

TEOENIGAL NOMES
NATIONAI ADVISORY COMKITHEE FOR AERONAUTIGS

NO. 533

THE TEERMODYNAMIOS OF COMBUSTION IN THE ORTO CYCL马 RNGITE

By ㅍ. S. Taylor
Massachrsotts Institute of Technology

> Washington
> June I935

TECHNICAI NOTE NO. 533

THE THERMODYNAEIGS OF COMBUSTION
IN THE OTTO OYCLT.ENGINE
By 玉. S. Taylor

In thermodynamic analyses of the otto cycle, the combustion process is normally dismissed with the sentence "heat is added at constant volume."

As early as 1906, Hopkinson (reference I) indicated the thermodynamic nature of the process of combustion by experiments in a closed vessel. In 1934, Lewis and von Elbe (reference 2) took up this work, and showed very conclusfvely the nature of "constant-voIume" combustion in a closed vessel. There has been rather a widespread feeling, however, that the compustion process in an engine might be essentially different from that in a bomb because of the part played by turbulence in spreading the flame.

Recent experiments by Rassweiler and Withrow (reference 3) indicate what might have been predicted fromprem Viousiy available evidence, i.e., the essential similarity of the combustion process in engines and onclosed vessels. Turbulence is, of course, extremely effective in equalizing any existing temperature differences that may momentarily exist in the cyinnder but, aince the rate of flame propagation depends on the transfer of heat from the brurned to the unburned gas, turbulence is equally effecitve in increasing the flame volocity.

The evidence presented by Rassweiler and Fithrow indicates a temperature difference existing in the cylinder immediately after combustion of about 600° F. The nature of the measurement leads one to believe that the actual temperature difference is somerhat greater than the measured difference because of
a) the use of a stroboscopic method with a phenomenon that does not repeat exactiy,
b) the practical difficulty, with the sodium-line reversal method, of measuring average temperatures at
points mithin a given volume (i.e., the flame front) without including points outside this volume, and
c) the tmpossioility of gotting instantanoous values with the consequent necossity for accopting time averages.

Because of theso factors, the experimental values, of the tomperature difference may bo said to represent the lower limit of this quantity. It is quite simple to dem termine an upper limit by analysis and, in addition, the analytical method clarifies the picture of the procesa.

In order to represent mathematically any physioal phenomenon, certain simplifying assumptions must be made. For the purpose of calculation, we shall make the followm ing assumptions, discussing the degree of approximation to actual conditions later:
(1) The working medium is a perfect gas.
(2) The piston motion during combustion is negilgible.
(3) At any instant, the pressuro in all parta of tho cyIfnder is the same.
(4) The combustion process requiros a finite timo.
(5) Heat is added to the working filuid only at the flamo front.
(6) The heat transfer within the gas during the comm bustion process is negligiblo.*

Assumptions (I), (R), and (3) are the assumptions arm dinarily made sor perfect gas cyoles.

Statement (4) is not an assumption but an observed fact:

Assumptions (5) and (6) are those made by Lowis and Von Elbe (reference 2) and are useful for the sinplificam tion of the reasoring that follows from the consideration of efinite combustion time.

[^0]Let us now consider the "constant-volume" oycle as represented by $1,2,3$, and 4 ix figure 1 . Note that the abscissa scale is specific volume (cu. ft. per Ib.).

All of the eas in the cylinder is compressed from P_{I}, ∇_{1} to P_{2}, ∇_{2} and consequently at point 2 it is at a uniform temperature, \mathbb{T}_{2}. At point 2 ignition occurs at some definito point or points in the cylinder.

Let us now consider what happens to a small volume of gas immediately adjacent to the point of ignition. Since combustion is nor considered to occupy a finite time, the medium occupying the small volume in question is free to expand against the unburned gas in the cylinder. If the Volume chosen is infinttesimal, it will expand without af. focting the general cyifnder pressure. Thus heat is added to this small volume at constant pressure and it will expand to point 2.1 on the diagram (fig. 1). As combustion proceods, this small volume of gas will be comprossed to point 31 (adiabatically since Fe axe as terchange). It will then be remexpanded by the motion of the piston to the exhaust pressure:

If we consider now the last part of the charge to burn, Fe see that it is compresseà berore combustion to the maximum cyclic pressure at point 2". The heat of combusm tion then expands it (at constant pressure since it is small compared to the total volume of gas) to point $3^{\prime \prime}$ whence it is expanded by the motion of the piston. Similarly, any intermediate small volume of gas will go through a cycle in which heat is added at some intermediate presm sure level. Thus we see that the "constant-volume cycle" is really the resultant of the sum of an infinite number of different cyoles in each of which heat is added at constant pressure. We also observe that there is a difference in specific rolume and, therefore, in temperature from the last part of the charge to burn to the part near the ignition point. In order to indicate the possible magnitude of thio temperaturo differenco, fithas beon calculated for an assumed case where the compression ratio is 5, the inlet conditions are $p_{1}=14.7, T_{I}=600^{\circ} \mathrm{F}$. abm solute, $C_{V}=0.169, C_{p}=0.238$. Heat added; 650 B.t.u. per pound of air. (This value was chosen to give approximately the pressures found in practice.) The tabulation below gives the results of the calculation:

Point	P	V	T
2	140	3.02	1140
3	611	3.02	4990
21	140	10.2	3870
21	611	1.05	1740
31	611	2.57	5900
31	611	2.71	4470

T3: represents the tomperature near tho oparis plug after combration is complete. Tht is some $1,500^{\circ} \mathrm{F}$. higher than $\mathbb{T}_{3 \prime}$, the temperaturo of the last part of the charge to burn at the same instant.

This tomperature gradiont is the maximum that can oxist under the circumstances. The fact that there is heat transfer within the gas during combustion will, of courso, reduco the gradient. The gradient will also be roduced by the fact that heat is added not in an infinitesimally thin layer at the flame front but in a layer of finite thiclznese. The change with temperature of the specific hoat of the working fluid will likewise operate to reduce the tomperature difforonco.*

It will be nuted that the effect of the change in spocifio heat and the efrect of heat transfer upon the tomperature gradient depend upon the existence of such a gradient and are, therefores second-order effects.

The thickness of the reaction zone and the duration of reaction at a point within the gas has been investigated by several different methods. Withrow, Lovell, and Boyd. (reference 5), using a sampling valvo, show a maximum value of 17° duration at $1,000 \mathrm{rap}$. m . The same investigam tions in a later publication (reference 6) estimate from flame photographs that the reaction zone is from $3 / 8$ to 2 $\frac{1}{2}$ inchos thick and has a duration of from 3 to 10 crankshaft degrees at 1,000 r.p.m. Marvin (roference 7), measm uring the radiation from the flame, estimates 22° duration at I, 000 rap.m. All of this. Tork in subject to criticism as to its accuracy and it is probable that the estimates show only the order of magnitude of the duration and thick ness of the reaction zone. The methods used, however, give

[^1]results that are lixely to be greater than the actual values. (See discussions reference 3.) Undoubtediy, operating variables, especially the fuel-air ratio and the turbulence, affoct the thickness of the reaction zone. More accurate information is neoded on this point before the effect of a finite reaction-zone thickness can be accurately evaluated.

Since all the assumptions for our computation lead to high values and since the experimental velues, for reasons outlined above, are low, the temperature difference existing in the cylinderi iies between the experimental 600° F. and the theoretical 1,500 F .

In the study of detonation the sodiummine reversal method of zeasuring temperatures is of little value in indicating even an epproximation to the actual condition, since the extremely high local preseure can only exist for a time that is very short compared with the time nocessary for making a measurement. Here again, it is poseible anaIytically to establish upper limits on tho temperature and prossure.

It is row fairly well accepted that detonation in a rapid reaction in the last part of the chargo to burn, probably initiated by compression ifnition ahead of the flame front. If the reaction is sufficientiy rapid, comm bustion can no longer bo at constent pressure but will approach the conditions of constant volume. In the Imiting case of ingtantancous combriation of the last part of the charge to. bram, the combution from point $a^{\prime \prime}$ at constant volume would cause a local pressure of l,960 pounds per squaro inch, with a corresponding tomperature of 5,590 F. absoluto. Owing to the incroase in specific heat and the change in chemical equilibrium at high temperm atures as rell as to the fact that combristion is never instantaneous, this pressure and temperature will never be reached but they are the limiting values that may not be oxceeded under the conditions of our assumption. Although we are dealing with approximations, the temperature of the gas participating in detonation is probably lower, and certainly not very much higher, than the temperature elsem where in the cylinder. Thus, it cannot be the high tem perature alone that causes the destructive effects of detom natiou but perhaps a combination of extremely high pressures and increased local heat conducijon due to the high densitiy of the detonating part of the charge.

The Daniel Gugeenheim Aeronantical Laboratory, Massachusetts Institute of Technology,

Cambiage, Mass., April 16: 1935.

REMERENOES

1. Hopkinson, Be: Explosions in Gaseous Mixtures and the Specific Heat of the Producta. Fngineering, vol. 81, 1906, p. 777.
2. Levis, B., and von EIbe, G.: Determination of the Speed of Flames and the Temporature Distribution in a Spherical Bomb from Timemersaure Exploaion Records. Jour, of Chemical Physics, vol. 2, May 1934: p. 283.
3. Rassweiler, Gerald M., and Fithrow, Iloyd: Flame Temperatures Vary with Knock and Combustion-Chamber Position. S.A.E. Jour., vol. 36, no. 4, April 1935, pp. 125-135.
4. Midgely, Thomas, Jr., and Janeway, Robert: The Pres-sure-Volume-quantity Indicator-Card. S.A.E. Trans., Part I, 1923, pp. 77-94.
5. Withrow, Lloyd, Lovell, W. G., and Boyd, T. A.: Following Combustion in the Gasoline Figine by Chemical Means. Ind. \& Eng. Chem., vol. 22, no. 9, September 1930, pp. 945-951.
6. Fithrow, Iloyd, and Boyd, T, A.: Photographic Flame Studies in the Gasoline Engine. Ind. \& Engo Chem., vol. 23, no. 5. May 1931, pp. 539-547.
\%. Marvin, Charles $\mathbb{F}^{\prime}, J r_{0}:$ Observations of flame in an \#neine. S.A.E. Jour., vol. 35, no. 5, November 1934, pp. 391-398.

[^0]: *A somewhat similar analysis, brut based upon isothermal compression of the burned gases, is given in reierenco 4.

[^1]: *A mothod of calculation, making allowance for the change in specific hoat is given in reference 2 .

