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PRINCIPAL EFFECTS OF AXIAL LOAD OW MOMENT-DISTRIBU”ION
ANALYSIS OF RIGID STRUCTURES*

By Benjamin Wylie James
SUMMARY

Thies thesis presents the method of moment distribu~ -
tion modified to include the effect of axial load upon the
‘bending moments, This modification makes it possible to
analyze accurately complex structures, such as rigld fuse-
lage trusses, that heretofore had to De analyzed by approx-
imate formulas and empirical rules. . The method is simple
enough to be practicabdle even for very complex siructures,
and it giveés a means of analysis for continuous beams that
is sinpler than the extended three~moment equatlon now 1n
cOommon Use.

When the effect of axial load is included, 1t is
found that the basic principles of moment distribution rew
nain unchanged, the only difference being that the factors
used, instead of being counstants for a given wmember, be-
come functions of the axial load. Formulas have been de~
veloped for these factors, and curves plotted so that
- their application reguires nc more work than moment dis~
tribution without axial load., Simple problems have been
included to illustrate theo use of the curves.

INTRODUCTION

The importance of saving weight in airplane struc~
tures makes it necessary accurately to consider the sec~
ondary moments caused by the combination of axial load and
lateral deflection. TFormulas considering the secondary
moments in the case of continuous beams are quite familiar

Iheszs subuitted in partial fulfillment of the require-
ments for the degree of Engineer in Mechanical Eng1neer—
ing Aeronautics, Stanford Uaniversity.
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to the aeromnautical englneer. They were originally de~
rived by MﬂlleruBreslau and have been extended by Profes-
sor J. S. Newell and presented in chapter XI of reference
1, However, no similar practical method has been hitherto
available for the analysls of complex rigid frames when
the members are subjected to axial load,

Before the method of moment distribution was developed,
rigld frame analysis presented a very difficult problem,
In brilding design it was the usual practice to use approx=
" imate formulas, necessitating very conservative assumptmons
for the sake of safety., Least work, slope deflection, and
other similar methods based on the principle of consistent
deformations, but neglectmng the secondary momentg due %o
axial load, were used when it was necessary to get a morse
accurate solutions These methods all involve the solution
of simultaneous equations, however, and when the degree of
redundancy is high, the number of equations involved ne~
cess1tates very tedious COmputatzons. As these methods
are too complex for practical use, it would hardly be worth
while to complicate them further by including the effects
of axial load. However, the development of moment’ distrl~
bution in the last few years has given a means of rig
building frame analysis that is 81mple enough to be prac—
ticable for complex as well as simple structures. If this
could bBe combined with Newell's equations, without an ex-
cessive sacrifice of simplicity, the result would be very
valuable to the aeronautical engineer. This thesgis is the
record of what is believed to be a satisfactory and prac-
tical solution of the problem of combining these two meth-
Qda of analys:». .

As the Newoll formulas have been used by aeronautical
enginecers for several years, it will be assumed that the
reader is fam111ar with their usei they will not be disg-
cussed here, The mothod of moment distribution is rela-
tively new, however, and there has been very little stand-

ardization of nomenclature and sign counvention., For this
reason a brief review of the‘baaic principles will be given.

Moment dlstrlbution was fipsh nresanted by Professor
Hardy Cross in an .article entifled "inalysis of Continuous
Frames by Distributing Fized~End Moments™, published in
the May 1930 issue of the Proceedings of the A+S.C.E, The
article has been reprinted, together with all the discus-
sion that followed as reference 2. Professor Cross has
also included a thorough discussion of the method im ref-
erence 3o ‘

.
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Considerable interest has been attracted by the sime
plicity of the method with the result that several arti-
¢les have been written for the purpose of presenting briefw-
ly its more important elements. A paper by Harry A. Wil-
liams (reference 4) presented as a thesis at Stanford Uni~
versity (later modified as reference 5), gives a very clear
presentation of the fundamental principles and includes
numerous examples that aid in understanding the application
of the method. A brief discussion is presented by E. F.
Bruhn (reference 6) in Aviation Engineering of March 1933,
None of these papers, however, considers the effect upon
the bending moments when axial load is present in the mem~

“bers of the frame.

The fundamental principle of the method of moment

‘distribution is the assumption that at first a fictitious

condition exists in the structure; this condition is then

‘modified, step by step, until the condition that actually
‘exists is reached. The initial fictitious condition is

that all the joints of the structure are rigidly fixed
against rotation, or "locked." In this condition the ex~
ternal loads create easily compubed bending moments at the
ends of each span that is transversely loaded. The alge-
braic sum of all these "fixed~end moments" at any joint
constitutes an unbalanced moment that tends to rotate that
Joint. Under the hypothetical assumption that all the
joints are "locked," however, no rotation actually takes
place., One of the joints is now assumed "unlocked" and
allowed to rotate under the influence of its unbalanced
moment until a resisting moment is built up that brings
the joint into equilibrium, The effect of this balancing
moment upon the stresses of the member is computed, and
the joint is "locked" again,

When a Jjoint is unlocked, there are two distinct efw

‘fects upon the structure. First a moment equal and oppo-

site to the unbalanced moment at the joint is added. Phys-
lically this moment is created by the resistance to rota-
tion of each member coming into the jointa Thus each memw
ber contributes a part of this resisting moment and, as

all the members rotate through the same angle, it has been
shown that the contribution of each member is directly
proportional to its "stiffness factor." TFor a member with
constant moment of inertia and without axial load this
stiffuess factor is equal to EI/L, .

The second effect of unlocking a Jjoint is the addi-
tion of a moment at the far end of sach member, Assuming
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positive moments as those acting on the end of a member in
a clockwige direction, the convention that will be used
throughout this paper, this moment is of the same. sign and
equal to the moment at the near end times a "carry-over
factor." TFor members with counstant moment of inertia and
no axial load, the carry-~over factor ig O4Be

The process of unlocking and locking the Joints, one
at a time, is continued until all the joints have been un-
locked, balanced, locked again, and the carry~over moments
recorded, 4s each joint is unlocked, the effect on the
bending moments of the structure i1s computed. It will now
be found that some of the joints that have been balanced
and relocked have become unbalanced again, due to the car-.
ry~over moments from other joints., The process must there-
fore be repeated, these joints being balanced again and
new carry-over moments recorded, This procedure is con-
tinued until the unbalanced moments and carry-over moments
are small enough to be neglected. If all the joints are
now unlocked simultaneously, the effect on the bending mo=
ments of the structure will be negligible. The moments at
the ends of the members, therefore, are the same as those
that would have existed if the structure had been allowed
to deflect directly, instead of step by steps These mo=
ments may be found by totaling the fixed~end moments, the
moments distridbuted to the member esach time the Joint was
unlocked, and the moments carried over to that end from the
other end of the member, It is not necessary to continue
the process until the unbalanced moments completely disap-
pear. The operations may be stopped and the moments to-
taled whenever the desired degree of accuracy, as indicat-
ed by the magnitude of the unbalanced moments, is reached.

. When axial load, either tension or compression, is
present in the members of a frame, the secondary moments
due to the combination of axlal load and deflection alter
~ the fundamental method of moment distridbution to no great~
er degree than the ordinary three~momen$ equation is modi-
fied in the extended equation. The distribution factors,
carry-over factors, and fixed~end moments, instead of being
congtant for a given member, become functlons of L/J.

The principal purpose of this thesis is to deVelop 8
method of rigid frame analysis that combines Newell's for-
mulas with the Hardy Cross method, and present it in a
form that may be easily used by the engineer. In so doing
‘the. following steps have been taken: :
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le The formulas for carry-over factor, stiffness
factor, and fixed~end moments in terms of
1/j Thave been derived.

2e A method of considering joint translation has
been developed.

3. Curves have been plotted to make the use of the
formulas practical.

4, Simple nmumerical examples have been given to il=~
lustrate the use of the curves and show hLow
the method may be used as a simplification of
the extended three~moment eguation. :

5« An example of an airplane fuselage, the members of
which are subjected to both transverse and ax-
ial loads, has been given to show how the methe-
od may be applled to complex structures that
heretofore have been 1mp0331ble to analyze ac-
curately.

When applying the method to an actual problem, the
first values that are used are the fixed-end moménts, next
the stiffness, or digtribution factors, of the members, and
finally the carry-over factors. It might seem more logical
to develop the formulas for these guantities in this order;
however, the derivations are simpler if they are treated in
the opposite order. This procedure should offer no confu-
sion to anyone familiar with the principles of moment dls~
tribution.

In the development of the formulas, the same general
methods of procedure are followed as were used by Profes-
sor Cross in his original derivations except that the efe
fect of axial load has been includeds

The writer wishes to express his thanks to Professor
A« B+ Niles for suggesting the subject and for his help~
ful advice and valuable assistance in the development of
the thesis,

CARRY-OVER FACTOR
Asgume a beam as showa in figure 1, rigidly supported

at B and pinned at A, A is free to rotate, but re-
strained from transverse motion. The axial load P is
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assumed as compression, With a given moment My applied

at A, it is desired to find the magunitude of the re-
sisting moment at 3B, Hy. -

This problem is most readily solved by the use of the
extended three=wnoment equatlon, Assume the beam conslsis
of two spang: The left span AB is of leangth I, and the
right span has zero length.* Then using the three~moment
equation: ' '

Loty 21, [%151-+.525;} b Yolale
' I Iz

=

I, 1
M, = My
M_ALC{, /I.vﬁ ‘\ ‘ ,
BT 4 o e = 0. -

7 2 ‘MB \ T + O/, + 0 C | j

or Mpa + 2 MpgB = 0 ' | ,

. Q ' ‘
lig = = 55 My | | (1)

It should be noted that all moments have been assumed
positive when causing compression in the upper fibers of
the beam., This is the sign convention used in the three~
moment eguation. As the convention used for momenit digtri-
bytion assumes that positive moments are those acting on a
beam in a clockwise direction, the sign of My is the same
for both systems. However, when Mp 1s positive in one
system, it is negative in the other. Hence using the mo-
ment distribution convention of signs, equation (1) bve-
comes?

o, _ ;
Uy = + 55 M4 (2)

et e vt sk e avay o s St

*It is demonstrated on page 62 of reference 1 that if one
end of a menber without axial load is rigidly fixed against
rotation, the moment at that end may be found by using the
three-moment equation, with zero length of one of the spans.
When axial load is present in the member, the same lime of
reasoning may be followed, showing that the extended three-
moment equation may be used to find the moment at the Ffixed
end. : - '
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Expressed in words, this equation states that when a
moment Mp is applied at A, a moment equal to (a/zp)MA
is built up at B. Thus the carry~over factor of a mem-
ber rotated at one end and rigidly supported at the other
is a/2B. This expression is plotted against I/J in
graph I, It is evident that when % = 0, the condition

when no axial load exists, the carry-over factor is 0.5,
agreelng with the usual factor of the Hardy Cross method.

When the axial load is teunsion, the carry-over face
tor becomes an/2By, which should be appareant from the
sinilarity of the three~moment equations for compression
and tension., The derivation is similar to that for com~
pression, the hyperbolie functions being substituted for
the circular. The derivation is given in the Appendix,
and the equation is plotted in graph I along with the
curve for compression,

In the Appendix is given a seocond proof of equation
(2)« Instead of using the extended three~moment equation,
the more basic principle of moment areas is employed.

STIFFNESS FACTOR

In the last section it has been shown that My =
- (a/ZB)MA, using the sign convention of the precise equa-
tions as given in reference 1. Considering positive rota-
tions as clockwise, the angle through which point A ro~
tates 1s the negative of the slope at 4 as given by for-
mula on page 201 of reference l. :

. .GA S 5 - I cos 7 + —— sin T
L j sin 3 o3 J
where M, = My
M, = M=~ %M
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B T T T L
6 _ .1 (=3 ; Ma-ia L b A €os 3
AT P L L
- J sin 3
L aj
a = S5+ 3
DTS I R - B
T By 2P J

From the equations on page R12 of reference 1, the

valves of cot % and csc % have been found in terms of

a and £ and substituted in this expression, givingi

'MA Laa . jza ja Ls aja ja
6y = = =73 + do e = e e e
Pj% | 128  2BL % 3  2PL L

MpL o |
= T B - o
3EI 4P

!

U 3EI Oy ” é I 38

O r = ""'"'—"‘""'—'--—--—:;u poend 4 — <«-.._<..---_——-....... }

A L(p - & Ay ag® - o/
48

When a joint of a rigid structure is rotated, all tHe
members coming into the joint rotate through the same an-
gle., Hence . 0y 1is the same for all the members. Assum-

ing homogenelity of material, E isg also the same for all
members, Hence the moment required to rotate a joint is
divided among all the members in proportion to the X  val=
unes of each member, where :

' I BB\ '
; 38 . | B gt g fof
The expression ZE?—~5~~ will be called the "gtiff-

ness-factor coefficient’ and is plotted against L/j in
graph II., To find the stiffness factor for a given member,
debtermine the coefficient for the appropriate wvalue of

L/j from the curve and multiply by I/L of the member.

Whexn ? = 0, the condition of no axial load, the coeffi-

cient is 1.0, giving a stiffness factor of I/L.
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In case a joint of a structure is pinned, and it is
thus known that the final moment at the ends of all nem-
bers Jjoining there must equal zero, it is a waste of time
to alternately lock and unlock the Jjoint. A4 more direct
method is to treat this type of member as a special case,
unlocking it after the first cycle and leaving it unlocked
thereafter. (Unless the membér has no fixzed-end moments,
it must be considered locked during the first cyecle, or the
fixed~end moment formulas would have to be modified, a com~
plication that is not Justified.) :

‘ Once a pinned joint is unlocked and left unlocked, it
need not be considered further in the computations, as it
is balanced, and no moments can be carried over to it, for
it is 1ncapable of developing a resisting moment when the
far end is rotated. This means that when one end of a
member is pinned, the carry~over factor to that pinned
Joint is zero. ,

It requires a smaller moment to rotate one end of a
member through a given angle if the far end of that member
is pinned than if it is fixed. Hence the stiffness factor
of a member with one end pinned is less than it would be
if that end were fixed. Conseguently, the formula for
stiffness factor (equation (3)) does not apply when one
end of the beam is pinned, and a different formula must be
developed. When finding the value of By in the deriva-
tion of equation (3), it was assumed that the far end of
the member B was rigidly supported, and hence that

My = 23 Mps In case the far end is pinned, My =0

and the derivation is accordingly modified:

1 : 3
O == S |- At ————di=w A oot 2~ &
- F L j sin 2 Fj J L
J _ .
JUatd LB g _ Mp LP
P I 33T L 31
MA. = 4:E ‘9A % Z-:ZE

The term 4E 8y is the same for all members coming

into the joint, whether fized or pinned at the far end,
and so the stiffness factor of a member whose far end is
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pinned becomes:

3
(\Z (4)

B
\\/

The coefficlent 45 has been nlotted in graph 11
along w1th the coefficient of members w1tn the far end

" fixed, TWhen 0, Bp=1 and 8 é, g1V1ng ‘a stiffe

4B

ness factor of % bd %, which agrees with the factor used

i}

Cajtt

for this type of member when axial load is neglected.

When tle axial load is tension, the derivation of the
formulag is similar, the only difference beilng the substi-
tution of the hyperbolic functions for the circular. The
stiffness factors for the twe cases are therefore:

1 . 3B ‘
<*~~~~~E~~"> for far-end rigid, (5)
4ﬁh - dp .
and .
. = L7 3.0 - ond ‘ . (g
P L \Zpy/ for far-end pinned . (6)

These expressions have also been plotted in graph II.

In the Appendix the formulas for stiffness factor are
derived by the method of moment-areas. As a further check
the special case of a two-span beam rigidly supported at
both ends and free to rotate at the center support, with
an external moment applied at the center support, is solved
by the extended three-moment equation, Solving for the di-
vision of moment between the two spans gives the same fore
mulas ag derived above,

FIXED~END MOMENTS

A fized~end moment is the moment that cxlsts at the
ends of a loaded member when those ends are rigidly fixzed
against rotation, The most imporbtant loading conditions
are: uniformly distributed leoad over all or part of the
span, uniformly varying load, and a concentrated load at
any. point on the span. The formulas for these conditions
are developed in this paper and, as the principle of super-
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position applies,* the fixed~end moments due to any combiwm
nation of these loads may be found by adding the moments
due to the separate loads.

The extended three-moment equation is used in derlv~
ing the equations for fixed~end moments. A beam of three
spans is considered, the two end spans being of zero length,
and the eguations solved for the moments over the two inner
supports. These moments are the desired fixedeend moments.

In case the axial load is tension, the derivation of
the formulas is parallel to that for compression.  The on-
ly difference is the use of the hyperbolic rather than the
circular functions. The resulting formulas are the same
as those for compression except that sin L/J, cos L/j,
tan L/J, etc. are changed to sinh L/J, cosh /3, tanh L/J,
etce, and a, B, and Yy are changed to =0y, =By, and -vy,

respectively.**

In all cases the curve for fixed-end moment when the
axial load is tension has been plotted either on the same
sheet as the curve for axial compression or on the next
following sheetbe '

*It is shown on pages 199 and 209 of referemce 1 that, as
long as the axial load remains constant, the total moment
at any point on a beam is given by adding the separate mo-
ments of all the individual transverse loads on the beam.
It is only when the axial load is varied that the principle

of superposition does not apply. ‘
6(% csch % - 1)

dJ
(L_\? ’
_ : v J/
may be seen that this formula is the same as that for o
as given on page 212 of reference 1 except that csc L/
has been chaanged %o csch-L/j, and the formula preceded
by & minung sign, Conseguently, in substituvting for o in
any formula when changing to the hyperbolic form, it is
~necessary to use ~Q,. The same is true of the formulas

*¥*The formula for ap 1s: ap = It

for By and vyy.
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. PIXED-END MOMENTS FOR A UNIFORM LOAD_OVER'ENTIBElSPANA

Ia figure 2 is shown a beam rigidly supported at A
and B and sudjocted to a uniformly distributed load of
w pound per inch. The extended thres-moment equation for
gpans 1l=2 and 2-3 is:

'TL§_EL + 23U 'Llﬁl + L252> + toko O :‘ng T2
I, 2 I, I, Is - 4ls
where Mi' = M, =0
| M, = i,
My = iy
L, = Ly =0
1, = L
I, = 1

this becones

24y LB - Hp ILa = E%fz

Similarly, using spans 2~3 and 3~4:
‘ 3
wl™ vy
Mp Lo - 2y L,B = “'Zl:-*"*-
Solving tﬁese two simultaneouns equatlons.

F . : wiR
AT T (a/vy (28 + a)

The expression [(4/y) (2f + «)l Thas been plotted
against L/J in graph III. To determine the fixed-end -
moments for a given beam with uniformly distributed load
of w pound per inch, divide wL® Dby the coefficient
found in graph 1IT. When w is an up load, the 1eft’hand
moment My will be ‘positive and the right~-hand moment Kp

will be negative.
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It is apparent from the curve that when % = 0, the

coefficient [(4/y) (28 + a)] = 12, Thus the fixed~end

moments are equal to wl®/12, which is the formula used
when azial load is neglected,

EXAMPLE

‘Before proceeding to the derivation of the other
fixed~end moment formulas, 1t secems advisable to give an
example showing the application of the formulas already
developed, ’ ' '

A symmetrical, three~support, continuvous beam with
‘cantilever overhangs will be usede A drawing of the beam
with a uniformly distributed load of 10 pounds per inch
is shown in figure 3. An axial load_of compression is as-
sumed to be of such magnitude that % = 2,5 for each of

the spans BC and CD,

[

‘The first step is to compute the fixed~end moments.
Mrpp, 1s the moment created by the cantilever overhangs.
: 2 2
This moment is equal to Wg = 10(30) = 4500. As the
load is an up load, a counterclockwise moment at B 1is
necessary to prevent rotation of AB., Hence the sign is
negative, and MFBA = = 4500 in.~1b, Similarly,

MFDE = 4500 in.,~1b.

From the compression curve of graph III, it is seen

that the fixed-end moment coefficient for 3 = 2.5 1is

egual to 10.69. Hence the fixed~end moments are:

" wl® _ 10(100)%
Fep = © 10. 69

= I’ﬁFDc 2 e 9,555 in.~1lb,

Next the stiffness factors must be computed. As AB
ls a cantilever, My, can never have any value excep? '

~4,500, Hence any unbalanced momeant at joint 3B must be
resisted entirely by B0, That is, the stiffness factor
of AB = 0. Similarly, the stiffness factor of DE 1is
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.also zero. Owing to the symmetry of the beam, it ig un-
necessary to compute the stiffness factors of BC and

CD, " as they are obviously equal, aid any unbalanced mo~
ment at © will be divided equally between CB and CD.

From graph I it is-found that the carry~over'factor
of BC or CD is equal to 0,73l. TFor conveaience, this
is entered in figure 4 at the center of each span.

The values of fixed~end moments are now written di-
rectly below the beam, as in figure 4. It is apparent
that there is an unbalanced moment of 9,355 ~ 4,500 =
4,855 in.~1b. at joint B and one of ~4,855 in.~1lb, at
Joint D. TUnlocking Jjoint B first, it ies necessary to
add a balancing moment of ~4,855 in.~1b. This moment is .
all distributed t0 BC, as the stiffness factor of AB 1is
zeros« 4 line is drawn under the ~4,855 to- indicate that
the Jjoint is in balance. The carry-over moment of Jjoin%d
C may be recorded now, or this step may be delayed until
after joints € and D have been balanced, and then all of
the carry~over moments recorded at once. The latbter meth-
0d is usually the simpler. Consequently, joint C is bale
anced next, As there is no unbalanced moment at this Jjoint,
the balancing moments will be zero. Joint D is next bal-
anced, a moment of 4,855 in.~1Db., being distributed to CD
and Q0 in.~lb. to DE,.

All the joints are now in balance, except for the
carry-over moments, which should now be recorded. The
m4,855 in.=1b, distributed to BC 1ig carried over as
“4,855 X 0,731 = «3,549 in.=1bes to C, Similarly 3,549
~in.=1lbe are carried from D %o C, The carry-over mo=

nents from ¢ to0o B and from C to D are zero, as 10
moment was distributed at joint C.

, 4s the carry~over moments to Jjoint € were equal and
opposite, and as no moments were added to joints B or D,
all the joints are gtill in Dbalance. All three joints may
now be unlocked simultansously without any effect upon the
structure, ag there are no unbalanced moments at any Jjoint.
The structure is therefore in equilibrium without the ne-
cessity of any hypothetically locked joints, and the mo-
ments at the ends of the members may be found by totaling:

i

MpA -4,500

49,355 =» 4,855 = 4,500 in.-1h,

il

MBO
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i
it

-9,355 ~ 3,549 ~12,904 in.~lb.

Mo

il

+9,355 + 3,549

i

MCD 12,904 ine-lDe

Mpg = ~9,B55 + 4,855 = ~4,500 in,-1b.

i1

Mpg = +4,500 in.-1b,

The extended three-moment equation gives a wvalue for

FIXED-END MOMENTS FOR A UNIFORM VARYING LOAD
A vwniformly varying load is shown in figure 5. Ths
three~moment equations for this loading are:
- 21y LB - Up La = wi®L (a - 1)
i, My La - 2p I = 2wi’L (B ~ 1)

. Solving these for My and Mgt

a = (2 T =

-

Yp = =~ :
| B Exe 452 _ a? _ 1
3/ | 4f® - o® + a - 4p]

The denominators of the right-hand side of these egua-
tions are plotted in graph IV. The corresponding coeffi-
cients for axial tension are given in graph V.

. If the maximum load is at the left end of the beam,’
- the formulas for H¥p and My are reversed numerically,
although in all cases the lefi~hand moment is positive and
the right hand negative under positive loads. '
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PIXED-END MOMEXTS FOR A coNcEﬁmRATED'LOAD AT MIDSPAN

The loading is shown in figure 6. The three-moment
equations for this loading are:

pmo
-

sin =-

2Rl
e

gsin =

L.. o !

-

2My LR - Mp Ia

i
(o7}
=4

e,

., L
T
2

li
o
=
c
£

i, Lo - 2¥p LP

L _

Solviang for N, and Mg:

:I = e I¢E‘ = taad
. SORNEAS
\

St

The denominator of the right-hand side of this ex~
pression has been plotted in graph VI.

FIXED-END MOMENTS FOR A

CONCENTRATED LOAD AT ANY POINT OW THE SPAX

The dimensions are shown in figure 7. The three~no-
ment equations for this type of load are:

i
L : | §sin_3 B
Rily LB - Uy La = S RS =
‘ Lsin

Coae fEH

gin
- .5

fﬁA Lo -~ BMB LB == SWJ 2, --4.‘_.--....
sin
L -

@

[ [i:'i j&n |

Solving for M, and Hgp:
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r ;
, | sin 2 L sin & L
>6WL 125 (/ ....... "P_ -_.‘-f'_ - E\ - (-.-.._._E_.'.J_ — ?‘.\)
‘ N ogin % L/ sin L L/
" L dJ J
4= /T\f 2 2
¥) (4B - )
- .. b L : .. a L
sin = = : sin = =
L b\ Ly _a
6WL 1 & <~-~~f:~ - =)= 2B ( ~~~~~ I f
gin = 4 - gin = :
i J J J
.HB = )
(B (48® - P
G, (48 )
When = 0.5, these equations reduce to those given

ot D

for the particular case of the load at midspan.

In order to use a larger scale amd hence improve the

accuracy of the readings, the expressions for My and Mg
have Dbeen plotted as the ratio of M and Mz to the
fixed—end moments that would exist at A and B respec-

tively if the axial load were gzero.

When there is no axial load, the formulas for fixed-
end moment for this type of loading are:

2
Y, = 2’ (BN
A L QL/ L/
2
= w 7T (& b
Mp, = = WL (L> (L>‘

The curves of graph VII give the ratio Gy = My/Mp .

Ca 1is plotted against a/L, a Dbeing the distance from
the left end of the beam to the load. Curves are drawn
for several values of 1L/j. In order to find My, the
value of Cy must be interpolated between the curves.
Straight~line interpolation will give a maximum error of
less than 2 percent, and in most instances the error will

be less than 1 percent. If greater accuracy than this is
necessary, the formulas may be used.
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Then © has been found, My may be found by the
expression: : _

2
b = W .‘i’.\ /E\\‘
M= (5) (5) o

To find the value of Mgy, wuse the same curves but

read the value of the coefficient for Db/L rather than
a/lL as before. Call this coefficient = Cp.

' 2
e e Qe

For convenience in finding the values of Mp and Hp
after the coefficients O and Cpy have been determined,

2 2
a curve of %} (%) hags been plotted against a/L in

graph VIII., To find the value of (a/L)a(b/L), use the
same curve but read the value for b/L rather than a/lL
as before,

For example, suppose it is desired to find the fixed-
end moments for a deam 100 inches lonz loaded with 1,000
pounds at a point 70 inches from the left end of the beanm.
The beam is shown in figure 8. IL/J is assumed to be 3.8
in compression. ~

8 ...7_9.. = o7
I 100 OA
b . 30 o
I 100 0.3
From graph VII at % = 0,7
6y = 1.625 - —10208 (4 gzs 4 :
’ A - . ad 4:.0 - 3‘5 ‘ 06 5 - 10 06) = 1.537
o \ b€ ' ,
& vox & -~ - 53
From graph VIII at 2 0.7, (&) (L/ 0.083:

+ « My = 1,000 X 100 X 0,063 X 14537 = 9,670 4n.~1b,
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From graph VII at % = Q432
| _ 0.2 o
Cg = 1.389 - 0.5 (1.389 -~ 1.,260) = 1,337
[ ]
2
From graph VIII at % = 0.3, <%> (%) =

e o Mp = = 1,000 X 1,000 X 04147 X 14337 = ~ 19,640 in.-1lb,
FIXED-END MOMENTS FOR A UNIFORM LOAD OVER PART OF SPAY

‘The loading 4is shown in figure 9. The three-moment
equations are: '

- »
2 |bp® - 1° cos & - 1 a
.. tan =
d
o . h
23 (1 ~ cos %\]
o .2 a? i/
IJALCL - ZMBLﬁ = 3wJ - i——- 4 2 !
' sin T i
. d o
Solving for Mp and Mp:
| o - a L. 2 gin 2 L
: 3W. [\COS L 3 1] sin L‘j.l
Yy = 77 5{ +
Ly (4B°-a Logan 2 L g
a/ J 3 3
2 [1 - (cos 2%
J

Can it {14 4D
o=y
1
T
. ~—»
-
~




=0

LE e
U

end moments for this

Cp =

several wvalues of 1/j.
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z_é)_ i, 2L
- {(b) (cos T3 1] +.2 sin = T
¥ (o) O L yon L Lo
J/ g 7 d
2 [1'— (cos & 5}]
- 28 Lil @)}
L gin % /
J o

When there is no axial load,

the formulas for fixed~

w2 2 T a s 21

My =% ) 6 -8 2%+ 3 (%) |
2|

g = o M2 ra\ i, a @) -

U, = = 12 ) Fz 5 (& P

type of loading are:

The curves of graphs IX and X give the ratios

MA/MAO and Cg = J3/M

plotted against

s/l for

The curves are plotted from

a/lL = 0 to a/L = 0.5. To find the fixed-end moments
a/TL is greater than 0.5, find the fixed-end moments
for a uniform load over the entire span and subtract the
fixed~end moments that would be caused by a load over the
part of the span that is not loaded.

when

CBO

10,

10 pounds per inch for a 4i

For convenience in computation, curves of CAo and
have been plotted in graph VIII

As an example, suppose it is desired to find the
fixed~end moments of a beam such as that shown in figure
The span is 100 inches| and is loaded uniformly with

assumed -at 345 in compressipn.

load

IIL.

stance of 70 inches.

/5 is

First find the fixed-end moments due ito a'positive
of 10 pounds per inch uniformly distributed over the
- entire span. This moment ipg found by the use of graph
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2 2
My = - My = T - 1oé122) = 10,980 in.-1b.

N Next find the fixed-end moments due to a gggggizg
load of 10 pounds per inch extending over the 30 inches
from € to Be. In this case the load is on the right
side of the bean, whereas the curves of graphs IX and X
apply to loads extending out from the left side. EHence,
the curves must be reversed and Oy wused in finding MNj
and €y in finding M.

From graph IX we find for 2 = 0.03:
= 3.6 = 3.5 - =
Cp = 1.171 + 27202 (1,255 - 1. 171) = 1,187
‘ From graph VIIT at &= 0.3, 0y = 0.0290

+10(100) X0.0290X1.187 = 3,440 in.-1b.

It

Uz = ~ WI? Oy Oy

From graph X for = 0.3, #e find:

+ o

O (1 613 = 14398) = 1439

. Op = 1.396 + o*

From graph 8 for %, = 043, CBQ = 00,0070
iy = + wi? ¢y, Cp = ~10(100)X0,0070X1+439 = = 1,007 in.-1lb.

The net moments at A and 3B due to the load of 10
pounds per inch extending over 70 percent of the span are:

¥p = +10,980 ~ 1,007 = +9,973 in.-1lD.
Mg = -10,980 + 3,440 = =7,540 in.-1bd.
. SECOND EXAMPLE OF CONTINUOUS BEAM ANALYSIS

. Figure 11 shows the left half of a bheam that rests
on five supports. The beam and loads are symmetrical.
about support D. It is assumed that there is axial com~
pression im B0 and €D giving %L = 3 for both these .

members. The value of I is constant for the entire bean.
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Joint D may be assumed rigidly f1xed azainst rotation -
and never unlocked, as any fixzed-end moment or moment be- : .
ing carried to it is always exactly balanced by the symmet~

rical moment on the other half of the beam. Hence there T

is never any unbalanced moment at D, and no need to un—
lock 1%.,‘

In this problem the work hag been carried to much
greater accuracy than necessary in order to show the agree~
ment with the extended three-~moment equation. ‘The values
of stiffness factor, carry-over factor, and fixed—end mo-
ments have been taken from the tables, where they may be
obtained with more pr601810n than can be read from the
CUrves.

From graph I or table B, the carry-over factor for ‘

? = 3 1is found to be 0.91893. From graph II or table 3,

the stiffness factor of BC, which has a pinned end at B, '
is found to be 0.10206 and that for D is 0,65605. -
Hence any unbslanced moment at ¢ will be distributed O

0410206/(0.10206 + 0,65605) = 13,462 percent to BC and
86.538 percent to CD.

The fixed—end moments are found as follows:

gy, = +50 X 100 = +5,000 in.~1b.
MFBC = =500 X 80 X 04144 X 1.2185 = =5,989.8 in.-1lb.
My, = *+500 X 80 X 0.096 X 1.2590 = +4,854.6 in.~1b,
- 10(80) "% - 1.
Mp o= = 22080 o -
i o T 2,605.9 in.-1lb.

10(80)2 _

M = £ 91 g :

The operations involved in unlocking and locking the
joints are indicated in figure 1l2. First the fixed~end )
moments are recorded as shown. Next joint B 1s balanced
by adding 1,989.8 in.—~1lb, to BC, as the stiffness factor
of the cantilever is zero. The moment of 1,989.8X0.91893=
1,828,5 in.~1b, is immediately carried over to C. Joint C
now has an unbalanced moment of 4,834.6+1,828,5-2,608.9 =
4,05%7,2 in.~1b, This moment is balanced by a mement of
=4,057,2 in.~1lb, distributed te CB and OCD; =~4,057,2X
0413462 = ~54642 in,=lbs to CB and the remainder,
~%,511,0 in.-1ib, to 6D, As BC 1is pinned at B, no no~-
ment is carried over teo B, However, -~3,511,0%X0,91893 =
-3,22644 in.~=lb., must be carried over to D. All the
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joints are now in balance, Jjoint D TDbeing balanced by the
equal and opposite moments from the other half of the beam,
and the moments at any Jjoint may be found Dby totalinge.

Con51der1ng bending mouments positive when the upper
fibers are in compression, My =« 5,000 in.~1lba., Mg =

- 6 11649 ine=1lb,, and Mpy = = 522, 4 iDe=lbe A solution

by the extended three-moment equation gives values of
~5,000, -6,116.8, and =522.5 in,~1b. for My, Mas, and MNp,

respectively,

THIRD CONTINUOUS BEAM EXAMPLE

When an unsymmetrical beam of four or more supports,
or a symmetrical beam of six or more supporis, or a rigid
frame of three or more members is analyzed, the moments
do not become zero after the first cycle, as in the exam-
ple of figure 11, but the process must be repeated until
the unbalanced moments are small enough to nerlect.

gure 13 shows half of a symmetrical veam resting
on sever supports and loaded at the end qf the cantilever
so that the moment at 4 = 1,000 in.-1b., the top fibers
being in tension. The spans are egqual in length and the
moment of inertia is constant throughout. Axial compres-

[rd

sion is assumed of such value that .% = 3 for AB, BC,.

and CD.e This beam, without axial 1ogd has been analyzed
in references 4 and 5, and the results will be compared
with those that include axial load to show the importance
of secondary moments in continuous beams subjected to high
compressive loads. A solution of this problem Dby the ex-
tended thrée-moment equation requires the solution of Lhree
slmultaneous equationse.

The carry-over factor is 0.9189 for all spans, found
from graph I or table B, The stiffness facter of AB is
found from the "far~end pinned" curve of graph II or tabdle
B and is equal to 0.10206. The stiffness factors of BC
and CD are found from the "far—end restralned" curve of
graph II or table B and are both equal to O. 65605, At 3B
the distribution factors are 0,10206/(0.10206 + 0.65605)
13.46 percent to BA and 83.54 percent to BC. At C
the distribution factors are 50 percent to each members
These are designated by the symbol D and are recorded at
the joints in a space provided as shown in flgure 14, The
carry-over factors are indicated by the symbol C and are

it
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written at the center of each member as shown. The only
fixed~end moment is at the cantilever and is egqual. to
l,OOQ inl“lb. ' A

Joint A 4is balanced first, —-1,000 in.~1h. being
added to AB, and ~1,000 X 0.9189 = ~918.9 in.,~1ldb. car—
ried over to B.  This leaves an unbalanced moment at 3
which is balanced by 918.9 in,-1b, distributed  918.9 X
13.46 percent = 123.7 ine-1b. to BA and 795.2 in.-1D.
to BC. As 4 is a pinned joint, no moment can be car-
ried over to it, but 795.2 X 049189 = 730+6 in.~1b. must
be carried over to C. This unbalanced moment at C is
balanced by ~365¢3 ine~lb. to both ¢B and CD., COCarry-
over moments o0f ~365,3 X 0,9189 = ~335,7 in.~1lb. are re-
corded at B and D. '

The moment at joint D 4is balanced by the similar
moment from the other half of the beam, but it must be
noticed that joint B is no longer in balance, having had
~335.7 in.~1lb. carried over to it since it was balanced.
This moment must therefore be balanced, the balancing mo-
ment distributed to¢ BA and BC, the proper mnoments car-
ried over, and the process continued until the desired ac~
curacy is reached. Figure 14 shows the computations car-
ried through nine cycles, and the totals are indicated.
The total after nine more cycles is also recorded, and the
values given by the extended three—~moment equation are
given as a check, The values when axial load is neglected,
as given by Williams' results, are also recorded. It
should be noted that all the moments except that at the
cantilever are many times as large when axial load is con-
sidered as when it is neglected. The reason for this dif-
ference is that a high value of IL/Jj. was used. If a low
value of _L/j, say 1.0 or 1.5, had been used, the agree-
ment between the two methods would have been much better,

EFFECT OF JOINT TRANSLATION

_ There are two types of joint translation that will De
congidered in thig paper. In the first type the amount of
translation is known, as on a conbtinuous beam with a known
or assumed deflection of oune or more of the gupports, In
the second type the amount of translation is unknown bub
the total shear on a given section is known, as ou a rec-
tangular bent subjected to side loads.. -
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When the amount of deflection is known, formulas for
considering the effect of the deflection upon the moments
of the structure may be derived by the extended three~
moment equation. When the amount of deflection is unknown,
a method that was developed by Professor Clyde T. Morris
of Ohio State University (reference 7), for the case when
axial load is neglected, is modified to include the effect
of axial load. -

JOINT TRANSLATION -~ AMOUNT OF TRANSLATION KNOWN

The translation of one or more Jjoeints of a rigid
structure modifies the bending momeunts throughout. In
both the basic and extended three-moment eguation the ef-
fect of translation of one or more of the supports is de-
Yermined by adding deflection terms to the load terms of
the equation. These deflection terms are the same whether
the basic or extended equation is used. ’

In moment-~distribution analysis, deflection of the
joints ereates additional fixed~end moments. Figure 15
shows a beam rigidly supported at both ends. B 1is de-
flected an amount § above 4, I%t is desgired to find
the moments M, and Mg that oxist at the ends of the

‘bean. The extended three-moment equation for spans 1-2.
and 2-3 is: ' ' ' ‘

%L££§£_+q ’Llﬁ14‘L252>A_M3Leaé-_ GE(Yl"Va)_+GE(Ys"Yz)
~ - R
I;. 2 K Iy Iz I ' L: Lo
Where

M, = M, =0

MS = M,A.

Ma = “MB

I, = Ly =0

this becomes:

2MpLB  Mgla  6ES
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éimilarly; using spans:2~8‘and Bmdy

VALG ?MBLB 688

p . T e N R S ORI

I I L

Solving for M and Mp:

= e - GESI 1
Ha = p (36 -9
or
. - BEE R
My = MB 287~ o
where | X = % and R = %

then R 1s positive when the deflection is such that the
member is rotated in a clockwise direction from its orig-
inal location. The fixed-end moments due to joint -deflec—
tion have the same sign at both ends of the span, both
having the sign opposite to that of R. The guantity

2B.~ a . in egquation (7) is a. functlor of L/J and has
been plotted in graph XI.

EXAMPLE OF CONTINUOUS BEAY WITH DEFLECTION OF SUPPORTS

Figure 11 shows the left half of a symmetrical con-
tinuous beam resting on five supports., This problem was
previously analyzed assuning no deflection of the supporis.
This same beam will now be considered assuming that sup-
port C© deflects 0.8 inch downward. I 1is constant at
0.2 ins, ¥ = 29,000,000 1b./sqe.in., and L/j 1is assumed
equal to 3.0, as before, - .

X = % = %3§ = 0.0025 for both BC and CD. As the

deflection of joint C tends to rotate BC in a clockwise




and CD in a counterclockwise direction. Rpg = &= 328 =

0.01 and BRyp = - 0.0l. The fixed-end moments due to de-

flection of C are therefore'

= _ . BEER _ _ 8XO. oozaxzsooooooio 0L _ _ mprq.
Mpo = Mrgp = " Shon ‘ 22000 3650.9
¥4 = ) = 36b0.9 ino"'lbu )

M
Fop

In figure 16 these moments have been added below the
fixed~end moments caused by the loads. The remainder of
the solution is similar to that when there is no deflec—
tion of the supports, and is recorded in figure 16, The
vending moment at € is found to be 5,369.3 in.~1lbe and
that at D, 1,505,4 in.—1lb., both with the lower fibers
in compression. The extended three-moment equation also

. gives values of 5,369.3 and 1,505.,4 1n.~lb. for the moments
“at C, and D, respectlvely.

SECONDARY MOMEXWTS IN TRUSSES ﬁUE 70 JOINT TRANSLATION

Then a rigid joint truss is subjected to a system of
external loads, the individual members are stressed by ax-
ial tension or compression. As a result, each member is
elongated or shortened by an amount equal to PL/AE. This
change in length of the members causes ‘the displacement of
the joints of the structure, with the result that bending
moments are developed at the ends of the members. The val~-
une of R for each member can be determined by the use of
a Williot Aiagram or %the cotangent formulas as explained
in Ar%, 11-3 of reference 8. With R Xknown, the fixed-
end moments of each member can be found by the use of egua~
tion (7). These fixed-end moments can be balanced and dis-
tributed in the wusual manner until the desired degree of
aceuracy of the secondary moments 1s obtained.,

An example of this type of analyszs without consider—
ing the effect of axial load, except for determining the
change in length of each member, is given in Thompson and
Cutler's discussion of Profesgor Cross' paper. (See ref-
erence 2.) The method is the same if axial load is con-
sidered except that graphs I to XI would be used in deter-
aining the various factors and fixed—-end moments.
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THE-RHG JGULAR BEUT

.~ Figure 17 shows a single-story rectangular bent sub-
jected to0 a side 1load Se. If the two colunns are congide
ered free bodies, they are acted on by axial loads, shears,
and end monments, as shown in figure 18, Part of the side
load S is carried as shear in column 4B and the rest
in column CP. Hence S; + S = S. Taking moments adout
A ' ’ -

Mpg 4+ Mpp + Mpp + Mpg = S;h - Szh = 0

or . - ZM = h(s,; + S5) = Sh

This is known as the "bent equation" and states that
the sum of the moments at the top and botitom of the columns
of a story is equal to the shear on the story times the
story height., This is an equation of equilibrium that
mitst be satisfied in the analysis of 2ll rectangular bents,
The eguation is valid for a bent of any number of columns
and for any story of a multistory bent. In all cases the
load § 1is the total shear on the story under considera-
tion.,

In order to analyze a rectangular bent by moment dis-
tribution it is first assumed that the horizontal beanms
are infinitely stiff. In this condition the structure is
allowed to deflect laterally until the sum of the regist-
ing moments at the ends of the columns becomes equal to

the nroduct of the ghear and the story helght,

Ir order to determine the effect of the deflection
it is necessary to know how the resisting moments are di-
vided among the columns. As the columns are connected by
rigid horizontal beans, the deflections of all the coluumns
are equal."(The change in length of the horizontal beams
due to axial load is negligible when compared with the de~-
flection of the columns due to bending.) With the hori-
zontal beams assunmed 1nf1n1telv stiff, equation (7) may Dbe
applied to find the moments at the ends of the columns
caused by the deflectlon. This gives:

Uyop = Mpotbon = For>——y for each colum.

As R, L. and § are the same for all columng, the
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resistlng momenu-ﬁg seen to be divided in proportion to
1/(2B - a). Therefore, the first step in the analysis of
a rectangular bent is to divide the equilibrant of the
story moment along the columns of each story in proportion
to the value of I/(28 - a) for each column. These bal-
ancing moments are divided equally between the top and
bottom of each column,

This division of moments satisfies the bent equation
but leaves unbalanced moments at the joints of the struc-
ture. If there are ‘any loads between panel points, the
fixed-end moments caused by these also contribute to the .
unbalanced moments at the joints., In order to equilidbrate
the unbalanced moments it is necessary to assume that the
horizontal beams lose their infinite rigidity and allow
the joints to rotate until sufficient resisting moments
are created. The balancing moments are digstributed in
proportion to the distribution factors of the members, and
noments are carried over to the far ends of the members.
During this step it is necessary to assume that the joints
are restrained from translation in order that the expres=—
siong for distribution and carry-over factors may be ap-
pliede &After these balancing and carry-over moments are
applied, the bent eqaatlon is no longer satisfied.. There-
fore, the horizontal beanms are again assumed infinitely
gtiff and the siructure again allowed to deflect until the
vent equation is again satisfied., The operations are con-
tinued until the error in the bent equation and the un-
balanced moments at the JOlnts are small enough to neg-
lGCﬁc

EXAMPLE OF SINGLE~STORY RECTANGULAR BENT

 Figure 19 shows a single-story rectangular bent sub-
Jected to a side load, The dimengions are given in the
figure. IAB = ICD = ZIBC‘ It is assumed that L/j =0

for BG and CD and L/J = 2.5 for column AB. Al-
though the side load will put axial compression in AB
and BC and tension in DC, the exact amounts of these
loads are unknown until the moments at the ends of the
coluuns are determined, In the usual caseé the amounts of
these axial loads are negligible, the only axial loads of
large magnitude being due to vertical loads on the bent.
However, for accurate analysis the structure may be ana-
lyzed a second time, using the moments found in the first
analysisg to correct the axial loads in the columns. The
problem given here ig to be considered merely as an exXam-
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ple to illustrate the use of the system and not as illusgé
trative of conditionsg that might be met in actual design.

As I ig the same for both columns, the story moment
equilibrant is divided between the columns in inverse pro-
portien to 28 - a. The value of .20 - 0 may be read
from graph XI, It is found that

Hagm ¢ MCD = 1 3 1.123

That is, 1/(1 + 1.23) = 47.2 percent of the story
moment is resisted by moments at the ends of AB and 52.8
percent by moments at the ends of CD. As the moments at
the top and bottom of each column are equal, the equili-.
brant of the story moment is divided 23,6 percent to the
top and 23.6 percent %o the bottom of AB and 264 per-
cent to ‘the. top and 26,4 perceant to the bottom of CD.

The shear load is 180 pounds and the story height =20
feet; therefore the story moment is ~180 X 20 = -~ 3,600
1be=~ft, The equilibrant of this, 3,600 1lD.~-ft., 1is di-
vided 3,600 X 23.6 percent = 850 1lbe.~ft. to the top and
850 lbe~fte to the bottom of AB. Similarly 3,600 X 26.4
percent = 950 1lb.-ft. is dlstrlbuted to the top and 950
1b.~ft. to the bottom of CD,

"his leaves an unbalanced moment of 850 1b.~ft. at
joint B and 950 1lb.~ft. at joint C. DBefore these can
be balanced, the distridution factors of the members must
be determined. I/L is coastant for all the members, so
the distribution factors are proportional to the coeffi-
cients found in graph II. These coefficients are 1.00
for BC and ©D and 0.772 for AB. Therefore the dig-
trivution factors for Jjoint 3B are 0.772/1+ 0.772) =
43,5 percent for AB and 56.5 percent for BC. 4t joint
¢ the distribution factors are 50 percent for each of the
nembers. The carry~over factors of 0.5 for BC and -CD
and 0.731 for AB are found in graph I. o

- The balancing moments at B are therefore -850 X 4%.5

percent = ~370 lbe=ft. to BA and =850 X 5645 = ~480
1be=fts to BC. At C the balancing moments ate ~950 X
50 percent 2 w475 Lbe=ft. to both CB and 0D, =370 X
0,731 = =271 1b.~ft. are carried over to A, =475 X 0.5
= =238 lbesft. are carried over to D and B, and =480
X O¢b =2 =240 1lbe=fts are carried over to C.




»
a
* * Pl

NeA,C,A, Technical Note No. 534 31

If the moments on the ends of the columns are added,
it will be found that the sum is no longer equal to 3,600
1be~ft. The values = 370 = 271 =~ 475 = 238 = =1,354 1ba~
ft. have been added to the columns ‘since the bent equation

- was satisfied. This quantity, =1,354 1be-ft., is called
AM dnd is found by totaling all the balancing moments and

carry-over moments that have béen added %to the columns
siuce the last time the bent equation was satisfied.

The guantity AM is treated exactly the same as the
original story moment, The equilibrant « AM is divided
among the columns in proportion to I/(2p ~ a), and the
process continued until the unbalanced moments at the
joints and the unbalanced story moment are small enough %o
be neglected.

In figure 19 four cycles have been completed. The
resulting moments are My = 910 1be=ft., Mp = 800 1b.-ft.,

Mg = 809 1lbe=ft,, and Mp = 1,079 1lb.~ft, The moments

acting on the columns are all positive, and their total is
3,598 1bswft. The error of 2 lbe=fts in the story moment
is negllglble. : : ' _

Tnis gsame bent was analyzed in reference 4 assuming
no axial load in the members. The results in thig case
were Mp = Mp = 969 lbe~ft. and Mg = Mg = 831 1b.~ft.

‘ - Bxamples of multistoried bents and bents subjechted to
unsymmetrical vertical loads have been given in reference
4, When axial load is included, the only difference is
the use of graphsg I to XI in determining the various face
tors and fized-end momentse. The prlnclples involved in
these two cases are the same as those in the single~story
bent, -and if these are thoroughly understood, there should
be no dlfflculty in applying them to the more complex ‘
structores

APPLICATION TO AIRPLANE PUSELAGE TRUSS

Figure 20 shows the dentral portion of the side truss
of an airplane fuselage. The structure has been analyzed
for the various conditions of loading required by the De~
partment of Commerce, aund the members have been selected,
assuming a restraint coefficient of 2, with the assumption
that each member is subjected to pure axial load,
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As is usually the case in airplane fuselage trusses,
however, some of the members have side loads applied be-
tween the panel points; and in the landing conditions -
-there are concentrated moments applied at the points where
tho chassis members join the fuselage. The offect of these
conditions will be determined by moment distribution and -
the margins of safety computed, If desired, the sscondary
moments due %0 Jjoint translation may be inclnded in the
- fixed~end moments. These will be small, however, and the
refinement hardly Jjustifies the amount of labor involved
in computing thems They are not included in the example.

Ag most of the members in the central part of the fu-
selage are designed for three~point landing, this condi-
tion of loading will be used in the example. The load
factor for this condition is 5,85,

Table A gives the physical properties of each mem-
ber and the axial load in the three~point landing condi-
tion. The values of. L/j have been computed and records
ed in the table, the letter following the figure indicate
ing tension or compression, and the carry-ever and stiffe
ness factors have been determined from graphs I and II.
The distribution factors have been computed and recorded
on the figure at each joint, and the carry~over factors
have been written on each member.

In thig airplane, feur of the items of loading are
attached to the longerons between panel p01nts.’ Although
the welghts are applied at an angle of 14° to the thrust
axis in the three~point landing condition, only the compo=
nents of load perpendicular tc the members are used in
figuring the fixed-end moments. The components parallel
to the members have a slight effect upon the axial loads,
~but this is small enough to be neglected. The loads that
contribute to the flxed-~end moments are: :

ls Instruments -- a concentrated load of 20 pounds
applied on 2U~4U, 13 inches from 2U,

2« Baggage =~ a concentrated load of 100 pounds ap~
plied on 5I-6L, 14 inches from 5L.

- B PaSGengers -~ two concentrated 1oads of 364
pounds each, one applied on 3L~4L 27 inches
from 3L and the other applied on 4L~5L. 21
inches fron 4L.
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4. Tloor load == a uniformly distributed load of
0,769 pound per 1nch extendlng from 3L to. BLs

The 1oads given are the basic loads. In order to
find the design loads they must be mu;tiplled by half the
load factor of 5,85, (Half the factor is used as there
are two side trusses, each carrying half the load. ) - The
fixed~end moments have been computed, using the appropri-
ate forwulas and curves, and the results recorded on fig=
ure 20 at the ends of members 2U-4U, 3L-4L, 45L~5%, and
SL" GL. .

In addition to thege fixed~end moments there are two
concentrated moments applied to the fuselage by the chas~
sise A counterclockwise moment of 7,520 in.~1lbe is ap- _
plied at 3L, and a counterclockwise moment of 11,160 ine~
1be is applied at 4L+  These moments may be considered as
figedmend mements on the chassis ‘members. A4 counterclocke
wise moment applied to a joint means a clockwise moment
acting on the end of the member; so both of the above mo-
ments are positive. They are treated exactly the same as
the other flAe&~end nomeénts at the Jjoints. When these
moments were compubted in the chassis dﬂ&ljSlS of the aire
plane, it was assumed that the fuselage was a rigid, une
vielding strueture. Thig is mot a true assumption as the
fugelage joints are capatble of rotation to a 'slight de- .
gree; henco the actual moments applied at 3L and 4L
would probably be somewhat less than those given., A pre-
cise solution would involve a very complicated analysis
as the chassis presents a three-dimensional probdblem, with
the members capable of carrying torsion as well as bend-
ing} so no modification will be attempted here. The val~
ues given are probably very close to the actual values,
and the error is Dbelieved to be small.

Joints 2U, 2L, 7U, and 7L have been assumed rigidly
supported, This is obviously an erroneous assumption, Dbutb
the error involved is small, Joints 2U and 2L are
where the engine mount is attached. Since the structure
forward of these joints is relatively rigid, the assunp-
tion of complete rigidity is probably nearly correct, Ale
though in practice it might be necessary to analyze the
entire structure aft of 2U-2L, for the purpose of this
example it scems desirable to consider only that portion
forward of 7U~7L. To do this, some assumption must be
made at Jjoints 7U and 7Ls The joints might have been as-
sumed pinned with as much justification as assuming rigid
Joints, or they might have been assumed as 50 percent rig-
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id, as advocated by Bruhn in reference 6. The latter meth~
od appears to be the most accurate, vut it would necessitate
a new set of curves for stiffness factor, and so is hardly
practicals Owing . to the assumption adopited, the moments
found in members . 6U~7U, 6U~7L, and 6I-7L. should not be
expected to. be as accurate as those farther forward, as the
effect of an error at any Jjoint is more noticeable on the
members coming into that jomnt than: on members that are
farther removed. - ;

With the fixedwend moments, distribution factors, and
carry-over factors determined, the process of balancing
the moments may be commenced, In the figure, the joints
have been balanced in the order of the magnitude of their
unbalanced moments, and the carry~over moments recorded as
soon as a joint ig balanced, ag this method glves the most
rapld convergence  of results.,. The order of balancing was
41:, SIJ, 5U 6L,5L, 4‘[5, GU, 4:1!5 5Ug 51!’ GUi 4U’4-'Li BUSSL)
6L, and" 5L.. As soon as a Jjoint was balanced for the last
time, no more moments wers carried over to it, in order’
that the cheeck of LM = 0 for each joint nmight dbe ob~ -
talned. The totals of the moments at the joints are re-
corded in the figure.. The moments obtained by applying
the Hardy Cross method to this truss without correcting
for the effect of axial loads are shown in reierences 4
and by '
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APPENDIX I

Definitions

1. TFixed-~End Moments: The moments that exist at the
ends of a loaded member when those ends are rigidly fixed
‘against rotation are called the fixede-end moments of that
menber, . :

2. Stiffness Factors: A number proportional to the
couple that must be applied at one end of a member to
cause unit rotation of that end, both ends of the memher
being assumed to have no movement of translation, is called
the stiffness factor of that member. The stiffness factor
will depend on the degree of restraint of the opposite end
of the member from that at which the couple is applied.
In this paper two such cases are considered, that in which
the far end is fixed against rotation and that in which
the far end is free to rotate.

3. Distribution Factor: If a moment is applied at a
joint where two or more members are rigidly connected, the
distribution factor of each member is the percentage of the
applied moment that is absorbed by that member. The dis-
tribution factors of the members at a Jjoint are proportion-
al to the stiffness factors of those members. The sum of
the digtribution factors of the members at any joint must
equal unity. .

4 Carry-Over Factor: If a beam is simply supported
at one end and fixed at the other, and a moment is applied
at the simply supported end, a moment is developed at the
fixed end., The carry~over factor is the ratio of the mo-
ment at the fixed end to that at the simply supported end.
For a member without axial load and with constant moment
of inertia, the carry-over factor is 0.5H. '

5 Sigu Convention:

1) A clockwise moment acting on the end of a mem-
ber is positive, Conssquently, a clockwise moment acting
on a joint is negative. This is in agreement with the
convention used in reference 1 at the left end of a member
but opposgite to that convention for the right end of a
member, Great care¢ must be taken 10 interpret correctly
the signs of bending moments obtained in the moment-dis-
tribution analysis before procecding to the determination




36 N.A.C.A, Technical Yote No, D34

of bending moment between the ends of a member or comput-
ing margins of safety.

2) Upward forces and deflections ars positive,
and hence in agreement with the corresponding convention in
reference ls v

3) Clockwise rotations of the straight line join
ing the ends of a member are positive, the reverse of the
convention used in reference 1 for slope.

APPENDIX II -

Moment-Area Proof of Carry-Over Factor Formula

The prineiple of moment areas states that the deflec~-
tion of any point "a' oun a beam from the tangent at any
other point "b' is equal to the moment adout "a" of the

area under the M/BI diagram between "a" and "b'. In
figure 1 the tangent at B . is horizontaly so the deflec-
tion of A with respect to this tangent is zero. Hence
the moment about A4 of the area under the M/EI. diagran
of the beam is wero. The expression for moment, using
the momentndistrlcatlon convention of signs, is:

g - Uy cos L x
M= T < gin 5 + My cos
sin 3 -

('_la‘N

where X is the distance from A, The moment of the area
under the M/BI curve is therefore ' ‘

1.
R adx =
o S s

The value of M is substituted and the expression inte-
grated, making use of the formulas

X 2 x x x)
c x sin — dx = €, sin — « = cos T
, v X . . % % X
¢ f = eo0os Trdx = 0J% (cos T + T sin T)._
J J ( J d J
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The above integral reduces to

MB ., &
y =t 2B

which is the same as that derived by the three~moment equa=
100 : ‘

APPENDIX III

Yoment-Area FProof of Stiffness~Factor Formula

The rotation in radlans of any point on a beam from
the tangent at any other point is equal to the area under
the M/BI diagram between the two points, In figure 1
the tangent at B 1is horizontal; so the area under the
M/BI curve of the beam gives the absolute rotation of A,
The expression for moment isg:

~lin - My cos % % x

M o= sin T + My cos 3
sin J

Catt

where x ig the distance from A, The area under the
M/BI curve is:

1 L
= 2T S ¥ azx
0
Substituting the value of ¥ and integrating, making use
of the formulas -

¢ f sin ? dx = =Cj cos ?

c s coa‘g dx = +0j sin ?

gives the expression:

LMp ag\

g8 \° ~ 1§




38 M.A,0.A. Technical Note No. 534

This may be written:

.«jﬁﬁée

pa—

(8 - 55)

My =

which is the same value as was found by using the Newsell
formula for sgslope.

APPENDIX IV

Check of Stiffnese~Facter Formula by Three-Moment Equation

M
y L, ~
N ’ N
A B

A continuous beam ABC has fixed ends at A and C.
A clockwise moment M is applied at the center guppord
B. As the carry-over factor is kanown to be - g%, using

the three-moment equation convention of sigans, it is known
hat iy eV M. nd Mg = - *~;\ Mype The three-
: K 2B, / a c 285/ +Be 4

moment equation for spans 1 and 2 is¢

11 I, e Iz

= 0

Substituting the known values of My and Mg in terms of
H,.p3 and Mpg and reducing gilvess.

g (ﬁ Uy® Ly (482" - a5°)
Mg . Ix \'P 452 I, 3P2
r-——--—— Py Lo L
N NN X

I, \Pl - 45:/ ' Iy 88,
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N

showing that in this apecial case the moment applied at 3B

is distridbuted in proportion to the value of % ngé@~ag

of each member., (See equation (3).)

APPENDIX V

Carry~Over Factor for Axial Tension

Assume that the beam of filgure 1 is subjected to ax-
ial tensions A 1is free to rotate, but restrained from
transverse motion. A given moment My 1s applied at 4
and it is desired to find the magnitude of the resisting
moment at B, Mp. The three~moment equation for this Dbeanm
iss

. Ifl_l‘lghl [I‘lﬁhl L, ﬁha} - MgL, Oy, _
T s Tl Ig__+ =0
Where My = My
My, = Mp
L, = 0
this gives
‘“’-13-.;_9‘_1.1_ Mg (E?b. -0

wheunce

which is the same expression as that for compression ex-
cept that o and B have been changed %o 0p and Bns
respectively.

APPENDIX VI
Pixed-End lMoments when & = 0, (See reference 3, p. 85.)
J

Hotet In the moments given in the following sketches the
convention of signs is the same as that used in the
three-moment squations by Niles and Newell, For the conw
vention used in moment distribution, the signw of the mo-
ments given at the right end must be changed,
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TABLE A
Physical Properties of FTuselage Truss Members
e l v - 3
} [ Carry-|Stiff- |Stiff-
* Axial| L over | ness ness
Yember Size Length| load J factor|factor |factor
(a) coof fim
cient X 10
\ ig, 15, in®s
27~ 4T 1% X0.035| 57.3 | 2815|3.597 | 0.310| 1.371 | 5.903
4U=BU |1 X ,035]| 48,0 [=~2630|4.1L0] 3.27 | <240 . 619
6T~ 1% X 085! 5040 |-~4070 [4.44C |23,740] .040 143
21~3L |1 X ,035! 39,3 {~2110{3.01C! .925/ .652 | 2,052
BL~4L 1% X 035 39,0 [~432513,03C, .936] .647 | 4.093
415 1% X JOB5| 26,0 | 8725(2.87T1 ¢357| 1.250 |11.861
BIeBL | 1 X 035| B6.0 | 4355|3.977| .289] 1.442 | 4.955
6I~7L |1 X 035! 51,0 | 3895|5.327 | .220] 1.721 | 4.174
2U=BL |1 X 035 53.7 |=~1870 3880 | 2450 .352 .811
BT AT 1% X J035| 5646 | 1265/2.807| .362] 1.239 | 3.901
4T~ 4L 1% X ,035] 58,3 | 4710]5.56T! .208] 1.773 | 5.419
41~ 5 1% X ,049] 59,9 |~2065!3,310] 1.120| .565 | 3,149
5751 1% % 049 54,0 | 429513.607! .300| 1.375 | 8.502
5U~6L |1 X ,085| 64,9 | -845|3,15C| 1,004 .614 | 1.17L
7
6U=6L | L& X ,035| 57,0 220 [1.74T | .435] 1,098 | 1.572
6U="T, % X .035| 68,7 105|1¢457 | .453] 1.069 | 1.270
(a).. . .
Diameter and thickness, inches.
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TABLE B
Stiff Stiffe Column
Carry- ness ness distrim
L, over factor factor bution
J factor coeffin coeffi- coeffim
cient cient cient
(fixed) (pinned)
Axial compression
0. 50000 1.,00000 0,75000 1,0000
« 52640 « 96628 « 69852 1,01%0
« 62628 «85904 « 52210 140737
73097 - 77193 « 35947 1.12286
«21893 « 65605 «10206 1.1915
1e315%74 « 50201 - 36705 12903
<2+ 56030 « 29388 wl,6294 1e4364
- « 00479 - 16691
Axial tension
0.50000 1.0000 047500 1.0000
0 e &7 625 1.0329 7986 .983%
C A1 E? 1.,1268 . 9305 « 92393
G « 34768 1,2703 1,11867 .8762
O 28419 1.4492 1.3321 « 80860
0 « 23308 1.6H19 l.5622 7364
Q. ¢« L9405 1,7999 « 8716
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TABLT ©

Fized~-Bnd Moment Coefficients

L U?;igrm Uniformly varying load Czﬁzggd
i eutire Ca C3 load
span nidspan
Axial compression
0 12.000 30,000 204000 8,000
1.0 11.798 29.396 19.713 7,832
2.0 11,176 274655 18,755 7,322
2.5 10,690 264,291 18,015 5.930
3.0 10,071 24,560 17.072 Beddl
3D 94301 22 .436 15,389 5.846
445 7.190 164,766 12,588 44301
Axial teasion
o . 12.000 20,000 20,000 8.000
1.0 12,198 304577 204,294 8,165
2.0 12,779 32.221 21,178 B8.657
340 " 134695 34,885 22 541 9.448
440 14.888 38,370 24,329 104504
5,0 16.29%7 42,523 264,431 114790
640 17.864 47.,16%7 28,743 13.256




TARLE D

Fixed-End Moment Coefficients

Concentrated Load at Any Point on the Span

2 2.0 2202 B2 204l 2=0.s 61 2o 2o0.8 Z=0.5
J i) L iz ig i i Le T
Axial compression
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1,07 1,0085 1.0118 1.0150 1.0191 1.0215 1.0222 1.2015 1.0172
2.01 1,0264 1.0491 1.0679 1.0824 1.0928 1.0994 1.0961 1.0884
2.5 1.0431 1.0807 1,1122 1.1368 1.1544 1.1670 1,1617 1.1487
3.0 1.0857 1.1242 1.1734 1.2135 1.2420 1.2546 1.2557 1.2368
3.51 1,0964 1.1841 1.2604 1.3226 1.3685 1.4061 1.39580 1.3869
4,0 1,1412 1,2720 1.3888 1.4863 1.5604 1.6255 1.8135 1.5724
4.5] 1.2018 1.,3987 1.5805 1.7372 1.8600 1.9780 1.9399 1.9082
Axial tensi ‘

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0 . 9853 .9285 . 9839 .9812 .9798 . 9805 .9825 .S654
2.0 L9787 . 579 . 9429 L9318 L9241 .9198 L9231 . 9320
3.0 L9514 .e127 .8828 .8811 .B4B7 . 8400 L8469 .8612
4,0 .9208 .8595 .8140 .7819 L7515 L7537 L7558 ., 7887
5.0 .8870 L8039 L7441 L7033 8785 L8717 L6891 L7214
6.0 .853C L7493 .6778 .6308 .6035 . 5992 .6219 L6627
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TABLE E

;i

xed-End Moment Ccoefficients
Uniformly Distributed Load Over Part of Span

Values of Mj Values of ¥

B
L (a a a _ a a . {a » a a _ a a

Axial compression

» [ ] L ] .. - L]
MO UroOo uUrto O

eSO B B BN I R

1.0000 | 31,0000 | 1.0000 § 1.0000 { 1,0000 ; 1.,0000 ; 1.0000 | 1.0000 § 1.0000 { 1.0000
1,005 ; 1.0095 | 1.0114 |1.013% | 1,0148 | 1,0123 | 1.0085 | 1.0180 : 1.0215 | 1.0225
1,0174 | 1,0329 | 1.0453 | 1,0855 | 1.0370 |1.0681 | 1,0922 11.0963 | 1,0976 ! 1.0970
1.0282 | 1.0538 | 1.0746 | 1,0915 | 1,1044 |1.,1500 ;1,1554 | 1.1520 | 1.1843 | 1.1625
1.0438 | 1,0824 1 1.1152 | 1.1420 | 1.1626 |1.2254 | 1.2444 | 1.2552 | 1,2585 { 1.2551
1.0637 | 1,1210 | 1.1706 | 1.2117 | 1,2436 11,3575 | 1.3815 | 1.3961 | 1.3994 | 1.3925
1.0935 | 1.1780 | 1.2526 | 1.3153 | 1,3648 | 1.,5589 | 1.5939 | 1.8133 | 1.6161 | 1.602%
1.1320 | 1.2573 | 1,3708 | 1.4684 | 1,5470 11.8860 | 1.9383 | 1.9646 | 1.9635 | 1.9375

Axial tension

1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0000 | 1.00C0
.9939 I .¢s21 | .9895 | .9877 | .9m64 | ,9860 | .9851 | .9793 | .9v50 | .975L
.9840 | L9717 | .9611 | .9528 | .947C | .9408 | .9287 | .9225 | .9214 | .9217
.9678 | .S407 | .9192 | .9033 | .8915 | .8656 | .8539 | .8470 | .8427 | .8428
9481 | .9037 | .8708 | .s459 | .s282 | .wozy | .vvw2 | ,veasa | 7579 ! wemL
L9234 | .8841 | .8204 | .7867 | .7840 | .732L | .7049 | .8746 | .6v2 | .6752
.8993 | .8248 | 7697 | .7304 | .7033 | .6786 | .5421 | .6190 | .5080 | .6023
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