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VORTEX NOISE FRO~ ROTATINJ ~YLINDRICAL RODS 

By E. Z . Stowell an~ A . F . Demi~g 
./ 

sm.ihiARY 

A series of r ound rods of the same diameter were ro ­
tated indiv\duall y about the mid - point of each rod. Vor­
tices a.re shed from the rons when in motio~ , g ivi ng r; se 
to the emission of sound . With t~e r o tatin~ system placed 
tn the open air , the distribution of sound in space, the 
acoustical p ower output , and the spectra l distribution 
have been st-died . The frequency of emission of vortices 
from any noint on the rod is shown to be given by the for ­
~ula of v~n K~rm~n . From the s,ectrum estimates are made 
of the distribution of cousticsl powe~ alon ~ the rod, the 
a mount of air concern ed in sound p roductio n , the lIequiva-
1 en t s i z e " 0 f the v 0 r tic e s , an d 1.1 e a c 0 u s tic 8 1 en erg y con ­
tent for each vortex . 

L~TRODuCTION 

The flow of air past s t retc~ ed wires has been known 
for ma .. y centuries to p r oduce musica l tones , and this 
ph enomenon forms the basis of the ancient Aeolian harp . 
T~is instrument consi st ed of a number of taut wires of 
graduated lengths fastened to a frame . The device was 
placed in a location subject t o strong drafts and a suc­
cession of Dure tones resulted a s the air s~eed changed in 
rnn.~n i tnd e • 

T: e first investi~ator to examine this nhenom enon was 
Strou!1al (reference 1) . He atta~hed vertical wires to a 
drum in such a way that they could be rota ted about an ax­
i s parallel to thejr len~th . He found the generated fre ­
quencies to be independent of the materia l, l ength, and 
tension of tho wi~e , and that the y depended only on the 
sneed of rot~tio n and the diameter of the wire . The gen ­
er .ted frequency pr ov ed to be 

f = 0 . l E5 ~ cycles 
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where V 
dium ar.d 

• 

N.A .C. A . Technical Ko . 5le 

is the relative velocity of the wjre and the me-
0.. is the .;ire diafi1eter. 

Lord Rayleigh s howed tha.t the wire itself part ook of 
the vibration to a sli ~ht extent, a nd t h at the oscillation 
toox p lace at ri ght a.ng les to the wind (reference 2) . When 
t h e wire was tuned to the freq ~ r. cy f, the so 'ud .as 
greatly reinforced and the vibration perpendicular to the 
wind i eas ed. This condition obtain s i n the Aeo~i n 
l1a.rp . 

Von K~rm~n and Rubach were the first to su~£est a ra­
tiona.l explanation of the sin gins of wi't"es (reference 3). 
Tteir investigation of the stabilit y o f a row of vor tices 
s h ed from an o b s tac le in an air stream sho ed tha t t he row 
could exist only under certa.in cond.itions , vj z, if the 
vortices were r eleasad alternately f rom 6pyosit e sid es of 
the obstacle ' at sucn a rate that the freq.l.ency 

V 
f = 0 .1 94 cycles 

d 

where the symbols ha';e th e same s i gnificance as before . 
Th e al terna.tion of release accounts for t~e vibration of 
th e wires perpendicular to the air stream and the coeffi­
cient 0 .1 94 is i~ g ood a g reement wit~ Strouhal 1 s ex) eri­
men t al value 0 . 1 8 5 . 

Relf re-examined. the whole ouestlon e xperi ':'1 entally 
1'7i th respect to vortices (refere::;Ce 4) . He foun d that t :l e 
r reQ11.ency of vort ex formation behind wires immersed in 
15. q·l~ ids was given by the von KarIill3.n formula ; he repea ted 
th~ work of Strouhal and obtained practically the same co­
effic i ent in the frequency formul a. 

Rich ardson tried obstacles of diff erent shaped cross 
secti o ns in liqu:ds of widely di~ferent viscosities and 
obtained substantially the same reSllts (reference 5). 

Fafe . a n Cl Joha.nsen (re fere n ce 3 ) , investiga.ting the 
air flop behind flat pl at es. found t~ o coefficient to be 
close to 0 . 15 p rovi ded that the quan tity d was taken as 
the width of the plate p ro jected p6 rpendicularly across 
t h e air stream. 

Tyler, usin ~ a vibrati o n ga l vanometer , studied the 
frequ ency o f vortex release beh i~d cylinders , plates and 
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airfoils in air and in li quids (reference 7). His results 
with cylinders showed nothing new. For plates he obtained 
a coefficient of 0.158 and for airfoils, 0 .1 50. This VRl­
ue of the coeffictent holds for an airfoi l only when it is 
p laced at large an g les to the air stream, say from 300 to 
90 0 . Below 30 0 the coefficient varies widely . 

The von K~rm~n frequency formula is thus well estab­
lished or near l y all shapes of obstacles, with t _ excep­
tion of airfoils at normal an~les of attack. 

In the case of a full-size prope ll er blade, an appre­
ciable fraction of the totr l acoustical pow er :utput arises 
from the release of vortices . Sin ce a different fre ouency 
is emitted for every radius, the resulting sound s~ectrum 

is continuous from zero frec~ency to some definite frequen­
cy at which the s pe ctrum stop s . 

In order to obtain informat ion of this typ e o f sound 
under simpler conditions than obtained with airfoils, a 
study was made of the sound emission from cylindrical rods 
rotated about their mid - p oint. 

EXP'!iRIlvi E.I TAL ARRAWGEi"; ENT 

One-half inch diamet e r cylindrical rods were used. 
The ends were cut off s qna el y . Th e ro~s ere divided in 
tle middle for inse tion i~to a metal hub; from tip to tip 
the lengths of the rods were 12 , 18, and 24 inches. 

T~e rods were mounted in a vertical p lane at the end 
of a 3 6- inch horizontal sha ft; they were driven by a 1/4-
horsepo wer electric motor . The en t ire system was mounted 
on a wooden frame at a hei gh t of about 6 feet from th e 
ground . With this arrangement , tip speeds up to 5 0- 50 me­
ters p er sec ond could be attained . The fra~e was p laced 
outdoors durin~ th o course o ~ the experiments to eliminate 
ref l ection f rom walls . 

The sound was p ic ked up by an electrody namic micro ­
phone and amp lified in the conventional manne r. Where 
necessary, ana l yses were made witll the lIT. A . C. A. analyzer 
(reference 8 ). The interp retation of sll ch analyses where 
the spectrum is perfectly con t inuous is to some extent un­
certain ; i . e ., it is not definite l y known whether a large 
amp litude at a certain frequency on the record is actually 
the result of a lar g e sound 9 ress~re at that frequency or 
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is the result of regularity of emission at that frequency 
by comparison with a.djacent frequen "cie ·s. Until further 
information is available, . it will be assumed in this pape r 
that the records give true sound pressu~es. 

DISTRIBUTION 07 SOUND ABOUT THE RODS 

Observations of sound . pressure about the l8-i nch rod 
when rotating at 2 ,8 00 revolution~ per minute gave the 
distribution shown in figur~l. This type of polar dia­
gram would be expected if the vortices on the two faces of 
the rotation disk were of opposite sign, in accordance 
with the von K~rma~ conceptio~ of vortex emission; de­
structive interference would have its maximum effect in 
the plane of rotation. 

All rotating systems sho~ this distribution f or vor­
tex noise provided that no obstacle of appreciable size is 
c los e en 0 ugh t 0 dis t u r b . the d i a g ram. If, for e x amp 1 e, a 
large driving motor is present directly behind the rotat­
ing member, the diagram will retain the correct shape in 
front but will be distorted toward the rear . 

ACOUSTICAL POWER OUTPUT 

If the distribution of sound press~re about the rods 
is assumed to be a perfect f i gure of eight, it becomes 
possible to measure the power output irt sound from pres- . 
sure measurements at one angular p osition, say along the 
axis of rotation . The. total power output will then be one 
half of that computed on the basis of a circular distribu­
tion, sjnce the area of a figure of ~ight is one half that 
of the circu~scribed circle. 

Pressure measurements were taken along the axis of 
rotation at distances of 1, 2, 4, 8, 1 6 , 32, and 64 fep.t 
from thA 18-inch rod rotating 3 ,050 times a minute . The 
product of sound pressure and distance should be a con­
stant if the inverse-square law is obeyed; this condition 
must be satisfied in order that the eq1.ations for power 
transmis~ion may apply . The tabl a ·shows the behavior of 
this product . 
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Distance, Sound pressure, Pro d.uc t , 

-~~~-!.--- -----, u8ro ocl. r.§...=-fe~!. 

1 1 . 275 1. ?,75 
2 .803 1 . 7::~ 5 
4 . 486 1. 95 
8 . 243 1. 935 

16 .180 1. 92 
32 . 0825 2 . 64 
64 . 0375 2 . 40 

The 'inverse-s quare law is app roxi mate l y obeyed be­
tween 4 and .64 f ee t, inclusive . ~he mean v a l ue of the 
p r odu c t in this rang e ii 2 .1 79 bars - feet, or 66 . 4 bars­
centimeter . A circular di s tributio n would yi el d a value 
of 66 microwatts ! or .t~e power .out?ut . The true power in 
sound is therefore 33 mic r owRtts at the speed used , 3 , 050 
r. p . II! . 

ObSe rvation s were tB.ke.n o.f the sound pressure Gi.t a 
distance of 6 feet 'in order to observ e the e~fect of vRry­
in g the rot~tional speed . The results a r e shown in the 
table . 

Sp e ed , 
~~.!-

980 
1200 
1 400 
1 600 
1 800 
2000 
3200 
2405 
2520 
2 r~ 3 0 
3 0~~ 5 

Sound. 
press'J.re, 

bars -------
0 . 0075 

.030 

. 045 

. 0675 

. 0825 

. 120 

. 1:::8 

. 202 

. 251': 

. 316 

. 350 

Acoustica.l 
output, 

~ic£.2.!:.at~ 

0 . 0135 
. 22 
. 48 

1. . 09 
1. 53 
3 . 46 
0 .00 

10 . 00 
15. 6 
24 . 0 
31.2 

A p lot of this r elat io n shQ WS that the _ 0 er outP'lt 
i n so und is proport io na l to the 5-1/2 pow er of the rota­
tiona.l speed . 

Relative ob se rv ations were also made o f the souni 
pressure fro m th e 1 2- in ch ane 24- ~nch rods. The increase 
i n sound p res sure wit~1 tip speed :'s s!lo 'Vn i n figu:r-e 2 . 
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The reI a t ion i .s 

Power ~utput in sound = 
whe re l is the length of 
factor that d~~ermines the 
not the rotation speed but 

(constant) l (tip speed)5 . 5 
the rod . Thus the controlling 
amount of sound is shown to be 
the tip speed . 

SPECTRUM OF THE NOISE 

Spectrograms of the vortex . sound obtain~d with the 
N .A.C . A. sound analyzer are ~hown in iigu~e 3 . These rec­
ords describe the frequenc y· distributi o n of the sound when 
the 24- i nch rod was rotated at four r o tat i ona l speeds : 
1,080 ; 1 , 250; 1,750 ; and 2 . 2~0 r . p ~ m . The spectra all 
show one maximum which moves put , to higher f re quencies as 
the rotat i onal speed increases . 

Strouhal (reference l~. who worked with . fine wires 
stretched around the circumference of a drum in such a way 
that their motion was pe rpendicular to their l ength , found 
that the generated frequency was g iven by 

where 
dis 

n = 0 . 1 85. V cycles 
d 

V is the relative velocity of wire and medium and 
the diameter of the ~ire . 

A rotating rod should therefore generate all frequen­
cies from zero to a maximum determined by the value · o f V 
at the tip (neglectin g th e effect of the squa.re ends) . Th e 
maximum frequencies to be expected in the case of the rec­
ords in figure 3 are : 

Rotational 
speed, V n max ' 

r . p .m . em Isee. cycles 
------- ---

1080 3460 ~32 
1250 4000 615 
1750 5620 863 
2250 7210 11 05 

A line has been drawn across the records at nmax ' 
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In 3.11 cas es th o lin '.: is noticea.bly pas t the ma x imum a.ID-
p li t 11 de ; j tis e v ide it t , n e v Q r L. L e 1. e !1 t hat t 1. e for mn 1 a, 
g ives the freq~enciAs g enerat ed wit h fair accuracy. 

The form of t~e ~ave fro~ a ny ~i ven po int on the rod 
c8.nnot be very comp l ex for the s pe ctra n e v e r ex tend t)eyond. 
tics f r eq-,lency 2 n max . :r lle "lost that can be SF-tid is tha.t 
tl~e . ave c o nta.ins 8 ."':'\ e p"9 r e ciabl . a mou nt 0: the seco:1d. har ­
mo ~1 i c . 

As A. furtlHH c he ck upon the freqvency for Jnulas, spec­
tra wG r e r e cord e d o f t h e sound f r om all thr e e rods, rotat­
in .,; a t the s~:ae ti p "pe eel (5 , 040 c e~1 timeters p er second). 
1::1 e ex () e c ted. m'1 x:i mu m f r e que n c y f. h 0111 fI b et 1'1 e s r' in e i ~ <:1 1 1 
cas es , 7 80 cyc~es . Figur e 4 s~nws th e t h ree r eco rds ob ­
tai noc1 ; t :.e s -oec tra Fi.re seen to OCC11.Py tae sa.me frequency 
region . Or:.e f e.:'tnre o f p ,':rticl1.1a r int e r es t in these rec ­
ords is tho grouth a! the is olate d ~ r cauency at the left 
of t he r ecor d . Th!s frec u ancy is a b s ent in the case of 
th e !nost sl owl y rev 01 vin :; ro d. U~4 i n ches 10 11 ,'2: ). The 18 -
inch ro d. shows R tr nce of 7 0 c ycles , t wice the revolution 
s pee a. ; w he r e 0'3. s the · l;~ - inc 11. !:" n (\ r"o s t r a :~ til ;y ro t < tin ,:~ rod 
e x ~1 i bit s a v e r:{ p r ;.) n 0 u nee:' c I) rap 0 n en t <:1 tIC 0 c y c 1 e s , [-).1 s 0 

twic e t h-J r e v l) 11.lt io n speed . T:': e amplitude o f th is pure 
not e e v i d. e L t 1 y d e pen G s '.l P 0 nth :) rot [i, t j. 0 n 8.1 and not t :1 e tip 
s p ee d . In both c as e s w~G r e the 11ct e was p rese n t , it ~as 
i na.ud. i b l e . 

Th e s D e ct r~ o bse rv ed w it~ ro ds of 1/4 - inch inst ad of 
1/ 2 -i r~ch diameters wo rE; t :1C sa.ne shane, bl1t t:1e freq'Llen ­
cias were twice as ~reat , in a g re em e nt ith t~ e Strouhal 
for !l11l.18 • 

Sp eci <, l l y nes i t::- !_E::d r od s' e re co r.st r'.lct eo w .. _th a small 
c y 1i 11~ri ~ l 8e~nent at on e po rtion of the rod only, the 
rempi'lder ce ~ 11P.: t: i nlie r a nd of !1. ~ h ,:l. ~h, to :::ed.ucc: a.rag . It 
v'a.s ~o"l)ed '0 ;;; s-1.cr. !"'1car.. s to o b ta~r~ a more or less isol a tert 
peak in t ~e s p ~ ctrum corresponding to the ecission of a 
ver y n arr ow bRnA of frequeLcie q f rom t l1e cylinJricRl po r ­
ti o n . T~is pe a~ ~ou l ~ pe r mit a more exact verification of 
the .:'re quency fo LuL-ls • .\J. 1 s'_lcll at t c lTlots were unS'l~ces s -

f 11 1 • I nn 0 ca s e was a 1 a r F. eon n 11 ,- h -9 en k ~ 01 ' . nil n 0 a. r the 
ey ) ccted , osi t ion to asc r ibe it , ~ it ~ o~t ques tion , to the 
Fiction of the c, li n'le r . TJLt il :urthc r info r mfltio n if; 
avai.lable , the form ·1.'.8. s mll.~' , t:1ere:ore , be tr'lken es cor ­
r ect . 
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PRESSURE FIELD ABOUT THE ROD 

If t he Strouhal-von Karman formuLa is taken a~ cor ­
rect for every point on the rod, it becones evident that 
the sound s p ectrum , considered no~ as a funct i on of dis ­
tance along the rod, must be closely associated rfith the 
distribution of pressure alon g the rod when in motion . 

Ac c ordingly, the pr essur e fielos surrounding the rods 
were studied with a micr ophone a short distance from the 
rods . In order to diminish ~he effective area of the mi -
cr ophone and obtain more exact point - by-point pressure 
readings , a cap was fitted over the microphone complet e ly 
en closing it and a short tube was fitted in t o the cap . The 
op en end of the tube ~aR then used as the pressure probe 
to repla.ce the microp:10ne . The open en (l of the tube was 
kept at a fixed distance fron the plane of rotation . 

The variation of the p ressure field at any point for 
any roo is s ~ o ~ n in figure 5 . Th e magnitude of the pres ­
sure variation is p roportion~l to the 1 . 36 p o we r of the 
rotational speed. 

The distributions of pressure along t h e l2-i nch rod 
for four speeds are sh own in fi gure 6 . In Rscending order 
the speeds are: 1,500; 2 , 250 ; 2 , 700 ; and 3 , 500 r . p . m. The 
maximum pressure at the hi ghest speed WRS 11,150 b a.rs . The 
PQsition of maximum pressure graduallY shifts a wa? from 
the tip as the speed is raised. 

Simil ar data tak en wit~ the other two rods show the 
existence o f the f ollowing Telation ; 

t t t ,0 . 76 n 1 • 3S x i'f) (X_" \.I" pre ssure a x = cons an ~ T \~ 

where x is linear distan ce measured from the hub . The 
x\ _k(!. ... 2 

fun ction Q ( T I may be of the g eneral form e t l . , ~ / 
The 

(
X \ 

exact form of cp - , 
d; is indeterminate to the extent tha.t 

our lcnoV"ledge of the accuracy of the frequency formula is 
inc 0 mp 1 e t e; i . e ., the 1 eng t 1:.. 0 fro dis a l' a the l' i n d e fin i t e 
quantity with respect to t he extent o f the pres sure field. 

A comparison of the c~rv e s of figure 6 with the spec­
tra of figures 3 a nd 4 s how s a qua li tative similarity be­
tween the pressure ii81d and sound p r n ssurc , consider ed as 
functions of x . 
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DISTRIBUTION OF ACOUSTICAL POWER ALONG ROD . 

It is known from a prev ious section that the IS-inch 
rod when rotating about 2 , SOO times a minute emits about 
24 microwatts in sound . It should be p ossible to effect a 
div ision of this power amOlls the frequency bands, and so 
distribute the p ower as a function of distance along the 
rod. 

A difficulty i mmediately arises owin g to the fact 
that the s p ectrum appears continuous . Any section of the 
rod large enough to includ e a vort~x . would therefore sp­
pear to be the source of an infinite amount of acoustical 
power . The difficulty is only apparent, ho ever, as may 
be seen from the fol l o~ing argument . The release of a 
single vortex is accompanied by a single pressure disturb­
ance . Both phenomena are independent of hap~enings imme­
diate ly adjacent to the released vortex; the result is 
that the e~itted so\nd is not composed of regular wave 
trains but of isolated Dressure impulses . From instant to 
instant the configur8tion of vortices on the rod changes 
in an irregular fashion , ith the result that over a pe ri­
od o f ti me re qu ired for the analyzer to p ass its own band 
~idth a sound pressure a ,p ears at a ll possible frequencies 
in the ~ lnd . Thus mo re SOlnn appears to have been emitted 
than was actually the c ase . . 

I n order to ro d 'ce the' spectrum actually obtain d to 
an equivalent spectrum that woul d be ob tained if the emis­
sion took p lace in ~ave trains , it is necessary to divide 
the recor ded spectrum into freouency bands of such a width 
that the sum of t~e p res sures f6und in the middle of the 
ban ds will equal the total pr essure measured by a micro ­
phone . The band width necessary for this purpose is a 
measure of the slowness of change of the vortex configura­
tions and may be determined by trial and error . 

In this way it may be determined that a band width of 
about 50 cycles il l yield correct v alues of power per 
band within experimental e rror . Table I shows the distri­
bution of numerous quantities a lo ng the rod from hub to 
tip , all based upon a 50- cycle band width for the power 
distribntion . The values for acou s ticRl po er are for the 
band wi dth of 25 cycles on each si d e of the frequency in 
the previous co llmn . r~e sun of al l the p owers is 25.09 
mic ro watts , a difference of 4 pe rcent from the total as 
determin e d by a mic ro phone . A slight ly different bRnd 
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width could be found such that the sum of the powers would 
amount to exactly 24 microwatts but the accuracy of powe r 
measurement does not justify such a pro cedure. 

A division of the power output .in any band by the 
mean frequency over the band will yield a value for the 
average sound energy as s ociated with each vortex . Such 
values in ergs aTe shown in column 4. The e nergy per vor ­
tex shows a maximum at the Snme p lace where the power out ­
put is a maximum, viz, at 0 .7 the length of the rod. 

APPARENT SIZE OF VORTICES 

A know ledg e of the acoustical output or any source 
enables an estimate to be made of the rate of introduction 
of fluid , in this 
emitting a powe r 
the ground , 

case air, at the source . If a source is 
P at a f:-equency f, when located near 

nP ? 2 / P = -- f~ V ergs second 
c 

where V is the volume of fJ .uid used pe r second . 

P , the density of air. 

c, the velocity of sound.. 

A s olution f or V yie lds 

V = .?.2.~Q Inp 3/ f ,.,;r cm sec . 

Values of the quantity V are tabulated in table I for 
half the length of the rod. 

It is evident that the volume of air per vortex may 
De obtained by division of column 5 by the frequency . 
Column 6 gives these values . . Inspection of col~run 6 re ­
veals the interesting fact that the volume of a vortex 
does not chan g e a great deal along the rod . Finally, an 
idea of the order of magnitud e of the linear dimensions 
of a vortex may be obtaine~ by extracting the cube root 
of the vo l ume of a vortex . These figures are shown in 
c a I u mn 7 . I tis see n t 11 3. t fro m t 1: e h 1.1 b 0 u t toO . 8 1 the 
size of the vortices is nearly constant and of the order 

,. I , 
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of nagnitude of a few millimeters . The size decreases 
from this po int to the tip, as far as can be judged from 
the emission of sound . 

Langley Memorial Aeronautical Laboratory , 
National AdVisory Oommittee for Aeronautics, 

Langley Field, Va . , January 21 , 1935 . 

REFERENCES 

1 . Strouhal , V.: Ueber eine besondere Art der Tonerregung . 
. Ann . d . Physik und Chemie, vol . 5 , 1878 . , p . 216 . 

2 . Rayleigh, Lord : Aeol i an Tones . Phil . Mag . , vol. 29 , 
1915, p . 433 . 

3 . Karwan , Th . v., and Rubach , H.: Mechanism of Liquid 
and Air Resistance . Phys . Zeits . , vol. 13, no. 2 , 
J anuary 15, 191 2 , pp . 49 - 59 . 

4 . Relf, E . F .: On the Sound Emitted by Wires of Circu­
lar Section When Expo sed. to an Air Ourrent. Phil. 
lIiag . , vol . 42, ;t 9 21, p:r . 173- 176 . 

5 . Richardson , E . G.: 
London, vol . 36, 

Aeolian Tones . Proc . Phys. Soc. of 
p t . 3, April 15 , 1924, pp . 153-167. 

6 . Fage , A., and Johansen, F . C.: On the Flow of Air be­
hind an IncJined Flat Plate of I nfinite Span. 
R . & M. No . 1104, British A. R . C. , 1927. 

7 . Tyler , E .: Vortex Formation behind Obstacles of Vari­
ou :; Sections . Phil . nag . and Jour . of Science, vol. 
11 , nf' . 72, ser e 7, Ap ril 1931 , pp . 849- 890 . 

8 . Theodorsen , Theodore : A New Principle of Sound FrA­
quency Analysis . T . R . No . 395, IT . A.C . A . , 1931. 



.... 

TABLE I 

Computed Values of V 

(These quantities apply to one half the total length of rod) 

1 2 3 4 5 6 7 
Fractional Frequency Acoustical Sound Volume of Volume of Approximate 

length cycles power , energy air used in one vortex linear dimen-
of rod microwatt s per vortex, sound sions of one 

ergs emission vortex, 
cm 3 /sec . 3 cm cm 

0 .187 200 0 . 0145 0 . 00072 3 . 93 0 . 0200 0 . 271 
. 234 250 . 0270 . 00103 4.30 .0171 .258 
.280 300 . 0670 . 00223 5 . 66 . 0188 . 21)4 --f--
. 32 7 350 .1485 - . 00425 7 . 21 .0206 .273 
. 374 400 . 3575 . 00890 9. 84 .0246 .289 
.420 450 . 2385 . 00530 7 . 07 . 0157 .251 

~.46?I 500--- - .2485-- _ . . 00497-' 5 . 82 . 0131 .235 -

. 514 550 .2950 . 00535 6.44 . 0117 . 227 

. 561 600 .2 635 . 00440 5 . 63 . 0094 .209 
- . 607 650 1. 48;-:·0 -- - .- . . 02280 12.20 . 0188 .2 64 

. 654 700 1 . 8000 .02575 12.50 . 0178 .2 1)1 

.701 750 2.9750 .03965 15.10 . 0200 .271 - 1.9 800 -- -- . 02 ':1:75---11 . 50 - i--- .0144 --. 746 800 .243 

. 795 850 .7750 . OO~12 6. 79 . 0079 . 199 

. 841 900 . 8250 . 00917 6. 63 .0073 . 194 
- .- . 887 - - .- 950 - r'- . 3785 .00398 4 .22 . 0044 . 163 

. 935 1,000 . 3175 . 00317 3 . G8 . 0037 .153 

. 982 1,050 .1025 . 00097 2.00 . 0018 .122 --1.030 1,100 . 0710 . 00065 1.58 . 0014 .141 
1.075 1,150 .1170 . 00101 1.58 . 0013 .107 
1.120 1,.200 . 0585 . 00048 1.31 .0011 .102 
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Figure l.-Distribution of sound pressure about la-inch rod rotating 2,800 times a minute. 
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Figure 2.-Variation of sound pressure with tip speed for three rods. 



J~ 
• ••• C ••• Teohnioal lote 10 . Sl9 rig. 3 

r.p.lII .• 1080 

r.p.m .• 1250 

r.p.m •• 1750 

Figure 3.- Sound epectra from 34- inch rod at four rotational speeds. 
Vertical line indicates computed frequenoy for tip . , 
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Figure 4.- Sound spectra from three rods all rotating at the same tip speed. 
Vertical line indicates computed frequency for tips. 
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F1gure 5.- Variat10n of pressure f1eld w1th rotational speed. 
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r1sure 6.- Pressure distribut10n along la-1noh rod at four rotational speeds. 
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