

NATIONAI ADVISORY COMMITTEE FOR ABRONAUTICS

NO. 579

CHARTS FOR CALOULATING THT PERFORMANGE OF AIRPIANES

HAVING CONSTANT-SP\#ED PROPBLIERS
By Roland J. White and Victor J. Martin California Inatitute of Technology

NATIONAL ADVISORY COMMITTEE FOR ATRQNAUTICS

TECENICAL NOTE NO. 579

CHARTS FOR CALCULATING THE PFRFORMANGE OF AIRPLANHS
HAVING CONSTANT-SPWED PROPELIERS
By Roland J. White and Victor J. Martin

SUMMARY

Charts are presented for determining the performancé of airplanes having variable-pitch propellers, the pitch of which is assumed to be adjusted to maintain constant spoed for all rates of flight.

The charts are based on the general performance equations developed by 0swald in reference le and are used in a similar manner.

Wxamples applying the charts to airplanes having both supercharged and unsupercharged engines are included.

INTRODUCTION

Within the past severel years the two-pitch controllable propeller has been developed to a reliable form and at present the multiposition, or variable-pitoh, propeller is being perfected. Because of these recent advances, Dr. C. B. Millikan suggested the problem of calculating a set of performance charts for airplanes having constant-speed propellers. The presentation of these charts is the subject of this paper. The authors wish to extend their appreciation to Dr. Millikan for invaluable assistance rendered throughout the preparation of the paper.

As the full-throttle brake horsepower of an airplane is approximately proportional to the engine speed, it is evident that the maximum brake horsepower for a given altitude will be realized only when the engine is operating at rated revolution speed; therefore, aside from special settings, the most efficient use of the variabienpitch propeller is obtained by adjusting its pitch so as to maintain the rated revolution speed for all speeds of fifght.

Propallers operated in this manner have been termed "con-stanti-speed propellers."

No attempt will be made to develop the basic performance equations or to describe in detail the method of calculaling the present charts, as the process is similar to thet of reference 1. The difference between the present charlis and those developed for fixed-pitch propeliers lies in the T_{a} and T_{v} functions, which give the variation of thruet horsepower available with altitude and velocity of flight.

G\#ATRAI PMRHORMANCE BQUATIONS

For the purpose of performance calculation, the characteristica of the airplane are represented by three design parameters:

$$
\begin{aligned}
& \eta_{p}=W / f, \quad \text { parasite loading, } \\
& \tau_{\mathrm{E}}=W / e\left(k b^{a}\right), \text { effective span loading, } \\
& l_{t}=W / P_{0} \eta_{0}, \text { thrust horsepower loading, }
\end{aligned}
$$

where
H is gross weight of the airplane,
f, equivalent parasite area. (sq. ft.) defined by tho equation $f=C_{D_{p}} S$,
kb, Munk's equivalent monoplane span,
θ, airplane officiency factor,
η_{0}, design propulsive efficiency,
P_{o} design brake horsepower.
These parameters are combined into a single parameter, A, vhich is plotted as the absoissa in the various performeınce charts,

$$
\Lambda=\frac{l_{s} l_{t}^{4 / 3}}{l_{p}^{1 / 3}}
$$

The maximum speed at sea level, ∇_{m}, is expressed in terms of the three design parameters and speeds for other conditions of fifght, which are given in terms of R_{v}, a dimensionless speed ratio,

$$
R_{\nabla}=\frac{V}{\nabla_{m}}
$$

The fundamental performance equation

$$
\begin{equation*}
\frac{d h}{d t}=\frac{(t \cdot h p \cdot a-t \cdot h p \cdot r) 550}{W} \tag{1}
\end{equation*}
$$

is expressed in engineering units in the form

$$
\begin{equation*}
\frac{d h}{d t}=\frac{33000}{\sigma R_{v} l_{t}}\left[\left(T_{a} T_{V} \sigma R_{V}-\sigma^{2} R_{v}{ }^{4}\right)-\frac{l_{s}-i_{t}}{3.014 V_{m}}\left(1-\sigma^{2} R_{\nabla}^{4}\right)\right] \tag{2}
\end{equation*}
$$

where
$\frac{d h}{d t}$ is rate of climb at altitude σ and velocity R_{v},
equation (2), expressions are obtained enabling charts for
the major performance characteristics to be calculated,
when suitable expressions.for \mathbb{F}_{a} and \mathbb{T}_{V} are introduced,

TXPRESSION FOR T_{V}

The T_{V} function gives the effect of variation of t.hp.a at sea level due to different speeds of flight. In general,

$$
\begin{equation*}
t \cdot h p_{\cdot a}=b \cdot h p \cdot \eta \tag{3}
\end{equation*}
$$

and, in the case of the constant-speed propeller, b.hp. = b.hp.o at sea level for all speods of filght; therefore

$$
\begin{equation*}
T_{v}=b \cdot h p \cdot \eta / b \cdot h p, 0 \quad \eta_{0}=\eta / \eta_{0} \tag{4}
\end{equation*}
$$

By reference to Weickts propeller charts (reference 2), the value of η_{0} is determined in the usual manner from the design values of the propeller paramoters $C_{s_{0}}$ and J_{0}, where J_{0} is $V / n D$.

$$
\begin{gathered}
C_{S_{0}}=\frac{0.638 V_{m} \sigma^{1 / 5}}{P_{0}{ }^{1 / 5} N_{0}{ }^{2 / 5}} \\
J_{0}=\frac{88 V_{m}}{\mathbb{N}_{0} D}
\end{gathered}
$$

As the $b, h p$. and \mathbb{N} (r,p.m.) are invariantwith speed, the values of G_{s} and J are both directly proportional to the speed of flight; hence,

$$
\begin{align*}
& \therefore \quad \cdots \quad O_{S}=R_{V} O_{s} \tag{5}
\end{align*}
$$

$$
\begin{aligned}
& \text { F!r a given } C_{s_{0}} \text { and } J_{0} \text { it is posifible, by using }
\end{aligned}
$$

equations (5) and (6), to determine the propulsive efficiency η and the blade angle β as a functign of h_{v}; which has been done for various values of C_{s} for both the BHST PHRFORMANCH PROPEILBR AND PEAK EFFICIENCY PROPEILNR* on the propeller charts presented in-ifyures land 2 , respectively.
 both types of propeller, it is necessary only to specify the value of C_{o}. Since the value of n for different values of R_{v} is known, equation (4) enabzes a curve of T_{∇} to be plotter as a function of R_{∇}, which is the desired relation.

This T_{v} function will depend upon 0_{0}, the type of engine instaliation. Curves of T_{v} have been plotted in figure 3 based on the propeller chart for the case of fuselage 6 (reference 2), which is most representative for modern airplanes.

In order that the charts may be used for propeller designs other than those resulting in best performance or peak efficiency propellers, three representative curves Were drawn to represent this family of. TV functions and have been used in calculating the performance charta. These representative curves were chosen to pass through $T_{\nabla_{c}}=0.86,0.90$, and 0.94 , where $T_{V_{c}}$ is termed the
"critical $T_{v} "$ and is defined as the value of T_{V} for $R_{V}=0.60$. The value $R_{V}=0.60$ was chosen as that corresponding to the speed for best climb. By this specification of the curves, values of T_{V} used in calculating the

[^0]perfor-nance chart wit agree with the actual values at maximu:n velocity and at a speed near to that for best clirab for any propeller design and will approximate values for other speeds very clasely. The curve for $\mathbb{T}_{\mathrm{v}}=0.94$
was chosen to include the cases in which, in order to reduce the take-off run, it is desirable to use a propeller of dianeter greater than that of a park efficiency propellor (roference 3), which gives a T_{V} curve having values slightly greater than 1.00 at values of R_{V} near 1.00 and lying as a whie above the T_{y}. curves for either the best performance or the peak efficiency propellers. For reasonable increases in propelier diameter, the curves used in calculating the charts will give a sufficiently accurate approxtmation and, in any case, will be on the conservative side. In the calculation of the charts, it is necessary to knov the derivative $d T_{V} / d R_{V}$. This derivative was graphically obtained by using a large scalo because it was impossible to find a convenient analytical expression that would fepresent the T_{v} curves used.
EXPRESSION FOR Ta

The T_{a} function represents the variation of t.hp.a at different altitudes for the airplane flying at constant velocity. The t.hper equation, in which the subscript h refers to altitude conditions, becomes

$$
t \cdot h p \cdot a_{h}=\bar{b} \cdot h p \cdot h r_{h}
$$

Three curves for variation of b. hp . With aititude are shown in figure 4. The lower curve labeled "oswadd" and used in referencel (fig. 2z) is a combination of data obtained from references 3 and 4 andis representative of unsuperchariged ongines. The uppor curve laboled IN.A.F." is a curve obtained from altitude-chamber tests at the Naval Alrcraft Factory and is believed to be more representative of present-day super qharged engines. The middie curve is a mean adopted in calculating the charts and is eomerhat conservative for the higher altitudes. It le expressed by the equation

$$
\therefore \frac{b \cdot h p_{h}}{b \cdot h p \cdot 0}=\frac{\sigma-0.117}{0.883}=\frac{\sigma-a}{1-a}
$$

From the condition that: N remain constant, the value of $V / n D$ is constant for a given velocity at all altitudes. The value of C_{s}, however, varies with altitude according to the relation

$$
o_{s_{h}}=\frac{0.638 V \sigma^{1 / 5}}{\left(b . h p_{h_{h}}\right)^{1 / 5} N_{0}^{a / 5}}=c_{s}(\sigma=1.0)\left[\frac{\sigma^{1 / 5}}{\left(\frac{\sigma-a}{1-a}\right)^{1 / 5}}\right]
$$

The change in propulsive efficiency with altitude at conetant velooity, due to the change in C_{B}, Tas investigated for the various $0_{s_{0}^{\prime}}^{\prime s}$ for both the best performance and the peak efficiency propellers, for values of R_{∇} from 0.6 to 1.0. The maximum increase in efficiency at 30,000 feet for the best performance propeller was found to be about 3 percent for $0_{S_{0}}$, ranging from 1.7 to 2.0 , and at operating $\forall \theta$ iocities. The increase in efficiency for the peak efficiency propeller in the same range wasfrom lo 2 percent. For Cso less than l.7, the change in efficiency at operating speeĩs at 30,000 feet was almays rithin 1 percent, being sometimes positive and sometimes negative.

This change in propulsive efficiency with altitude at constant velocity was not considered sufficient to take into account in calculating the performance charts. Hence it is assumed that η will be the same for all values of σ, and the T_{a} expression becomes

$$
T_{a}=\frac{b \cdot h p \cdot h_{h}}{b \cdot h \eta_{0} \eta_{0}}=\frac{b . h p \cdot h}{b . h p \cdot 0}=\frac{\sigma-0.117}{0.883}
$$

From the foregoing discussion it is seen that this assumption leads to somewhat conservative values for thrust horsepower at the higher altitudes for high C_{s}.

By the use of these T_{a} and T_{v} functions, performance charts have been calculated as explained in reference 1. Figures 5 to 9 give, respectively: maximum velocity at altitude; absoluta and service coiling; maximum rate of climb; velocity for maximum rate of ciimb; and minfmum time to climb to altitude.

ジ
 UST OF OHARTS

The first step in making a performance calculation is to estimate the value of the parasite area f and the air－ plane efficiency factor e．This eatimation is most cop－ veniontly accomplished by comparison with similar airplanea of knovn performance or by the use of figure 25 and table III of reference 1．Then，by assuming a value of．V_{m} and using the known engine data，one can find the value of Ca． By the selection of the propeller diameter，the values of J_{0} and T_{0} are determined．This determination gives auf－ ficient；data to computo thodesign parameters l_{p}, l_{g} ，and l_{t} ．The value of V_{m} may then be computed and the aspumed value cheoked．

Before the charts can be employed，the value of wo must $b \in$ determined，which is accomplishod by taking 60 per－ cont of the C_{s} a and J_{0} values and obtaining e new η correstonding．to the now C_{s} and J ．If a best perform－ ance or peak efficiency propeller is used，this now $ク$ may be found from figure l or figure 2 at $R_{V}=0.6$ for the degign C_{g} ．Dividing this ner η by η_{0} gives the value of $T_{\nabla_{c}}$ If．Tve is known and A is computed，the charts may be used to find the performance characteristics．

Should the airplane have a supercharged engine，theae charts may be used to calculate the full－throttle perform－ ance above the critical altitude by either of two methods given in reference 5．The second of these methods，which will be used in the second example，consists of uaing a fictitious unsupercharged engine of increased behpe chosen to give the actual design b．hp．at the critical altitude． All performance characteristics below the critical altitude are invalid and should bo discarded．

＊XAMPLE I－UNSUPPRCHARGED ENGINE

Assume:

$$
\begin{aligned}
\nabla_{m} & =220 \mathrm{~m} \cdot \mathrm{p} \cdot \mathrm{~h}, \text { at sea level } \\
\mathrm{C}_{\mathrm{s}_{0}} & =1.8 \text { for } 220 \mathrm{~m} \cdot \mathrm{p} \cdot \mathrm{~h} ., 700 \mathrm{hp}, \text { at } 2,000 \mathrm{r} \cdot \mathrm{p} \cdot \mathrm{~m} \cdot \\
\eta_{0} & =0.86, \text { for best performance propelier (fig. l). }
\end{aligned}
$$

Calculato:

$$
\begin{aligned}
& i_{p}=1,118 \\
& i_{s}=4.5 \\
& i_{t}=14.1
\end{aligned}
$$

$$
\begin{aligned}
& \imath_{s} i_{t}=63.5 \\
& \imath_{p} i_{t}=79.3
\end{aligned}
$$

Find:
$\nabla_{m}=218.5 \mathrm{~m} . \mathrm{p} . \mathrm{h} .(\mathrm{fig} .29$, reference 1)
If this calculation does not check the assumed value of V_{m} closely onough, a new choice must be made, and the procedure repeated.
$\eta=0.747 \mathrm{at} R_{\nabla}=0.6$ for $C_{s_{0}}=1.8$ (fig. 1)
If the propeller were not a best performance or a peak efficiency propeller, Jo corresponding to the design diameter would. be found:
$J_{0}=1.035$ (in this case for $G_{s_{0}}$ and best performance setting)

Then find $0.6 \mathrm{O}_{\mathrm{s}_{0}}=1.085$ and $0.6 \mathrm{~J}_{0}=0.621$ and, from figure 14 of referonce 2 , read $\eta=0.747$ at $C_{s}=1.08$ and $J=0.621$.

```
Calculate \(T_{\nabla_{C}}=\eta\left(R_{V}=0.6\right) / \Pi_{0}=0.747 / 0.860=0.87\)
Calculate \(\quad \mathrm{A}=14.75\)
Inter charts with \(\Lambda=14.75\) and \(T_{\nabla_{c}}=0.87\)
```

Results:

EXAMPLE II - SUPERCHARGED ENGINE
Given:

$$
\begin{aligned}
& \psi=8,500 \mathrm{Ib} \text {. } \\
& b=\cdots 48 \mathrm{ft} \\
& \mathbf{S}=390 \mathrm{sq} . \mathrm{ft} . \\
& P_{0}=600 \mathrm{hp} \text {. at } 2,000 \mathrm{r} . \mathrm{p} . \mathrm{m} . \quad \theta=0.82 \\
& \text { at } 10,000 \mathrm{ft} \text {. }
\end{aligned}
$$

(The subscript f denotes fictitious conditions at sea level.)
Assume

$$
\begin{aligned}
& V_{\mathrm{I}_{\mathrm{f}}}=220 \mathrm{~m} \cdot \mathrm{p} \cdot \mathrm{~h} . \\
& \mathrm{H}^{\prime}=0.705 \text { at } 10,000 \text { feet (fig. 4) } \\
& \because_{0_{f}}=600 / 0.705=852 \mathrm{hp} . \\
& \mathrm{C}_{\mathrm{s} \mathrm{o}_{\mathrm{f}}}=1.74 \text { for } 220 \mathrm{~m} . \mathrm{p} . \mathrm{h} ., 852 \mathrm{hp} \text {. at } 2,000 \text { r.p.m. } \\
& \eta_{O_{f}}=0.853 \text {, for best performance propeller (fig. 1) } \\
& \eta=0.737 \text { at } \dot{R}_{v}=0.6 \text { for } c_{s_{o f}}=1.74 \text { (fig. 1) }
\end{aligned}
$$

Calculate $T_{V_{C}}=0.737 / 0.853=0.865$
Calculate:

$$
\begin{array}{rlrl}
l_{p} & =945 \\
l_{\mathrm{s}} & =4.5 \\
l_{t_{f}} & =8500 /(0.853)(852)=11.7 & l_{s} l_{t_{f}}=52.7 \\
l_{t_{f}}=80.7
\end{array}
$$

Find $V_{m_{f}}=221.5 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. and chock assumption
Calculate $\Lambda=12.2$
Enter charts with $\Lambda=12.2$ and $T_{\nabla_{c}}=0.865$
Results:

Standard altitude ft.	$\begin{gathered} \nabla_{m_{h}} \\ m \cdot p \cdot h . \end{gathered}$	∇_{c} m.p.h.	$\begin{gathered} C_{H} \\ f t \cdot / \min . \end{gathered}$
0	(221.5)		
10,000	211.0	134.5	798
20,000	183.0	144.0	171
Service ceiling			
21,200	- ••	- •	100
$\begin{aligned} & \text { Absolute } \\ & \text { ceiling } \end{aligned}$			
22,900	147.5	147.5	0

CONCIUSION

Because insufficient flight-test data are available for airplanes having constant-speed propellers, it has been impossible to dotermine the accuracy of the charts by comparison with fiight-test data. It is reasonable to expect

> the same order of accuracy as is obtained from oswald's similar charts for fixed-pitch propellers.

California Institute of Technology, Pasadena, California, March 1936.

REPERENCES

- Oswald, Mailey: General Formulas and Charta for the
Calculation of Airplane Performance. T.R. No. 408 , N.A.C.A., 1932 .

2. Wetck, Fred \#.: Working Charts for the Selection of Aluminum Alloy Propellers of a Standard Form to Oporato with Various Aircraft Enginos and Bodios. T.R. No. 350, N.A.O.A., 1930.
3. Gove, W. D.: The Variation in Engine Power with Altitude Determined from Moasuroments in Flight with a Hub Dynamometor. T.R. No; 295, N.A.C.A. H_{i} 1928,
V4. Coalos, J. D., and Ingard, A. I.: The Determination of the Horsepower Height Factor of Engines from the Results of Type Trials of Aircraft. R. \& M. No. 1141, British A.R.C., 1928.
4. Ashley, \vec{R}. B.: Methods of Pérformance Calculation for Airplanes with Supercharged Engines Developed by W. Bailey Oswald. A.C.I.C. No. 679, Materiel Division, Army Air Corps, 1933.

Figure 3.- Variation of thrust horsepower fith velocity at constant engine speed,

$$
T_{v}=\frac{t, h p . \text { at } R_{v}}{t . h p ., ~ a t ~} R_{v}=1.0
$$

Figure 4.- Variation of full-throttle brake horsepower at. constant r.p.m. with altitude.
N.A.C.A. Technical Note No. 579

Fig. 5

Figure 5.- $R_{v_{m}}$ and $R_{v_{H}}$ as functions of Λ.

Figure 6.- Absolute and service ceiling as functions of Λ.

Figure 7. $-I_{t} C_{H}$ as a function of Λ at various altitudes. C_{H} is the maximum rate of climb in feet per minute.

Figure 9.- \mathbb{T} / l_{t} as a function of A at various altitudes. T is the minimum time required to climb to altitude (minutes)

[^0]: *The BEST PERFORMANCE PROPELIER is defined as a propeller having its diameter and blade angle chosen so that no lies on the envelope of the family of efficiency curves.

 The PBAK EFFICIENCY PROPFILTR is defined as a propelIor having its dimater and blade angle chosen so thet η_{0} lies on the peak of its efficiency curve.

 These definitions are those adopted by Oswald in reference 1 .

