in.
ρ, raḍius of gyration, in.
S, stress, lb, per sq.in:
c, coefficient of end fixity.
B, Younit's modulus, lb. per sq.in.
σ, Poisson's ratio.
$\lambda, ~$ Nalforave length of wrinkle in an outstanding flange-or leg of the angle, in:
ddditional Symbols Used in Appendix B

```
A; area of cross section, sq.in.
x, distance of c, f. fromleg, in. (Seefig. 1)
I, moment of inertia of cross section, in*
```

$\begin{array}{ll}: \cdots \cdots \\ : . . & \text { TYPES OF'COLUKN FAILURE }\end{array}$

Columins may fail in any of the following ways: by. compression;" by bending; "by local wrinkling of some thin part; by twisting about a longitudinal axis, which axis nay or may not coincide with the centroidal axis of the colunin; or by ant combination of the above types of failure.

Compression, - Compression failure is characterizeત by a plastic flow of the material in the column. Ultimate strengths corresponding to this type of failure depend upon the dimensions of the column and the stressstrain curve for the material, but compression failure is usuelly. assumed to occur at or near the. yield-point stress.

Bending.- An muler, or long, column which deforms into a continuous curve from end to end is considered to have failed by bending. The stress at which this bending takes placie is given by the well-wnown Fuler column formula

$$
\begin{equation*}
s=\frac{c \pi^{2} \underline{E}}{\left(\frac{l}{\rho}\right)^{2}} \tag{1}
\end{equation*}
$$

Local wrinkling and twisting.- A column of large torsional rigidity; but with very thin parts, may fail by a local wrinkling of one of the thin parts into waves of length 2 λ. If this thin part is an outatanding flange or leg (see fig. 2) perfectiy fixed at its base; theminimum critical winkling stress is (reference 5, eq...2)

$$
\begin{equation*}
S=7.163 \frac{t^{2}}{b^{2}} \tag{2}
\end{equation*}
$$

It is pointed out further in reference 5 that on account of elastic giving and imperfect fixity at the base of the flenge or leg, the coefficient in equation (2) is considerebly reduced in any practical case.

If the thickness of the heavy leg in Figure 2 is reducod, the torsional rigidity is reduced and the angle. column twists appreciably under load. On accoint of this tristing the conditions in the thin leg become anelogous to those in a flange, or leg, with reduced fixity. In the limiting case when the thicknesses of the two legs are the
same, the fixity at the base of each leg becomes zern: λ approaches the length of the column and we have what is commonly referred to as failure by tristing. The oritical stress for the condition oi zero fixity at the base of a compression flange, or leg, is (reference 5, eq. 90)

$$
\begin{equation*}
S=\left[\frac{\pi^{2}}{12\left(1-\sigma^{2}\right)} \frac{b^{2}}{\lambda^{2}}+\frac{1}{2(1+\sigma)}\right] झ \frac{t^{2}}{b^{2}} \tag{3}
\end{equation*}
$$

TEST DATA AND DISCUSSION

The columin tests upon equal duralumin angles reportod in references 2,3 , and 4 were made with pin enda. Representative portions of these data have been plotted in Figure 3 and will be summarized relative to.tine types of failure.

Cnmpression.- In the testa of referencea 2, 3 , and 4 no mention Fas made of a compression type of failure. Fxamination of the test dataplotted in Figure 3 indicatos thet this type of failure might have occurred at stresses of from 34,CCO to 36,000 pounds per square inch.

Bending.- Fxcept in the range where socondary failure occurred; long columns-Eailed at the Euler loade It mill be observed that the test points in Figure 3 scatter somewhat but are, in general, above the Euler curve. These discrepancies are probably caused by a slight amount of friction in the pin onds and by the fact that $\#$ was, in some cases, highor than 10^{7} pounds per square inch, the value for winch the Euler curve was drawn.

Combinations of compression, bending, wrinkling, end tristing - Any type of column failura which is nnt clacaIy either compressicn or bending. comef unjer this genaral heading. A jetailed discussinn of the test data concerning the exact typer of failure mould be interesting but cannot be made because practically no information on this subject was given in the repcrta. Consequentiy, further discussion of the type of failure will be aroided and curves will be derived representing the test data. These curves mill be based, upon theoretical.formulas Where possible.

In figure 3 , below values of l / ρ equal to 80 , the results of tests on columns designated- H , 0 , and P lie approximately on a straightifite. : These tests ($\frac{b}{t}=7.9$ to 949) represent two types of failure changing from
 ure at approximately. $/ / \rho \stackrel{y}{=} 30$. From thése datialitis concluded that a single straight line and Bular curve will closely define the strength of a duralumin column of equal angle section up to values of b / t of lo or perhaps 12.

Plotting the critfoal twisting stress as given by - equation (3) with the following substitutions

$$
\begin{aligned}
& \lambda . .=l^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma=\because 0.3
\end{aligned}
$$

the dotted curves in Figure 3 are obtained for values of $\frac{b}{t}$ of. $14,17,19,20$, and 25; Although these theoretical curves for twisting failure agree fairly well with the test data at large falues of il/ they giye conservative stresses at Iow values of l / P. It was found by inspection that the test, data could be represented very well by equetion (3) if λ were assumed. equal to $\frac{1}{2.62}$ instead of 2. . The solid curves in figure 3. for the same values of $\frac{b}{t}$ mere drawn. with $\lambda=\frac{l}{2.52}$ All of the experimental results plot fairly well along these curves except the yoints for the columi designated S-3, which plot below the curve for $\frac{b}{t}=14$. These low points may be caused by differences in the properties of the material used in the tests of references 2 and 3 , or by inappicability of the Iormulas for elastic failure in this rogion of the chart. Because no stress-strain curves were given, no definite idea of the relative importance of these two factors could be formed.for this case.

An ideancf the importance of knowing the strength properties of the column material may be obtained by com-
paring the results of:tests upon duralumin tubes with the results of tests upon duralumin angles plotted in Ficure 3.. It is not likely that a nigher liforn-factor, l i.e., higher average stresses, would be developed in a duralum min colum of angle section than in a duraluain tubo tostod with the same l / ρ, neither of which fails locally. This apparent absurdity must, therefore, be ceused largeIy by, a difference in the properties of the materials. Consequently, in the construction of the colump chart for oqual duralumin angles the several sets of test data must be corrected for differences in the properties of the materials.

In Figure 3 the curves representing failure by twisting intersect the Euler curve rather than become tangent to it. This intersection indicates an abrupt change in the type of elastic failure and at the lower stresses is borne out by the test data. (Column N.) At the higher stressos, above the stress at which the straight line having b / t labeled "IO or less" becomes tangent to the Jum ler curve, the transition from failure by twisting to failure by bending (the Euler type) is actually not so airupt as the crossing of the theoretical curves would indicate. (Columns $5-3$ and $L_{\text {- }}$) This phenomenon is caused by inelastic behavior of the, material in the, columns and must be taken into account in the construction of the column chart for values of b / t below i8.

Somo recent tests made by the Bureau af stendards upOn sheet duralumin furnished by the fational Advisory Committee for Aeronautics showed a marked difference in the shape of the stress-strain curves taken normal and parallel to the direction of rolling. (See figs. 4 and 5.) Therefore, if angles are made from sheet materiel the direction of the grain in the engle column must be tazen into account in the construction of the column chart.

The importance of including stress-strain curves fith the results of column tests cannot be too strongly enm phasized. Without them no account can be teken of tho strength properties or the inelastic behavior of the ma'terial. In the anelysis of test results. The Bureau of Stardards has repeatediy shown the inecessity of including stross-strain curvas of the naterial with the results of all tests on structures if the rosults aro to have a lasting velue. The failure to include these curves or to mako any roferonce to the strength properties of tho material in roforences 2, 3, end 4 has groatly reducod the value
of the resultes except in thermeges def relastionailures: :

In the absence of tests on angle columns in which the properties of the tateriel are wnown it will be assumed that for colums eongtructed of any material, angle: columns with ralues of :ob/tup to liz will fail tath the: same stress as a tube of \cdot the same: l/p. Upon the basts of this assumption tho: results of the Bureau of Standards a: tests on tubes which conform to Army Specification by-18p-I \rightarrow Type B material: and to davy Specification 44 mil -Type B material Fill be used.to give the upper limit of the strength of duralumin colurns of angle section having the same l / ρ as the tubes, and the column chart:Will be constructed for material having the strength properties requared by these specificetiang.

In Figure 6 a stress of 33,000 pounds per square inch is teken as representing the probable minimum field point in compression in the difection of the grain for duralumin Which juat meets the strength requiremente of the abovermentioned Army and Wavy specifications. This value was obtained from the tests made at the Bureau of Standards on duralumfnetube the resulte of which have not yet been probished. Also, a straight line tangent to the Euler curve and passing terough a point representing a stress of: 3I, 000 gounds per square inch at il/ $=30$ is used instead of thenstreight inine obtained directiy fromthe tests ori: :angless: Mhis: lifne, shown as a dashed line :
 the abovementioned Bureau of standards.tests in this region. In vies of the uncertainty of the test data on angles, it was not thought worth. while in tinis paper ta: use the curve which more closely represents the Bureau of Standards data. This line, as well es the horizontal line drawn at a stress of 33,000 pounds per square inch, is assumed to apply to equal angle columas only wien the direction of the grain is parallel to the exis of the column.

When the direction of the grain is normal to the axis of the column, which may. sometimes be the case, the solid line heving b/t labeled "lu or less - - - " and dram tangent to: the Euler curve.from. a.stress of 34,500 pounds per square inch at $\because \% / \mathrm{p}=0$: shoridube used togetiner

With the horizontal line drawn at a stress of 28,000 pounds per square inch. These lines were obtained from the results of the Bureau of Standards tests by making a reduction to ailow; approximately', for the iower gtrength properties when the stress is normal to the direction of the grain.

In drawing the curves of twisting failure allowance was made for the effect of inrelastic behavior of the material and for posisible differences in the properties of the materials in the tests by assuming $\lambda=1 / 2$ in equation (3). For values of b / t lessi-than 19 the transition from the curves of failure by twisting to the curve of failure by bending (the Eulericurve) is effected by drawing straight lines tangent to the curves of tixisting failure from a point on the Euler curve at aristress ofill,500 pounds per square inch. This point is the point of tangency of the fuler curve and, the ttridight lint labeled "13 or less - - .." For values of : ith greater than 13 no distinction regarding the direction of the grain in the anglo is made in the column chart.

I In drawing the fuler curve and the curves of twisting failure it was assumed that $E=10^{7}$ pounds per square inć̣h and that: $\sigma=0.3$.

Compression members in: aircraft structures usually have some end fixity. A columnchart for anifias having $c>1$ would therefore be of more general value. Such a chart has been constructed for $c=2$. and if!shown in Figture. 7. In the construction of this.ehart the straight lines representing the upper limits of the column chart were drawn tangent to the Euler curve firom their respec-. tive intercepts on the axis $\quad l / \rho=0$ in Figure. 6, but the curves representing secondary failure at larger b / t. ratios were plotted using the same equation as in Figure 6.

IIMITATIONS OF THE COLUMN CHART

Because no stressustrain curves were included in the reports containing test data on the strength of angle columns, it is imposeible to establish the accuracy of the column chart of Figure fifor the lower b/t ratios. It is estimated, however, that for material which conforms to the specifications of Appendix A the errors are probam bly within 10 per cent.

The column chart of. Figure: Fifmust.be understood to be approximate only. Thether the degree of end fixity in an airplane structure is such fthat thechart for $c=2$ may be used is a matter to be determined by special tests. Figure 7 has onjy been included because a column chart for $c>$ I, \because might be of more..general value than that for $c=1$.

The columncinartsof Figures 6 and 7 have been constructed for singie angles and the l\% values have beon calculated using the minimum radius of gypatione Therefore if two aneles areriveted together, ereater strength may be developud. If angles are rivetod to sheets; as might be done in.stressed-skin stryctures, greater or loss strongth will be dovelopod, dopending upon the conditions of failure in the shoet.

It is appreciatod that angles-eré, in generalonotias efficient as other sections for compression members in

 covering a ride variety of shapes, are very scattered and incomplete. Consequently, a complete and systematic inVestigation should be made forstablish design charts and formulas for the more common bections. When such tests
 strain curves for the materials and these curves included in the report presenting ther result st. Urizess such procedure is followed, the value of tive results will be greatly. reduced.

Langloy Momortal Aëronauticel Laboratory,
National Advisory"てomitytétor Aeronautics;

APPRNDIX A

Specifications

	$\begin{gathered} \text { Army } \\ 57-187-1 \\ \text { Type } \end{gathered}$	Navy 44T21 Type B	Navy 47A3a Type 3
$\begin{gathered} \text { Tensile strength, lb. per } \\ \text { sq.in. (minimum) } \end{gathered}$	55,000	55,000	55,000
```Yield,point, Ib. per sq.in. (minimum)```	40,000	40:000	42,000

The yield point is defined in these specifications as the stress at which the test specimen shows an extension of 0.002 inch per inch in excess of what would be computed from Young's modulus of elasticity for the alloy (107) and the usual formula.

For the purposes of this paper, it is assumed that these specifications are met only when test specimens are taken parallel to the direction of the grain.

## APPENDIX B

> Approximate Formulas for the Properties
of the Fqual Angle Section

Bract formulas for the section properties of angles are given in the various handbooks. If the thicknoss of the legs be assumed to be small compared to the width, approximate formulas for the section propertien may be derived. These formulas are, for the equal angle section (see fig. I and list of symbols):

$$
\begin{align*}
& A=2 \mathrm{bt}  \tag{4}\\
& x=\frac{b}{4}=0.25 \mathrm{~b}  \tag{5}\\
& I_{1-1}=I_{2-2}=\frac{5}{24} \mathrm{~b}^{3} t=0.208 \mathrm{~b}^{3} \mathrm{t} \tag{6}
\end{align*}
$$

ii.A.C.A. Technical Note NO. 413
$I_{3-3}=\frac{b^{3} t}{12}=0.08 .33 \mathrm{~b}^{3} \mathrm{t}$
$I_{4-4}=\frac{b^{3} t}{3}=0.333 \mathrm{~b}^{3}+t$
$\rho_{1-1}=\rho_{z-2}=\sqrt{\frac{5}{48}} \dot{b}=0.323 \cdot \dot{b}$
$\rho_{3-3}=: \sqrt{\frac{A}{24}} b=0.204 \mathrm{~b}$
$\rho_{4-4}=\sqrt{\frac{1}{6}} b=0.408 \mathrm{~b}$
In the derivation of the above formulas it was assumed
tiat tine angle was square at the corner, as in Figure 1 :
Jscally the corner is rounded or carries a. small fillet,
but the error restiling from the use or the approximate
Eormules Will be small. in most practical cases ( $\frac{b}{t}>8$ ).
When determining the total load, itis"recommended
that the approximete formulas for $\rho$ be used to obtain
the allowable stress, but that tiris stress be multiplied
Dy the actual area rather tian by the area as given in
equation (4). Tinis method is analogous to that rocommend-
e C by $R$. A. ifiller for duralumin chennels. (Reforence l.)

## REFPREHCES

1. Miller, R.A.: Compressige Strength of Duralumin Channels. A.C.I.C. No. 598, Hatériel Division, Army Air Corps, 1928.
2. Aeronautical Research Committee (British): Report,on Materials of Construction Used in Aircraft and Aircraft Engines. pp. 70-71. His iiajesty's Stationery office, Iondon, 192C.
3. Lee, John G.: Tests on Duralumin Columns for Aircraft Construction. T.N. No. 208, N.A.C.A., 1924.
4. Krein, E. M.: Test of Aluminum Alloy Columns - Flat Flates and S.tructural Shapes. Serial No. PTI-lZ, Bureau of Aeronautics, Navy Dept., 1930.
5. Trayer, George W., and March, H. W.: Elastic Instability of Members Eaving Sections Common in Aircreft Construction. T.R. No. 382, N.A.C.A., IO31.


Fig. 1 Equal aigle section.


Fig. 2 Angle of odd proportions in which local wrinkling might occur.


Fig. 3 Column chart sumarizing test data.


Fig. 4 Stress - strain curve for sheet duralumin 0.011 inch thick parallel to the direction or rolling.


Fig. 5 Stress - strain curve for sheet duralumin 0.011 inch thick normal to direction of rolling.

## Note:

This column chart is for matorial which conforms to the strength prooerties of:
Army specirication 57-187-1-type B Navy spocification 44T2l-type B Navy specification 47A3a-type 3



Fig. 6 Column chart for equel duralumin angles, $c=1$.


Fig. 7 Column chart for equal duralumin angles, $c=2$

