NATIONAG ADVGORY CGMTTTEE FOR ABLOMATETG

TECHMICAL YTMORAMLUM 10.77
\qquad

TING REGISTANCE NBAR THE GROUID
By C. Wieseloberger.

From "Ceftachift fitr Flugtccinil: und Motorlurtioniffahrt," 1221, ラ10. 10.

$$
\text { April, } 1922 .
$$

Firg mescearce lear the mingin.*
Ey C. Wiesclsbergor.
Change in inine reststonoe near the wound ore frootrat at the more aocurate deternination of the coneltions in the taiting off and landing of an almplane. It has boen foum" that tien . realstance diminishes on approahing the crome white tho list
 orable. In the rresont treatisc; a oonventent wotion will bo ir.
 an airplane at short distancos fron the gewnt by a ctavio short calculation, when the polar oxyo is kom for int ght in unlim. itod sface. The satiofactory agremment butwae chorkment and calculation is demonstrated by tho recults of two griesiments with models.

The polar curve for mamited spaco so onvorted in the angeent case, with the aid of L . Pandil's wing theory withe wurtiplane theory, ** Aconrding to this theory, the als flow about the * Fani "Joitsohrift für Flugtechnik uni lotoricriscinjorohrt" 1921, No. in.
 Gurfoco," the ground) "Zedtscorift fur pluctorknik wat fotosineschiffehrt," 191?, 2. 217.
 Gdttingen Soientifio Society, 1910. Natnometios-rnybios oles,
 Beriohts, Vol. IJI, No. 7 : Figo 1 and 3 cre telen from tre irttor.

- $2-$

Ging on be sanがatod or the abunption thet the Iff is diotributed over tre aing gpan in the form of half an cllisso, whas is acourats saoligh for nost practionl cases. In this connootion, We will utilize the traoretion consideration that a vortex bend goes out from the trailing edge of each ring, The axes of the elementary yoztlose of this band are nearly parailel to the cisuacu tion of illight and the ridtr of tio bane is equel to the ming span. Tro adied disturbing velocity restiting from thie vortea band at any point is the integral of the dipturbing velocities produced by the incividual oiemontary vortisoc, whoreby the foraer are caloulatei acoording to the Biot-Gavart law. If a \because Ing is in an air flon thich is disturbed O a socond wing, only the vartioal component of the disturbing velocity cones into corciteration for the induced drag of the first oing, gince the inflo: dircotion ano therewith the induced dreg are cinered by the ver Hacil vomponentr of the diaturbing velocity et site place of the aupporting inne. Tne vertical velocitioe, in the verticel plane pasing through the middle of the chord, yowe oanculated and srapt fivally represented in Fig. 1 , for a zeries of digtances from the suppoztine lino, by K. Pohhausen, at the sweesstion of J. Prandit on the ascumption thet tho lift is distributed in lin an olifrae over tie oing span. The ratio of the distarce of the point con-
 velocity of tho iring iteclf ($n / b=0$), minin 13 constant in tie elliptical ástrlbution of the lift over tre entire with of ine
san, is here mede 1 , and tho span 2. The actual vertical volety $W_{2} l^{\prime}$ on the place of wing 2 , due to ming l^{\prime}, is therefore

$$
\begin{equation*}
w_{3} y^{\prime}+\frac{3 \dot{A}}{\pi \rho v k^{2}} \times z \tag{1}
\end{equation*}
$$

in which A is the lift of wing l^{\prime}, v the flight velocity and 0 the deresty of the air. z can be obtained from in for If or the corresponding h / b.

In crier to investigate the orange in tho zesistarse near the Ground, to utilize the principle of reflection, Me replace the surface of the ground by Wing l' reflected by the ground (rig. 2) and calculate (by i method analogous to that for calcuhating the drag of a multiplane from the diag of a monoplane) ir Whet manner the air flow about wing 1 will be affected by its imago. We deroto its distance from the ground by $n / 3$. wing $亠$ is now on the pressure side of wing 1'. We already recognize quailtatively that the disturbing velocity due to l^{\prime} on the place of wing 1 is directed upward. The resulting direction of flow on wing 1, which is found by the geometric addition of the oifighal direction of the velocity v and the vertical velocity $W_{1} x^{\prime}$ due to wing I^{\prime}, and whose direction is indicated by v^{\prime}, is therefore as Te see, deflected domward somewhat less than in the undiaturbed condition. The induced drag near the ground must therefore be smaller than at a higher altitude, since "isth decreasing distance between wing 1 and its imege $\left.\right|^{\prime}$, the disturbing velocity increases from 0 to a maximums, as show in Fig. 1.

For tie quantitative relations, it in to be not, cd that th: vertical dinturíng velooity, as ohorn b; Fig. i, varios alao along tre ouan of wing 1. We obtain the change in the induoca draf by multpluing the lift componont of cacil winj clemert the aine $3 i$ the engle of attack of the aiz otisarr at the given peint and integriting over the whols epan. The smini ancle 0 : attaci has the ralue $\frac{V_{i} \lambda^{\prime}}{V}$ and consecueatly the charge ir dane 18

$$
\begin{equation*}
W^{\prime}=-\int_{-b / 2}^{+b / a} \frac{W_{11}^{\prime}}{V} d i_{1} \tag{a}
\end{equation*}
$$

In which the minus sign, in accordance with the above coneidoretion, indicates that the wing reolstance is dimirisked. The wilus of the integral ras determined planiaetrionll: foz Gifferert valuea of h / b and the result expressed by the infivence coofincient a, which is defined ${ }^{*}$: the entation

$$
W^{1}=-\sigma \frac{A^{2}}{\pi b^{2}} \cdot \cdot \cdot \cdot . \cdot . \cdot \cdot .(3)
$$

in mheh $q=$ dyramic pressurs. In Fics. e, the vaines of a ane rlotted 2 gainst the retio $h: \frac{b_{1}+b_{2}}{2}$. Tais methon was ohesea miti reference to the ratios yet to be corsidered, wioh azise in ifplanes with unequal wing rpans $\left(b_{1}\right.$ and $\left.b_{2}\right)$. In the sase no: whdor consideration, in which the opan of the roal wing is liko tiot of the reflected one, the ratio $h: \frac{b_{1}+0_{3}}{\tilde{\sim}}$ is icientical rith h / b and the corrosponding valuog of o are peven by the curve $\mu=1$. If we deairc a aore accurate value than the girmio aijagrim g ives, we ros employ the following eproximition fromalso 0

$$
\sigma=\frac{1-0.56 \mathrm{~h} / \mathrm{b}}{1.05+5.7 \mathrm{~h} / \mathrm{h}}(1)
$$

line shange in drac may thenefore be calculeted coooring to equaifen (5) in evory bimple manner. We only have to determine the influence coefficient σ for the value h / b fom Fig. 3 , or $-t$, tie aid 0 oquation (4). The other quantitien in equatior. (3) are to bo considered as given. We neroby assume tinat the lift near the ground lis the ame as ligher un. With tho introduotion of the dimersionless cosificients, equation (3) may ciso be mritten in the form

$$
\begin{equation*}
0_{: \pi}^{\prime}=-\sigma \frac{0_{Q^{2}}}{\pi} \times \frac{F}{r^{2}} \tag{5}
\end{equation*}
$$

$$
\square
$$

in misch o_{\square}^{\prime} zepresenta the change in the arog once T tion aurface area of the olng.

The prosent calculations rave to do with a movorlane noar the Grouna. If it in deisred to investigate the rolations for a biplane, it is neceseary to know the lift components of aoth wime. This is geneatily wem ior e finsoced biplanc. Otherase, the lift components may be subsequentiv detornined from tio aumetties upon whioh ther deperd, espocially from the surfoce anot of the ringe and the argle of attach. Here it s s welz to remowbor thint (according to the resulue of the rirst aprovimation of the wluflane theory witn a given total lift, sron ard rortion digtonce betwesm the tho wres) the induced dzes arnires a minhman

winge of the ofplane. In frastice, we must zimass ondeavor to rroduce this sundtion.

The vertical disturoting velocitics zocultirg frem the revilested wings i^{\prime} and 3^{\prime}, are repreaented diacramatically in Fij. A. The total awount, about ohich the drag dirin'shee near the Eround
 of four members in the case of the biclane. If $\mathrm{wi}_{1}, \mathrm{l}$ designates the drag tecrease of rine I threugh the influence of wine lla and If the other components of the drag varictions are cieslenated in a similar mamer, the total drag dececase is

$$
W^{\prime}=W_{12}^{\prime}+\mathbb{W}_{12}^{\prime}+W_{2 z^{\prime}}+W_{21}{ }^{\prime} . \cdot . \cdot(6)
$$

Acooraing to the multiplane theory, horover, ${ }^{\prime \prime}{ }_{1 z}=W_{2}{ }^{\prime}$ and the latter, on account of the mirior symetry $=W_{21}$, 50 thet the resulting oxpression for the drag decrease is

$$
\begin{equation*}
W^{\prime}=3 W_{1 z^{\prime}}+W_{21^{\prime}}+W_{2 z z^{\prime}}^{\prime} \tag{7}
\end{equation*}
$$

The influence cofficient σ, which is necescary for calculating the above oumaris, is, in the case of a biplate fotin meanaz vig sranc, a function of both wing spans, $b_{\text {, }}$ and b_{e}. If we desigate the ratio $k_{2}: b_{1}$ by μ, the value of σ, for tie vaitio or μ in question, oen be obtained from fie. 3 , in which the valuen of σ, for $\Leftrightarrow=0.8$ ani 0.6 , are plotted abainst the ratio $b:$ For sther velues of μ, o can be interpolated \because ith zaffiotont aocuraoy. $\mu=1$ comes into considnation for ogval seme of the woer and iower wings. For $u=b_{2} / h_{1}>1$, the anie vinues ars
to be takon as for b_{2} / b_{3}. h alrave danotes ths disuance of tion, wing under consideration from the rine curing the distirivenon. Somo time aco two e:perimenta were carried cut it tho Gotts. gen latoratory on a monoplane model, of 124 sm span, with fusz7oge ind elevatoy, whersur the air forces mero reasured onse in unlithIted space and once near the ground. The surfoce of the ring, to Whioh the ccefficients mere applied, was 2675 cm. Conscolientiv; F / b^{2} had the value 0.11 . The distance $0 i^{\prime \prime}$ ting ring fron the ground varied a little for the indizidual angles of attack. Tho mean value of $h / 3$, wes 15 cm . The polar curves., determined exferimentally for both these cases, are given in Fig. 5. The change $0_{i r}$ of the drag coefficient was now determined in ascordance with the above irstmuctione. For the inf Juence coefficient: we have $\sigma=0.432$, since $h / b=0.243$. If we substitute this value and the value of F, b^{2} in equation (5), we obtain

$$
o_{w}=-0.015 c_{a}{ }^{3} .
$$

If we carry the values of c_{W} : calculated foi different lift coefficients torard the left, from the poler curves, measured in the free air flow, we obtain the curve indicated. by dashes. It is evident that this curie fully agrees with the measured values of the lift coefricients up to about $c_{a}=1$. For very large Iirt values, ge obtain deviations for which no satisfastory explanation can yet bo given.

Translated by the National Advisory Committee for Aeronautics.

Fig. $1-V e r t i c a l ~ c o m p o n e n t ~ o f ~ t h e ~ i i s t u r b i n g ~$ velocity ploted againt tio longtud nal and vertical distarce from tio wing.

Fie. 3 - Interforence coefriciont o plotiod ageinot

$$
r_{3}+b_{0} \quad n d \quad H=b_{n} / b_{1}
$$

-

Fig. 2.

21

Fig. 4.

Fig. 5 - Measured and onloulated polar curves near the round.

