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PREFACE

The problem of a precise method of analysis for air-
plane jury-strut systems was sslected by Mr. A. Murray
Schwartz as the subject of his Engineer's thesis at
Stanford University. Mr. Schwartz's study resulted in the
derivation of suitable theoretical equations and the de-
velopment of a system of using them in practical design.
He did not have time, however, to carry out any experi-
mental work to prove the validity of his formulas. In the
winter of 1933-34 another graduate student at Stanford,
Mr. Reid Bogert, made the experimental investigation of
Mr. Schwartz's formulas the subject of his Engineer's the-
sis, and obtained data to prove their validity.

Owing to the length of these theses, the N.A.C.A.
did not consider it advisable to publish them in full, bdbut
accepted the offer of the writer, under whose direction
the two theses were prepared, to combine them into a sin-
gle report of length suitable for publication. The work
of the writer has been primarily editorial, the theoret-
ical derivations of the first part of the report being
that of Schwartz, and the experimental work of the second
part that of Bogert. While the theses on which the pres-
ent report is based were written under the direction of
the writer, his supervision was not very close and by far
the greater part of the credit belongs to the two students.

The title of Schwartz's thesis was "Structural Analy-
sis of Airplane Jury Strut Systems". Study of the prob-
lem showed that its essential feature was the analysis of
a strut with a single elastic support at any specified
point between its ends. This is a general problem of
which the airplane jury-strut system is only a special
case. Bogert'!s thesis was accordingly entitled "Tests on
Struts with a Lateral Elastic Support in the Span". The
title of the present paper was chosen to indicate beth the
essentizl problem attacked and its most important appli-
cation in aeronautical design.

Alfred S. Niles.
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ANALYSIS CF A STRUT WITH A SIWGLE ELASTIC SUPPORT IN
THE SFAN, WITH APPLICATIONS T0 TEE DESIGN
OF AIRPLANE JURY-STRUT SYSTEMS

By A, Murray Schwartz and Reid Bogert

P AR
DERIVATION OF FORMULAS

By A. M. Schwartz
I. INTRODUGCTION

The need of a precise analysis of airplane jury-strut
systems was suggested by Mr. Richard C. Gazley in an arti-
cle entitled "Late Developments in Airplane Stress Analy-
sis liethods and Their Effect on Airplane Structures."* 1In
the paragrachs on the jury strut, he says, "dmong design-
ers of strut-traced monoplanes, there is an increasing
tendency to reduce the weight of the external wing bracing
by providing the main struts with lateral support at about
one third the distance in from the outer ends. This sup-
port is furnished by a small auxiliary strut, commonly
called a jury strut, which is attached to the wing spar at
its uprer end. This type of design is quite effective

=]

for the purpose intended, but it has introduced some dif-
fieult analysis problems.

"The case in which the auxiliary strut and the upper
end of the main strut are both pinned at their intersec-
tion is fairly simple, and has been successfully analyzed
by a number of designers. The more common case, however,
where the main 1ift strut is continuouns, is greatly com-
plicated by a number of factors affecting the force dis-
tribution. A precise solution of this problem probabdly
would result in uwnwieldy formulas but would enable the im-
portance of the various factors to be determined.”

*’1 L o - rz
S.A.BE, Journal, September 1932.
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The problem assumes a difficult aspect because of
the simultaneous deflection of both strut and spar, one
depending upon the other, and because of the secondary
stresses and deflections present due to axial loads in
the members., This can easily be illustrated by reference
to figure 1, inwhieh the''broken line pepresents the un~
stressed structure, and the solid lines an exaggerated
view of the members when under load. The elastic curve
of the spar is, of course, quite dependent upon the side
or air load upon it and the amount of overhang. Sinece ax—
ial compression is the critical load on the 1ift strut,
the airplanc is assumed to be in inverted flight. This
condition imposes a "down" side load upon the spar, and
consequently the spar and strut are under axial tension,
and compression, respectively. If a jury strut is con-
nected to the spar at point *B- where the spar is deflect-
ed due to the external air loads, the strut will also be
deflected. Then, due to axial load in the strut, second-
ary stresses will be produced which will tend to increase
the deflection of B. This increased deflection will
cause increased secondary stresses which will multiply un-
til a state of equilibrium is reached; that is, the sup-
porting forces developed in the spar will equilibrate the
buckling of the strut.  If it were possible that a point
of zero deflection such as point ‘A" could be used as the
upper jury-strut connection, there would be no bending of
the strut and, as a consequence, no secondary stressées to
cause a further deflection of point A. This situation
can only be present for one actual loading, however, be-
cause a change of the axial load or the side loading on
the spar moves the point of zero deflection. Moreover,
even if it were possible that such a state of affairs
could exist, it would be necessary to investigate the
structure so that the elastic stability of the strut
could be checked. It will be shown later that both of
the above cases are almost alike, and that the presence
of initial deflection due to the air loads on the spar
does not alter or complicate the determination of the
critical load on the strut or that of the size of the
load on the jury strut to a very great extent. When the
size of the load in the jury strut has been calculated,
it is guite easy to determine the maximum unit stress in
the 1ift strut by means of the Newell extended equation
for a beam with supports deflected. (Frecise three-moment
equation found in "Airplane Structures" by Niles and
Newell, p. 192.
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It was believed at tﬁé'béé{iniﬁg of the work on the
precise solution of jury strut systems that rather com-
plicated formulas would .be. obtained, but it was found
that . the solution .wasg little more unw1eldv than the cal—

culation for the moments .en a contlnuovs bear by means of
the extended three-moment equatlon.

~A neview ofdthe Qbstacles encounter d in the precise
-golution ‘of jury- strut systems, shows. thd+.the rroblem
-may be resolved into four dlstlnct phases. JEhese..are:

l.u Determlnatlon of the "Sprln” conotant”'of a point
in the,span:of .an.axially . loaded beam, and the relations

between t41s spring constant .and .the. %tab111ty ‘of the mem-
ber. ’ ' .

'

DR Determ ration of the stability of.a strut support-

ed at -some u01nt along its.span by . means.of a jury or aux-
iliary:strut connected .-to another strut or beam, the sup-
porting beam being under either axial compression or ten-
sion, a) when the supporting member has no initial de-
flection caused by external side load, and ©b) when exter-
nal side’ load caunsing deflection. is present.

3. Determination of the load in the jury strut and
-the:deflection: present.for.a given side.load on-.the sup-
porting member,-: il ; '

4, An investigation of the critical conditions
through which the system passes. as the axial load is. in-
creased: from zero: to .the. final crltlcal load, and the
formulatloﬁ of a--methad of- determlnln . the maximum criti-

-cal load in a- surported strut._ e '

In ordcr to give a complete‘exPlanationfof the formu-
las and methods derived, several numerical examples are
presented, three consigting of very -simple structures,
-and the fourth being a representative jury-strut. .system,
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II. REFERENCES

"Late Developments in Airplane Stress Analysis Methods

‘and Their Effect on Airplane Structures", by Richard

¢. Gazley, S.A.E., Journal, September 1932,

This article outlined the problem and presented
the difficulties to be encountered as follows: "The
design of the main 1ift strut then resolves itself in-
to the problem of finding the critical load for a pin-
cnded, long column initially straight but deflected
laterally a constant amount at some point along its
length. To be more accurate, the deflection could be
taken as a linear function of the axial load in the
column. The solution of this problem would be a val-
wable addition to our knowledge of strength of materi-
als. Pending such a solution, we must rely on empir-
jcal formulas and meager test data for our allowable
loads and therefore need to provide ample margins of
safety."

"Airplane Structures", by Niles and Newell, Wiley,
New York.

This volume supplied a basic theory and equations
for the formulas derived in this paper.

"On the Buckling Strength of Beams Under Axial Com-
pression, Bridging Blastic Intermediate Supports", by
W. B. Klemperer and H. B. Gibbons, contributed by the
Applied Mechanics Division of the A.S.M.E. for presen-
tation at the National Applied Mechanics Meeting, New
Haven, June 1932.

Although this paper did not consider the case of
struts having unsymmetrical bays with supports having
deflections due to external loads, and was of no di-
rect use, it did supply valuabdle information as to
methods of attack for which the writer is very grate-
ful. This paper was also used as a check for the spe-
cial case which it covers in common with this paper.
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III. DEFINITIONS

For convenience of reference, definitions are given
here for a group of terms that will be uwsed freguently in
the subsequent text.

Beam

Supporting force

Supporting load

Spring constant

the supporting member of a pair (the
Wing. spaf anmehe Yadrplane Jury- strut
system) .

the supported member of a pair (the
1ift . stRat dn bThe airplane,jury-strut
system) .

(P), axial tension (+) or compression
(-) in the beam or the strut as indi-
cated by subscripts or the context.

(Pp), the algebraic sum of the loads
in the beam and strut when they are
parallel.

(-W), the lateral force required to
hold the strut in equilibrium.

(W), the lateral force imposed on the
beam in supporting the strut. Support-
ing load and supporting force are nec-
essarily equal in magnitude but oppo-
site in sign. . They are also the ex-
ternal forces acting on the jury strut.

member joining the beam and the strut
which causes these two members to in-
teract.

(s), any lateral force other than the
supporting load which acts on the beam.

(k), the rate of change in the lateral
load required to maintain equilibrium
at a point along the span of the beam
(or strut) with respect to the lateral
deflection of that point.
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IV. TEE SPRING CONSTANT FOR AN AXIALLY LOADED BEAM

The first step in the study of the.stability pof an
elastically supported strut is to explain the derivation
and significance of what will be termed the "spring con-
stant" of a point on the span of an axially loaded beam.
Nathematlcally this spring constant may be defined as the
partial derivative of the transverse load at the point
with respect to the deflection ' of that point. This can
also be expressed in simpler though less concise language.
If the beam is assumed to remain in equlllbrlum, although
the deflection of some point on the span is changed, there
must be some corresponding change in the external loading.
If it be assumed that the only change in the external load-
ing is the addition of a transverse force at the point in
question and suitable reactions at the supports, there will
be some definite relationship between the changes in the
deflection of and the external force at the point. Inspec-

tion of the foxmulas for the deflection of an axially loaded

beam will show that there is a linear relation between the
magnitude of the transverse load on an axially loaded beam
and the deflection of its point of application., This is

shown by the fact that they can all be written in the form

.
6_E+C» (1)

where 8§ is the deflection of the point in question
W 1ig the lateral load at the same point

k and C are constants depending on the location of
the point, the dimensions and material of the beam, the
magnitude and character of the axial load, end momgnts,
transverse loads at other points, etc., but independent of
the transverse load W.

From equation (1) it is apparent that if the load W
1s the only one to vary as the deflection of its point of
application changes, it must change by k pounds for each
inch of ehansein “that ‘deflection,  The gquantity & i
therefore the spring constant as defined mathematically
above, It may also be defined as the transverse load re-
quired to cause a unit (one inch) deflection of its point
of application.

The formula to be used for the computation of the
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spring constant in any given case will depend on the char-
acter of the axial load and wnether or not the cross sec-
tion of the beam is constant. In this report only two
groups of-cases will be considered. .

1, Beams of constant section with the axial load the
same on both sides of the point for which the spring con-
stant is to be computed.

2 Beams in which the cross section and axial load
are constants on each side of the point for which the
spring constant is to be computed, but in which one or
both of those quantities change at that point. This class
of cases ig of interest as the axial load in, and .eross

ection of; the 1ift strat nay change at the point of con-
nectlon of the jury strut.

In the main body of the report attention will-be di-
rected, in general, to those cases of the first ‘group in
which the axial load is compression. It is to- be under-
stood, however, that the conclusions arrived at in respect
to the significance of the spring constant, the criteria
for stability, and the general egquations for the deflec-
tion of the supported strut system in terms of the spring
constants involved, apply equally to all cases (even those
in which the axial load and the cross section vary contin-
uously along the span) unless otherwise noted. Formulas
willl also be derived for the computation of the spring
constant in cases of group 2 in which the axial load is
compression., No attempt will be made to derive more gen-
eral formulas for the spring constant, but the derivations
given should be a sufficient guide to permit the engineer
to handle any other case in which he is able to compute
the deflection due to a unit transverse load.

Before attempting to discuss the relationships between
the spring constant aud the stability of a strut, it is de-
sirable to develop the formulas for the spring constant in
a repregentative case. For simplicity, the case studied
will be that of a strut of constant section and constent
axial load. Three conditions must be considered, depend-
ing on whether the axial lcad is compression, tension, or
ZETO0"

The formula for the deflection of a point on the span
of a constant section beam subjected to axial compression
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and a single concentrated transverse load is*

T 2 % <Mi'f ¥3~;_%¥ g = EEE - 0, sin ? - Cz cos ?) &%,
where
" i M ¥, - ¥ i sin(a/J . '
5 e tan“m/.jg. W g cos 3
82 = 'H,
If the axial load P, and the end moments M; and a2,

be assumed not to vary, equation (2) is obviously a special
case of eguation (1), TFrom the disecussion on page 199 of
reference 2 it .can be seen that the only effect of add-
ing other transverse loads to the system of forces acting
on the beam would be to make necessary the addition of
some more constants to equation (2), which would modify
thewvglue . ¢f the ‘comsteant €. of eguatieon (3)s The con-
stant. k of eguation (1) would not be affected,

Combining equations (1) and (2) we have as the formu-
la:for the spring constant.of a beam subjected to axial
compression i ;

(MJ§ + i < gimR. _/ i)
L

T e i \ (8)

. miay
=_J Ein, — eos
= J

|

In this formula the subscript "¢ is used to indicate that
the axial load is compression,

k;, spring constant for the point and axial compres-
sioen in guestion

*Page 205 of reference 2. This formula applies only to

the section of the beam between the left end and the point

oif . applitealt iiony lof the side load W. By substituting a
for X it gives the deflection of the point of applica=
tion of W. The same result could be obtained by placing
a for =x in the expression also given on page 205 of
reference 2., for the deflection between the load and the
right-hand end of the span.
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a, . distance from 1left end of span to the point in
question
L rlenetih of dspan
b=y~ 8
v/ EI/P

Similarly we can obtain as the formula for the spring
constant of a beam subjected to axial tension*

3
v

1 1, (madh o o Sl Uil i . ooe B a
Lyt ode (D e y, & n e 4
g v tanh (L/3) R ol ol o

Thewspridnsconstiant for the ‘case of zero azxial load
can be obtained by setting P =0 in eguation (B) or (),
but the resulting indeterminate form 0/0 is awkward to
evaluate. A simpler method of obtaining this spring con-

stant k,, 1is to differentiate the formula for the de~
flection of a simple beam subjected to a single concen-
trated side load as given on page 264 of reference 2.

This gives

6 E1 L 3EIL (5)

The spring constants as given by equations (3), (4),
and (5) apply to all cases of beams, struts, or ties of
constant section and constant axial load regardless of
the presence or absence of end moments and other side loads
on the member. In practical computations they may be used
to determine either the spring constant of the member that
requires support or that of the member which furnishes
support.

V. VARIATION OF SPRING CONSTANT WITH AXIAL LOAD

It would be interesting to make a general study of
the effect of varying the axial load upon the sign and
magnitude of the spring constant, but the trigonometric
expressions involved are too couplex for this to be done
conveniently, Before going into the relation between the

¥*For derivation, see Section III of the Appendizx.
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sign of the spring constant and the stability of a member,
it is desirable, however, to see how the spring constant
varies with axial load in a typical case. The example
chosien is +that of a strut 180 inehey long with BiI =
9,000,000, The values of the spring constant for the

third point of this member, as obtained from equations (3),
(4), and (5) are plotted as ordinates in figure 2., For
convenience, the abscissas in figure 2 are the values of
the ratio L/j instead of the corresponding values of the
axial load B,

The curve of figure 2 is representative of the curves
of spring constant for 211 cases. Whenever the axial load
is tension, the spring constant will be positive and will
increase with the magnitude of the axial load. When the
cross section is constant and the axial load is compres-
sion and constant along the entire span, as the axial load
increases the spring constant will be a decreasing posi-
tiwe guantity until L/j = 1, when the spring constant
becomes zero. As L/j continues to increase, the spring
constant is a negative quantity of increasing magnitude
until a eritical load is reached at which k., = negative

infinity. At this critical load T < Iai z2n. If L/j for

the critical load is less than 21, +the spring constant
varies from positive infinity at the critical load to zero
L/j = 27, When L/j exceeds 2w the “spring constant is
negative and increases with L/j, at least until L/j =
10,0 in the case under consideration. The values of
spring constant for higher values of L/j have not been
investigated in this study but there is probably a criti-
cal load at which the spring constant passes thromgh in-
fimitbty flor levery dinlcroaseliof 2w in L/j.

The values of the spring constant for 1/j values
in excess of that for the eritical load between L/j =1
and L/j = 21 apply to elastic curves of the beam which
are unstable unless the member is provided with more than
one transverse supporting force. For this reason they are
not of direct interest in this study which is limited to
cases in which there is but one supporting force in -the
span.

The curves of spring constant vs. axial load for
beams of nonuniform section and axial load would be similar
to that shown in figure 2. In such cases, however, - P/EI
is not constant along the span and the expressions for the
loading at which the spring coastant bDecomes zero and infi-

>
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nite become much more complex than in the case represent-
gd dm figure 2. The only cgse of that character tThat will
be considered. in this report will be that in which the
cross section and the axial load are constant on each side
of the point for which the spring constant is determined,
but in which there is a sudden change in these quantities
at the point in question. This case will be treated later.

VI. RELATION BETWEEN SPRING CONSTANT AND STABILITY

The simplest method of determining the relations be-
tween the spring constant of a2 beam or strut and its sta-
bility is to make a parallel study of the sign and magni-
tude of the spring constant and the mechanical action of a
strut as the axial load varies.

The Unsupported Strut

The simplest case to discuss is that of an ideal pin-
ended strut having no lateral support. When such a strut
is loaded in tension or with a compression below the crit-

ical Buler load, { T <m2, P «n? Bl ), it will be found

o 2
that for equilibrium a lateral deflection must be accompa-
nied by a force in the same direction as the displacement
of the strut. This merely means that the strut resists a
side force. Formulas (3), (4), and (5) give positive val-
ues for the spring constant in this range of L/j, which
is a mathematical way of expressing the same fact., The
strut is then elastically stable, and if it is deflected
from its normal straight position by an external force,
it will immediately snap back into place when the force is
removed.,

Now suppose the strut is loaded with the critical

Euler load (% = Mo Ba=4Tn %—\. The spring constant as de-
) Vi

termined from formula (3) is zero. This means that changes
in the lateral deflection do not have to be accompanied by
changes in the side load in order to maintain equilibrium.
From.this it can be deduced that the strut will be in equi-
librium ir any deflected position, and has no tendency to
spring back into place due to its own stiffness. The
strut is therefore elastically indifferent,
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1f now we load the strut over the critical Buler load
<% 2y i %;i, the spring constant is found to be
negative, that is, for equilibrium a lateral deflection
must be-accompanied by a forée in the opposite direction.
Thus the strut within itself is elastically unstable, for:
‘the slightest lateral deflec¢tion will cause buckling if
no external supporting force is available.

The practical strut differs from the ideal strut pri-
marily in that it may be subjected to end moments and for
side loads as well as axial loads. As noted above, the
absence or presence of such ‘forces has no 'influence on the
magnitude of the spring constant. They do, however, make
a'little difference in the physical action of the member
under load. In case the axial load is tension, or a com-
pression such that L/j < m. (the range of positive spring
constants), they cause the strut to deflect until a posi-
tion of equilibrium is reached. The imposition of ar ad-
ditional side load will cause additional deflection. On
its removal, the  strut, instead of becomirng straight, as
an ideal strut would, returns to the equilibrium position
it had assumed under the remaining loads when they acted
alene. T20 10y 554 €qual to or greater than 1w, the side
loads and end moments on the practical strit cause it to
deflect, and the axial load produces secondary bending mo-
ments causing increased deflection as fast as, or faster
than, the deflection itself. The strut therefore never
reaches a condition of eguilibrium unless a sufficient
supporting force acting in the direction opposite to the
deflection is added to the system.

One method of obtaining such a supporting force is
to connect the strut, which is unstable by itself, through
a more or less rigid link (or jury strut) to a member of
sufficient stiffness that the resistance to deflection of
the latter will provide the force required. One of the
chief objects of this report is to determine the stiffness
required in the supporting member so that the combination
will be in stable equilibrium. For simplicity the member
which requires support will be called "the strut" and the
one which provides such support "the beam". 1In the nor-
mal airplane jury-strut system, the 1ift strut is "the
strut" and the wing spar is "the beam". Furthermore, the
force acting on the strut required to maintain stability
will be called the "supporting force". The equal and op-
posite force acting on the beam will be termed the "sup-
porting load'.
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The above discussion indicates that, if the strut is
to be adequately supported, the beam must be loaded below
the ‘eritical Buler load, so that it is elastically sgtable
in itself (spring constant is positive). Or, to state the
requirement less formally, the supporting beam must have
"excess stiffness" to make up for the tendency of the sup-
ported strut to buckle. The above discussion also indie
cates that a strut loaded to or above the critical Euler
load (i.e., spring constant is negative) must be support-
edidsf it isytobe stables lccordingly, we muyst hexit turh
our attention to the elastic sftability of a strut which is
loaded above the Buler. load but supported elastically.

The Supported Strut

The mechanics of the elastic stability of the sup-
ported strut is very similar to that of the unsupported
strut. There are three conditions to be studied: the elas-
tieallystable, indifferent, and unstables 'In this discus-
siome itowill first berassumed that there isgvmo initial de-
flection of the beam due to transverse forces other than
the supporting load. This will be followed by a consider-
ation of the effect of the presence of such an initial deé-
flection of the supporting beam.

We have an elastically stable supported strut when
the spring constant of the beam is greater in magnitude
than the negative spring constant of the strut. 1In this
case we see that to produce any deflection of the support
point on the beam, a greater force is needed than that re-
quired to prevent the strut from buckling, and if any de-
flection is produced by a momentary force, the strut is
forced back to its original position as sceon as the momen-
tary force is removed. This condition corresponds to the
case in which the unsupported strut was loaded below the
cri¥ieal Buler load.

Now surpose that the spring constants of the strut
and beam are of equal magnitude but of opposite sign. If
the support should be deflected a distance §, and the
force causing the deflection should be removed, the beam
would be capable of exerting a supporting force egual to
k 6, where k is the spring constant of the beam, i.e.,
the load required to produce unit deflection of the sup-
port point. This supporting force, however, is of just
the right magnitude to provide the necessary support for
the strut and there would be no tendency either to spring
back to the original positions or to deflect further. A
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state of equilibrium is thus found for any deflection of
the members; the system is elastically indifferent as in
the case of the unsupported strut loaded with the critical
Euler load,

The last case follows when the spring constant of the
supporting beam is smaller in magnitude than that of the
streuwt. At the smallest lateral deflection the force zre—-
quired to hold: the strut in equilibrium will be larger
than the available supporting force, and the system will
buckle, This is an elastically unstable condition, cor-
responding to. the failure of the unsupported strut which
is loaded ‘above the critical Buler loads

Effect of Initial Deflection

The action of the strut and beam combination when
there ig initial deflection of the beam can be studied
most conveniently with the.aid of figure 3, .in which are
plotted the curves of variation of supporting force (or
load) with deflection. As the partial derivatives of W
with respect to & areé constants, these curves are
straight lines with slopes numerically equal to the re-
spective spring constants, kg for the strut and ky for
the beam. In the figure 0D represents the variation
with deflection of the supporting force required by the
strut. The actual values plotted, however, are those of
the equal and opposite supporting loads that would bte im-
posed on the beam. Ag it is assumed that there is no in-
itial defleetion of the strut, the egquation of 0D is

W SERERRAR. 4 (6)

As the strut would need no support when kg is pos-
itive, it is assumed that kg 1s negative and therefore
-k 1is positive. The variation in the available support-
ing force is shown by the line AC, +the equation of which

is
Wy ' =" "Ry {8:-"84) &

where 50 is the deflection of the beam due to all fqrces
other than the supporting load., It will be called the "in-
itial defleletion! of the beanms

In the case shown 4in figure 3, the beam and strut
would deflect to the equilibrium position indicated by B,
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the intersection of OD and AC. At this deflection, &g,
both the reguired supporting force for the strut and the
available supporting force are equal to Wg. When the
deflection is less than &g, the supporting force is in-
sufficient to prevent further deflection, but if the de-
flection is greater than §,. the supporting force is

the greater and the beam would force the strut back until
the deflection was reduced to §g.

It shounld be clear from this figure that as long as
ky 1s numerically greater than kg the two curves will

intersect at a positive value of § and there will thus
be' an egullibriunm position. If Xy 1is equal to or small-
er than kg, however, there will be no such intersection
and the combination will be unstable. The magnitude of
the initial deflection 8o, has no bearing on the ques-
tion of whether or not there will be an equilibrium posi-
tion indicated by the intersection of the two curves. 1t
will, however, have considerable influence on the loca-
tion of that intersection in any given cases. The larger
the value of §,, the greater will be the deflection be-
fore the equilibrium position is reached. In practice
this may be important, as the result of a large initial
deflection may be that plastic failure of the strut may
take place before the equilibrium position is reached,
whereas this might not have been the case if the initial
deflection had been small.

If it should happen that the strut as well as the
beam had an initial deflection, figure 3 and equation (6)
could easily be modified to take the situation into ac-
eount , but it” should be obvious that this would affeect on-
ly the magnitudes of the deflection and supporting force
when the equilibrium position was reached but not the
question of whether there was such a position, i.e.,
whether the strut is stable or unstabtle.

VII., DETERMINATION OF EQUILIBRIUl POSITION
AND SUPPORTING FORCE
The magnitude of the deflection at the equilibrium

position and the corresponding surporting force can easily
be found by solving equations (&) and (7) simultaneously.




16 N6 Ay Technicals Note No. 529

By this means we obtain

ky 8

o = poro- (8)
v T kg
fmalin &

Voo =4, gn oo (9)
kb = ;IS

If there is initial deflection of the strut equation
(9) can be used to determine the supporting load if &5

be taken as the initial deflection of the beam minus that
of the strut when the initdal deflections are in the same
direction, or as the sum of the initial deflections when
they are in opposite directions. In such cases (8) will
give the additiomnal deflection”"of the strut whiech shouwild
be added to or subtracted from the initial deflection to
obtain the total net deflection. In any specific case

it should. be obvious whether the deflections should be
added or subtracted.

In the derivation of equations (8) and (9) it was tac-
itly assumed that there was no change in length of the
jury strut connecting the strut and beam. This assumption
is reasonable in nearly all practical cases. If it is not
made, the necessary modifications in equations (8) and (9)
can be developed without special difficulty.

From fligure 3 it can be seen that thel curweishof Wb
and Wg will always intersect except in the special case
where ky = - kg . The intersection represents a condition

of stable equilibrium of the system, however, only when
the algebraic sum of ky and kg 1is positive.

In brief, then, the criteria for the stability of the
system of a strut and beam with a single tie are:

l. If the algebraic sum of the spring constants of
the two members is positive the system is
stable, ‘

2. If the algebraic sum of the spring constants of
the two members is negative the system is un-
stable.

3. If the algebraic sum of the spring constants of
the two members is zero the system is elastic-
ally indifferents
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It should be remembered, however, that these criteria ap-

ply only when the load in the strut is less than the crit-
ical Jdoad,  3ie6es.the load at which the spring econstant ig

abanign Tkhayat el

In this discussion it should ©be noted that it has
been asgsumed that the two members are parallel. If they
are not parallel, as in the case of an airplane Jjury-strut
system, proper corrections must be made to formulas (8)
and (9) to allow for the angle between the two members.
How this should .be done will be illustrated later in the
numerical example of an airplane jury-strut system.

VIII. SPRING CONSTANT OF A STRUT WITH A CEANGE OF SECTION

In many cases of practical importance, the cross sec-
tion of the member and/or the axial load changes at the
intermediate elastic support. Thus in the usual airplane
Jury-strut system, one compomnent of the load in the jury
strut causes the compression in the lower portion of the
1ift strut to be larger than that in the upper section
though the difference is usually so small as to be negli-
gible. A more important practical situation is that it
may be found desirable to reduce the section of the 1lift
strut between the jury strut and the wing spar. The spring
constant for such members can be derived from the extended
three-moment equation. Thus a strut having two bays of
span a @and b and meoments of inertis Iy and Iz, etes;

with the center support deflecting & 1inches, may be con-
sidered as a continuous beam and is subject to calcula-
tion by the three-moment equation. The derivaticn of the
special three-moment equation for a beam with deflection
of supports may be found in the Appendix,

The general three-moment equation for a beam having
deflection of the supports, but no side load, may be writ-
ten as follows:* '

M, a o 2w :"F2 1" Mg b 0z
i 4 2. o 2
SE (8o - 81) + 8B (85 - 85) (10)

*For derivation, see BSection II of the Appendix., Note that
affand b are used herein' place of thelmore wewalss Ly
and Ls.
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The strut to be considered here will be assumed to
have pin ends.” Let B, and I, ©be the axial 1load and

moment of inertia of bay .1-2, and PF; and I Dbe the ax-
ial load and moment of inertia of bay 2-3. -Also let

81, = I, jy = VEL/Pi Js = JEIz/Pz VP = P

&1 = 83 = 0. Since the member is pin-ended, M; = Mz = 0.
Equation (10) then reduces to

M
By L aaT Bl by B T SEVDY

8 EIl L
Since ViR B {30
M
P]_ 82 = % :_23 g'fh (a Bl b 52/@) (11)
Ji .
*
M, - M bW 2 By =l
"D-ut Rl = .—.l_._..__.._.§_ + + ol 82 (_,.‘___.-_._._)_ (12)

L L L
For equilibrium about the center support
Mo, = My = By 83 =2 By

where M,  is the applied end moment, assumed zero in this
case,

B¢ 8p | 18 Hls moment due to the eccentricity of the
aftial Toad | Py about the ecenter support, i.e., the.center

surport is deflected from the line of the two end supports
an amount 6z - §;. In this case §; = 0.

a R; 1is the moment due to the end reaction, assumed

poesitive when the reaction acts down, times the moment arm
a. Substituting from equation (12)

Mz = - (P, 82 + éfh W+ (v ~ 1) % (12)

If we let

2 b
6' = é-—i—-—:]———é- (a Bl =i g BQ/@) (14)
1

equation (11) becomes By Gy by iy o' Bls)

¥*See figure 4.
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From equations (13) and (15)

E 82=6'(P152+ab%+P162(fy-—1)% f56)
whence &
: 1= 9 {1+<fy~1)@}
o wepdetay O e [ Cmery iH (17)
862 a b 2]

Equation (17) thus gives the spring constant for the case
under consideration,

IX. CEECX OF SPRING-CONSTANT FORKULAS

Formulas (17) and (3) for the spring constant of a
beam or strut subjected to axial compression should become
identical when the. axial load and cross section are as-

suned constants., In this case we would have ¢ =+ =1
:ince B, = B nand. I; = Igs Bguablop,{17) thew redunces
o
PIL(1+-0)
R . 8
a. b G ; (18)

where 6 is the value. of - 0' ' given Dy equation (14)
when @ = 1, The calculations needed to check equations
(18) and (3) are somewhat complicated and are omitted to
conserve space, but. if they are followed through the two
equations are found to be identical.*

As tables of f are given in "Airplane Structures'
(reference 2), it will usually be found that equation (18)
is more convenient for practical use than equation (3).

A further check of equations (3) and (18) for the
spring constant can be obtained by assuming a = 0,5L and
comparing with the results of Klemperer and Gibbons in
reference 3. In this case again the resulting equations
are identical.* These checks of equation (18) do .not prove
the validity of the more general equation (17), but the
writer has been unable to devige any alternative method of
proving the general case. :

*Schwartz!s detailed proof of this statement is omitted
from this report to conserve space. Ed.
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X. INVESTIGATION OF CRITICAL LOAD CONDITIOXNS

The theory of the elastically supported strut is not
quite complete without the development of a method for de-
termining the magnitude of the critical load. The criti-
cal load for a strut may be defined as the smallest value
of axial compression which, according to the theory of
elastic members, could produce infinite bending moments in
the strut. For the unsupported strut the critical load is

the Euler load (P = m? %% L= 7). The critical load of
J
the continuous or supported strut, however, remains to be
determined., This will be the maximum load under which the
strut can be stable,  resardless of thestiffness of the
support. As the previously developed criteria of stabil-
ity apply only when the axial load is less than the crit-
ical load the importance of being able to determine the
latter is obvious.

For purposes of determining the critical load the
supported strut can be considered as a continuous beam with
deflection of the supports. As no attempt is made in this
report to study struts with more than one supporting force
within the span, the supported strut may be considered
more specifically as a continuous beam of two spans with
deflection of the intermediate support.

In Art. 11:7 of reference 2, Niles and Newell discuss
the determination of 'the critical load of a two-span con-
tinuous beam with a uniformly distributed side load and no
deflectien of the gupporte. Thelir cenclusionsg are as fol-
lows:

Lo o %3 Soreboth spans: is lessedhen fm, ~the
critical load has not been reached.

2. If 1L/§j for both spans is greater than m, the
critical load has been exceeded.

2. If 1/j for one span is less than m and L/j
for the other span is greater than 1, the question of
whether or not the critical load has been reached depends
on the sign of the quantity
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where the subscripts 31 and =2 refer to the two spans and
B is the coefficient for the extended three-moment equa-
tion as defined on page 191 of reference 2. If this quan-
tity is negative, the critical load has not been reached,
but if it is positive, the critical load has been exceeded,

These criteria apply egually to the supported strut.*
From these criteria it is seen that the critical load is
that &t which

La Py ., e P2 R Bz _
e =0 oy, Bt By =0 (19)

!
When equation (19) is satisfied, Q of equation (14)
will also be equal to zero since Ip = @I;. Under these

conditions eguation (17) will evidently indicate that the
spring constant Xk, is infinite. Thus the critical load
is smallest axial load at which the spring constant be-
comes infinite.

XI. FORMULAS FOR USE IW ANALYSIS

In order to use egquations (8) and (9) to determine the
equilibrium position and the corresponding load in the jury
strut, it is necessary to be able to compute the spring con-
stants k, and the initial deflections §,, of the two

members. The formulas for these quantities are the same
regardless of whether the member to which they are applied
is the gtrut or the beam. TFor convenience, all the formu-
lag likely to be needed in practice are either listed in
this section or references zre given to places where they
can be found. The nomenclature and sign coaventions are
those of reference 2., The most important items are as
follows:

¥*In his original thesis Schwartz proved this statement in
detail for the case of a supported strut with a single con-
centrated load on each side of the deflected intermediate
support. In his proof he followed the line of argument
used in Art. 11:7 of reference 2, making the changes re-
guired by the difference in the type of side load and the
presence of deflection of the intermediate support. 1In a
recent article in Michigan Technic these criteria have
been proved to apvly regardless of the type of side load.
For this reason, and to conserve space, Schwartz's de-
tailed proof has been omitted from this report. Ed.
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Upward forces and deflections are positive

L, length of member

a, Jdilstanece from Lefi end of member to.jury sEmut
b=1L - a

P, axial load (tension or compression as indicated)

Ty  modulugsof elasticity'

e esmomentt of inertia
j = JEI/P
B, funetion of 1/j found in tables of reference =2

(page 212)

k, spring constant

50, deflection of poinf of connection of Jjury strut
due to all loads other than the supporting force
g1l loadl

Formulas for Spring Constant

Case 1l.- Member of constant axial tension load and cross
section,

*
./ j

S el B g e S el i) ()
£ VRS AN tanh (L/J) 3 J

Case 2.~ Member of constant section with no axial load,

xr = ©EL L (5)

3.- Member of comnstant axial compression load and
cros’s seetion,

o el sl Tb e - J sin — cos —
k. P \L tan (1/J) X 3 J

i R R e Ll WL a a> (2)

An alternative formula somewhat simpler for practical

*For derivation, see Section III of the Appendix.
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use is

o) (18)

e, 2N (l -
k

ab 0
h b
where 9 - 3%.5? (a B, + b B) (142)

8y “Smd "B “are the VElibes of P for af) amd /i,

regpectively.

Case 4.~ Member with axial compressive load changing at
the connection of the jury strut and of con-
stant cross section on each side of the jury-
stput: conneetion,

Boafl-8 [1+ (y-1) 2]}
a b 6

(17)

B' = —5»~1—f—5 (a B, + b g-’“-) (14)

where

v=F/P ©&=1/1, §=JEL/P

Formulas for §4

Group l.~ Beams of constant section subjected to axial
; tension.

Unless great precision is desired the effect of the
axial tension can be neglected and a conservative figure
obtained from the formulas for the deflection of a beam
without axial load. Formulas for such cases are given in
Art. 15:1 of reference 2. TFor more precision the method
of computing deflections derived in Section IV of the Ap-
pendix of this report may be used,

Group 2.~ Beams of constant section without axial load.
Formulas for these cases are given in many texts and
handbooks. To avoid difficulties with sign conventions,

those in reference 2 are recommended.,

Group 3.~ Beams of constant section subjected to axial com-
pression.

Formulas for these cases are given in Art. 11:5 of
reference 2.
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XII. NUMERICAL EXAMPLES

In order to render a clearer explanation of the use
of thke supported strut formulas, four numerical examples
are worked out below. The first three examples illustrate
very simple structures, but give the more important steps
that should be taken in designing the members. The last
examnple is a specific airplane jury strut system.

Example I.- Two pin-ended struts (fig. 5) are connected by
'a crosstie C and loaded, as shown. ‘Member A has a -
large enouzh cross section that it is loaded below the
Euler critical load. How large must the right-hand
member be in order that the system will still be stat-
ieally stable?

Given: Iten Member A Member 3B
Name Beam Struav
P 20 pounds 80 pounds
L 15 inches 15 inches
AT 11256 K

As the size of the beam is given, its spring factor
may first be calculated according to equatiom (3) or (18).
The required size for the strut is then found from the
knowledge that its spring factor must be numerically equal
to or less than that of the beam, otherwise the denomina-
tor of equation (8) will not be positive as is reguired
for stability.

From (3) the spring constant of the beam can be found
from

-

b I TR N a
gi = B gl e sl 2 ads i) Jadne (3a)

B T T

Sl = V/.P e S0 © 7l 5

a = 5 inches

b *y= 10 dneches

a B VA

. 22 e . 567

P b

B oo A0 = .80

é 745

L = 2,000

J
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Substituting for éi in (3a)

o
e
Be =+ & = = 18.3 i
c = = = «3, spring constant of
1.63 the beam

Brisl velesgolf  BIs.fics member . B .areg.next .substis=
tuted in  (3) or (18) until a spring constant is found that
‘is egunal to or lesg than 12,3. Thisg may be accomplished
most advantageously by plotting several values of ko V8.
j» - (j =+ EI/P), and taking from the resulting curve a
vialnme of L/j which will give a spring constant in the
range of the above limitations. 1In the above example,
equation (18) was msed to obtain the points of figure 6
for k., vs. j. Table I in 8Bection V of the Appendix shows
the calculations that were made., 1In actual practice it is
probable that only a few points would have to be calculat-
ed to obtain a suitable strut size.

Figure 6 shows that for a spring constant algebraic-
ally greater than -12.3, ' J must be 3,90 or more. Taking
Jd = 3.90 as representing the smallest possible value of

B
‘ d = BI[P = .2.90
PEta Sm'="15
L=t - 3.85
J 3+90
Bl =4Pi®= 1220
L/j' is well above 1, the critical load for an unsup-

It is interesting to note that efficiency of the above
strut system is very high. The value of EI required to
support 100 pounds by a single strut is:

L/j = m (critical load for an unsupported strut)

I .= "15 P .= 100

3 Aol 5=y
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EI = Pj® - 2280 required for a single support

But the sum of BI of members A and B is:

B { sakadd

1220 -+ 1126 = 2849
Efficiency = 2280/2345 = 97 percent

Of course, for equal values of moments of inertia, a
single strut would be lighter than two struts. It must bDe
remembered that in the above example, stability has been
considered in one plane only. Member 3B must have either
a support or a large enough section in a perpendicular
pilianesto be truly stable in all “direectiomieg. ' In streamiline
struts this would probably be the case.

Example II (see fig. 5).- Using the same structure as in
problem I, but with a concentrated side load of 10
pounds on member A, at the connection of member C, find
the smallest possible value of EI for member B. The
maximum allowable side load applied at point a on
member A is assumed to be 15 pounds. (In an actual
structure, the maximum side load on member A would de-
pend upon the yield point of the material or its modu-
lus of rupture.) Also determine the lateral deflection
of point a or Db when the system is in static equi-
Tabrium;

Since the axial extension or compression of member (C
is very small as compared to the lateral deflectiomn of the
struts, it will be neglected. Having an allowable force of
15 pounds at point a ard an external side load of 10
pounds, we see that the maximum supporting load W, in

equation (9) is 5 pounds., The spring uonstant of a member
A has already been calculated in example I: = 12.,3.
Only two unknowns remain: the reqqued spring %actor of
the strut and the "initial deflection of member A due to
external loads., The initial deflection §,, may be found
from the given data and the formulas for the deflection of
axially loaded beamns.

As the only external load in this case happens to be
the one applied at the supporting point a, §, can be
computed from the spring constant found in ezample I.

k.2 = 1238, i.ee«; it requires 12.3 pounds of load at - a
to deflect 1.00 inch. The deflection of point a due to

10 pounds will therefore be 8y = =—"=ube8l4 inch. Sub-
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stituting the spring constant and initial deflection of 4
and the maximum allowable supporting force W in_eguation

(9):

LR R GBI W Gy
12.3 - kg

5000 S L

whence ks =" =

This indicates that the beam A can supply the lat-
eral support needed to precvent the strut B from buckling
provided the latter is of such size that its spring con-
stant is algebraically greater than - 4.10. (If the value
of kg for the strut taken from curve I is positive, 1t
indicates that the strut requires no supporting force, but
if it is negative and larger in magnitude than - 4.10, it
will require a larger supporting force than the beam 4
can provide without failure of its material.)

Figure 6 shows that the value of J for member B is
4:.50 When ks = e 4:.10-

Since L'y B1/P apd P =00
EI = Pj® = 80 X 4.50° = 1620
The deflection of points a and b may be found
from the known values of Ik, for memmber B and the support-

ing force W. (See equation (6) and fig. '3.)

Thus W = 5 pounds

oy
17
il
|
.
—
(®)

0 . SR :
8o = E; o & o + 1.22 inches

This deflection might also be found by applying the
proper deflection formula to menber A4, as all the loads
on it are Inown {(both external anéd supporting 1o86d)s 'In
the above example, both external and supporting loads are
applied at tkhe same point and equation (1) may be used.

Total side load = 10 pounds + 5 pounds = 15 pounds

ko = 1243
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15 :
= === + = §+22 inch
) 19.3 0 1552 28 tinic g8

which checks with the above calculation for e

It should be noticed that the .supporting load will al-
ways be in the same direction as the extermal side load on
the beam. This shounld be fairly obwvious if it is remem-
bered that the system deflects in the direction of the ex-
ternal side load with a conseguent tendoency for the strut
to buckle in the same direction. Due to this fact the
supporting load W, and the initial deflection &4, are
always the same sign. ‘ ; ;

Txample III.- The 1C0-pound weight of problem I is moved
to the right of member B (fig. 7). Wember A has the
same moment of inertia as before. Find the smallest
size (value of EI) of member B which will allow the
system to be elastically stable.*

Given:  Iten iiember A Member C

E 20-pound tension ' 120-pound compression
L 15 inches 15 inches
EI y 1126 ; i

‘ This example is, of course, the same type .as number I
except that the supporting member is in tension. The stiff-
ness of nember A will accordingly be found from equation
(4). The value of J for the strut which will give an
equal required stiffness will then be found from figure 6.
Thus, from (4):

I 3 ja b 3ogia fe/§) ray a
S TREE R OB o B L O T e i OO (o= sh =
g T8 11 tann (1/3) R R i

*It should be rememberecd that a strut having a reguired
stiffness just equal to the available support stiffness is
really not elastically stable but elastically indifferent,.
Such a condition is exactly the same ag the case of an un~
supported strut loaded with the critical Euler load. In
actual design, struts are usually designed for the criti-
cal Fuler load when a suitable load factor or safety factor
has been used to obtain the design loading.
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o= B, B=10, 3= JUI[F = J1126/50 = 15 0§ = Bsib
a/j = 0.667 1B/j = 1.333 sinh(a/J = 0.7172 cosh{a/]) =
1.2306 tanh(L/j) = 0.9640

whence ki = 27.9, the spring constant for point a of
member A when that member is subjected to 20 pounds tension,

From figare 6, the valus of +jJ for member B ig 3:04

when kg = = 27

(=)

Bl = j° P = 3.04 X 120 = 1110

It is interesting to note that the strut system of probiem
i requires a smaller value of EI for member B than
in example I, even though the axial compression on B is

50 percent greater. This is due, of course, to the great-
er support given by A when it is in tension.

An Airplane Jury strut System

Example IV.- The structure consisting of the spar, 1ift

strut, and jury strut is shown in figure 8 loaded for
the inverted fligh# condition.

Given data:

1ten Spar Lift strut

My -62,2C00 (due to overhang) 0

Ma 0 (pin joint) 0

w : =2 92 0

L 168 dnches 177 inches

a 55 inches o9 Minches
Bz {8l 112 inches 118 inches

I 152 7

35 +783C pounds -8250 pounds

59) L8 % 10° | spruce) 30 x 10° (steel)

Jd = ET/P 159 i ;
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Given data (continued):

Item .. Spar Lift strut
A E 1.05% : ?
a/3j .3521

sinh a/j .3593

cosh a/j 1.0626

sinh T/j 1.2652

cosh 1/ 1.6126

tanh 1/j .7845

My 1is the end moment due to the cantilever overhang.

The axial loads are computed in the ordinary manner, i.e.,
using the given data for side loading.

A strut size must be selected which, first, will al-
low the system to remain elastically stable, and second,
which will not cause a supporting load on the wing spar
that is large enough to stress it beyond the modulus of
rupture.

The procedure is much the same as in the previous ex-
amples, out a slight approximation and a correction are
necessary because of the angularity between the jury strut
and the LiEt struts :

It is quite obvious that as the force in the jury
gvrut ef fisure B is not normal %o the 1ift strut, there is
an axial component imposed on the lower bay of the strut.
As the supporting force will be guite small in proportion
to the total axial load in the 1ift strut, the above axial
component may be neglected with no very great error.

As noted above, a correction must also be made to com=
pensate for the angularity of deflection and supporting
force of the wing spar to the 1ift strut; this correction
will be made on the spring constant of the strut. An ex-
aggerated view of the system when deflected is given in
figure 9. 1In this figure ab and a'd' represent the
jury strut in the undeflected and deflected positions, re-
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spectively. Points a and b are assumed to deflect in
directions normal to the members when they are in the un-
deflected positions. If a2a' 1is assumed to equal Db'',
the deflection of the 1ift strut (bb') equals the deflec-
tion of the spar divided by <cos @ (aa'/COS o). The above
assumption is made on the basis” that a'bd' equals a'd'!,
which is obviously untrue. However, the error involved 1is
very small for the small deflections allowable in ordinary
structures. Thus, if (ad) = 18 inches, Dbb!' = 2 inches,
and. edwg.=.3/%; b'b'' = 2 8in,8 =067 inches, . Thug,
slh? - atblt = 0.,67/(2%x18) = 0.0125 imch which, in com-
parison with 2 inches, may be neglected. As the deflec~-
tion Db' would be much less than 2 inches in practice,
the assumption that a'd' = a'd'! is justified.

It is also apparent (fig. 9) that the supporting force
normal to the 1ift strut (Ws) opposes a force equal to the

load on the jury strut (W) times cos o, that is, W,

(strut) = - Wy (spar) X cos ., Thus, from the above
_§E~_'(Spar) = 8§a (strat) (20)
cos &

a r— Ts_ (strut) (21)
n i = - A 2
a b (spar et stru

and dividing (21) by (20)
™\
@), 0 = e 2@, o

or el gpar) = kg (strut)/cos® « (22)

Having the necessary corrections for the special
case in which the strut and supporting beam are not paral-
lel, we may now proceed with the calculations in the con-
ventional manner, us1nb equation (9).

The initial deflection of the spar §,, can be com-
puted by the method outlined in Section IV of the Appendix,

(Yo - M) (23)

Since we have uniformly distributed side load, when x = a
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Slng 2 : a w al w a?
e - FOMETE U e
¥, --(M, + wj2) cosh (L/3) + wj2
M = ? (‘1' 47 ( /J. 9 sinh 3

sinh (1L/J) j
+ (M, + sz)'cosh'% - wj®
Substituting the given data in the above expressions, we
obtain: ; ;

== 1919

=
Il

- 949

=
>
{3

il

My - N = +250

-250 _ =250 _ {3
e S R = (0 0320 2 h
6 P 7830 b

The spring constant of the spar is obtained from equation

(4)

” - . . 2 .
L L (e g sink® (a/Jd) _ 5 5o 2 cosn 2)
P N3 tanh (L/3) Jj J/

Substituting the given data gives ky = +2800

In order to facilitate the selection of the best sigze
of 1ift strut for thée'styactiure; a curve (fige"l0) of
Eg vs. ] was drawn as im example I, The calculations

fTor figure 10 are showan invtable II of SectioniV of the
Appendix., This curve shows that the spring constant of
the strut changes very rapidly from the eritical point to
values of J in the neighborhood of 33. his indicates
that:. the best, strut mizes is one: having a vaildue of Jj. near
the sharp break in the curve (about J equals B3) T g
gquite apparent that reductions of strut size below this
region (j = 33) are accompanied by a very high rate of
.change of kg which, of course, causes the supporting
force W of equation (9) to increase very rapidly. On
the other hand, if a larger size strut is chosen (with a
larger value of j), very little is gained in reduction of
supporting force W ©because of the small rate of change
of spring constant above j = 33,
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Aceordingly, bthe value oiff ik

In~fignre 10 «at

J

s
33 ig found to be ~-380. Applying the correction derived
above in equation (2): Since
56 -
= =) = 09
clols @ ) D) Gicils)
- 380
corrected g = T———ar =
(©1.9/5)
Calculation of W, from equation (9)
R O 2€00 X 421
We = 0.0320 X 58600 - 421
where - 0.0320 = §p
2800 = kp
-421 = kg
whence

M = - 15.9 pounds

supporting load on spar (down).

Since the value of 'J for the strut is 33
i =FI/P e
2 -
201% 108
For comparison, a strut having a value of j =.32 will be
trieds” ¥rom Tigure 10, kg, = = H20 at gl =325 Correct-
ed
-520
ks ol e bl
(0.95)
o= 50,0080, x. 2000 K. BER'_ . 25,2 peunds
280C » "B576
2 Lo ]
pipes sPpin & A52). E.BREL pgane

30 X 10°
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Thus we see that a 6-percent reduction of I causes
a 34-percent increase in W,

It is interesting to make a comparison of the size of
tube needed when the strut is supported and unsupported.

The size of an unsupported tube is:

L/j = m for unsupported strut

and L = 177 Sinehes
or J = 1%%)0 = 5649
~ 2 «
] = 96.3° X 8250 _ 5 g72

The nearest commercial size of the above supported tube
having a value ofifi La= 05282 . would be 2—1/4 by 0.083
inches and for a length of 177 inches would weigh 28.3
pounds. The size of the unsupported tube having an I of
0.872 would be 5—1/4 by 0,120 inches and would weigh 59
pounds, or twice as much as the other. It 1is quite evi-
dent that the reduction in weight dve to the jury-strut
system is quite worth while. Of course, the weight of the
Jury strut should be added, in the case of the supported
strut, but as the above calculations show, this member
carries such a small load that it will be a relatively
small tube.

In order to select the best point to conneet the jury
strut, some idea must be had of the deflection curve of
the spar due to external loads, for it is obvious that if
the jury strut happens to be connected to the point of
zero deflection, the supporting force is zero. It has
been mentioned before, however, that this could only be
true for one particular loading as the point of zero de-
flection moves as a function of the axial load in the
spar. Neverthelegs, this movement is relatively small and
a. connection in the vicinity of the zero deflection point
is the most logical place to make a joint. Accordingly, a
deflection curve of the spar due to the external loads in
example IV has been prepared (fig. 11). This curve shows
that the jury strut in the above ezample was placed close
to the point of zero deflection. Due to the lack of knowl~-
edge at the present time of the actual wing loading which
occurs, it is possible that the extermal deflection at the
jury-strut connection is much greater than the assumed
loading predicts. Some calculation should accordingly be
made to determine just how serious and how large the sup-
porting force might be under some extreme condition. For-
mula (9) shows, however, that no extremely rapid change
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may take place as ‘W changes only in direct proportion

to the initial deflection &, For an actual numerical
calculation, suppose the deflection at the jury-strut con-
nection due to some very unusual loading should egual the
maximum deflection shown by the curve. This appears to be
as unusual a condition as might be euncountered because,
under ordinary loads, the deflection of the above point is
very small,

From the curve, we see that the maximum external de-
filectbion is about 0.15 ineh. Taking the same values used
alowe 91 the ealculatien of W for a strut " having g value
0 N e

W=-0.15 X 2800 % 576 27 109 pounds

Thus, for an extreme case, the supporting -load is only 109
pounds, which does not appear to be excessive. A check
should be made, of course, of the bending moments occur-
ring due to the 109 pounds concentrated loed added to the
external loading.

The above calé¢ulations deal with support in one plane
oy sV in molst ‘designstof Todayhy the" 1ifit strut has a
streamline section so that no support is necessary in the
- wind direction. However, if a round tube is to be-used,
some means of side support must be made in another plané
besides that one calculated in example IV.  This is prob-
ably most easily accomplished as shown in figure 12. As
a and D would both have approximately the same deflec-
tion under a given loading condition, point ¢ will have
very little horizontal deflection. The above assumptions
indicate that (ca) will carry very little load. If the
. designer feels that a more precise calculation ‘should be
_made, the method used in example IV may be used if some
corrections are added to take care of the angularity of
the members of figure 12,
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PARE T
EXFERIMENTAL INVESTIGATION OF FORMULAS

By Reild Bogert
I. APPARATUS AWD TESTS

The tests conducted to check the validity of the for-
mulas derived in the first part of this paper were carried
out on an Olsen 20,000-pound, hand-operated, testing ma-
chine located in the Materials Laboratory at Stanford Uni-
versity. The apparatus required for the tests is shown in
the photographs of figures 13, 14, and 15, and in the de=
tailed drawings of figures 16a to 16e and, except where
otherwise noted, was constructed from cold-rolled steel-
bar stock. The principal parts of this apparatms are (I)
an upper loading bar, (II) a lower loading bdar, (III) a
tie rod betwesen the midspan points of the beam and strut,
(IV) a pulley system for applying side load, and (V) a
screw micrometer for measuring deflections.,

The upper loading bar had five 120-degree notches
milled in the top surface to take a 90-degree hardened
steel knife-edge mounted on the head of the testing ma-
chine., On the bottom surface of the upper loading bar and
the top surface of the lower loading bar there were corre-
sponding pairs of 90-degree notches, five inches apart, to
take test members in compression. - At corresponding ends
of the upper and lower loading bars a slot was milled to
take fittings for the tension test members (figss 16asbe)

Thie: tile rod.isshowh inrdetail in figure d6en Thils
rod was required to prevent relative lateral movement of
the midspan points of the beam and strut and not to inter-
fere with the bending in the beam and strut, It was con-
structed of two side pieces separated by four blocks, lon-
gitudinally adjustable to take different sized test mem-
bers, and held in position by four machine bolts passing
through slots in the side pieces., The whole assembly,
supported by rollers resting on a standard fitted into
the lower loading bar, was free to move laterally.

Horizontal side load was applied to the midspan
point of the test beam through a length of piano wire, at-
tached to the tie rod and passing over a ball-bearing
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pulley, to which was fastened a weight pan-loaded with shot
bags. The pulley was supported on an arm extending from
the lower loading bar.

The screw micrometer was a 1/4—inch steel screw
threaded through a micarta block., It was mounted on a bar
pivoted at the lower loading bar and slotted at the upper
so that vertical movement of the upper loading bar was un-
imneded (fig. 16d). The scale of the micrometer was cali-
braticd to 0025 inch and a dial to 0.001 inehs Combact of
the micrometer screw with a bolthead mounted on the tie rod
cllosod an " eleetriesil cireuit contaifing 'z small flashlight
buld and battery.

Test members were made up from solid, cold-rolled
steel-bar stock.

Compression members were 1/2 inch in width and 1/4,
2/8, or 1/2 inch in thickness. All were 20 inches long
and were ground to 60-degree knife-edge ends.

The tension member was 1 inch in width and 1/4 inch
in thickness. Special end fittings were required (fig.
16e) and the length between supports was 22 inches.

Values of EI in 1b. in.®? were determined for all
test members from bending tests. The members were simply
supported on knife~edges end deflection measurements made
for side load applied at midspan. The experimentally de-
termined values of EI were as follows.*

Test Members

Mo, Size Lype BT 8918
1 1/2 by 1/4 inch compression 19,000
2 1/2 by 1/4 inch " 19,000
3 1/2 by 3/8 inch " 67,000
4 1/2 by 3/8 inch " 57,000
5 1/2 by 1/2 inech y 156.000
6 1" by 3f4 inch tension 39,500

*The bending test data and calculations for EI were given
in Bogert's thesis, but are omitted from this report to
conserve space, Ed.
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The set-up for tests with the beam in compression 1is
shown in the photograph of figure 15. The test members
were placed at A and B (figs. 1l6a, 16b) and the éxternal
load at various positions between A and B.

The set-up for tests with the beam in tension is shown
in the photograph of figure 14. . The strut was placed at B
and the beanm at ¢ (figs. 1l6a, 16b). The external load was
placed at various positions outside of B,

Deflection measurements were made at the midspan
points on each of two sizes of compression members tested
as struts when supported at the midspan point by each of
three sizes of compression members and the tension member
as beams, For each combination of test members, the posi-
tion of the external load on the loading bar was varied,
thereby varying the proportions of loads in the beam and
strut, and for each combination of members and positiom of
external load, the value of the side load was varied,

The test program was as follows: (Positions of mem-
bers and load as shown in fig. 16a.)
Schedule of Tests

Test Member at Total load Side loads

: acting at in pounds
A B C :

& oot 45 43 3'a o« 15 = 96
w2 E .. B 3 0w X6 =il
- B0 2 G e 15 - 50
B i 4 s 30 e S0
- B g o 3 Gie 10 = 5B
" Bt 2 gi= 10 = 58
g &0 Bt 4 B B

- 2 4 3 3 0 - 10 - 20
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Schedule of Tests (Cont,)

Test Member at Total load Side loads
acting at in pounds
A 3 C

D =il 3 1 4 QF =% 1GF=S5
- 2 3 1 3 OF =1 TiEE =ushs

- 3 3 1 2 O =t Bl SHINE
A 2 i 4 Q@F = S EEREG
= 2 2 it 3 Q1 %= T b= SE

[ = 4 6 5 @ = 41b =520
- 2 4 6 3 O = Tl fEREE

- 3 4 6 1 0 - 15 - 30
Gt i i 6 5 0} e =R SE
- 2 1 6 | 3 OR=Y HOF=I9I8e

- 3 il 6 X Qf vk IO =4 955

In making the tests, the test members were first set
up in the apparatus, in a vertical position, and just suf-
ficient total load applied to hold them in place. The tie-
rod blocks were adjusted so that the loading edges were in
contact with the test members, and the clamping nuts tight-
ened. Total load was then increased and the deflection of
the strut with no side load measured., Such deflections
were due to initial eccentricity in the test members and,
as it was desirable to eliminate the effect of this eccen-~
tricity as much as possible, readjustments of the tie-rod
blocks were made until the deflections obtained with no side
load were the minimum possible with the test apparatus.
Data for deflection and total load were then recorded for
the condition of no side load and incrememts of the total
load from the minimum to a maximum just under the failure
load. Similar runs were made for the beam subjected to
constant side loads. 1In every case initial and final de-
flection readings were taken for the minimum total load
with and without the side load.
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II. DISCUSSION

Scope of Tests

The formulas of Part I were developed for the analy-
sis of a structure consisting of a pin-ended strut sup-
ported at any point, through a tie rod perpendicular to
the axis of the strut, by a parallel beam axially loaded
and sudbjected to side loads, Application of the formulas
to an airplane jury-strut system, in which the strut and
beam are not parallel, required the use of correction fac-
tors for the relative angularity of the members. In these
tests, however, a set-up was used similar to the condi-
tions for which the basic formulas were derived. Due to
limitations in time, it was possible to investigate but
one position for the tie rod and one type of side load on
the beam. The position chosen for the tests was the mid-
span point on the strut and beam, for at this point it is
obvious that the deflections obtained would be greatest,
and the relative effect on the deflections of inaccuracies
in the set-up would be least. The spring constants of the
beam and strut, however, depend upon their geometrical di-
mensions and the type and value of the axial loads. The
spring constant, themn, for a given strut, varies with a
change in position of the tie rod when the axial load 1is
held constant, and varies with the axial load when the po-
sition of the tie rod is held constant, 1In the tests, the
effect of a change in the value of the spring constant was
investigated by wvarying the axial load., The agreement  be-
tween the theoretical and experimental results, however,
indicated that the change in spring constant due to axial
load was correctly accounted for by the formulas. It 1is
reasonable to conclude, therefore, that the formulas would
also be correct for a variation in spring constant due to
change in the position of the tie rod.

The lateral loading applied to the beam in the tests
consisted of concentrated loads applied at the midspan,
or supporting point, on the beam. The formulas, however,
show that stability of the strut and beam system is unaf-
fected by the side load, although the position of equilib-
rium of the system is dependent upon the deflection of the
beam at the supporting point due to the side loads. In
each of the test runs the side load was kept constant.
Since the deflection of the beam for a constant side load
is @ fumction of the axial idload, the variation: in the sini-
tial deflection of the beam covered a wide range. If the
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stability of the system were dependent upon some function
of tihie initial deflection, the effeet would then'be appaxr-
ent in a comparison of the theoretical and experimental re-
sults. As no such general effect ig evident from the
eurves of figures 17 to 26, it can be concluded that the
stability of the system is independent of the initlal de-
flection and therefore of the type of side load. It seems,
therefore, that the present tests are sufficient proof of
the validity of the formulas for any conditiomns.

Apparatus

As the apparatus required for the making of these
tests was, of necessity, somewhat complicated, some comment
on the difficulties involved in its development and opera-
tion seems advisable.

Azial load was applied simultaneously to the two test
members through an upper and lower loading bar in which pin-
end conditions for the test members were obtained by using
knife-edge loading points. The apparatus and test members
were counstructed from cold-rolled steel and no attempt was
made to harden the knife-edges. Only on test member 4,
which was subjected to the greatest loads, however, was any
mutilation of the knife-edges evident. In preliminary
tests with beams in tension, the tension member was loaded
through circular pins. The deflections obtained, however,
were considerably smaller than the results of theoretical
calculations indicated. It was thought that this might be
due to friction in the lcading pins, so the pins were
ground down to provide a simple knife-edge support (fig.
16e). Although this did not completely eliminate the
presence of friction, the agreement between the theoreti-
cal and experimental deflections was greatly improved.

The effect of the alteration is shown in figure 25.

Some difficulty was encountered in satisfactorily ad-
Justing the tie rod to reduce the effect of initial bow
and knife-edge eccentricities, especially in the larger
test members. This difficulty was due primarily to the
design of the tie rod, the adjustment of the loading
blocks of which was made by sliding clamping bolts in
slots. A suggested improvement, but one which limitations
of time made impossible to take advantage of for these-
tests, would be an arrangement for adjusting the blocks’
longitudinally by means of screws.




42 N.f8,C0,A+ Technical Note No. B9

In a preliminary study of the apparatus required for
the tests, it was thought that the deflections could be
measured on a calibrated dial scale, the pointer of which
was fastened to a small pin rotated by the movement of a
wire attached to the tie rod, wrapped once around the:pin,
and loaded with the side load weights. TFor the desired
magnification of the deflectiomns, however, it was neces-
sary to use a pin of such small radius that wire was not
sufficiently flexible to wrap around it. A strong cord
was used, put due to friction in the pin bearings and
elasticity of the cord, the method was entirely unsatis-
factory. The apparatus was then altered and side load ap-
plied directly through a wire, passing over a ‘large-diame-
ter pulley carried on ball bearings, as shown in figures
14 and 15. Deflection was measured by means of the screw
micrometer, used in the final tests, but mounted on a bdar
fastened only to the lower loading bar. It was found, how-
ever, that due to uneven action of the loading screws in
the testing machine used, one side of the head of the ma-
chine was pulled down before the other, thereby giving it
a slight lateral movement. As this motion was transmitted
to the upper ends of the test members the deflection read-
ings were affected. Several other testing machines were
tried but the same motion of the head was present in a .
greater or less degree in all. The deleterious effect of
this movement on the deflection readings was finally elim-
inated by mounting the micrometer on a bar fastened by sin-
gle bolts to both loading bars.  In order that the sup-
porting bar should take no vertical load from the upper
loading bar, the slot, shown in figure 164 was provided
in the upper end of the supporting bar. This method pro-
vided a parallelogram motion and maintained a constant
distance between the micrometer support and the normal un-
loaded position of the sirut.

Precision of Dimensional Quantities and Measurements

The dimensional quantities and measurements for the
apparatus and tests were made as accurate as was practi-
cable with the set-up.

Dimensions of the test apparatus and test members
were made to an allowable variation of *0.025 inch. The
maximum possible error in the value of the axial load in
the beam or strut would then be about 2 percent and a max~
imum error in the initial deflection of the beam due to
the length of the strut would be about 1/3 of 1 percent.

A valid guantitative estimate of the probable error due teo
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ineensigtencies of the material, initial bend, or slight
eccentricity of the knife-~edge ends of the test members

is impossible.

The value of BI 4in 1b.in.® used for each of the
test members in the theoretical calculations, is the aver-
age of a number of experimentally determined values as
found from bending tests. The maximum variation of EI
determined from these tests was about 3 percent. This
would indicate a possible error in the initial defleetion
of the beam of about 5 percent.

Side load in the tests was applied by weights, in the
form of canvas bags filled with shot, placed in a light
sling. The sling weighed approximately one guarter pound
but this weight was neglected in the computations under
the assumption that it would be balanced by friction in
the pulley assembly and in the rollers supporting the tie
rod, An error inm this assumption would affect the deflec-
tions directly in proportion to the ratio of the error to
the side load., The canvas bags were 5, 10, and 25 pounds
in weight and their values were checked on a balance scale
to within an ounce.

Values of the total load were read from the balance
arm of the testing machine to the nearer five pounds, and
corrected for a tare weight of 80 pounds. Small errors in
this quantity would have a negligible effect when plotted
to the scales used for the curves. Readings of deflection
were. made to 04,001 inch and estimated toe 0.0001 imeh. It
was assumed that movement of the head of the testing ma-
chine was small enough to neglect the effect of rotation
of the axis of the screw micrometer and that play in the
pins holding the micrometer support was negligible.

The deflection values used in plotting the experimen-
tal results in figures 17 to 26 are the differences between
the deflection readings for the corresponding total load
and side load, and the deflection reading for the minimum
total load and no side load. The validity of these de-
flection measurements therefore depends upon the assump-
tion of a negligible deflection of the system for the con-
dition of the minimum total load and no side load. An ex-
amination of the curves of deflection for no side load in
figures 17 to 26 will show that the rate of increase of
deflection is small for low values of the total load. The
assumption is therefore justified.
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Experimental Curves

The experimental and theoretical data are shown in
fidsures 47 to-26 din the form of curves of defilectionSasiia
function of total load. The agreement, in general, be=
tween the curves is sufficiently within the possible ex-
perimental error to justify ‘the validity of the formulas.

In the theoretical formulas it is assumed that ideal
conditions of loading and material of the strut and beam
are obtained. In the actual case this is impossible of
realization, as there is always some slight heterogeneity
of the material or small eccentricity in loading which
will affiect the action of the. strut ox beam. [In tihe priess
ent tests it was found impossible to eliminate the deflec~-
tions of the strut under the condition of no side load.
These deflections, however, were reduced as much as possi-
ble and were in the direction in which the side loads were
applied for all the tests. From a consideration of the
curves it can be ssen that, in general, initial differences
in the experimental and theoretical curves are increased as
the load increases until a value of the load near the max-
imum is reached. At loads approaching the maximum the
curves tend to more nearly agree. The major exception to
this is in test (¢, in which the, 6 beam 1is in tension. IFric-
tion in the loading pin is undoubtedly the cause of the
high maximum loads, in comparison to the ideal comndition,
obtained.,

Attention is. called to the fact that the scales of
deflection for all the tests are similar although the load
scales vary for different combinations of test members.

Practical Application of Results

A study of the experimental curves of figures 187 )
26 inclusive shows that, in general, the effect of initial
eccentricities becomes less important as the L/p zatle ot
the strut and the initial deflection due to side load on
the beam increase. Bending moments on the strut due to
small eccentricities, however, are relatively unimportant
when compared with the moments induced by the deflection
of the system. For minimum bending moments the deflec-
tion of the supported point due to side loads on the beam
should be as small as possible. The jury strut, in an air-
plane jury-strut system, therefore, should be connected to
the wing spar at or near the point of zeroc deflection for
the design load. This point will usually be near the
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point of infleetion. The point of zZero'deflection, how=
ever, will move as the load on the spar is reduced and the
initial deflection at the supporting point will then be
imereased, TnAds inecrease in imitial deflection, 1n" spilte
of a reduction of the external loads may cause the criti-
cal bending moments on the strut to be those for a loading
less than the design load. The designer should take this
possibility into account unless further study of the gen-
eral problem should prove thig to be unnecessary.

A curve hag been included in figure 25 to show the
effect of friction in pin bearings on the deflection char-
acteristics of a jury-strut system. Friction is evidently
desirable from a consideration of structure rigidity,
since it materially reduces the deflections by inducing
restraining end moments in the strut and spar. Such re-
straining moments in pin bearings, however, are small, and
should be neglected in practical design.

In test B3, in which were tested the smaller strut
and the largest beam, bending occurred in the unsupported
semispans of the strut before the midspan point of the
strut had reached a maximum deflection. The strut assumed
an S shape rather than the usual simple bow. This bend-
ing in the individual spans was first noticeable at an ax-
ial leed in the gbrut of about' 1,750"pounds, which giveg,
fom the whole gstrut, a value of L/j = f6Li0NL and , feor the
semispans a value of I/j = 3.0. In no other test was
there any apparent S ©bending of this type in the unsup-
ported spans. The maximum load, however, on the smaller
strut (Fo. 1) was obtained in test G1 for a total load
of 910 pounds. In this test the load in the:  strut was
1,910 pounds and L/j of the semispan was 3,17, The max-
imum load on the larger strut (No. 4) was 3,820 pounds in
test Fl corresponding to a value of RO of 2.45 for
the semispan. It will be noticed that, while bending in
the unsupported spans occurred in test B3 at a value of
L/j = 3.0, +there was no noticeable bending in the unsup-
ported spans in test Gl for a value of L/j =S P AL or
slichtly more than 1. The curves show, however, that, in
test Gl, the maximum load was obtained at a deflection
approximately five times that of test B3. Although the
results of these tests are not, in any way, conclusive evi-
dence on this point, they would indicate that the restraint
coefficient ¢, for the unsupported spans, increases as
the deflection at the point of support of the strut in-
creases. It may be remarked also that the midspan point of
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support, used in these tests, would be expected to be

least effective in increasing the restraint coefficients
for the individual spans. If the strut were supported at
the midspan point by a rigid support, the individual spans
of the strut could act as simple pin-ended struts, the
whole strut bending in an S shape. If the point of sup-
port were shifted to either side of the midspan point, how-
ever, the shorter unsupported span would provide an end re-
straint to the longer span. As the airplane Jjury strut is
usually located between the third and mid points of the
strut, an investigation of the effective restraint coeffi-
cients when an elastic support is used at locations other
than midspan would be highly desirable.

An interesting observation, from the results of these
tests, is that for the type of set-up used, and if the
beam and strut are the same length, the maximum Load car=
ried by the combination is approximately tke same regard-
less of the proportion of load in the beam snd strut. The
maximum total load is reduced only slightly as the propor-
tion of load in the strut is increased.

II1II, RESULTS

The results of the tests described in this paper are
shown graphically in the curves of figures 17 to 26, in-
clusive.* Theoretical curves, calculated from the formu-
las for the corresponding test conditions, are included
as a basis for comparison. The values of total lpad for
the experimental curves have been corrected for a tare
weight of 80 pounds, and the deflections given are equal
to the difference between the deflection reading for the
corresponding total load and side load and the deflection
reading for the minimum total load and no side load.

*These figures cover only about half of the tests made,
but they include those in which the divergences between
the experimental and theoretical curves are a maXimum as
well as those in which they are a minimum, As these ten
sets of curves are a fair sample, includirg both the best
and the poorest experimental results, the other nine sets
have been omitted to conserve space., Ed.
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A P P B NODL e
SECTION I

Nomenclature

The "derivations of formulas in the following sections
are carried out parallel to the derivations of the Newell
€ guita onmsT i Chaptier XL 'of ‘rleferoncefzgl | Fobmuwlarmumbens
preceded by the letter N ‘denote references to the equa-
tions in that book. The nomenclature used is also, sao far
as possible, the same as that employed by Newell. The more
common symbols and their meanings are as follows:

W, 1intensity of distributed lateral load in 1b. per
in., positive when acting upward.

W, magnitude of comcentrated lateral load in 1Dbs.,
positive when acting upward.

¥, Ybending moment in in., 1b., positive when it tends
to cause compression in the upper fibers of the
beam,

i, slope of elastic curve of the beam in radians,
positive when the tangent rises from left to

right.

8, deflection in in., positive when the deflected po-
sition of a point is above the original position.

P) aXial 10ad, 1-00

E, modulueg tof elagttcity ©of sbthe materials, 1Lb. per
S 1N
I, moment of inertia of the section in ind

L, 1length of span between supports in inches.

X, distance to a section from the left end of the
Spam in whieh it dis lecated, in inches.

a, distance from the left end of the span to the
point of application of a concentrated side load.

Jy N EI/P.
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SECTION II
Derivation of the Extended Three-Moment Equation

with Deflection of Supports

The first step is the derivation of formulas for a
single span beam having a uniformly distributed side load,
axial compression, and deflected supports. It must be
noted that the axial load P is not in line with the sup-
port points but is always parallel to the base line from

which § is measured. (See fig. 27 sk
Taking moments about support (2), we have for R,

o o FEat o sl ® 08205 8o (£.1)
-1 2111 Ll Ll

and the moment at any point is

wx3 WL, My-M; P(8§;-82) )
T W by i Pl W S Gk =P s (4.2
i i T4 e )

This expression is the same as that obtained in reference
2 (p. 188), equation (N 11:1) except for the addition of
the deflection terms.

On differentiating twice with respect to X, the de-
flection terms vanish and the differential equation ob-
tained is the same as that given on page 188 of reference
2 for the case without deflection of supports. As the
boundary conditions are the same .for the two cases, the
expressions for M, equation (N 11:2), including even the
constants of integration, are also identical for the two
cases. The same would be true for any other comndition of
side load, so we find the jinteresting fact that the ex-
pression for moment in a span of continuous beam in terms
of the end moments and side loads on the span is independ-
ent of any deflection of the supports. This does not mean
that the moment in the span is unaffected by such deflec-
tions, since the end moments are definitely influenced by
it as will be seen below, but only that the formula for
intermediate moments in terms of end moments 1is unchanged.

The effect of support deflection reappears when we
obtain an expression for deflection at any point in the
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span by substituting the value of M¥ from equation (N 11:2)
in equation (A.2) and solving for y: This gives an ex~
pression identical to (N 11:6) except for the addition of
the deflection terms

% g ophg; MO A 8D

=
L

The slope of the tangent to the elastic curve at any
point is obtained by differentiating the deflection equa-
tion. This gives an equation identical to (N1l 7) except
for the addition of the deflection term

e <P (54 ?_62)\
- L /

Three-Moment Equation

The three-moment equation is obtained in exactly the
same way as described irn article 11:3 of reference 2 on
page 190. The final equation is exactly the same as equa-
tion (¥ 11s11) except for the addition of the deflection
Lerms .

6 (8, - 8,) B 6 (85 - 85) B

Sl W o SR e e -

It should be noted that after Mz; has been obtained

for a specific case by means of the three-moment equation,
a deflection term must be added in the calculation of the

reactions of the beam as indicated in equation (A.1). Thus,
the deflection term P (8§, - 82)/Ll must be included in
the expression for R,; and -P (8§; - 8§z2) L; in the ex-

pression Her S-zs
SECTION III
Derivation of Spring Constant for a Beam
Subjected to Axial Tension
In order to determine the spring constant for a point
on a beam subjected to axial temsiom, it is necesgsary to

develop the formulas for the deflection of a beam of this
type due to a single concentrated side load W.. Such a
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beam and the forces acting en it are shown in flgure 28,
The bending moment at any point in the span will be
¥ =1U +P ¥ (4:8)

where My 1is the bending moment due to the effect of the
end moments, M, and My, and the transverse load W, act-
ing alone, while P y is the secondary moment due to the
axial load and the deflection. In this case, with the on~
ly side load a concentrated one, the variable x does not
appear in M, to any power but the first, On differen-
tiating twice with respect to =x, therefore, the term ¥,
disappears and the expression for moment becomes
S A

——rslie = = (O

g T8

The solutions of this differential equation are

M, = €, sinh £ + G cosh £ when 'x = a (A.4)
J J
M - . Gy e
My = C3 sinh T + 04 cosh T when x = a (A.5)
v L7

Although the general form of the equation for moment
is the same. for the two sections into which the beam igs di-
vided by the supporting load, the presence of that load
makes it necessary to use two equations with separate con-
stants of integration for the two sections of the beam.

Three of the constants of integration can be evaluat-
ed from the boundary conditions that

when x = 0, M =l
x = L, M= M,
X = e éa is the same, regardless

of which equation is used.,

For the fourth constant of integration, the simplest
method of evaluation is to differentiate equations (4.4)
and (A.,5) with respect to =x, thus obtaining expressions
for the shear on sections normal to the elastic curve of
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the beam. When x = a, these shear expressions should
give values which differ by the amount of the concentrated
103.&- Wl

Proceeding along these lines, we obtain

¥, My - W j sinh & ”
C, = : - d oy g epishivs
sinh L tanh Z J
3) J
C,?, = Iﬁl
My - (M; - W j sinh & cosh %
il TGl - )
B :
ginh =
J

Co = ¥, - W j. sinh ?

For purposes of computing deflections, equation (A4.3) may
be written

T — l A\ b .

y= = P (.Lflo -s ;."i) (23)

Substituting the values of M from equations (A.4) and
(X.5) -

R M,~C inh £ - 0, cosh E\ when xX= a A6

y 5 (Mg~C, si ; n T ( )

A L (Mo-C4 sinh X . C. cosh 5\ when x::é (&aT)
P 3 3 4/

Since, in the case in which we are interested, the

beam is assumed pin-ended, M; = My = 0.
My = =W D x/L when x=a and My = =W a(L-x)/L when x=a

When =x = a at the supporting point, the deflection
¥y = 8 can be obtained by substituting these qualities in
elther equation (A.6) or (A.7), whence

sinh 2
P ba . & o/ J a :
et et MG Rl <——~_—— - cosh 37 (A.8)

Mo J Manh L :
. j
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Qr
b F siny afy)

il
&GP T et

a a
- j sinh 3 ot (4)

7/

SECTION IV

Deflection of a Beam Subjected to Axial Tension

The deflections of a beam subjected to axial teasion
and any side load may be obtained from formula (23) above

if proper changes be made in M, and M to allow for the

difference in the type of side loading.

Then the side load is uniformly distributed over the
span the deflection can be obtained from the formula given
in reference 2 for this case. (See p. 208.)

Thus
M., e l’l wlLx werld
U = 4+ (M, + = x - =22 '_L_._4\
0 (11 I 5 5/
D, - D; cosh %
B 5= A 4 ginh = + D, cosh = - w j?
sinh =+
J
There Db = M¥; + w j°
2 = I\"Iz + w jg

The formulas for this and other types of side loading
can also be obtained from formulas for the same type of
side load and axial compression by the following procedure.

l. Substitute for each trigowmétric function the corre—~
sponding hyperbolic function.

2. Reverse the sign of w j° (but not that of W j)
where it appears.

3¢ Substitute =P for +P +to indicate the effect of
changing the character of the axial load in the formula
for deflection. Applying these rules to the case of a side
load varying uniformly from w 1b./in, at the left sdpport
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to (w + kw) 1b./in, at the right support, we have*

11 = ¢, sinh J§+ G, cosh f—;—- (1% 1—?—/ w
Where

My + (1 + k) w §° - (¥, + w §%) cosh %-_
o sinh % o

J

Cs = (M, + w 3°)
and
§ = = %[ml + (M - M) EoWE - e

2 "
+ WEZ 4 kx® C; sinh ? -~ Cp cosh ? + (1 + %% w i)l

*Note that %k in these formulas is not a spring constant
but the ratio between the side loads at the ends of the
span.
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of Figure 6%

TABLE I: Calculations for kg,
2 T | o _
do1e L2 E | B (mBtub
J J 'f"‘ e .___-_‘f_..'.-___..__....,____.._.ﬂ_._ .
44545]1,10 | 2420140912 | 146124| 214580
|
4,348|1,15 | 2.30!1.1009 | 1.7325| 22.829 %
!
4.167[1,20 | 2.40/1.1114 | 1.8854| 24.402
! i
4,000!1.25 | 2,50|1.1225 | 2,0864| 264476
i
348461430 | 2,60(141345 | 2,3618| 29,290
345711440 | 2.80/1.1610 | 3.3963| 39.768
3e333|1¢50 | 3.00{1,1915 | 7.3486| 79,4453
’ i
2,941[1,70 | 3.40/1.2673 ~3.,0787 |=~24,451
. | 4 | il ool o S TS .
* ]

Mumerical Examples

54

143407
1.5607
1,8385

242000

=109 50

LIRS SRS

~17.070

-20.,980

~31.0640
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TABLE I1: Oalceulations foxr ' Kk, of Figure 10%*

o | & Plg+ggz 6 k,
|

J
|
e

1,093 (3,808 [+1,37253]-0.7970| -13,080 |=0,1784|-1386
14844 (3,688| 1.3382|-1,1242| ~53,702 | =.6870| =516

1.735 (34470 142833|=2.3537|-202.022 |=2.290 - 301

1,640 13,278 1424R23|-6,3943;~681,231 |~8.550 -235
16476 24950 1.,1839| 5+5875| 728,175 5+9%0 ~175

14312 {2,622 | 1,1401| 2.4367| 354.797 2.295 | =119

1.180;2.360 1,1072| 1.8195| 280,026 1.469 -67
!

i
:11,048 |12,094! 1,0819| 1,5106| 242.083 | 1,000 0

i L__ e | B8

» . is computed from equation (18).,
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SECTION VI

Samples of Experimental Data and Deflection Computations

Although it has seemed advisable to omit most of the
detailed experimental data and deflection curves, it ap-
pears advisable to -include samples of this part of the
work in order to show a little more clearly how the curves
of figures 17 to 26 were obtaineds For this purpose the
experimental data for test E~1 reductions of the gemneral
formulas for the special cases studied, and values computed
from these formulas for the theoretical curves for tests
E~1 and G-l are given in this section of the Appendix.

Experimental Data - Test E~1

11170} (oM 2 o Weole L pat .B Load at 4
|
Nes.0e 20,0 W ol oclig 25*b X.5.0. 2ot
340+0.000% 5 1b. 2010,02568 10 1b. 20{0.0460
5504 0001 195| ,0293 135| .0539
735 ,0044 295/ ,0332 300| .0660
855 .0097 415 .,0402 420| .0809
20! ~,0002 540 .0521 535| ,0998
705, .0781 660| +14865
805 .1205 T38] SBYLE
870 .1849 20| .0476
20| .,0261 N.S.L. 20|-.0002

N.S.L, 20; .0013
For locations of loads and specimens, see figure 16,

Pm, total load indicated by testing machine corrected for
tare weight of 80 pounds.

S, deflection of mid-point of specimens measured from po=-
sition with minimum total load and no side load.

No S s Tove indicates the condition of minimum total load and
no inside load.
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Reduction of General Formulas of Part I for the
Special Cases Investigated Experimentally

Reduction of equation (3) for the spring constant of
a strut in compression for the case where a = 0.5 L

o Lan, 40l Lali) Pt ok g)
ke P \L tan (L/J) g J
subsbituting '~ a for D i ey ifoy by ciandeedgsifor
al/d
ol g g (BAER B . s \
gy Fob P (tan N sin A cos A/
a sin® A4 cos 2A 3 %
= & = A Ay
5 = ( e g 1) Sl cos )
. . /sin® A (cos® A - sin® A) : N
== ~ gin A cos A
2 J ( 2 sin A cos A )
L By cos® A - sin® 4 - 2 cos® A
J 2 cot A J
L0g Lok
5 = tan A
1 3 a a\
g A S S = = b s A6
ko 27 \§ B ¥ (]

Reduction of equation (4) for the spring constant of a
strut in tension for the case where a = b = 0.5 L.

Equation (4) is

Bie s dovh B o piall . (a/Q)

e . UL tanh (L/j)

-~ j sinh % cosh %\

J/

Substituting a for D, 2a for 1, and A for a/j,

P a . /sinh® A cosk® A j A\
= = = 4+ 2 -~ ginh A cosh A
2 J'( sinh A /
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% T 2 4 g <§1nh3 f (cosh 24 - 2 cogh® AL\

kg 2 sinh A cosh A
3 P < Py 2
= & 4 4 (cosh A + sinh® A -~ 2 cosh A\
2 2 coth A
R TR JEE e
2 2 coth A
Jd. (e 2
i — e al, =l A7
B~ W g Yeas g (4.7)

C. Derivation of formula for deflection of support point
when the only external load on the beam is a concen~-
trated force at the support point.

In the case represented by the tests, the initial de-

flection of the beam §,. can be obtained from the spring
constant of that member. Thus
5o = 5/ky

where S 1is the side load in pounds

ky, spring constant of the beam in pounds per inch.
Substituting this relation in equation (8) to deter-
mine the deflection Se of the combination of beam and
strut, we have
X "D 6 0 . S

g = :

= A.8
kp + kg Ep + kg (458)

Numerical Values of Spring Constants

The values of the spring constants for specimens 1
and 2 in compression, and specimen 6 in tension, are given
belows The constants for specimens 1 and 2 were computed
from equation (A.6), and those for specimen 6 from egua=

tien LAY )%
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10 inches

Size 1/2 by 1/4 inch EI = 19,000 lb.in.? a =
¥ Axial load compression i
P . 3 P R B P K
60 99,1 | 300 41.5 625 ~Z8.% | 12856 | ~195:8
100 90.3 | 350 29.4 660 -47.3 | 1250 | =199.5
120 85,4 | 375 22.8 700 -58,1 | 1260 | ~202.2
140 80.3 | 400 o 8 | 750 ~70.3 | 1400 | =240.0
150 77.9 | 420 1242 770 “B0 | 1470 | ~2868.8
180 0.2 | 440 Tai 840 ~92.6 | 1500 | -=2BB.5
200 65.8 | 450 4.3 875 | ~-101l.1 | 1680 | ~317.5
210 63.7 | 490 -5.7 880 .| ~102.9 | 1750 | =337.5
220 60,5 | 500 =7, 900 | «108.8B | 1875 | ~B7¥:b
240 5646 | 525 | ~13.6 | 1000 | -133.5 | 2100 | =445.0
250 53.4 | 560 | =22.1 | 1050 | =-147.0
Spring Constants for Specimen
Size 1 by 1/4 inch EI = 39,500 1b.,in.® & = 11 inches
Axial load tension BEN
E ky P kg ; ki g ki
O | +177.6 | 120 | 203.5 350 255,.2 800 352.0
20! 180.0 | 140 | 209.0 400 270.0 880 368,2
40 | 186.8 | 160 | 212.0 440 27440 900 57842
B0 191,5 | 180 | 218.5 600 307.5 | 1320 461 .0
B0l 1923.2 | 200 | 222.1 660 320.,0 | 1540 50945
801 294.5 | 220 | 226.2 700 329.8 | 1760 551.0
100 | 197.5 | 300 | 243.5 770 | B44.5 | 1980 600.0
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Theoretical Deflections for Test E~1

Beanm YNo. 2 Py = 0«2 Pp

Strat Now L Ps =0T PT
: J Se
PT P'b P o kb ks kb+1"s 5“;—_5——;—]—_-6
|

0 0 0 +114,0 +114,0 +228 +0 00219 | 0.,0438
200 60 140 LSHe s e 8043 179.4 <0378 + 0856
400 1L, 280 8544 44,9 1 200 0383 0766
500 1.50 550 7762 29 .4 0 Tied «0465 « 0930
600 180 420 70 a2 T2 e 82 .4 0 60T a2
700 210 490 687 -5,7 58,0 . 0863 s LT26
800 240 560 5656 ~-22.1 3445 e 1450 +2900

Theoretical Deflections for Test G-1

Beam X¥o. 6 Pp=1.10 PT(tens.)
Strut Wo. 1 P4=2.10 Pplcomp.)
i ned e 8e
Pm P 5 P g Lb lic a X D+k s g—-;—IO——; -]—-“5‘

0 0 O] +177.6 | +114.0 | +291.6 00343 008515
200 I 220 420 Pebsp 12.2I 2384 «.0419 0628
400 | 440 840 274,0 -92.6 181le4 10} 535 1 0827
600 660 | 12860 321 a0 | =202 42 1188 .0841 1265
NOw. 770 | 1490 344,5 | -258,8 BEe'l 1168 « 1750
800 | 880 | 1680 68 g2 | «B1Teb 5067 +19%70 , 22908

Stanford University,
February 1935.

California,
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Figure 24.-Test F2.
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