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RESEARCH MEMORANDUM 

COMPONENT AND OVER-ALL PERFORMANCE EVALUATION OF A J47-GE-25 TURBOJEr 

ENG lNE OVER A RANGE OF ENG INE- INLEl' REYNOLDS NUMBEl\ INDICES 

By Curtis L. Walker, Willis M. Braithwaite, and 
David B. Fenn 

SUMMARY 

An investigation was conducted in an altitude test chamber to eval
uate the performance of an axial-flow turbojet engine over a range of 
engine-inlet Reynolds number indices. The range of Reynolds number 
indices investigated provided data which were applicable over a range of 
flight conditiOns, for example, altitudes from 15,000 to 55,000 feet at 
a flight Mach number of 0.7. 

Secondary effects of exhaust-nozzle flow coefficient, air-flow 
leakage, and inlet temperature which should be considered before analyzing 
the effect of variations in engine-inlet Reynolds number index are pre
sented. In general, the effect of reducing Reynolds number index was to 
lower compressor efficiency and air flow with a resultant shift in the 
compressor map and rematching of compressor with turbine. There was only 
a slight effect of Reynolds number index variation on the turbine per
formance. 

Several minor design modifications proposed by the manufacturer 
(designated as a block change) did not produce any measurable improvement 
in engine performance. 

INTRODUCTION 

Previous altitude investigations of turbojet engines made at the 
NACA Lewis laboratory have indicated that failure of the performance 
variables to generalize for all altitudes and flight Mach numbers, over 
the range of engine speeds where sonic flow exists in the exhaust nozzle, 
has been a result of either a Reynolds number effect or a variation in 
combustion efficiency (ref. 1). An investigation was therefore conducted 
in a Lewis laboratory altitude chamber to evaluate the component and over
all performance of the J47-GE-25 turbojet engine over a range of Reynolds 
number indices which corresponds to a wide range of altitude conditions. 
For example, at a flight Mach number of 0.7, the data are applicable over 
a range of altitudes from 15,000 to 55,000 feet. Fewer data are required 
by this method and departures from established generalizations may be 
investigated directly. The data of this investigation were presented in 
a preliminary data release (ref. 2). Subsequent refinements in calculation 
procedures have resulted in minor changes in the static sea-level thrust 
and in the scale thrust at high altitudes that are contained herein. 



2 NACA RM E52IJ.6 

Also included in this investigation are the effects on performance 
of several minor design modifications to the compressor, the combustor, 
and the turbine shroud ring which were proposed by the engine manufacturer 
as a tentative block change in the production engine. The effect of 
inlet temperature is substantiated by additional data obtained on a 
J47-GE-17 engine which has a power section similar to that of the 
J47-GE-25. 

Compressor, combustor, turbine, and over-all performance data are 
presented ~n tabular and graphical form over the range of Reynolds number 
indices investigated. The trends of over-all engine performance are 
discussed with relation to component performance variations. The effect 
of the block changes on performance is presented in graphical form. 

APPARATUS 

Engine 

A schematic sketch of the J47-GE-25 turbojet engine as it was 
installed in the NACA Lewis 10-foot-diameter altitude test chamber is shown 
in figure 1. The test chamber is described in reference 3. This engine 
had a 12- stage axial-flow compressor, eight tubular combustion chambers, 
and a single-stage turbine. The maximum diameter (turbine flange) was 
37 inches and the over-all length excluding tail pipe and exhaust nozzle 
was 144 inches. The approximate dry weight of the engine was 2653 pounds. 
At rated engine speed, 7950 rpm, and rated turbine-outlet temperature, 
12500 F (17100 R), the manufacturer's guaranteed sea-level static thrust 
was 5970 pounds~ At rated engine speed and sea-level static conditions, 
the compressor- inlet air flow was approximately 104.5 pounds per second, 
the compressor pressure ratio was approximately 5.3, and a conical exhaust 
nozzle with an area of 2.073 square feet produced a turbine-outlet 
temperature of 12800 F (17400 R) based on NACA instrumentation. This 
exhaust nozzle had an exit to inlet area ratio of 0.87 and a half-cone 

1 0 
angle of 7'2 . 

The fuel used in this investigation was MIL-F-5624A grade JP-4. 
The hydrogen-carbon ratio was 0.17 and the lower heat of combustion was 
18,700 Btu per pound . 

Instrument at ion 

Instrumentation was located at the stations shown in figure 1. There 
was no instrumentation at station 2, which was a calculation station. 
Details of the instrumentation at each station are illustrated in fig-
ure 2, except for station 3b. There was a wall-static probe installed 
in each of two combustors in the plane of the cross-over tubes at sta
tion 3b. 
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Thrust was measured by means of balanced-diaphragm pneumatic thrust 
cell connected to the thrust bed, as shown schematically in figure 1. 

Engine Modifications 

After calibration of the standard engine configuration was completed, 
modified engine parts were installed in the J47-GE-25 turbojet engine 
in the manner proposed by the manufacturer as a block change to the 
production engine. These modifications were incorporated in two addi
tional configurations as shown in figure 3 and described in the following 
table: 

Configura- Engine modifications incorporated Exhaust-nozzle 
tion area, sq ft 

A Standard engine as supplied by manufacturer 2.073 
(standard) with additional instrumentation installed 

B New twelfth-stage compressor seal 2.106 
New combustor liners, postless transition 

pieces 
Floating turbine shroud 

C New parts as installed for configuration.B a2.l24 
Shrouded fuel-spray nozzles 

aNozzle area for configuration C was too small to obtain rated engine 
speed without exceeding rated temperature. 

The new twelfth-stage compressor seal (fig. 3(a)) consisted of a 
slant-toothed labyrinth seal instead of the V-tooth design; the minimum 
clearance was maintained the same but the maximum clearance was reduced 
by increasing the minimum dimension of diameter "D" as shown in the figure. 
The combustor liner was modified to induct more air into the primary com
bustion zone by adding three rings of air-inlet holes near the dome on 
the liner. The center posts in the transition pieces were removed. The 
location of these posts is indicated in figure 1. The proposed method 
of installing the floating turbine shroud ring is shown in figure 3(c). 
In the installation as provided, the shim extended into the space between 
the shroud ring and the nozzle diaphragm. Furthermore, clearances marked 
a, b, an~ c (fig. 3(b)) were not great enough to provide a free-floating 
shroud as evidenced by gall marks on the shim and tail cone in this area. 
These clearances were proposed to prevent seizing of the shroud ring on the 
nozzle diaphragm. For configuration C, shrouded fuel nozzles (fig. 3(c)) 
were installed in addition to the configuration B modifications. 'The 
purpose of the shroud around the fuel nozzle was to induct air into the 
combustor at the origin of the spray pattern by ejector action. These 
shrouded fuel nozzles are standard installation equipment on the 
J47-GE-17 engine. 
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PRCXJEDURE 

Sizing Exhaust Nozzle and Determining Sea-Level Static Thrust 

Prior to obtaining performance data, an attempt was made to size 
the exhaust nozzle to produce an exhaust-gas temperature of 12500 F 
(17100 R) at rated engine speed and static sea-level conditions. Since 
it is impossible to operate the altitude chamber at static conditions, 
the nozzle size was based on the extrapolation of data obtained at low 
altitudes and flight Mach numbers from 0.2 to 0.8. A review of the 
complete performance data indicated that the nozzle used in this investi
gation (area, 2.073 sq ft) would have actually produced an exhaust-gas 
temperature of about 12800 F (17400 R) based on NACA instrumentation at 
these conditions. 

Thrust is depenuent on exhaust-gas temperature and exhaust-gas 
temperature is a function of exhaust-nozzle area. In this investigation, 
the exhaust-gas temperature was measured by the engine manufacturer's 
four-probe and five-probe thermocouple harnesses as well as by the 
25 NACA thermocouples. The readings of these different sets of instru
mentation differ with the result that the sea-level static thrust would 
vary, depending on which temperature readings were used in sizing the 
exhaust nozzle. It was assumed that the NACA instrumentation (corrected 
for thermocouple recovery) indicated the true gas temperature, and jet 
thrust calculated from this temperature corresponded to scale jet thrust. 
Because the engine is normally rated by the manufacturer for an exhaust
gas temperature based on the thermocouple reading obtained from the four
or five-probe thermocouple harnesses, static sea-level thrust values 
have been included in the following table for a thermocouple reading of 
12500 F (17100 R) obtained from the four- and five-probe systems with 
the corresponding gas temperatures included. The sea-level thrust of 
6070 pounds at an exhaust-gas temperature of 12800 F (17400 R) for the 
exhaust nozzle used in this investigation was slightly above the manu
facturer's guarantee (5970 lb) and provides a point of reference for the 
performance data presented herein. 
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Basis of performance Engine Engine Exhaust-gas Static 
rating speed, manufacturer's total temper- sea-

rpm exhaust-gas ature based level 
thermocouple on NACA thrust, 

reading, instrumen- Ib 
T9 i' tation, , 

T9, ~ 
oR 

Four- Five-
probe probe 
harness harness 

Exhaust-gas total tem- 7950 1684 1690 1740 6070 
perature of 17400 R 
(obtained with exhaust 
nozzle used in this 
investigation) 

Exhaust-gas total tem- 7950 1653 1658 1710 5960 
perature of 17100 R 

Engine manufacturer's 7950 1704 1710 1760 6135 
five-probe thermo-
couple harness 

Engine manufacturer's 7950 1710 1717 1766 6160 
four-probe thermo-
couple harness 

Obtaining Performance Data at Various Reynolds Number Indices 

Engine inlet total pressure and temperature were varied to corre
spond to Reynolds number indices from 0.8 to 0.15. For a given set of 
inlet conditions, exhaust pressure was reduced to the minimum of the 
exhaust system with the engine operating at rated speed. The inlet 
temperature and pressure and the exhaust pressure were then maintained 
constant while data were taken over a range of engine speeds from rated 
speed to approximately the speed at which the exhaust nozzle became 
unchoked. A summary of the operating conditions covered in the investi
gation is given in the following table: 
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Reynolds Inlet total Inlet total Ram 
number temperature, pressure, pressure 
index oR lb ratio 

sq ft 

0.8 530 1740 l. 70 
.6 467 1108 2.14 
.5 467 923 l.95 
.4 467 739 l.35 
.425 437 718 l.41 
.4 410 620 l. 70 
.3 , 410 465 l. 70 
.3 410 465 l.34 
.25 410 387 l.64 
.2 410 315 1.48 
.15 410 232 l.19 

As shown in the table, three ram pressure ratios Pl/PO were used at a 

Reynolds number index of 0.4 and two at 0.3 to verify the generalization 
with variations in ram pressure ratio. At a Reynolds number index of 
about 0.4, three sets of inlet conditions were used to determine whether 
there were any effects of temperature and pressure other than those of 
Reynolds number index. (The variation of the performance parameters 
from 0.4 to 0.425 Reynolds number index is considered small enough that 
they may all three be considered a Reynolds number index of about 0.4.) 

All symbols are defined in appendix A, and the methods of calculation 
are descr ibed in appendix B. 

RESULTS AND DISCUSSION 

The performance evaluation of an axial-flow turbojet engine over a 
range of Reynolds number indices provides data which are applieable over 
a range of flight conditions. However, the performance investigation of 
the J47-GE-25 turbojet engine has shown that se~eral factors producing 
secondary performance variations should be recognized if effective use 
is to be made of the performance data in its application to flight con
ditions. These secondary effects are discussed and evaluated in the 
following paragraphs. 

Secondary Effects 

Effect of nozzle flow coefficient. - As engine ram pressure ratiO, 
and consequently nozzle pressure ratiO, was increased at a constant 
corrected engine speed, the exhaust-nozzle flow coefficient Cd 
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increased. The increase in nozzle flow coefficient with increasing 
?ressure ratio is illustrated in figure 4(a) which, although obtained 
directly from reference 4, was assumed applicable to this nozzle, which 
has the same cone angle and area ratio. This flow coefficient was nearly 
constant above a nozzle pressure ratio of about 2.3, which is 25 percent 
higher than that required to produce sonic velocity in the exhaust nozzle. 
The effect of nozzle flow coefficient was typical of conical exhaust 
nozzles. The magnitude of this effect depends on the nozzle configura
tion. 

During the process of SlZlng the nozzle, as described in PROCEDURE, 
the effect of varying ram pressure ratio at corrected engine speeds near 
rated was investigated with three different nozzle areas. The results 
of this investigation are presented in figure 4(b), which illustrates a 
decrease in corrected exhaust-gas temperature of about 400 R accompanying 
an increase in ram pressure ratio from 1.0 to 1.25 (Which corresponds to 
flight Mach numbers from 0 to 0.575). 

The corresponding variation in the ratio of net thrust at actual 
corrected exhaust-gas temperature to net thrust at constant corrected 
exhaust-gas temperature is shown in figure 4(c). A thrust loss of about 
3 percent is incurred because of the increase in effective exhaust
nozzle flow area and accompanying decrease in corrected exhaust-gas 
total temperature. 

Generalization of performance parameters presented in this investi
gation requires that there be no effect of ram pressure ratio on engine 
component performance. Since a nozzle pressure ratio greater than 
25 percent above that required for choked flow results in a nearly con
stant flow coefficient, there is no effect of ram pressure ratio above 
a value 25 percent higher than that required to produce choked flow in 
the exhaust nozzle. The solid line and data points on figure 5 illus
trate the relation of corrected engine speed and flight Mach number 
required for choked flow in the exhaust nozzle. The dashed line of fig
ure 5 represents flight Mach numbers corresponding to ram pressure ratios 
25 percent greater than those required to produce choked flow in the 
exhaust nozzle. However, it should be noted that if an exhaust nozzle 
having a smaller cone angle were used, the data would be applicable to 
lower flight Mach numbers. The performance data presented herein may be 
applied directly to flight conditions above this dashed curve. However, 
when the performance data are applied to lower ram pressure ratios at 
which the exhaust-nozzle flow ~oeffi~ient varies, the trends shown in 
figure 4(a) should be used in conjunction with the pumping characteristics, 
which are presented in a following section entitled "Effect of Engine
Inlet Reynolds Number Index." 

Effect of air flow leakage. - The engine as originally received had 
approximately 5 to 7 percent air flow leakage downstream of the inlet 
measuring station 1. This leakage occurred around sheet-metal parts 
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between station I and the compressor inlet, through open bolt holes at 
the compressor inlet, and through the gaskets on the high pressure deicing
air lines. The leakage was redu~ed to about 3.3 percent of station I 
air flow by using gaskets on the sheet-metal joints and sheet-metal screws 
instead of spring-type fasteners, plugging the open bolt holes, and using 
soft-aluminum gaskets on the deicing-air lines. For the performance 
calculations all the leakage except compressor seal Leakage was assumed 
to occur ahead of the compressor, and compressor air flow was cal~ulated 
based on measurements of gas flow at the exhaust nozzle as explained in 
appendix B. Both station I and compressor inlet (station 2) air flow 
are presented in table I for the data of this investigation. 

In aircraft installations, the magnitude of the leakage would be a 
function of nacelle pressure as well as of whatever steps were taken to 
seal the points of leakage. The result of leakage ahead of the com
pressor is to increase ram drag and decrease net thrust. Therefore, in 
calculating net thrust, the air flow at station 1 should be used in the 
ram drag term. 

Effect of inlet temperature. - Although a previous investigation of 
a similar engine (ref. 3) indicated no effect on performance of different 
inlet temperatures, a aheck was made in the present investigation at a 
Reynolds number index of about 0.4 for three engine-inlet temperatures 
from 70 to -500 F. These data (fig. 6) showed a definite, though minor, 
increase in the correated jet-thrust parameter, exhaust-gas total tempera
ture, and ideal corrected fuel-air ratio with increase in inlet tempera
ture. (The ideal fuel-air ratio is the fuel-air ratio that would be 
required if ~ombustion efficiency were 1.00.) The effect was not expli
cable by the conventional correction factors for a Reynolds number effect. 

Examination of other variables for these conditions definitely 
established that the effect was not due to a change in pumping character
istics, compressor efficiency, combustor-pressure loss, or exhaust-nozzle 
flow coefficient. However, because of experimental scatter and possible 
swirl effects on the turbine-outlet total-pressure probes, it was impos
sible to establish whether there was a change in turbine efficiency or 
tail-pipe pressure losses. A study of factors likely to cause a change 
in turbine-outlet gas swirl indicated that a change in corrected turbine 
work would be required. Further examination of the engine data revealed 
that the corrected compressor leakage did not generalize with variations 
in engine-inlet temperature (corrected leakage increased with temperature 
increase) and a small increase in turbine work (fig. 7) and swirl 
with increase in inlet temperature was therefore indicated. The increased 
turbine-outlet gas swirl would produce a small increase in the tail-pipe 
pressure loss. The increased pressure loss accompanied by no change in 
pumping characteristics (as measured at the exhaust-nozzle inlet) results 
in increased corrected exhaust-gas temperature and correct ed jet-thrust 
parameter. There was a slight increase in compressor efficiency with 
increases in inlet temperature, which resulted in generalization of the 
pumping characteristics. 
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A further effort to substantiate the inlet temperature effect was 
made by using a J47-GE-17 engine which has a power section similar to 
that of the J47-GE-25. Data were obtained with this engine at a Reynolds 
number index of 0.4 with inlet temperatures of 70 and -500 F, both with 
and without turbine-outlet straightening vanes. 

The results of the data from this later investigation are presented 
in figures 8 and 9. Without straightening vanes, the corrected jet
thrust parameter (fig. 8{a)), the corrected exhaust-gas total temperature 
(fig. 8(b)), and the corrected ideal fuel-air ratio (fig. 8{c)) showed 
the same increase with increasing inlet temperature as these variables 
did for the J47-GE-25. However, with turbine-outlet straightening vanes 
installed (figs. 9{a), 9(b), and 9{c)), the trend was eliminated below 
a corrected engine speed of 7000 rpm and reduced at all higher engine 
speeds investigated. 

The Reynolds number index method of investigation is still consid
ered valid inasmuch as the effect of inlet temperature is believed to be 
peculiar to this engine and was of secondary importance. The effect of 
reducing inlet temperature from 70 to -500 F at a Reynolds number index 
of 0.4 was to decrease the corrected jet-thrust parameter about 2 percent, 

1 corrected exhaust~gas total temperatures about 22 percent, and corrected 

ideal fuel-air ratio about 5 percent. When the data are applied to 
flight conditions, these effects can be minimized by adjusting the data 
by use of the trend shown in figure 6. 

Effect of Engine-Inlet Reynolds Number Index 

With the reservations discussed in the previous paragraphs, the 
performance data obtained over a range of engine-inlet Reynolds number 
indices may be applied to a wide range of flight conditions. Figure 10 
is presented in order to permit the determination of Reynolds number 
index as a function of altitude and flight Mach number. An example of 
the method of obtaining performance at a given flight condition is pre
sented in appendix C. 

qompressor performance . - Compressor performance characteristics are 
presented in figure 11 for the range of Reynolds number indices investi
gated. Compressor efficiency generalized for Reynolds number indices 
from 0.8 to 0.4 and decreased with further reduction in Reynolds number 
index, as shown in figure ll(a). The peak compressor efficiency occurred 
at a corrected engine speed of about 7000 rpm for all Reynolds numper 
indices investigated and decreased from about 0.835 to about 0.815 as 
Reynolds number index was decreased from 0.4 to 0.2. Compressor effi
ciency decreased approximately 0.10 from the peak value as corrected 
engine speed was increased to 8500 rpm. 
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Corrected compressor air flow is shown as a function of corrected 
engine speed over the range of Reynolds number indices investigated in 
figure ll(b). At Reynolds number indices from 0.8 to 0.3, the corrected 
air flow generalized below a corrected engine speed of about 7500 rpm. 
At a corrected engine speed of 7950 rpm (sea-level rated), the corrected 
compressor air flow decreased from 104 to 99 pounds per second as 
Reynolds number index was decreased from 0.6 to 0.15. Qompressor leakage 
at the engine midframe was measured by means of an orifice pipe and is 
presented in figure ll(c) as a function of compressor-outlet total pres
sure. This figure is necessary in determining the alr flow through the 
combustor. 

The variation of compressor pressure ratio with corrected engine 
speed is presented in figure ll(d), which shows that there was no effect 
of Reynolds number index on this relation. The failure of the compressor 
operating lines (compressor pressure ratio as a function of corrected 
air floW) to generalize with Reynolds number index variations (fig. 11 (e )) 
indicates that there was a shift in the compressor map as Reynolds number 
index was reduced. 

Combustor performance. - Variation of the total-pressure-loss ratio 
across the combustor with corrected engine speed is shown in figure 12(a). 
Over the range of engine speeds investigated the total-pressure-loss 
ratio showed no apparent effect of Reynolds number index. yombustion 
efficiency (figs. 12(b) and 12(c)) was correlated with the parameter 

(P3, b )2 
Wa 3 , (fig. 12(b)), which is proportional to a combustion parameter 

derived in reference 5. According to this reference, correlation would 
be expected unless there were pronounced effects of fuel-air ratio or 
fuel spray pattern. At a value of the combustion parameter above 
400,000, correlation was within ±0.015 and a constant combustion effi
ciency of about 0.99 was indicated. At lower values of the combustion 
parameter, combustion efficiency dropped rapidly and the data scatter 
was increased to ±0.02. From these data it is concluded that for the 
Reynolds number indices and the corrected engine speeds of this investi
gation, the effects of fuel-air ratio and fuel spray pattern were 
secondary. 

A more convenient method of obtaining combustion efficiency for a 
given engine operating condition is presented in figure 12(c). An engine 

operating parameter 5 ,f8(N/ -.je)3 was obtained empirically, as in refer
ence 6, from the engine operating characteristics • . The correlation of 
combustion efficiency as a function of this engine operating parameter 
provides a more convenient method of obtaining combustion efficiency for 
given inlet conditions and a given corrected engine speed. 

....... -~~~~------~-------- _. __ .... 

'-

j 
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Turbine performance. - The trends in turbine performance (fig. 13) 
with variations in Reynolds number index were generally obscured by data 
scatter. The turbine total-pressure ratio (fig. l3(a)) was approximately 
2.58 over the range of corrected engine speeds investigated. Turbine 
efficiency, illustrated in figure l3(b), increased from about 0.81 at 
6400 rpm to about 0.825 at 7800 rpm and above. The corrected turbine gas 
flow (fig. l3{c)) increased from about 40 to 42 pounds per second as 
corrected engine speed was increased from 6250 to 8800 rpm. Close inspec
tion of the data points on the latter two curves indicates the possible 
existence of a slight decrease in turbine efficiency and corrected turbine 
gas flow with decreasing Reynolds number index, although the magnitudes of 
the trends are not clearly discernible because of the data scatter. 

Generalized engine performance. - The effect of ReynOlds number 
index on generalized engine performance is shown in figure 14. The 
corrected exhaust-gas total temperature increased as Reynolds number 
index was decreased (figs. l4(a) and l4(b)) because of the shift in 
engine operating point caused primarily by the decrease in compressor 
efficiency. It was necessary to present these data on separate plots 
for the different inlet temperatures because of the temperature effect 
discussed previously. For the same reason, the data obtained at a 
Reynolds number index of 0.8, although included in table I, were omitted 
from the figures showing corrected exhaust-gas temperature and corrected 
ideal fuel-air ratio (figs. l4(a) and l4(c)). Corrected ideal fuel-air 
ratio (figs. l4(c) and l4(d)) increased as a result of the required 
additional power to overcome loss of compressor efficiency and corre
sponded to the increase in exhaust-gas temperature. This parameter 
isolates the fuel requirement from combustion efficiency and the decrease 
in air flow with decreased Reynolds number. The effect of Reynolds 
number index on the engine pumping characteristics is shown in fig-
ure 14(e). As Reynolds number index was reduced, pumping characteristic 
curves shifted in the direction of increased temperature ratio for a 
given pressure ratio. This result would be expected as a result of the 
decrease in compressor efficiency. The effect of Reynolds number index 
on the jet-thrust parameter is presented in figures l4(f) and l4(g). 
At a given engine speed there was an increase in temperature ratio, a 
slight increase in engine pressure ratio, and a decrease in engine cor
rected air flow as Reynol,ds number index was reduced. At Reynolds number 
indices from 0.8 to 0.4 there was no apparent effect on the jet-thFust 
parameter. However, as Reynolds number index was decreased from 0.4 to 
0.15 (fig. l4(g)), there was an increase in the jet-thrust parameter due 
to the increase in temperature ratio and pressure ratiO, which offset 
the decrease in corrected air flow. 

It can be shown from the performance data that the combined effect 
of reducing the Reynolds number index from 0.6 to 0.15 and the inlet 
temperature from 70 to -500 F resulted in a 10 percent increase in cor
rected fuel flow and a 2 percent increase in jet-thrust parameter at a 
corrected engine speed of 7950 rpm. 
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Net thrust and specific fuel consumption. - The conventional per
formance parameters such as net thrust and net-thrust specific fuel con
sumption may be obtained for any flight condition from the data presented. 
These calculations have been made for the sea-level static condition and 
for altitudes of 16,700, 31,400, and 51,500 feet at a flight Mach number 
of 0.8 and are presented in figure 15. An example of the technique used 
in obtaining these values is presented in appendix C. 

The net thrust (fig. 15(a)) at the sea-level static condition 
exceeded the manufacturer's guarantee by about 100 pounds at rated engine 
speed. As the altitude was increased, the net thrust decreased. At an 
altitude of 51,500 feet and a Mach number of 0.8, the net thrust was 
970 pounds for rated speed. The net-thrust specific fuel consumption 
for the sea-level condition was lower than the manufacturer's guarantee 
at rated engine speed, but was approximately the same at an engine speed 
of 7000 rpm which corresponds to the minimum specific fuel consumption 
of 0.99 pound of fuel per hour per pound of thrust at this condition. 
For a flight Mach number of 0.8 and the range of altitude, the engine 
speed which corresponds to minimum specific fuel consumption decreased 
from apprOXimately 7400 rpm at an altitude of 16,700 feet to 7100 rpm at 
an altitude of 51,500 feet. The minimum value of the specific fuel con
sumption decreased over this range of altitude from approximately 
1.33 pounds of fuel per hour per pound of thrust at 16,700 feet to 
1.23 pounds of fuel per hour per pound of thrust at 51,500 feet. This 
decrease in specific fuel consumption occurred even though the corrected 
specific fuel consumption increased because of the decreasing inlet 
temperature with increasing altitude. The minimum specific fuel consump
tion probably occurred at about 35,000 feet. 

Effect of Design Modifications 

The effect of the design modifications proposed by the engine manu
facturer as a block change is presented in figures 16 through 19 for 
Reynolds number indices of 0.8, 0.4, and 0.2. Data for all configurations 
were obtaine"d at the same inlet temperatures. The ratio of compressor 
leakage air flow to inlet air flow is presented as a function of corrected 
compressor discharge pressure in figure 16. Figure 16 indicates that the 
improved twelfth-stage seal of configuration B reduced this leakage by 
25 to 50 percent of its original value at the higher compressor discharge 
pressures. Figure 17 presents a comparison of the pumping characteristics 
for configuration A (standard engine) and configuration B. For a given 
temperature ratiO, configuration B has a lower pressure ratio than con
figuration A. Examination of component performance at a constant cor
rected engine speed shows no change for the compressor and turbine pres
sure ratios and a very small increase in combustor total-pres sure-loss 
ratio (less than 0.0025). However, there was a greater indicated pres
sure loss in the tail pipe for configuration B. The increase in pressure 
loss is attributed to the increased velocity in the tail pipe due to the 
higher air flow {caused by less compressor leakage) through the turbine 
and the change in area ratio caused by the larger nozzle. The change in 

v 



NACA RM E52Ll6 13 

area ratio results in approaching critical Mach numbers at the tail-pipe 
instrumentation. The jet-thrust parameter (fig. 18) showed no effect 
from the added air flow resulting from the improved seal because of the 
counter effect of the greater tail-pipe pressure loss caused by the 
increased mass flow and velocity . 

Combustion efficiency is presented in figure 19. There was no 
significant difference in the combustion efficiencies of configurations 
A and B. The addition of shrouded fuel noz~les did not change the peak 
efficiencies but indicated a slightly higher efficiency at lower values 
of the engine operating parameter. The modifications proposed by the 
manufacturer as a block change to the twelfth-stage compressor seal, the 
engine combustor, and the turbine shroud ring did not provide any signi
ficant improvement in engine performance. 

CONCLUDING REMARKS 

An investigation was conducted in an altitude test chamber to eval
uate the performance of an axial- flow turbojet engine over a range of 
engine-inlet Reynolds number indices . The range of Reynolds number 
indices investigated provided data which were applicable over a range of 
flight conditions, for example, altitudes from 15,000 to 55,000 feet at 
a flight Mach number of 0.7. 

This investigation indicated that secondary effects of nozzle flow 
coefficient and inlet temperature must be known before the effect of 
variations in engine-inlet Reynolds number index can be analyzed. The 
nozzle flow coefficient increased with increasing nozzle pressure ratio 
up to a value of about 2.3, which corresponds to a ram pressure ratio of 
about 125 percent of the ram pressure ratio required to produce choked 
flow in the nozzle. Consequently, below this value of ram pressure ratio 
there was a significant effect of ram pressure ratio on generalized 
performance. There was a secondary effect of inlet temperature at a 
constant Reynolds number index. As inlet temperature was increased at a 
given Reynolds number index, the corrected jet-thrust parameter, corrected 
exhaust-gas temperature, and corrected ideal fuel-air ratio each 
increased slightly. This effect was reduced when turbine-outlet straight
ening vanes were installed. 

In general, the effect of reducing the Reynolds number index was to 
lower the compressor efficiency and air flow resulting in a shift in the 
compressor map and a rematching of the compressor and turbine. There 
was only a slight effect of Reynolds number index variation on the turbine 
performance. The combined effect of reducing the Reynolds number index 
from 0.6 to 0.15 and the inlet temperature from 70 to _500 F resulted in 
about a 10 percent increase in corrected fuel flow and about a 2 percent 
increase in corrected jet-thrust parameter at a corrected engine speed 
of 7950 rpm. 
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The engine modifications proposed by the manufacturer resulted in 
no significant improvement in engine performance. The modified twelfth
stage compressor seal reduced the leakage at the engine midframe by about 
20 to 50 percent of its original value. However, the resultant increase 
in air flow and velocity in the tail pipe caused higher pressure loss 
and no improvement in thrust. The incorporation of shrouded fuel nozzles 
resulted in slightly higher combustion efficiency at low values of the 
engine operating parameter, but the effect was not discernible at high 
values. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio 
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APPENDIX A 

SYMBOLS 

The following symbols are used in this report: 

area, sq ft 

exhaust-nozzle flow coefficient, ratio of effective flow area to 
physical flow area 

jet-thrust coefficient, Fj,s/Fj,r 

thermal expansion coefficient, ratio of hot exhaust-nozzle area 
to cold exhaust-nozzle area 

thrust system scale reading, lb 

jet thrust, lb 

net thrust, lb 

fuel-air ratio 

acceleration of gravity, ft/sec2 

enthalpy, Btu/lb 

lower heating value of fuel, Btu/lb 

Mach number 

engine speed, rpm 

total pressure, lb/sq ft 

static pressure, lb/sq ft 

gas constant, ft-lb/(lb)(0R) 

total temperature, OR 

static temperature, OR 

velocity, ft/sec 

air flow, lb/sec 
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Wf fuel flow, lb/hr 

Wg gas flow, lb/sec 

y ratio of specific heats 

5 ratio of engine-inlet total pressure PI to NACA standard sea-

level pressure, 2116 lb/sq ft 

e ratio of engine-inlet total temperature Tl to NACA standard 

sea-level temperature, 519 0 R 

e4 ratio of product of T4 and Y4 to product of T and y for 

NACA standard sea-level conditions, Y4T4/(519)(1.4) 

~ ratio of coefficient of viscosity corresponding to Tl to 

coefficient of viscosity corresponding to NACA standard sea
level temperature, 519 0 R. This ratio is a function of 
only temperature and is equal to 735 el . 5/(T + 216). 

efficiency 

Reynolds number index 

Subscripts: 

a arr 

b combustor 

c compressor 

cl compressor twelfth-stage leakage arr flow 

i indicated 

m fuel manifold 

n vena contracta at exhaust-nozzle outlet 

r rake 

s scale 

t turbine 

tc turbine cooling 
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Station numbers: 

o ambient or free-stream conditions 

Oa bellmouth inlet 

1 engine inlet 

2 compressor inlet 

3 compressor outlet or combustor inlet 

3b combust or 

4 combustor outlet or turbine inlet 

5 turbine outlet 

9 exhaust-nozzle inlet 

1 0 exhaust-nozzle outlet 
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APPENDIX B 

METHODS OF CALCULATION 

Temperature. - Total temperature was determined by use of a cali
brated thermocouple with an impact-recovery factor of 0.85 from the 
indicated temperature and the following equation: 

y-l 
r 

T 

1 + 0.85 

Engine air flow. - Early in the investigation, it was found that an 
excess.of air was leaking from the engine behind the inlet measuring 
station 1. This air was leaking from sheet-metal joints between sta
tions 1 and 2) from open bolt holes at the compressor inlet, and from 
twelfth-stage deicing-air lines. It was assumed in the calculation that 
all unmeasured leakage occurred between stations 1 and 2. The gas flow 
was determined at the exhaust-nozzle outlet from total pressure and tem
perature at the nozzle inlet (station 9) by the following equation with 
t he assumption that no energy loss occurred between the nozzle inlet 
and outlet: 

where in the subsonic case, 

Pn PO 

and in the choked case, 

, 

I 

J 
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The value of the flow coefficient Cd was determined from refer
ence 4 using the area ratio and cone angle of the particular nozzle 
employed in this investigation. The magnitude of the flow coefficient 
is presented in figure 4(a). 

The compressor-inlet air flow was then determined from the nozzle 
gas flow by 

19 

where the compressor leakage air flow Wa cl was measured at two instru, 
mented bleed ports and found to be a function of compressor-outlet 
pressure P3 (fig. ll(c)). 

The engine-inlet air flow Wa 1 based on pressure and temperature , 
measurements in a bellmouth mounted on the front of the engine was 
determined by the same general equation as for the tail-pipe gas flow. 
The percentage of leakage for the section between stations 1 and 2 is 

Wa 1 - W-a 2 , , 
Wa ,2 

and after an attempt was made to plug the leaks, it was approximately 
3.3 percent of the compressor-inlet air flow Wa 2 for the range of , 
conditions covered. 

Combustor air flow Wa ,3 used in calculating fuel-air ratio was 

where Wa,tc was the turbine cooling air flow which was found to be half 
of 1 percent of Wa 2' Therefore , 

0 .995 Wa ,2 - Wa,cl 

Combustion efficiency. - Combustion efficiency was defined as the 
fraction of the lower heat of combustion of the liquid fuel effective 
in increasing the enthalpy across the combustor and was calculated from 
Tl' T9' and f based on Wa ,3 by the following formula: 
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where 

Am + B 
m + 1 

NACA RM E52Ll6 

accounts for the difference between the enthalpy of carbon dioxide and 
water vapor in the burned mixture and the enthalpy of oxygen removed 
from the air by their formation (ref. 7)) and Tm is the temperature of 
the fuel in the manifold (5400 R). 

When the ideal fuel-air ratio was calculated) the combustion effi
ciency was assumed the same as the ratio of fuel ideally required to the 
fuel actually required) which is given by 

fideal 
f = 

The difference in the ratio 

~
T9 

Am + b 
1'1bhr + m + 1 Tm 

Am + b 9 

J
T 

hf + m + 1 Tm 

fideal 
f and 1'1b for the range of com-

bust ion efficiencies of this investigation was a maximum of 0.003. 

Jet-thrust parameter. - The jet thrust as determined from the thrust 
system measurements was calculated from the equation 

where Fd is equal to the thrust system scale reading adjusted for the 
pressure difference on the link connecting the thrust bed in the test 
chamber and the measuring cell outside the test chamber) and the last 

term 0.8 (~Wa~l)Voa is the momentum force existing at the bellmouth 

inlet because of failure of the bellmouth to provide the acceleration of 
Wa,l to Vl . This force was determined experimentally by instrumenta
tion located on the surface of the bellmouth along with the instrumenta
tion at station 1. 
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The jet-thrust parameter is used to generalize the 

thrust data for variations in inlet conditions and ram ratio. The value 
of A10 used in calculating this parameter was 2.073 square feet. This 
was the cold area of the nozzle used in this investigation and facili
tates correcting the parameter to a flight condition. 

Jet-thrust coefficient. - The jet-thrust velocity coefficient is 
defined as the ratio of scale jet thrust to rake jet thrust 

where 

W 
F = ~ V A( ) j, r g n + -n Pn - PO 

The charts in reference 7 were used in the solution of the prec'eding 
equation. When all the data obtained in this investigation were 
employed, the jet-thrust coefficient was found to be independent of 
exhaust-nozzle pressure ratio and was a constant value of 0.995. The 
scatter in the coefficient values was approximately ±l percent for the 
range of conditions investigated. 
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APPENDIX C 

CORRECTING TEST VALUES TO FLIGHT CONDITIONS 

An example of the method of correcting test values to flight condi
tions has been given in reference 3. For a given flight condition, the 
value of Reynolds number index can be obtained from figure 10. Values 
for 0 and 8 can be readily calculated from engine-inlet total pres
sure and temperature. If these generalizing parameter values are known, 
air flow, ideal fuel-air ratio, combustion efficiency, and exhaust-gas 
temperature can be obtained from the various performance curves. In 
order to determine the net thrust, the jet-thrust parameter must be 
first corrected to the desired flight condition to obtain the jet thrust. 
Then, in order to obtain net thrust, the leakage between stations 1 
and 2 must be added to the air flow for station 2, so that 

The values of net thrust and net-thrust specific fuel consumption 
presented in figure 15 were obtained in this manner. The following 
example is a sample calculation of one of the points. 

For this calculation an altitude of 51,500 feet and a flight Mach 
number of 0.8 were selected. These cor~espond to a Reynolds number 
index of 0.2 (fig. 10). For the given flight condition, the inlet 
temperature, pressure, and correction parameters are: 

Tl 4430 R 

Pl 345.1 lb/sq ft 

PO = 226.4 lb/sq ft 

01 0.1631 

81 0.8536 

to 3930 R 

From figure 14(g) a value of 11,693 pounds for the jet-thrust param
eter is obtained for a corrected engine speed N/~ = 8652. The differ
ence between the desired Tl and the Tl at which the data were obtained 
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was about 300~ For a difference of SOO (fig. 8(c)), a change of about 
200 pounds is found in the parameter. Therefore an allowance of 
100 pounds was made for the inlet temperature, making the jet-thrust 
parameter ll,793 pounds. This value is then reduced to jet thrust. 

23 

F j = 11,793 X 5 - POA10 = (11,793XO.1631) - (226.4X2.073) = 1454 pounds 

For determination of the inlet momentum mlVO, the mass flow is that 

entering the bellmouth. This is determined either from the measured 
values or approximately by 

0.lS31 
(105.6) 0.9239x32.2XO.967 0.599 slug 

The free-stream velocity Vo can be determined from the flight , Mach 

number 

Vo = Mo JygRt = 0.8 J1.4X32.2X53.37X393 778 ft/sec 

Then the net thrust is 

Fn = F j - mlVO = 1454 - 0.599X778 = 988 pounds 

The net-thrust specific fuel consumption was computed from 

where 

Fn has been calculated equal to 988 pounds 

f = (TJbf /e) ideal e/TJb = 0.0225XO. 8536/0. 967 

(
TJb

f
) e ideal is obtained from figure 14(d) 

TJ
b 

is obtained from figure 12(c) 

lb fuel 
0.0199 lb air 
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9. 760X1010 

Wa ,3 0.995 Wa ,2 - Wa,cl = 0.995 1050~~~3~631 - 0.32 = 18.23 lb/sec 

where 0.995 Wa 2 accounts for the air bled from the compressor dis-, 
charge for turbine cooling, and where the compressor leakage at the 
engine midframe Wcl was determined from figure ll(c) for which com-

pressor discharge total pressure was calculated by 

P3 ~ P1 (:i) ~ (345.1)(6.010) 2074 

was obtained from figure ll(e). 

Then the sfc 
3600XO.0199X18.23 lb fuel/hr 

= 988 1.32 lb thrust 

The engine speed was obtained from the corrected speed using the 
equation 

N N/,f§ X ve 8652XO.9239 7994 rpm 
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Figure 1. - Schematic diagram of engine in altitude chamber showing station locations. 
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• Static- pressure tube (wall or rake) 
o Total- pressure tube 
X Thermocouple 

(a) Instrumentation at engine inlet, station 1, 21 inches upstream of leading edge 
of compressor - inlet guide vanes . 

Figure 2 . _ Locat ion of instrumentation at various measuring stations 
as v iewed from upstream . 
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Outline of com
bustion chambers 

~ 
• Static-pressure tube (wall) 
o Total-pressure t ube 
X Thermocouple 

(b) Instrumentation at compressor outlet, station 3, 2 inches downstream of 
trailing edge of compressor-outlet guide vanes. 

Figure 2. - Continued. Location of instrumentat ion at various measuring 
stations as viewed from upstream. 
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o Total- pressure tube 
X Thermocouple 

(c) Instrumentation at turbine inlet, station 4, l~ inches upstream of 
4 

l eading edge of turbine - inlet guide vanes. 

Figure 2 . _ Continued. Location of instrumentation at various measuring 
stations as viewed from upstream. 
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o Total-pressure tube 
" Thermocouple 

(d ) Instrumentat ion at turb i ne outlet, station 5, 4~ inches downstream of 
trailing edge of turbine blades. 

Figure 2. - Continued . Location of instrumentation at various measuring 
stations as viewed from upstream. 
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(e) NACA instrumentation at nozzle inlet, station 9, l5~ inches 
downstr eam of tail- cone- outlet flange . 

Figure 2 . - Continued . LOcation of "instrumentation at various measuring 
stations as viewed from upstream . 
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(f ) Manufacturer ' s instrumentation at nozzle inlet, station 9, 
l~ inches downstream of tail- cone- outlet flange . 
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Figure 2 . Continued . Location of instrumentation at various measuring 

stations as viewed from upstream. 
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(g) Instrumentation at nozzle lip, station 10. 

Figure 2. - Concluded . Location of instrumentation at various 
measuring stations as viewed from upstream. 
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(a) Improved twelfth-stage compressor seal . 
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(b) Floating turbine shroud ring. 
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(c) Shrouded fuel nozzle. 

CD.2823 

Figure 3. - Engi ne modifications incorporated in configurations B and C. 
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