
-"Oman

T:" CH'IT I CA L YO TES

i"'AT IONAL ADV ISORY COI ,:1. i'I.'FEE FOR AER07AUTI CS

A ̂o ^q

1	 _

I'To. 534

PRINC IL AL EFFEC'"S OF AXIAL LOAD 0 117 ?^Oi'.aid -EIS`i'RIEU"_'T02'i

ANALYSIS OF RIGID STRLCTURES

Dy Benja-min Wylie James
Stanford University

a a shingt on
July 1935

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

'	 U S Deportment of Commerce
t '	 Springfield VA 22151

https://ntrs.nasa.gov/search.jsp?R=19930081286 2020-03-17T04:08:03+00:00Z



NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 534

PRINCIPAL EFFECTS OF AXIAL LOAD ON MOLIENT'--DISTRIBUTION

ANALYSIS OF RIGID STRUCTURES*

By Benjamin Wylie dames

SUM14ARY

This thesis presents the method of moment distribu-
tion Modified to include the effect of axial load upon the
bending moments. This modification makes it possible to .
analyze accurately complex structures, such as rigid fuse-
lage trusses, that heretofore had to be analyzed by approx-
imate formulas and empirical rules. The method is simple
enough to be practicable even for very complex structures,
and it gives a means of analysis for continuous beams that
is simpler than the extended three-moment equation now in
common use.

When the effect of axial load is included, it is
found that the basic principles of moment distribution re-
main unchanged, the only difference being that the factors
used, instead of being constants for a given wember, be-
come functions of the axial load. Formulas have been de-
veloped for these factors, and curves plotted: so that
their application requires no more work than moment dis-
tribution without axial load. Simple problems have been
included to illustrate the use of the curves.

INTRODUCTION

The importance of saving weight in airplane struc-
tures makes it necessary accurately to consider the sec-
ondary moments caused by the combination of axial load and
lateral deflection. Formulas considering the secondary
moments in the case of continuous beams are quite familiar

Thesis submitted in partial fulfillment of the require-
ments for the degree of Engineer in Mechanical Engineer-
ing Aeronautics, Stanford University.
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to the aeronautical engineer. They were originally de-
rived by I1411lex»Breslau and have been extended by Profes-
sor J. S. Newell and presented in chapter XI of reference
1. However, "no similar practical method has been hitherto
available for the analysis of complex rigid frames when
the members are subjected to axial load.

Before the method of moment distribution was developed,
rigid frame analysis presented a very difficult problems"
In building design it was the usual practice to use approx-
imate formulas, necessitating very conservative assumptions
for the sake of safety. Least work, slope deflection, and
other similar methods based on the principle of consistent
deformations, but neglecting the secondary moments due to
axial load, were used when it was necessary to get a more
accurate. solution. These methods all involve the solution
of simultaneous equations, however, _and when the degree of
redundancy is high, the number of equations involved ne-
ces-sita.tes very tedious computations. As these methods
are too complex for practical use, it would hardly be worth
while to complicate them further by including the effects
of axial load.. However, , t'he'development of moment distri-
bution in the last few years has,given a means of rigid
building frame analysis that. is simple enough to be prac-
ticable for complex as well as simple structures. If this
could be combined with Newell's equations, without an 8x-
cessive sacrifice of simplicity, the result would be very
valuable to the aeronautical engineer. This thesis is the
record of what is believed to be a satisfactory and prac-
tical solution of the problem of combining these two meth-
q4q of analysis.

As the Newell formulas have been used by aeronautical
engineers for several years, it will be assumed that the
reader is familiar with their use; they will not be dis-
cussed here. ` The method of moment (listributi.on is rela-
tively new, however, and there has been very.little stand-
ardization of nomenclature and sign convention. For this
reason a brief review of the basic principles will be given*

Moment distribution was first presented by Professor
Hardy Cross in an article entitled ".nalysis of Continuous
Frames by Distributingfixed+-End Moments" published in
the Ulay 1930 issue of the proceedings of the A.S.C:.E. The
article has been. reprinted, together, with all the discus
sion that followed as reference 2. Professor Cr,ss has
also included a thorough discussion of the method in ref-
erence 3.
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Considerable interest has been attracted by the,sim»
plicity of the method with the result that several' arti-^
ales have been written for the purpose of presenting-brief-
ly its more important elements * A paper by Harry A. Wil-
liams (reference 4) presented as a thesis at Stanford Uni-
versity (later modified as reference 5), gives a very clear
presentation of the fundamental principles and includes
numerous examples that aid in understanding the application
of the method. A brief discussion is presented.by E. F.
Bruhn, (reference 6) in Aviatio n Engineering of March 1933.
None of these papers, however, considers the effect upon
the bending moments when axial load is present in the memw
bees of the frame,

The fundamental principle of the method of moment
distribution is the assumption that at first a fictitious
condition exists in the structure; this condition is then
modified, step by step, until the condition that actually
exists is reached. The initial fictitious condition is
that all the joints of the structure are rigidly fixed
against rotation, or "locked." In this condition the ex-
ternal loads create easily computed bending moments at the
ends of each span that is transversely loaded * The alge-
braic sum of all these "fixed-end moments" at any joint
constitutes an unbalanced moment that tends to rotate that
joint. Under the hypothetical assumption that all the
joints are "locked," however, no rotation actually takes
place, One of the joints is now assumed "unlocked" and
allowed to rotate under the influence of its unbalanced
moment until a resisting moment is built up that brings
the joint into equilibrium. The effect of this balancing
moment upon the stresses of the member is computed, and
the joint is "locked" again,

When a joint is unlocked, there are two distinct ef-
fects upon the structure. First a moment equal and oppo-
site to the unbalanced moment at the joint is added, Phys-
ically this moment is created by the resistance to rota-
tion of each member coming into the joint„ Thus each mem-
ber contributes a part of this resisting moment and, as
all the members rotate through the same angle, it has been
shown that the contribution of each member is directly
proportional to its "stiffness factor." For a member with
constant moment of inertia and without axial load this
stiffness factor is equal to EI/L.

The second effect of unlocking a joint is the addi-
tion of a moment at the far end of each member. Assuming
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positive moments as those acting on the end of a member in
a clockwise direction, the convention that will be used
throughout 

I 
this paper, this moment is of the same . sign and

equal to the moment at the near end times a "carry-over
factor." For members with constant moment of inertia and
no axial load, the carry-over factor is 0.5.

The process of unlocking and locking the joints, one
at a time, is continued until all the joints have been un--
loeked, balanced, locked again, and the carry--over moments
recorded. As each joint is unlocked, the effect on the
bending moments of the structure is computed. It will now
be found that some of the joints that have been balanced
and relocked have become unbalanced again, due to the car-
ry-over moments from other joints. The process must there-
fore be repeated, these joints being balanced again and
new carry-over moments recorded. This procedure is con-
tinued until the unbalanced moments and carry-over moments
are small enough to be neglected. If all the joints are
now unlocked simultaneously, the effect on the bending mo-
ments of the structure will be negligible. The.moments at
the ends of the members, therefore, are the same as those
that would have existed if the structure had been allowed
to deflect directly, instead.of step by step. These mo-
ments may be found by totaling the fixed-end moments, the
moments distributed to the member each time the joint was
unlocked, and the moments carried over to that end. from the
other end of the member. It is not necessary to continue
the process until the unbalanced moments completely disap-
pear. The operations may be stopped and the moments to-
taled whenever the desired degree of accuracy, as indicat-
ed by the magnitude of the unbalanced moments, is reached.

.When axial load, either tension or compression, is
present in the members of a frame, the secondary moments
due to the combination of axial load and deflection alter
.the fundamental method of moment distribution to no great-
or degree than the ordinary three-moment, equation is modi-
fied in the extended equation. The distribution factors,
carry:-over factors, and fixed-end moments, instead of being
constant for a given member, become functions of L/j.

The principal purpose of this thesis is to develop a
method of rigid frame analysis that combines Newell's for-
mulas with the Hardy Cross method, and present it in a
,form that may be easily used by the engineer. In so doing
the following steps have been taken:
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1. The formulas for carry-over factor; stiffness
factor, and fixed-end moments in terms of
L/j have been derived.

2,, A method of considering joint translation has
beer_ developed.

3. Curves have been plotted to make the use of the
formulas practical.

4. Simple numerical examples have been given to il-
lustrate the use of the curves and show how
the method may be used as a simplification of
the extended three-moment equations,

5. An example of an airplane fuselage, the members of
which are subjected to both transverse and ax-
ial loads, has been given to show how the meth-
od may be applied to complex structures that
heretofore have been impossible to analyze ac-
curately.

When applying the method to an actual problem, the
first values that are used are the fixed-end moments, next
the stiffness, or distribution factors, of the members, and
finally the carry-over factors. It might seem more logical
to develop the formulas for these quantities in this order;
however, the derivations are simpler if they are treated in
the opposite order. This procedure should offer no confu-
sion to anyone familiar with the principles of moment dish
tribution.

In the development of the formulas, the same general
methods of procedure are followed as were used by Profes-
sor Cross in his original derivations except that the ef-
fect of axial load has been included.

The writer wishes to express his-thanks to Professor
A. S. Niles for suggesting the subject and for his help-
ful advice and valuable assistance in the development of
the thesis.

CARRY-OVER FACTOR

Assume a beam a.s shown in figure 1, rigidly supported
at B and pinned at A.. A is free to rotate, but re-
strained from transverse motion. The axial load P is
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assumed as compression. . With a given moment 14AA applied

at A, it is desired to f ind the magiiitude of the re-
sisting moment at A, 2IIB.

This problem is most readily solved by the use of the
extended three-moment equation. Assume the beam consists
of two spans: The left span AB is of length L, and the
right span has zero length.' Then using the three-moment
eq,uation:

L >;^ + L2 ^^=^ + M3 L2 a2 - 
0

^ 1 3.	 Y22 (	 I?
I'A L 1 ab

1

It, 1 w 1"A

M2 = M3

14 2 = 0

MALa7
__j__ + 2 IJIB +0^+0=0

or	 IAAa + P' MBP = 0

14 p __	 I4:
	

(1)

It should. be noted that all moments have been assumed
positive when causing compression in the upper fibers of
the beam. This is the sign convention used in the three-
moment equation. " As the convention used for moment dAstri-^
b-gtion assumes that positive moments are those acting on a
bbam in a clockwise direction, the sign of MA is the same

for both systems. 'However, when MB is positive in one

system, it is negative in the other. Iionce using the mo-
ment distribution convention of signs, equation (1) be-
comesi

M^ = +	 IAA	 (2)

*It is demonstrated on page 62 of reference 1. that if one
end of a meIber -without axial load is rigidly .fixed against
rotation, the moment at that end may be found by using the
three-moment equation, with zero length of one of the spans*
When axial load is present in the member, the same litre of
reasoning may be .followed, showing that the extended three--
moment equation may be used to find the moment at the fixed
elide
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Expressed in words, this equation states that when a
moment MA is applied at A, a moment equal to (a/2p)MA
is built up at B. Thus the carry-over factor of a mem-
ber rotated at one end and rigidly supported at the other
is	 a/2P. This expression is plotted against I, /j in
graph I. It is evident that when	 = 0, the condition

when no axialload exists, the carry--over factor is 0.5,*
agreeing with the usual factor of the Hardy Cross -,_iethod.

'hen the axial load is tension, the carry-over fac-
tor becomes, ah/2Ph, which should be apparent from the
similarity of the three-moment equations for compression
and tension. The derivation is similar to that for com--
pres .sion, the hyperbolic functions being substituted for
the circular. The derivation is given in the Appendix,
and the equation is plotted in graph I along with the
curve for compression.

In the Appendix is given a second proof of equation
(2). Instead of using the extended three-moment equation,
the more basic principle of moment areas is employed.

S TIFFNESS FACTOR

In the la.st section it has been shown that MB =
- (a/2P)MA, using the sign convention of the precise equa-
tions as given in reference 1. Considering positive rota-
tions as clockwise, the angle through which point A ro-
tates is the negative of the slope at A as given byfor-
mula on page 201 of reference 1.

•	
1 .M2 _M,	 Ms ^M^ co s Z

	
x	 M,, 	x. . GA _ ., i _ w 	 _ _	 ,. 	 ^,_ Cos - + -- sin ~^

P ^. LV	 j sin	 J	 J

where	 M1 = MA

M a = YIfB = _ 2 a MA .

x = 0
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a, MA-I',11	 MA a + MA c o s L
g _ 	2 P! 	 + ___._2.P^

A	 "" p	 -L
	 _

+j sin L

MA a csc ^	 L 2^3 + ^
-2^__ + cot M 2 ._L-^

J	 _

From the equations on page 212 of reference Is the

values of cot	 and csc	 have been found in terms of

a and	 and substituted in this expression, giving:

g -	
y.A	 + j2a -1- J2 _ LP 	 a_Jz	

^a

A
	 .. 

Pj 2 12^	 2 	 L	 2PL	 L

3E z	 ^.^^
3EI 8A	 I	 3P	 1

or	 14A - _ __._._ '	 4E 8A
L(P ^	 L

4^

When a joint of ,a rigid structure is rotated, all t>^e
members coming into the joint rotate through the same an-
gle. Hence.eA is the same for all the members. Assum-

ing homogeneity of material, E is also the same for all
members. Hence the moment.required to rotate a joint is
divided among all the members in proportion to the K val-
ues of each member, where

Y	
L	 P23^^a2^	

^3)

The expression -
3P

-	 will be called the "stiff-

ness--factor coefficient" and is plotted against 1,/j in
graph II. To find the stiffness factor for a given member,
determine the coefficient for the appropriate value of
L/j from the curve and multiply by I/L of the member.

When L = 0, the condition of no axial load, the coeffi--
j	 -

cient is 1.0, g iving a stiffness factor of I/L.
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In case a joint of a structure is pinned, and it is
thus known that the final moment at the ends of all rnem»
bees joining there must equal zero, it is a waste of time
to alternately lock and unlock the joint. A more direct
method is to treat this type of member as a special case,
unlocking it after the first cycle and leaving it unlocked.
thereafter. (sinless the member. has no fixed-end moments,
i't must be considered locked during the first cycle, or the
fixed- end. moment formulas would have to be modified., a com-
plication that is not justified.)

Once a pinned joint is unlocked and loft ui'looked, it
need not be.considered further in the computations, as it
is balanced, and rmo moments can be carried over to it, for
it is incapable of developing a resisting moment when the
far end is rotated, This means that when one end of a
member is pinned, the carry-over factor to that pinned
joint is zero.

It requires a smaller moment to rotate one end of a
member thro^.gh a given angle if the far end of that member
is pinned than if it is fixed. Bence the stiffness factor
of a member with one end pinned is less than it would be
if that end were fixed. Consequently, the formula for
stiffness factor (equation (3)) does not apply when one
end of the beam is pinned, and a different formula must be
developed. When .finding the value of eA in the deriva-
tion of equation (3), it was assumed that the far end of
the member B was rigidly supported, and hence that

MB =	 //a ",\ ) MA. In case the far end . is pinned, MB = 0

and the derivation is accordingly modified:

eA w .,

MA 4E

il w^,A-MA coo I +- .̂`4

P	 Z	 P, cotL	
j sin	

- L

	

a1 ^	 ^

YdA j	 L P	 i	 MA L P
P^ L 3j _ L	 ^3EI-

8A L \4R)

The term 4E eA is the same for all members coming
into the joint, whether fixed or pinned at the far end,
and so the stiffness factor of a member whose far end- is
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pinned becomes:

p	 Z \4Pi

The coefficient
P
 has been plotted in graph II

along with the coefficient of members with the far end

fixed. When	 - 0, P = l and 	 _	 giving -a stiff-

ness factor of 
4 
x L, which agrees. with the factor used

for this type of member when axial load is negle cted.

When the axial load is tension, the derivat ion of the
formulas is similar, the only difference being the substi-
tution of the hyperbolic functions for the circular. The
stiffness factors for the two cases are therefore:

3= I .5- Ph a	 for far-end rigid,	 (5)
L ``i^_._ah

and

K^ =- NIf or far-end. pinned.	 (6)
L

These expressions have also been plotted in graph II.

in the Appendix the formulas for stiffness factor are
derived by the method of moment -areas, As a further check
the special case of a two-span beam rigidly supported: at
both ends and free to rotate at the center support, with
an external moment applied at the center support, is solved
by the extended three-moment equation. Solving for tine di-
vision of moment between the two spans gives the same for-
raulas as derived above.

FIXED-END M01MENTS

A fixed-end moment is the moment that exists at the
ends of a loaded member when those ends are rigidly fixed
against rotation. The most important loading conditions
arei uniformly distributed load over all or part of the
span,, uniformly varying Load, and a concentrated load at
ally. point on the span. The formulas for these conditions
are developed in this paper and, as the principle of super-
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position applies,* the fixed-end moments due to any combi-
nation of these loads may be found by adding the moments
due to the separate,loads.

The extended three-moment equation ,is ' used in deriv-
ing the equations for fixed-end moments. A beam of three
spans is considered, the two end spans being of zero length,
and the equations solved for the moments over the two inner
supports. These moments are the desired fixed-end moments.

In case the axial load is'tension, the derivation of
the formulas is parallel to that for compression. The on-
ly difference is the use of the hyperbolic rather than the
circular functions. The resulting formulas are the same
as those for compression except that sin L/j, cos L/j,
tan L/j', etc. are changed. to sinh L/j, cosh ^j, tanh L1j,
etc., and a, P, and Py are changed to --ah, -Ph , and --7h,

respectively.**

In all cases the curve for fixed-end moment when the
axial load is tension has been plotted either on the same
sheet as the curve for axial compression or on the next
following sheet.

*It is shown on pages 199 and 209 of reference 1 that, as
long as the axial load remains constant, the total moment
at any point on a beam is given by adding the separate mo-
ments of all the individual transverse loads on the beam.
It is only when the axial load is varied that the principle
of superposition does not apply.

*'"The formula for

6(4 each L - l^
ah Is:  ah -.	 ^ \ 	 i t

ji
may be seen that
as given on page
has been changed
by a minus sign.
any formula  when
necessary to use

this formula is the same as that for M
212 of reference 1 except that esc LJj
to csch L/j, and the formula preceded
Consequently, in substituting for a in

changing to the hyperbolic form, it is
»x111 4 The same is true of the formulas

M `	 for Ph and 'yh.
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FIXED-END MOMENTS FAR A UNIFORM LOAD OVER ENTIRE. SPAN

In figure 2 is shown a beara. rigidly supported at A
and R anal subjected to a uniformly distributed load of
w pound per inch. The extended three--moment equation for.
spans 1-2 and 2-3 is:

ai1 L i a1	Lill	 L22	 TA3^'sas	 wL2 'Y2'
+ 2142 - i - + _12 1 +

where	 Irsi	 -- I; 4. = 0

IA2

M3 - - . 14B

Li = L3 - 0

L2	 L

12 . =	 x

this becomes

2M.& L P - MB La 4

Similarly, using spans 2-3 an& 3-4:

wL3 ti
HA La	 2.FAL La = -- 4

Solving these two simultaneous equations:

VIA	 MB	
(4/N) (2p + a)

The expression [(4/T) (2p + U)] has been plotted
against L/j in graph III. To determine the fixed-end
moments for a given beam with uniformly distributed load
of w pound per , inch, divide wL 2 by the coefficient
found in graph III. When w is an up load, the left hand
moment FAA will be positive and the right--hand moment Psi$

will be negative.
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It is apparent from the curve that when. 	 = 0, the

coefficient [(4/ ,y) (2p + a)] = 12. Thus the fixed--end
moments are equal to wD`/12, which is the formula used
when axial load is neglected.

EXAMPLE

Before proceeding to the derivation of the other
fixed— end moment formulas, it seems advisable to give an
example showing the application of the :formulas already
developed.

A symmetrical, three» support, continuous beam with
cantilever overhangs will be used. A drawing of the beam
with a uniformly distributed load of 10 pounds per inch
is shown in figure 3. An axial load of compression is as-
sumed to be of such magnitude that L = 2.5 for each of
the spans BC and CD.

The first step is to compute the fixed. o-end moments.
MF3A is the moment created by the cantilever overhang„

This mo ment is equal to HI = !0(2^ = 4,500. As the
load.is . ar, up load, a counterclockwise moment at B is
necessary to. prevent rotation of AB. Hence the sign is
negative; and MFBE1 = -»4,500 in.-lb. Similarly,

MI`DE	
4,500 in.—lb.

From the compression curve of graph III, it is seen

that the fixed--end moment coefficient for s = 2.5 is
equal to 10.69. Hence the fixed—end moments are:

w -L^ _ ia^.aooZ2
MF 

_
BC _ MFCD	 C_ 10.69

MF CB ` ""FDC _ — 9 ,355 ir_.M1b.

Next the stiffness .factors must be computed. As AB
is a cantilever, HBA can never have any value except

4,500. Hence any unbalanced moment at joint B must be
resisted entirely by 30. That is, the stiffness factor
of AB = 0. Similarly, the stiffness factor of DE is
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.also zero. Owing to the symmetry of the beam, it is un-
necessary to compute the stiffness factors of BC and
CD,  asas they are obviously equal, arid.-any unbalanced mo-
ment at C will be divided equally-between CB and CD.

From graph I it is found that the carry-over factor
of BC or CD is equal to 0.731. For convenience, this
is entered in figure 4 at the Center of each span.

The values of fixed«end moments are now written di-
rectly below the beam, as in figure 4. It is apparent
that there is an unbalanced moment of 9,355 w 4,500 =
4,855 in.»1bo at joint B and one of -4,855 in.-lb. at
joint D. Unlocking joint B first, it is necessary to
add a balancing moment of -4,855 in.-lb. This moment is
all distributed to BC, as the stiffness factor of AB is
zero. A line is drawn under the --4,855 to-indicate that
the joint is in balance. The carry-over moment of joint.
C may be recorded now, or this step may be delayed until
after joints C and D have been balanced, and then all of
the carry-over moments recorded at once. The latter meth-
od is usually the simpler. Consequent=ly, joint C is bal-
anced next. As there is no unbalanced moment at this joint,
the balancing moments will be zero. Joint D is next bal-•
anced, a moment of 4,855 in.w lb, being distributed to CD
and 0 In.-lb. to DE.

All the joints are now in balance, except for the
carry-over moments, which should now be recorded. The
« 4 1 855 in,--lb, distributed to BC is carried over as
-» 4,855 X 0.731 = »3,549 in.-lb. to C. Similarly 3,549
in.-lb. are carried from D to 0, The carry-over mo-
ments from C to B and from C to D are zero, as no
moment was distributed at joint C•

As the carry-over moments to joint C ware equal. and
opposite, and as no moments were added to joints B or D,
all the joints are stall in balance. All three joints may
now be unlocked simultaneously without any effect upon the
structure, asthere are no unbalanced moments at any joint.
The structure is therefore in equilibrium without the ne-
cessity of any hypothetically locked joints, and the mo-
ments at the ends of the members may be found by totaling:

'ABA	 M4, 500

)ABC - 4-9,356 - 4,855 = 4,500 in,-lb.
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1	 $

MICB = -9,355 - 3,549 = -12,904 in.-lb. ,

MCD = +9,355 + 3,549 = 12,904 in.-»lb.

MDC = -9,355 + 4,855 = -4,500 in.--lb.

Yn, = +4,500 in.-lb.

The extended three-moment equation gives a value for
M C = 12,903 in.-1b.

FIXED-END MOMENTS FOR A UNIFORM VARYING LOAD

A uniformly varying load is shown in figure 5. The
three-moment equations for this loading are:

2iFA L	 MB La = Wj 2 L (a - 1}

RSA La - 2M13 L3 = 2,j2 U (^	 1}

f ^`	 Solving these for MA and 113:

evL2

^j,/ L2(a

wL2

j
	

4P'	 2 + a	 _j

The denominators of the right-hand side of these equa-
tions are plotted in graph IV. The corresponding coeffi-
cients for axial tension are given in graph V.

If the maximum load is at the left end of the beam,'
'	 the formulas for vIA and 1.r6B are reversed numerically,

although in all cases the left-hand moment is positive and
the right hand negative under positive loads.
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FIXED-END MOMMS FOR A CONCE'^?TR4TED LOAD AT MIDSPAN

The loading is shown in fi gure 6. The three--moment
equations for this loading are:

2

sin
2MA LP - YOB La = 6W j -:z

uu

sin ^
11A L IU, - 2, 114B  L P = 6771 j 2 __- __	 - 1

2sir T
L.

Solvin1 ; for YA and MB:

WL

3. ( sec

Tiie denominator of the right -hand side of this ex-
pression has been plotted inin graph VI.

FIXED-END MOMIENTS FOR A

CONCENTRAT'^D LOAD AT ANY POI1T ON THE SPAN''

The dimensions are shown in figure 7. The three-mo-
ent equations for this type of load are:

r b} s in	 b

2 .11.4 L td	 1,>B La 	 Sj2--

	

sin L	 L 
_1L...	 u

s in
., I	 a

MA La	 2M3 	611 1.1 
Jsin-;L	 L

L

Solving for BRA and 43:



1 ^

I	 ^.a

e
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sin b Z	 sin a L

6TL 12 P (	 _ ^ - a (-.- -L jb	 L_j	 a\
LJ

L
sin	 sin

/L
	4

2
 _

_^_-_---2_-_-__.__._ ---- _ _
A	

^2 
	 a

sin b ^ 
_ 

'b	
s iii ^ L

617	
a

1 a 	 b - P
u	 sin ^'	 L/	

2	
sin L	 Z

lj

When L = 0.5, these equations reduce to those given

for the particular case of the load at midspan.

In order to use a larger scale amd hence improve the
accuracy of the readings, the expressions for MA and 1113
have been plotted as the ratio of MA and % to the
fixed-end moments that would exist at A and B respec-
tively if the axial load were zero.

When there is no axial load, the formulas for fixed-
end moment for this type of loading are:

Llgo - WL \L i 
Cb 

^

ELY
yBo = .- 	^L1 (y1

The curves of graph VII give the ratio - CA = 14A/MAO.
CA is plotted against a/L, a being the distance from
the left end of the beam to the load. Curves are drawn
for several values of Llj. In order to find M A , the
value of CA must be Interpolated between the curves.
Straight-line interpolation will give a maximum error of
less than 2 percent, and In most instances the error will
be less than 1 percent. If greater accuracy than this is
necessary, the formulas may be used.

I•

...
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When CA has been found, MA may be found by the
expression:

2
a ^b^

1AA = WL \ L ( L- 1 CA
^L^ ^Li

To find the value of MB , use the same curves but
read the value of the coefficient for b/L rather than
a/L as before. Call this coefficient CB.

2
Then	 M , _ -- WL	 1^) ^B

For convenience in finding the values of MA and IIB
after the coefficients CA and C B have been determined,
a curve of ((a^, 

b 
2 has been plotted against a/L in

\L l \L/
graph VIII. To find the value of (a/L)s(b/L), use the
same curve but read .the value for b/L rather than a/L
as before.

For example, suppose it is desired to find the fixed-
end moments for e beam 100 inches long loaded with 1,000
pounds at a point 70,inches from the left end of the beam.
The beam is shown in figure 8. L/j is assumed to be 3.8
in com-ore s s ion.

a	 _70 = 0.7
L	 10a

b _ _30 = 0.3
L	 100

i

From graph VII at	
L	

0.7:

4.0 -- 3.8
CA = 1.625 -- 4.0-- -3.5 (1.625 - 1.406) = 1,537

2
From graph VIII at L - 0.7,^ ^L1	 0..063:.

IIA = 1,000 X 100 X 0.063 X 1.537 = 91670 in.-lb.
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From graph VII at y	 0.3:

CD - 1. 389 -	 (1.389 - 1,260) = 1.337

2
Fro ;:,i graph VIII at Z - 0.3, 0

a;) 
\L/ = 0.14'7:

1.4B = - 1,000 X 1,000 X 0.147 X 1.337 =	 19,640 in.--lb,

FIXED-END MOMENTS FOR A UNIFORM LOAD OVER PART OF SPAN

The loading Is shown in figure 9. The three--moment
equations are:

2 b2 - L 2 	 a -

	21iAL P - MBLa - 3w j	 - L	 + 2j { ---- _. _. + sin j

	

tan Z	 1

M La - 2M . L = 3w ' 2	 a +A	 B	 I L
1_

Solving for MA and MB:

2j (1 - cos J )I

sin

3wIr2 	 b 2	 2[(cos Z y)-1] 	 -2 sin L

C^ % 
(4 2»a )	 N L	

tail

	2 [1 -- (cos z Z)	 a 2

L sin --
j
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3wL2 	b 
2	 2[ (cos Z E) 11	 2 sir. 9 L

^^ 1 ( 4P a) `	
L	

^' tan	
L

^	 J	 ^

2 ^1	 (cos	 L^	 2a2^i	
Z sin L	 _ \L
j

When there is no axial load, the formulas for fixed-
end moments for this type of loading are:

a	 2 C	 2^\	 s
C A o- 12 \T,1	

6.- 8 
L

+3 ^Zi=wL CAo

r	 1
wLz \\2	 2	 a

I>2Bo =	 12 ^L l	 4 L - 3 ^Z/	 = -- wL CBo
L

The curves of ,graphs IX and X give the ratios
CA = MIA /14A	 and CB = :d ^PfB 	plotted against a/L for

0	 0
several values of L/j. The curves are plotted from
a/L = 0 to a/L = 0.5. To find the fixed--end moments
when a/L is greater than 0.5 , find the fixed-- end moments
for a uniform load over the entire span and subtract the
fixed--end moments that would be caused by a load over the
part of the span that is not loaded..

For convenience in computation, curves of CAo and

CB0 have been plotted in graph VIII.

As an example, suppose it is desired to find the
fixed--end moments of a bean. such as that shown in figure
10. The span is 100 inches and is, loaded uniformly with
10 pounds . per inch for a di tance of 70 inches. L/j is
assumed at 3.0 in compressi n.

First find the fixed--e d moments due to a positive
load of 10 pounds per inch niformly distributed over the
entire span. This moment i found by the use of graph
III.
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11A = ^, H3 = wLz = 10 100} 2 = 10,980 In.-lb.
C	 9«lI

Next find the fixed-end moments, due to a nega tive
load of 10 pounds per inch extending.over the 30 inches
from C to B. In this case the load;is'on the right
side of the beam., whereas the curves of graphs IX and X
apply to loads extending out from the left side. Hence,
the curves must be reversed and CA used in finding 1ABm
and OB in finding MIA.

From graph IX we find for L 
0.03:

CA = 1.171 + 4.0 -  3.5 (1.253 - 1.171) = 1,187

Froze graph VIII .at L =.0.3, CAo = 0.02;90

143 = -- wL2 CA
0 

CA	 +10(100) XO.029OX1.187 = 3,440 in.--lb,

From, graph X forZ = 0.3, tte find:

"	 CB = 1.396 + 0.5 (1.613 ^- 1.396) = 1.439

From graph 8 for 2, = 013, CB o = 0.0070

Y1 = + wL2 013 C B = --10(100)XO.0070X1.439 = ^» 1,00'7 in.-lb.

The net moments at A and B due to the load of 10
pounds per inch extending over 70 percent of the span are:

111A = +10,980 - 1 1 007 = +9,973 in.--lb«

Id B = --10,980 +3,440 = -7,540 in.-lb,

~	 SECOND EXAMPLE OF CONTINUOUS BEAM ANALYSIS

Figure 11 shows the left half of
on five supports. The beam and loads
about support D. It is assumed that
pression.in BC and CD. giving L =

J
members. The value of I is constan,

a beam that rests
are symmetrical.
there is axial con-
3 for both these

t for the entire beam.
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w

Joint D may be assumed rigidly fixed against rotation
and never unlocked, as any fixed--end mordent or moment be--
ing carried to it is alwats , exactly balanced by the symmet-
rical moment on the other half of the beam. Hence there
is .never any unbalanced moment_ at D . and no need to un-
lock it.

In this problem the work has been carried to . :such
greater accuracy than necessary in order to show the agree -
ment with the extended three--moment"equation. The values
of stiffness factor, carry--over factor, and fixed--end mo -
ments have been taken from the tables, where they may be
obtained with more precision than can be read from the
curves.

From graph I or table B, the carryover factor for

Z = 3 is found to be 0.91893. From graph IT or table 3,

the stiffness factor of BC, which has a pinned end at B,
is found to be 0,10206 and that for CD is 0.65605.
Hence any unbalanced moment at C will be distributed
0.10206/(0.10206 + 0.65605) = 13.462 percent to BC and
86.538 percent to CD.

r

The fixed--end moments are found as follows:

41,3A = +50 X 100 = +5,000 in.—lb.

11F	 — --500 X 80 X 0.144 X 1,2135 = —6,989.8 in,--l' b.
BC

,A1,03 W +500 X 80 X 0.096 X 1.2590 = +4,834.6 in.—lb.

I^'I	 _ .. 10 80 2 = —2,605.9 in.—lb.FCD _
	

24.560

14F^ C = + ^^q^22 	+3,'748, 8 in.--lb.

The operations involved in unlocking and locking the
joints are indicated In figure 12. First the fixed—end
moments are recorded as shown. Next joint B is balanced
by adding , 1, 989.8 in.—lb. to BC, as the stiffness factor
.of the cantilever is zero. The moment of 1,989.8X0.91893=
1 0 828.5 in.—lb. is immediately carried over to 0, Joint C
now has an unbalanced moment of 4, 834.. 6+1, 828.5--2, 605.9
4,,057, 2 in.-lb, This momeut is balanced by a moment of
.-4,057.2 in.-lb. distributed to C:B and CD; —4,057,2X
0.13462 = —546,2 in, —lb '. to CB and the remainder,.
--3,511.0 in.--lb. to CD. As BC is pinned at B, no mo-
ment is carried over to B, However, --3,511,0X0.91893
» 3,226.4 in * -lb. must be carried over to D. All the
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joints are now is balance, joint b being balanced by the
equal and opposite moments from the other half of the beam,
and the moments at any joint maybe found by totaling.

Considering bending moments positive when the upper
fibers are in compression, 1,13	 5,000 in.-1b., MC

- 6,116.9 in.--1 b., and MD = -. 522.4 in.—lb. A solution

by the extended three--moment equation gives values of
--5,000, -» 6,116.8, and -»522.5 in.--1b. for 143, Mm, and MD,
r-espectively.

TIMM CONTINUOUS BEAM EXA:11PLE

When an unsymmetrical beam of four or more supports,
or a symmetrical beam of six or more supports, or a rigid
frame of three or more members is analyzed, the moments
do not become zero after the first cycle., as in the exam-
ple of figure 11, but the process must be repeated until
the unbalanced moments are small enough to neglect.

Figure 13 shows half of a symmetrical beam resting
on seven supports and loaded at the end of the cantilever
so that the moment at A = 1,000 in.--lb,,, the top fibers,
being in tension. The spans are equal in length and the
moment of inertia is constant throughout. Axial compres--
sion is assumed of such valla.e that L = 3 for AD, BC,

and CD. This beam, without axial load, has been analyzed
in references 4 ana 5, and the results will be compared
with those that include axial load to show the importance
of secondary moments in continuous beams subjected to-high
compressive loads. A solution of this problem by the ex-
tended three—moment equation requires the solution of three
simultaneous equations.

The carry--over factor is 0.9189 for all spans, found.
from graph I or table B. The stiffness facter , of AB is
found from the "far--end pinned" curve of graph II or table
B and is equal to 0.10206. The stiffness factors of BC
and CD are found from the "fax--end restrained" curve of
graph II or table B and are both equal to 0.65605. At B
the distribution factors are 0.10206(0.10206 + 0.65605) =
13,46 percent to BA and 80.54 percent to BC. "' "At" `C
the distribution factors are 50 percent to each member.
These are designated by the symbol D and are recorded at
the joints in a space provided as shown in figure 14. The
carry—over factors are indicated by the symbol 0 and are
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written at the center of each member as shown. The only.
fixed-end moment is at the cantilever , and is equal. to
1,000 in.-lb.

Joint A is balanced first, ».1,000 in.-1b. being
added to AB, and --1,000 X 0.9189 = --918.9 in.-lb, car-
ried over to B.. This leaves an unbalanced moment at 3
which is balanced by 918.9 in.-»1b, distributed 918.9 X
13.46 percent = 123.7 in..-»lb. to BA and 79542 in.-1b.
to BC. As A is a pinned joint, no.moment can be.car--
ried over to it, but 795.2 X 099189 = 730.6 in.--lb,, must
be carried over to C. This unbalanced moment at C is
balanced by --365.3 in.--lb. to both. CB and CD. Carry--
over moments of --365.3 X 0.9189 = »335.7 in,-lb. are re-
corded at B and D.

The moment at joint D is balanced by the similar
moment from the other half of the beam, but it must be
noticed that joint B is no longer in.balance, having had
--335.7 in.--lb. carried over to it since it was balanced.
This moment must therefore be balanced, the balancing mo-
ment distributed to BA and BC, the proper moments car-
ried over, and the process continued until the desired ac--
curacy is reached. Figure 14 shows the.computations car-
ried through nine cycles, and the totals are indicated.
The total after nine more cycles is also recorded, and the
values given by the extended three--moment equation are
given as a check. The values when axial load is neglected,
as given by Williams' results, are also recorded. It
should be noted that all the moments except that at the
cantilever are many times as large when axial load is con-
sidered as when it is neglected. The reason for this dif-
ference is that a high value of L/j was used.	 If a low
value of L/j, say 1.0 or 1.5, had been used, the agree-
ment between the two methods would have been much: better.

EFFECT OF JOINT T=TSLAT ION

There are two types of joint translation that will be
considered in this paper. In the first type the amount of
translation is known, as on a continuous beam with a known
or assumed' deflect°ion of one or Fiore of the` supports, . In
the second type the amount of translation is unknown but
the total shear or. a given section is known, as on , a rea--
tangular bent subjected to side loads.
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When the amount of deflection is known, formulas for
considering the effect of the deflection upon the moments
of the structure may be derived by the extended three
moment equation. Then the amount of deflection is unknown,
a method that was developed by Professor Clyde T. Morris
of Ohio State University (reference 7), for the case when
axial load is neglected, is modified to include the effect
of axial load.

JOINT TRANSLATION -- AMOUNT OF TRANSLATION SNOMT

The translation of one or more joints of a rigid
structure modifies the bending moments throughout. In
both the basic and extended three--moment equation the ef—
feat of translation of one or more of the supports is de
termined by adding deflection terms to the load terms of
the equation. These deflection terms are the same whether
the basic or extended equation is used.

In moment—distribution analysis, deflection of the
Joints creates additional fixed-end moments. Figure 15
shows a beam rigidly supported at both ends. R is de -
flected an amount S above .A.. It is desired to find
the moments MA and MB that exist at the ends of tse
beam. The extended three--moment equation: for spans 1--2,
and 2--3 is:

if L az	 ^Zi. P	 L2 P2	 M3 L2 "2	 6E (yl °Y2 ) 6E (y3 —y2 )
ry	 --^ •}

Where

	

M i	 M4 = 0

I.

Itl

M3

ilia

Ll

Y1

Y3

this becomes:

2 i,AL

MA

M M^^

L3 = 0

Y2 = 0

Y2 = S

IdBLa	 6Es
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Similarly,. using spans 2-3 and 3-4:

:11ALa	 2MBL.P	 .. 6N8

Solving for 14A and MB:

MA = 1VIB 6^SI (2^^^ a)

or

MOB 2 P E: a
whereR= I, and R = L

If the e quation is written

IviA - i^B	 ':' 2 3 
E 

a
	 (7)

then R is positive when the deflection is such that the
member i .s rotated in a clockwise direction from its orig

-inal location. The fixed-end moments due to jo int , deflec--
tion have the same sign at both ends of the span, both
having the sign opposite to that of . R. The quantity
2p.-- a in equation (7) is a function_ of L/j and has
been plotted in graph., X.1.

EXAMPLE OF CONTINUOUS BEA3,: WITH DEFLECTION OF SUPPORTS

Figure 11 shows the left half of a symmetrical con-
tinuous beam resting on five supports. This problem was
previously analyzed assuming no deflection of the supports.
This same beam will no,r be considered assuming that sup--
port C deflects 0.8 inch downward. I is constant at
0.2 in. `s , E = 29,000,000 lb./sq.in ., and Lfj is assumed
equal to 3.0, as before.

E= Z 802 = 0.0025 for both BC and CD. As the

deflection of joint 0 tends to rotate BC in a clockwise

.M
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and CD in a counterclockwise directlon. RDC = Z = 0$

0.01 and RCD = -- 0.0 . 1. The fixed—end.  moment s due to de-

flection of C are therefore:

^	 _ ^, & E	 6XO.0025X2900.OQQ0A0_21	 3650.9
F3C	 C	 1.1915

1,1.rUpDC	
3650.9 in.--lb.

In figure 16 these moments have been added below the
fixed-end moments caused by the Loads. The remainder of
the solution, is similar to that when there is no deflec-
tion of the supports, and is recorded in figure 16. The
bending moment at C is found to be 5,369.3 in.--lb. and
that at D, 1 0 505.4 in,—lb., both with the lower fibers
in compression,' The extended three—moment equation,.also
gives values of 5,3.69,3 and 1,505.4 in.—lb. for the moments
at C, and D, respectively.

SECONDARY Z 0 1MENTS IN TRUSSES DUE TO J'OI _TT T TRANSLATION

Zhen a rigid joint truss is subjected to a system of
external loads, the individual members are stressed-by ax-
ial tension or compression. As a result, each member is
elongated or shortened by an amount equal to PLIA.E. This
charge in length of the members causes the displacement of
the joints of the structure, with the result that bending
moments are developed at the ends of the members. The val-
ue of R for each member oan be determined by the use of
a Williot diagram or the cotangent formulas as explained,
in Art: 11--3 of reference 8. With R known, the fixed-
end moments of each member can be found by the . use of equa-
tion (7). These fixed-- end moments can be ba:lan.ced and dis-
tributed in the usual manner until the desired degree of
accuracy of the secondary moments i.s obtained,

An example .of this type of analysis without consider -
ing the effect of axial load, except for determining tha.
change in length of each member, is given in Thompson and.
Cutler t s discussion of Professor Cross' paper. (See ref -
erence 2.) The method is the same if a;tal load is conr-
sidere& except that graphs I to XI would be used in deter-
mining the various factors and fixed-end moments,
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T HE RECiA5GULA2 BENT

Figure 17 shows a
jected to a side load
erect free bodies, they
and end moments, as sh,
load S is carried as
in column CD. Hence
A:

single- story rectangular bent, sub-
S. If the two columns are consid-»
are acted on by axial loads, shears,
Dwn in figure 18. Part of the side
shear in column AB and the rest
Sti + S2 - S. faking moments about

.i11AB + rẐ BA + 11 CD + 14DO - S 1 h - S2 1i = 0

or	 EN = h(S1 + S2 ) = Sh

This is known as,the "bent equation" and states that
tho' sum of the moments at the top and bottom of the columns 	 -} i
of a story is equal to the shear on the story times the
story height.. This is an equation of equilibrium that
must be satisfied in the analysis of all rectangular bents.
The equation is valid for a bent of any number of columns
and for any story of a multistory bent. In all cases the
load S is the total shear on the story under considera-
tion.

in order to analyze a rectangular bent .by moment dis-
tribution it is first assumed that the horizontal beams
are infinitely stiff.. In this condition the structure is
allowed to deflect laterally until the sum of the resist-
ing moments at the ends of the columns becomes equal to
the -product of the shear and the story height,

In order to determine the effect of the deflection
it is necessary to know "now the resisting moments are di-
vided among the columns. As the columns are connected by
rigid horizontal beams, the deflections of all the columns
`are equal. (The change -in length of the horizontal beams
due to axial load is negligible when compared rith the de-
flection of the columns due to bending.) With the hori-
zontal beams assumed infinitely stiff, equation (7) may be 	 -
a;-p-olied to find the moments at the ends of the columns
caused.by the deflection. This gives:

EIS __^
'Atop - Itbottom -_ (2- 

	 a) for each column.

As '.E, L, and 8 are the same for all columns, 'the
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resisting moment is seen to, be divided in proportion to
` I/(2p -- a),	 Therefore,	 the first	 step in the analysis of

a rectangular bent is to divide the equilibrant of the
story moment along the columns of each story in proportion
to the value of	 I/(2P -..a)	 for each column.	 These bal-
ancing moments are divided equally between the top and
bottom of each column.

This division of moments satisfies the bent equation
but leaves unbalanced moments at the joints of the struc-
ture.	 If there are'any loads between panel points, the
fixed end moments caused by these also contribute to the
unbalanced moments at the joints.	 In order to equilibrate
the unbalanced moments it is necessary to assume that the
horizontal beams lose their infinite rigidity and allow
the joints to rotate until sufficient resisting moments
are created.	 The balancing moments are distributed in
proportion to the distribution factors of the members, and
moments are carried over to the far ends of the members.
During this step it	 is necessary to assume that the joints
are restrained from translation in order that the expres-
sions for distribution and carry--over factors may be ap-
plied *	 After these balancing and carry--over moments are.
applied, the bent equation is no longer satisfied * . There-
fore, the horizontal beams are again assumed infinitely
stiff and the structure again allowed to deflect until the
bent equation is again satisfied. 	 The operations are con-
tinued until the error in the bent equation and the un-
balanced moments at the joints are small. enough to neg-
lect.

EXAMPLE OF SINGLE--STORY RECTANGULAR BENT

?'igure 19 shows a single--story rectangular bent sub-
jected to a side load. The dimensions are given in the
figure. IAB = I CD =2130 10 It is assumed that Lrj = 0

for BC and CD and L1j = 2.5 for column AB. Al-
though the side load will put axial compression in AB
-and BC and tension in DC, the exact amounts of these
Loads are unknown until the moments at the ends of the
columns are determined. In the usual case the amounts of
these axial loads are negligible, the only axial loads of
large :magnitude being due to vertical loads on the bent.
However, for accurate analysis the-structure may be ana-
lyzed a second time, using the moments found in the first
analysis to correct the axial loads in the columns. The
problem given here is to be considered merely as an exam.-
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ple to illustrate the use of the system and not as illu:a
trative of conditions that might be met in actual design.	 "+

As I is the same for both columns, the story moment
equili.brant is divided. between the columns in inverse pro-
portion to 2P	 a• The value of .2P -- a may be read
from graph XI. It is found that

I'ZA.B : ?jCD = 1 : 1.123

That is, 1/(2 + 1.23) ='47.2 percent of the story
moment is resisted by moments at the ends of AB and 52.8
percent by moments at the ends of CD. As the moments at
the top-and bottom of each column are equal, the equili
Brant of the story moment is divided 23.6 percent to the
top and 23.6 percent to the bottom of AB and 26..4 per-
cent to-the top and 26.4 percent to the bottom of CD.

The shear load is 180 pounds and the story he-ight 20
feet; therefore the story moment is -180 X 20	 -- 3,600	 •'
lb.-ft. The equilibrant of this, 3,600 1b.--ft. is di-
vided 3,600,X 23,6 percent = 850 lb.-ft to the top and
850 lbe-ft. to the bottom of AB. Similarly 3,600 X 26.4
percent = 950 lb.-ft, is distributed to the top and 950
lb.--ft,. .to the bottom of CD.

This leaves an unbalanced moment of 850 lb.-ft. at
joint B and 950 lb.--ft. at joint C. Before these can
be balanced.., the distribution, factors of the members must
be determined. I/L is constant for all the members, so
the distribution factors are proportional to the coeffi-
cients found in graph II. These coefficients are 1.00
for BC and CD and 0.772 for AB. Therefore the dis-
tribution factors for joint B are 0.772/(1.+ 0.772) =
43.5 percent for AB and 56.5 percent for BC. At joint
C the distribution factors are 50 percent for each of the
members. The oarry--over factors of 0.5 for BC and CD
and 0.731 for AB are found in graph I.

The balancing moments at B are therefor-e -850 X 43.`5
percent = -370 lb,-ft. to BA and -850 X 56.5 = -480
lb,,-ft, to BC. At C the balancing- moments ate -950X
50 percent = -475 lb.-e ft. to both CB and CD. --370 X
0,731 = -271 lb,-ft. are carried over to A, -475 X 0.5
"238 lb,-ft, are -carried over to D and B, and -480

X 0,5 =_ -240 lb * «-ft. are carried over to C.
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If the moments on the ends of the columns are added,
it will be found that the sum is. no longer equal to 3,600
lb.-ft. - The values - 370	 271 -- . 475 - 238 = -I, 354 1b.-
ftt. have been added to the columns since the 'bent equation
was satisfied. This quantity, 1,354 lb.-ft., is called.
Ali and is found. by totaling all the balancing moments and
carry-over moments that have been added to the columns
since the last time the bent eguation was satisfied.

The"cuantity AM is treated exactly the same as tho
original story moment. The equilibrant 	 AM is divided
among the columns in proportion to I/(2P	 a) , and the
process continued until the unbalanced moments at the
Joints and.the unbalanced story moment are small enough to
be neglected.

In Figure 19 four cycles have been completed. The
re^;ulting moments are MA = 910 1b.-ft., MB = 800 lb.-ft.,
M C .	 809 lb,-ft,,, and MD = 1,079 lb.-ft, The moments
acting on the columns are all positive, and their total is
3,598 lb,-ft, The error of 2 1b.»ft, in the story moment
is negligible.

This same beat was analyzed in reference 4, assuming
no axial load in the members. The results In this case
were IAA = MD = 969 lb.-ft. and ItB = MC = 831 1b.-»ft.

Examples of multistoried bents and bents subjected to
unsymmetrical vertical loads have been given in reference
4. When axial load is included, the only difference is
the use of graphs I to XI in determining the various fac-
tors and fixed-end moments. The principles involved in
these two cases are the same as those in the single-story
bent,-and if these are thoroughly understood, there should
be no difficulty in applying them to the more complex
structures.

APPLICATION TO AIRPL.aNE FUSELAGE TRUSS

Figure 20 shows the central portion of the side truss
of an airplane fuselage. The structure has been analyzed
for the various conditions of loading required by the De-
partment of Commerce, and the members have been selected,
assuming a restraint coefficient of 2, with the assumption
that each member is subjected to pure axial load.
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As is usually the case in airplane fuselage trusses,
however, some of the members have-side loads applied be-
tween the panel points; and in the landing conditions
there are concentrated moments applied at the points where
tho chassis members join the fuselage. , The effect of these
conditions will be determined by moment distribution and
the margins of safety . computed. If desired, the secondary
moments due to joint translation may be included in the
fixed end moments. These will be small, however, and the
refinement hardly .justifies the amount of labor involved
in computing diem, They are not included in the example.

As most of the members in the central part of the fu-
selage are designed for three-point landing, this condi-
tion of loading will be used in the example. The load
factor -for  this condition is 5,85,

Table A gives, the ;physical properties of each mem-
ber and the axial load in the three -point landing condi-
tion, The values of. L/j have been computed and record-
ed in the table, the letter following the figure indicat-
ing tension or compression, and the carry--over and stiff-
ness factors have been determined from graphs I and TI.
The distribution factors have been computed and recorded
or the fig-are at each joint, and the carry-over factors
have been written on each member,

In this airplane, four of the items of loading are
attached to the longerons between panel points. Although
the weights are applied at an angle of 140 to the thrust
axis in the three-point landing condition, only the compo-
nents of load perpendicular to the members are used in
figuring the fixed»end moments. The components parallel
to the members have a slight effect upon the axial loads,
but this is small enough to be neglected. The loads that
contribute to the fixed-end moments are:

1. Instruments -- a concentrated load of 20 pounds
applied. on 2U--4U, 13.inches from 2U.

2. Baggage »-- a concentrated load .of 100 pounds ap-
plied on 5L-6L, 14 inches from 5L.

Passengers -- two concentrated loads of 364
pounds each, one applied on 3L--4L, 27 inches
from 3L and the otlher applied on 4L-5L, 21
inches from 4L.
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4. Floor load »- a uniformly distributed load of
0.769 pound' per inch extending from 3L to.: 5L.

The loads given are the basic loads. , In order to
find the design loads 'they must be mu:rtiplied by' half the
load factor of 5.$5: (Half the factor is used. as ther"e
are two side trusses, each carrying half the load.) The
f ixed-end ' moments have been computed, using the apprapri-
a e formulas and curves, and the results recorded on fig"
ure 20 at the ends of members 2U-4U, 3L-4L'. 4L-5L, and
5L-6L.

In addition to these.xixed-end moments there are. two
concentrated moments applied to the fuse-lags by the chas-
sis. A count erclockwis o moment of 7 1 520 In.-lbs is ap-
plied at 3L, and a counterclockwise moment of 11 9 160 in*-
lbe is applied at 4L,, These moments may be considered as
fixed-end moments on the chassis members. A counterclock-
wise moment applied to a joint means a clockwise moment
actin; on the end of the member; so.both..of the above mo-
ments are positive. They are treated Pxactly the same as
the other fixecl--end. moments at the joints. When these
moments were computed in the chassis analysis of the air»
plane, it was assumed that the"usela,e was a rigid, un»
yielding structure. This is not a true assumption as 'the
fuselage joints are capable of rotation to a- • slight de-.
gree; henco the actual moments applied at 3L and 4L
would probably be somewhat less than those given. A pre-
cise solution would involve a very complicated analysis
as the chassis presents a three--dimensional problem, with
the members capable of carrying torsion as well as bend-
ing; so no modification will be attempted here. The Val-
ues given are probably very close to the actual values,
and the error is believed to be small.

Joints 2U, 2L, 7U, and 7L have been assumed rigidly
supported. This is obviously an erroneous assumption, but
the error involved is small. Joints 2U and 2L are
where the engine mount is attached. Since the structure
forward of these joints is relatively rigid, the assump-
tion of complete rigidity is probably nearly correct. Al-
though in practice it might be necessary to analyze the
entire structure aft of 2U-2L, for the purpose of this
example it stems desirable to consider only that portion
forward of 7U-7L. To do this, some assumption must be
made at joints 7U and 7L, The joints might have been a s-
sumed pinned with as much justification as assuming rigid
joints, or they might have boon assumed as 50 percent rig-
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id, as advocated by Bruhn in reference 6. The latter meth-
od appears to be the most accurate, but,it would necessitate
a new set , of curves for stiffness factor, and so is hardly
practical. Owing..to the assumption adopted., the moments
found in members 6U-7U, 6U-'7L, and'6L-7L: should not be
expected to be ,as accurate as those farther forward, as the
effect of an error at any joint is more noticeable on the
members coming in.t°o that joint than on members that are
farther removed,

With the fixed-end moments, distribution factors, and
carry-over . - factors determined, the process of balancing
the moments ` maybe commenced, In the figure, the joints
have been balanced in the order of the magnitude of their.
unbalanced moments, and the carry-over moments recorded as
soon as a joint is balanced, as this method gives the most
rapid convergence.of results. The order of balancing was
4L, ;3L,' 5U, 6L, 51;

1
 4U, 6U, 4L, 5U, 5L, 6''J, 4U, 4L, 51J, 3L,

6L, and 5L. As soon as a joint was balanced for the last.
time, no more.mom.ents were carried over to.it-, in order
that the cheek of Z14 = 0 for each joint might be ob-
twined. The totals of the moments at. the joints are re-
corded in the figure. The moments obtained by applying
the Hardy Cross method'to this truss without correcting
for the _effect of axial loads are shown in references '4
and 5.
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APPENDIX I

Def init i.ons

1, Fixed-End Moments: The moments that exist at the
ends of a `loaded member when those ends are rigidly fixed
against rotation are called the fixed-end moments of that
member•

2. Stiffness Factors: A number proportional to the
couple that must be applied at one end of a member to
cause unit rotation of that end, both ends of the member
being assumed to have no movement of translation,.is called
the stiffness factor of that member. The stiffness factor
will depend on the degree of restraint of the opposite end
of the member from that at which the couple is applied.
In this paper two such cases are considered; that in which
the far end is fixed against rotation and that in which
the far end is free to rotate,

3. Distribution Factor: If a moment is applied at :a
joint where two or more members are rigidly connected, the
distribution factor of each member is the percentage of the
applied mome-zt that is absorbed by that member. The dis-
tribution factors of the members at a joint are proportion-
al to the stiffness factors of those members. The sum of
the distribution factors of the members at any joint must
equal unity.

4. Carry-OverOyer_ F_a_ct_or: If a beam is simply supported
at one and^and fixed at the other, and a moment is applied
at the simply supported end, a moment is developed at the
fined end. The carry-over factor is the ratio of the mo-
ment at the fixed end to that at the simply supported end`.
For a member without axial load and with constant moment
of inertia, the carry-over factor is 0.5.

5. SLC _Convent1on:

1) A clockwise moment acting on the end of a mem-
ber is positive, Consequently , a clockwise moment acting
on a joint is negative. This is in agreement with the
convention used in reference 1 at the left end of a member
but opposite to that convention for the right end of a
member. Great carp must be taken to interpret correctly
the signs of bending moments obtained in the moment-dis-
tribution analysis before proceeding to the determination
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b

of bending moment between the ends of a member or comput-
ing margins of safety.

2) Upward forces and deflections are positive,
and hence in agreement with the corresponding convention in
reference le

3) Clockwise rotations of the straight line join-
ing the ends of a member are positive, the reverse of the
convention used in reference 1 , for slope.

APPEND I X II

Moment-Area Proof of Carry-Over Factor Formula

The principle of moment are-as states that the deflec-
tion of any point "a" on a beam from the tangent at any
other point "b" is equal to the moment about "a" of the
area under the M/FI diagram between fl an and "b". In
figure 1 the tangent at B is horizontal; so the deflec-
tion of A with respect to this tangent is zero. Hence
the moment about A of the area under the 101. diagram
of the beam is zero. The expression for moment, using
the moment-distribution convention of signs, is:

-1AB .MA co s Z	 x	 x
T,4 _ ___-_-__- __.._ - sin ^ + MA c o s

sin

where x is the distance from A. The moment of the area
uncler the M/EI curve is therefore

L
$ =

EX	
Mx dx = 0.

The value of Tai is substituted and the expression inte-
grated, making use of the formulas

x	 x	 x
C f x sin	 dx = CJ

a ( sin	 b, 
x

cos }

C f x.. cos	 dtK , ;: y C j w (cos	 +	 sin
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The above integral reduces to

MB	 a_

VIA + 2 P

which is the same as that derived by the three-moment equa-
t io:a,

APPENDIX III

Mloment-Area Proof of Stiffness-Factor Formula

The rotation in radians of any point on a beam from
the tangent at any other point is equal to the area under
the Y./EI diagram between tae two points. In figure l
the tangent at B is horizo,atal; so the area under the
N/EI curve of the beam gives the absolute rotation of A.
The expression for moment is:

TtA c o s	 x	 x
.--------- L__	 sin + MA cos

sin

where x is the distance from A. The area under the
ICI/EI curve isl

L
8 - EI f U dx

0

Substituting the value of 41 and integrating, making use
of the formulas

	

C f sin	 dx = -CJ cos

	

C f cos	 dx = +Cj sin
y

gives the expression:

	

9 =	 (/	 a2 ^

321 C;^	 4F)
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This may be written:

= _.iRi _GA_

	

MA	 11
TY

z(3 )

which is the same value as was found by using the Newell
formula for slope.

APPENDIX IV

Check 
of 

Stiffness-Facter Formula by Three-Moment Equation

M
L i	 /INV 	 L.,

A continuous beam ABC has fixed ends at A and C.
A clockwise moment 14 is applied at the center support
Be As the carry-over factor is known to be - 

2p
-9- t using

the three-moment equation convention of signs, it is known
that 

IIA	
MO 

14^B and 1,10 M+B, The three-.

moment equation for spans I and 2 iso.

UAL 1 a--I + 
2M— B L, P, + 2jtt; L2 P2 

+ 
MOL,2 a2 . 0

_	
_Ia. 	 12

Sabstituting the 
known values of IAA and 1,10 in terms of

M '.B and M+B and reducing gives:.

L2 (4p2 2 — a22)

	

1 2 	 2

	

L3.	 2	 2 - a

	

1 3.	 x	 lip 3.

^	 I
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showing that in this ;special case the moment applied at B

is distributed in proportion to the value of 	 -- ^-
L 4^ -- a

of each member. (See equationz (3).)

APPENDIX V

Carry-Over Factor for Axial Tension

I is subjected to ax.
but restrained from
MA is applied at A
tude of the resisting
equation for this beam

Assume that the beam of figure
xal, tension. A is free to rotate,
transverse motion. A given moment
and it is desired to find the magni
moment at B, 12B . The three-moment
is:

M,Lz 
ah, + 2rito 

L, 
Phi + La 

Ph2 + 
143 L? ah^ 

= 0
^ Z	 ^^	 ^a	 Ia

Where	 M I x 14A

rr 2 =	 ^B

Lg -	 0

this gives

MA  ah	 L^b1
^ - + 2MB 

^
-
I J V 0

whence
a

MB .. 2 Ph MA

which is the same expression as that for compression ex-
cept that a and have been changed to ah and Rh,
respectively.

APPENDIX VI

Fixed-End Moments when ; = 0. (See reference 3, p. 85.)
J

'11ote: In the moments given in the following sketches the
convention of signs is the same as that used in the

three-moment equations by Riles and Newell. For the con-
vention used in moment distribution, the sigm of the mo-
ments given at the right end must be changed.
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TABLE A

Physical Properties of Fuselage Truss Members

y Carry- Stiff- -tiff- -
Axia1 Z over Hass

Fff-
ess

Me_ ber Size Length load j factor factor ctor
(a) coeffi- X 1eff t C i®n'^ ^^__ _

II	 3.n.f J.^•

^1.371 I w^n ^^
2U-4TJ 1 12 X0.035 5'7.3 2816 3,59T 0.310 1	 5.903
4U-5U 1	 X	 .035 48.0 -2630 4.110 3.27 .240 .619
5U--6U 11	 X	 .035 36.1 395013.790 1.823 .391 1.340
6U-7U 1 1L X	 .035 50.0 f -407014.440,23.740 .0.40 .143
2L-3L 11	 X	 .035 39.3 ^-2110 3.010i .925 .652 ^	 2.052
U-4L 1 1 1- X	 .035 `	 39.0 1-43,2513.030 i	 .936 .647 4.093

'IL-5L 1^ 1^ X	 .0 3 5 26.0	 1 872 5 2.87 :'Z l	 .3 (^̂7 1..250 ^ 11.863.
5L-6L 

I
1	 X	 .035 36.0 !	 4355 3.97T .289 1.442 ^	 x.-.955

6L--7L 1	 X	 * 036, 51,0 389515.32T .220 1.721 4.174
2U--3L 11 X	 .035 53.7	 j -1870 1 3.880 2.50 .352 .811
3L-4U 18 X	 .035 56,6	 j 1265 2, 80T I .362 1,239 }	 3.901

4J-4L 1$ X	 .035 58.3 4710 5.56T I

I
.208 1 1 773

f
5.419

4L-5'J 1! X	 .049 :59.9 2965 1 3.3X01 1,120 .565 3,149

5J-5L 11 X .049 54.0 4295 3.60T i .300 1,375	 1 8.502
5U-6L 1	 X	 .035 64.9	 1 -845 3.1501 1.004 .614	 ! 1,171
6U-6L .II X	 .035 57.0 22011.74T .435 1..098 1.572

6J-7L {
__..____,....1__________

$ X	 .035
----------------

68.7 105
L ______

1945T' 4
I ------ 1__

4453 1.069 1,270

(a) Diameter and thickness, inches,



0
1.0
210
2.5
3.0
311 5
410
4,5
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TABLE B

^__ Stiff- Stiff-
Carry- ness ness
over factor factor

factor coeffl- coeffi-
cient cient

(fixed) (pinned)

Axial compression

0,50000 1*00000 0,75000
•52640 *96628 69852
,62623 8 .85904 52210
,73097 .77193 35947
.1 91893 .65605 .10206

1 * 31574 . 50201 -.36705
2 * 56030 .29388 -1,6294

- 00479

----- -------
Axial tension

43

C o lunn
d i s tri-
bution
coef f i-
cient

100000
1.01.70
1.07 37
1,1226
111915
1,2903
1*4364
1, 6691

0 0*50000 1*0000 0,7500 100000
11, 0 . 47 62 5 1a0329 .7986 .9837
2,0 *41737 1,1268 .9305 9392
3,0 *34768 1,2703 1,1167 i	 .8762
44'0 .28419 1,4492 1.3321 f	 .8060
5.0 .23308 1,6519 1.5622 7364
61Q .19405 116706 1:7999 .6716
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TAME C

Fixed-Era Moment Coefficients

Unif0rVI Concen-
L load Uniformly varying load 	 ;. trated

entire CA on load
span miaspan

Axial compression

0 12.000 ^30.000 20.000	
~7

8.000
1.0 s11..7 38 29.39 6 7 119.	 3 7,832 
2.0	 { 11.176 27.655 18.755 7,322
2.55 1	 10. 690 26,291 18.015 6,930
310 (	 10.071 24.560 17.072 6,441
3.5 91301 22.436 15.889 5.846
4.0 8.338 19.819 149417 5.127
4.5 7.190 169766 12.588 4.301

Axial tension

0 12.000 20.000 20.000 8.000
100 12.198 30.577 204294 8,165
2.0 12.779 32.221 21.178 8,657
3.0 13.695 34,885 22,541 9.448
4 1 0 14.888 38.370 24.329 } 10.504
54 16.297 42.523 26.431 11.790
6.0 17.864 ^	 47.167 28.743 ^ 13.256
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Fixed-End yoaent Coefficients
Concentrated Load at Any Point or,. the Spar_

? a a	 / a_
a -= --- '

a	 ^
, n < a + a a

T
_ 0.1 ±

:.1

rT	 G.2 ...T	 0.L T	 G.^ l

-
T	 O.V 1

f
Y	 0.Q _ ^.7

1 J

_
,	 0.8

-
0.9

V r., j.J	 i SS .i.1 y i

f Axial co3koressi on

0	 1 1.0000	 I 1.0000 1.0000	 1 1.Ooo-o 1.0000 1.0000	 f 1.0000 1.0000	 ! 1.0000
I.0 1.006: 1.0113	 { 1.0160 1.011	 ` 1.0215	 # 1.C23J	 ' ? .0222 1.?015: 1.0172
2.0 1.0264	 1 1.{0401 1.0679 i.:0824 1 .OS26 i.0;i83 i.o994 1.0961	 j 1.0884
2..5 1. 0 - 1.0807	 ! 1.1122 1.1368	 ! 1.1544	 I 1.1646 1.1570	 = 7.1617 [	 1.1487 
3.0 1 1.0657 1.1242 1.1734 1.2135	 E 1.2420 1.2590 1.2643	 j 1.2557 1.2366
X5.5 1 1.0964 ?.,1841 1.2604 1.3226	 } 1.3685 1.3965 1.4061 '1.3950 ► 	 1.3669
4.0 3 1.1412 1.2720	 ? 1.3888 1 486'	 4 1.5604	 ^ 1.6075 ^	 1.6255 ^	 1.6136 i	 1.5724
4.5 1.2018 1.3987 1.5805 I.'7372 1.8600 1.9420 1.97$0

^

7..9399 i	 7.9082
4 ^

i
£

i
y

Axial tension
s

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0 .995.3 .9835 .9839 .9812	 ' .9798 .9775 .9805 .9825 j	 .9554
2.0 .9767 .9579 .9429 .9315

^
.9241 .9206 .9198 .9231 '	 .930

3.0 .951=: .9127 8828 .8611 .8467 .8399 .8400 .8469 1	 .8612
4.0,E .9206	 4 .8595 .8140 .7819	 ^ .7616 .7520 ^	 .7537 !	 .7656 '	 .7887
5.0 .8870	 i .8039	 j .7441 .7033 .6785 .6683 1	 .6717 .6831 .7214
6.0 .8530	 ; .7493	 ? .6778 .630x^ .6035 .5933 ,	 .5992 '	 .6219 ► 	 .6627

=y

Ca

n

N•
0

0

a

cno^

b
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+ixed-End `foment Coefficients
Uniformly Distributed road Over Part of Span

Value s of 111A	 Values of M.B
L J a	 a' a	 a	 a^ f a	 s _^ i a_	 a	 aIZ=O.I=0.21=O.3 Z=0.4=0.5f^=0.1 z-0.2'^ ~0.3 1=0.4f^=0.5

axial  Compression

0	 1.0000 1.0000 1140000 1.0000 i 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0 x..0053 ^ 1.0095 ^ 1.0114 1.0133 ^ 1.0148	 i.0123 i 1.0085 1.0180 	 1.0215 1.0225
2.0 1.0174. 1.0329	 1.0453	 1.0555	 1.0370 j 1.0581. ^ 1.0922 1.0963 f 1.0976 	 1.0970
2.5 1.0282 1.0536	 1.0746 } 1.0915 1.1044 !^ 1.1500 1.1554 1.1621 1.1643	 !.1625
3.0 1.0438 1.0824 1.1152 ! 1.1420 1.1626 1.2254 1.2444 1.2552 1.2585 1.2551
3.5 1.0637 i 1.1210 i 1.1706	 1.2117 1.2436	 1.3575 1.3815 1.3961	 1,3994 1.3925
4.0 1.0935 1.1780 1.2526 	 1.3153	 1.3648 11.5569 i 1.5939 1.6133 1.6161 1.6029
4.5 1.1320	 1.2573 , 1.3708 1. 46844 1.5470 	1.8860	 1.9383 ( 1.9646	 1.9635 1.9376

Axial tension

0 1.0000 1.0000 1.0000 1.0000 1.0000	 ;1.0000 1.0000 1. 0000 0000 ( 1.0000
1.0 .9939 i	 .9921 .9895 .9877 .9864	 .9860 ,9851 (	 .9793 .9750 f	 .9751
2.0 .9840 j	 .9717 .9611 .9528 .9470	 .9408 .9267 j	 .9225 .9214	 .9217
3.0 .9678 .9407 .9192 .9033 .8915	 .8656 .8539 .8470 .8427	 ,8428

^4.0 .9461 .9037 .8708 .8459 .8282	 .7931 .7772 '	 .7644 .7579	 .7571
5.0 .9234 .8641 .8204 .7867 .7640	 {	 .7321 j	 .7049 .6746 .6772	 .6752
6.0 .8993 .8248 .7697 .7304 .7033	 .6756 '^	 .6421 .6190 .60;0 ?	 .6023

t
i

'.c.i
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c^

w

N

0
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0
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0
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