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SUMMARY

A theory has been deduced for the "rotation noise"
from a propeller with blades of symmetrical section about
the chord line and set at zero blade angle. Owing to the
limitation of the theory, the equations give without ap-—
preciable error only the sound pressure for cases where
the wave lengths are large compared with the blade lengths.

With the aid of experimental data obtained from a
two-blade arrangement, an empirical relation was intro-
duced that pcrmitted calculation of higher harmonics. The
gonerality of the final relation given is indicated by
comparison of measured and calculated sound pressure for
the fundamental and second harmonic of a four-blade ar-
rangement,

INTRODUCTION

The subject of aircraft noide is one of great com-
plexity and may be divided into many parts depending on
the various possible sound sources involved. On the prac-
tical side the guestion of reducing aircraft noise has,
to date, been largely one of insulation of cabins with

"soundproof" absorbing materials., This remedy together

with reduction of vibration has been very effective in re=
ducing noise in aircraft cabins to levels now considered
tolerable.

The largest contributor to aircraft noises is the
propeller itself. The aircraft propeller is a very unusu-
al type compared with ordinary sound generators. Compar-
atively little has been done toward analyzing the mechan-
ism of the propeller as a source of sound, although a more
nearly complete analysis of propeller noise would be of
value, at least from considerations of attempts to curd or
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reduce the noise at the source rather than by its later
absorption and reflection.

Much of the published theoretical work on propeller
noise is mentioned in a recent paper by Gutin (reference 1),
which deals with the noise generated by a propeller owing
to the creation of torque and thrust. The present paper
deals with the effect of section or blade thickness in re-
gard to propeller noise and the theory is augmented by
experimental data. It may be mentioned that the sound
pressures calculated from Gutin's relations did not check
the values obtained by measurements accomplished here of
propellers operating under normal conditions of speed and
thrust. Gutin's relation gives valuesg for the fundamental
sound pressure of a two-blade propeller many times those
measured., His relation gives two components 180° out of
time phase with each other, whereas actually there exists
another component 90° to either of these components,

Hart (reference 2) presents some general considerations
and conceptions of the subject of noise from rotating ob=-
jectss As Hart'!s paper does not include in any gquanti-
tative manner the consideration of thrust or torque, it
may perhaps be said to apply rather closely to the subject
of the present discussion.

Propeller noise may be classified into the same two
divisions that hold for the noise generated by any revolv-
ing object. This classification of "vortex noise" and
"rotation noise" was introduced in reference 3. After
this paper had been completed an article on the same sub=~
ject appeared. (See reference 4.) Rotation noise for a
normal propeller is the more important of the two, under
the usual operating conditions of a propeller, because most
of the sound energy and loudness (reference 5) is involved
in it. The vortex noise is due to the shedding of vortices
from the propeller blades and manifests itself as a contin=-
uous acoustic spectrum (on a time~average basis). A study
of vortex noise is given in reference 6., The rotation
noise is due to the revolving pressure field, or the wave
enveloping the blades, and is also possible of division
into two parts. One part is due to the production of
thrust; the other part is due to the thickness of the
blades displacing air in both directions perpendicular to
the path of the blades,

The problem here is to develop a solution for sound
pressure of the fundamental and the first few harmonics of
rotation noise at a distant point generated by a propeller
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with symmetrical-section, evenly spaced blades, set at
zero blade angle, and revolving at tip speeds below that
of sound. Such an arrangement will, of course, produce

no thrust since there is a2 symmetry about the plane of ro=-
tation and no possibility of an angle of attack existing
to produce a flow. The upper speed limit, as far as this
presentation is concerned, may be said to be determined by

-the speed that produces local velocities equal to that of

sound and it will, in general, be determined by the thick-
ness ratio and shape of the blade gsections considered.
This upper limit will, for most thickness ratios and
streamline shapes used, be about 0.7-0.8 the velocity of
sound.

DERIVATION OF FORMULAS

Figure 1 represents the geometry of the problem of
rotation noise generated by revolving symmetrical-section
blades with zero blade angle. It is assumed in this paper
that the sound emanates from a narrow ring and that the
movement of the blades can be represented for purposes of
sound generation by an infinite number of infinitesimal
line pistons in this ring, each of which is given a phase
appropriate to its position around the ring.

In figure 1, O is the center of the disk described by
the revolving blades. In plan view the axis of the blades
is denoted by the line AB, the disk by C$6OD, and the
observer's position by P. In elevation view the axis is
through O perpendicular to the paper; the disk is denot-
ed by ACBD. The center of gravity of the elementary
sources is described by the radius KR. The angle the ra-
dius vector r (or 1) makes with the axis of rotation is
Be It is seen that, as the angle 6 1is changed continu-
ously, the distance from the observer at P changes peri-
odically by the amount #+x. It is assumed that 1 is
large compared with R.

For purpose of analysis let it be assumed that the
fundamental and first few harmonics of the rotation noise
emanate from a ring of mean radius KR. The area of the
sources on one side of the disgk would then be

S =2n HKR (1)

where H 1is a small quantity less than 1 and K, a quan-
tity near to but less than 1., The quantity H may be
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termed the "width" of the equivalent ring and is given as
a fraction of the radius R,

Since the blades are of symmetrical section about the
chord, have zero blade angle, and operate in guiescent
air, it is seen that a symmetry exists about the plane of
the disk.,. It can therefore be assumed that only one~half
the blade, or one side of the chord, is operating and work-
ing next to a wall of infinite extent. Thig fact allows
the use of Rayleigh's relation (reference 7) for the po-
tential at a point due to a source in a wall of infinite
extent. (If a2 thrust is exerted, a more general relation

| would be used giving the potential due to a double source
| as well,) Rayleigh's relation is

-ikr

P, = = 5];- g% _e__;_‘__ dsS ‘ (2)
where
@, 1is the velocity potential at any point in ques-
tion due to source 4§
g%: velocity normal to plane
r, distance from the elementary source to the point
in question
k = Egi = %F
£, frequency
As wave length
6, | veloeity of sound
dS, area of elementary source

For the purposes of the problem in hand, these rela=-
tions become

%% = § = Eo [An sin(nwt + en) + Ayp sin(2nwt + €én)

+ Ay sin(3nwt + o B Agn sin(qnwt + €qn)

i, . 7 (3)
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K V x (function of size and shape of sec-
tion used)

and where

[Fa ]
o
il

n, number of blades
q, number of harmonics

v

R

=]
1l

11 tip velocity
R, tip radius

a6 = # £ 2" 48

The factor k can then be writtem qnw/G.

Putting the time and space phases for dp/dn in
equation (2),

Ghie]
Eqn el(qnwt+€qn~qn6-kr) ()

where r is the distance from elementary source to point

P and §fgn = éo Agn. Taking into account all the ele-

mentary sources dS,

i(qnwt+€qn-qn6-kr)

b —]:- R }Eqn e
cpqn = 2_"(// 2 ds (5)

where
re b ¥ x
=1 + KR sin B sin 6
Since x 1is considered small compared with 1, it can be

neglected in the denominator with small error but such a
procedure cannot be followed in the exponent, since there

x 1is a phase factor quite comparable with the wave length

A. Equation (5) is then written
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. i t+ €qpn=-kl
Eqn E KRZ el(qnW qn )

Pgn = om 1

2T
/’ ~i(gnB+k KR sin B sin 8)
X e

aE (6)
Let equation (6) be written
217
where ] 0 )
M = :EEE_§_§E_ ei<qnWt+€qn‘kL)
em 1
and

m; = k KR sin B
Expanding the exponential in the integral,

217
1!

Pyn= M / (cos gn 8 - i sin gn 6) {Jo(ml)

8

Co
2 B Jap (my) cos 2h 6
h=1
@
oy h§1 Il (my) sin (2h - 1) 86 }de (8)
This equation becomes
n
Pgn = (-1)% 2m uTgn (my) (9)
Having the potential at the point P, the sound
pressure D, is readily obtained since
o
qn
Py e (10)

where Po ig the mean density.
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On differentiating the exponent in M,

i(-1)%" qnw p_ H KR

= an(ml) Eqn ©

¥ i(qnwt+€qn~kl)
“qn 1

@a)

As the only concern is with the sound-pressure ampli-
tude, all phase factors can be neglected. Then equation
(11) becomes

E KR® Jypn (my) Egn

Pgn| = 9BW P, ) (12)
Remembering that
" .= L
R
therefore migge= k KR sin B
= gn K sin B b
C
and ﬁqn = Eo Aqn

= K Aqn X (function of mean section

size and shape over out-
er portion, HR)

= KV Aqn & (as first approximation
where "a ‘and b are
measured at radius KR;
a/b is small, about
9
vhere a is 1/2 thickness
Dy cheorad

And, since equation (1l2) gives the maximum value instead
of the root mean square, the equation must be divided by

A/ 2e Finally,
Po 4An 2a Aqn HR

19) = sz.g an (ml) (13)

~an J2 vl
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The sound pressure of the fundamental and lower har-
monics is thusﬁobgained in terms of the aerodynamic veloc-
ity head o £ 0", the geometry of the arrangement, and

the acoustic properties of the medium.
EXPERIMENTAL CHECK ON ACCURACY OF THEORY

Before any calculations can be made, some of the val=-
ues in equation (13) must be ascertained. All values ex~

cept Aqn’ K, and H are directly known or can be found
without any intuitive considerations of the problem. The
values Aqn’ X, and H will now be established.

For rectangular excitation or rectangular wave form
it can be shown that the Fourier coefficient is given by

4 qnd
= e CRl A S
Agn = g SHiE iz (14)
b
For small angles, der
ig
2
qn2 b
Agn 2 =~ ;—=— (15)
an =" ang®

where g is any radius from O to R. This relation would
hold good, of course, only for values of the radius g
describing the outer portions, which is the region con=
cerned.

Assigning values to the fractions H and K 1is a
matter of a little less definite procedure. If it be as-
sumed that the effectiveness of the radius in producing
the sound pressure of the fundamental at a distant point
varies as the x power of the radius g, the radil de-
scribing the centers of zravity would be (x+1)/(x+2)R.

As a result of measurements of the radiated sound
pressures of the fundamental frequency in the plane of ro-
tation (B = 90°) from two identically equally spacecd
rotating blades with symmetrical sections and zero blade
angle, it was found that the sound pressurc p varies as
the fourth power of the tip spced for tip speeds below
that of sound. Onc may from this result cxpect the center
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of gravity of the sound sources in the disk of the rotat-
ing blades to be at a radius somewhere near the tip, Neg-
lecting end and distribution effects, if this sound pres-
sure varied as the fourth power of the radius, the radius
defining the centers of these sources would be at 5/6 R,
or 0,83 R, Henceforth XK will be 0.80 (a slight reduc-
tion for end effects) for the fundamental and there will
probably be small error in using this value for all har-
monicsa

If, then, it is assumed that the area under the curve
R

.
/gx dg
d

is distributed along the radius with an amplifude equal to

the value of g¥ at g = (x+1)/(x+2)R, it will be found
that this area takes up a distance '

along the radius. For x = 4 this distance becomes

0.41 R, Although of no particular significance, this val-
ue is very nearly equal to 2(1 - X). The fraction EH
will henceforth be used as 0,40, the round value nearest
to 0,41,

Values can now be substituted in equation (13) and
the accuracy of the theory checked by comparing calculated
and observed sound pressure; the fundamental will, of
course, be considered first. The values substituted are:

-3 3 <

g = la2 x 10 grams/cm®, air density

g =il g pozder of harmoenic

n = 2, number of blades

a = 0439 X 2.54 cm, 1/2 blade thickness

b = 3,90 X 2,54 cm, ©blade chord

R =4,0 x 12 x 2,54 cm, blade length (radius to
blade tip)
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K =080, fraectiion off R to cehtier of lgravityeof
sources
V. = tip épeed in cn/sec.

1 = 80 x 12 x 2.54 cm, distance of microphone to
center of revolving blades

my = qn sin B KV/C (sin B = 1.0)
C = 1100 x 12 x 2.54 cm/sec, velocity of sound

H = 0,40, fractional width of equivalent ring

The regults are shown in the following table:

K/ Calculated P Observed Paa

_ gn = 1 x 2 (bar) (var)
0.603 Q2 0.82

541 47 51

. 380 .103 i

The comparison is quite favorable for the fundamental
sound pressure but, when checking the theory with experi-
mental data for higher harmonics, it was found that appre-
ciable differences occurred. This difference, however,
only gradually became larger as higher and higher order
harmonics were considered; the error for the second har-
monic, for instance, was not unduly large.*

*Although the relation Eqn = XV Agn % gives a correct
result, the factor a/b should be nearer 2a/b. Apparent-
ly, errors in other factors are compensating. No claims
are made rclative to the favorable check here between the
theory and ecxperimental results; other than for purpose of
sound calculations, the results are fairly goods The fac-
tors K and H, for instance, could hardly be said. to be
rigorously obtained; strictly speaking, the integration
should be carried out over the entire disk.
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Apparatus

The "full-scale® blades used in this work were rotated
by a 200~horsepower, 3,600 r.p.m., slip-ring motor capa-
ble of being set at any angle in the azimuth circle. This
motor was specially built by the General Electric Company
for the N.A.C.A. for propeller-noise and other research.
Figure 2 shows a propeller mounted on this motor. This
motor is located on a beach 235 feet from the nearest
building, within which the motor control and the sound re-
cording apparatus are situated. The microphone is placed
80 feet from the motor.

The microphones used are the Western Electric No.
618-A electrodynamic type and are connected to the sound-
recording apparatus by shielded cable. The recording and
measuring equipment used in this work includes amplifiers,
filters, attenuators, and an automatic-recording sound
analyzer. A schematic sketch of the hook-up of this equip-
ment is given in figure 3 and a photograph of the appara-
tus in figure 4. The principle of operation of this ana-~
lyzer is given in reference 8, but the analyzer has subse-~
quently been much improved.

The data to follow giving sound pressure against

K V/C were obtained from sound-analyzer records, which
were corrected for errors due to the over-all frequency
characteristics. Over-all calibrations from microphone

to analyzer were made before and after each series of runs
and the variations in over-all amplification were never
more than a few percent. The calibrating unit used was a
Western Electric AME-29 unit built to accommodate 618-A
microphones.

The accuracy of the sound pressures given in this
paper is comparable with the accuracy of the output of the
AME~29 calibrating unit except for errors in measuring the
analyzer records. The error involved in measuring these
records is not over 5 percent. It will be noticed that
the analyzer records (fig. 5) give a fairly definite pat-
tern for the fundamental and harmonics and, by systematic
measurement, errors of only a few percent are involved.

The calibration was always taken at 500 cycles with
0.20 volt impressed across the calibrating unit, which at
that frequency gives a sound pressure with the dynamic
microphone of 1 bar. The voltage across the calibrating
unit was always set to within 2.0 percent. It is well to
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state that, as the blades are not working in quiescent

alir, the sound pressures of the harmonics are by no means
constant with time but fluctuate about their mean values.,
It is, of course, quite feasible to obtain representative
values from the plotted values by taking sufficient data.

It may be added that for the amplitude ranges used in
this work, no nonlinearity existed in any part of the equip-
ment.

A drawing of the blades with important dimensions is
given in figure 6. It will be noticed that the blades
have a slight taper with the section shape the same over
the outer two-thirds. The slight taper of the blades was
necessary to prevent blade flutter in the speed range used.

Procedure

For data on sound pressure against XV/C the motor
was set so that the microphone was in the plane of the
disk (B = 90°), Analyzer records were then taken at dif-
ferent motor speeds over a range dictated by (1) the am-
plitude range possible on the analyzer records with the
over-all amplification fixed (attenuators set) and (2) the
level of "background noise."

The data for polar diagrams of sound pressure distrie-
bution were obtained by taking analygzer records at a con-
stant motor speed for every 15° about the azimuth circle,
the microphone being fixed and the motor rotated in azi-
muth.

The time required to generate the pattern on the film
of any harmonic is quite appreciadble; for the system used
to moasure the analyzer-record amplitudes, a fair time av-
erage amplitude is therefore obtained. Slightly over 2
minutes is required to cover the range of each record
(0~350 CePesSe)s Perhaps it is well to state here that the
time constants in any part of the entire system are very
small compared with (1) the time of transit to produce a
pattern for any harmonic and (2) the usual time of fluctu-
ation of the rotation noise itself. These are all neces-
sary characteristics if reasonable accuracy is to be ob-
tained because the blades are always operating in air that
can hardly be said to be quiescent, and the amplitudes
therefore fluctuate about their mean. In general, such
fluctuation increases with the order of the harmonic.




N.A.C.A. Technical Note No, 605 13
EMPIRICAL CORRECTION FOR HIGHER HARMONICS

Actually, the sound does not emanate from a ring
near the tip but is distributed over the entire disk, It
is to be expected that discrepancies would enter when
higher orders are considered. This question is one of ra-
tio of diameter 2KR to the wave length A, It is of in-
terest to note this ratio in terms of other quantities,
which turns out to be the argument of the Bessel function
in equation (13) divided by m with (sin B = 1).

A =

2n -G .. 25 B0 (16)
qn w qn V

o

.then

2KR _ 2KR qn V _ gn KV

A 21T ARGl S T (17)

Thus far the question of "finite amplitudes” has re-
ceived no attention in this paper. This question has been
omitted owing to the mathematical difficulties involved
and also because it was not considered sufficiently impor-
tant in this work. In the first place, it is to be remem—
bered that equation (13) does not include large-amplitude
phenomena but, nevertheless, a fair check for the calculat-
ed value with experimental value of the fundamental sound
Pressure was obtained.

In work accomplished at the Bell Laboratories (refer-
ence 9) it was shown that for large amplitudes there is a
shift of energy in the acoustic spectrum from the funda=-
mental to the second harmonic. The reported tests dealt
only with plane waves but the paper presents results from
which deductions.in regard to spherical waves can be made.
Measurements are described of the sound pressure of the
fundamental and second harmonic taken in a long tube, one
end of which was connected to a generator of intense sinu-
soidal sound pressures. The relations taken from Lamb's
Hydrodynamics give p, as the fundamental and p, as the

second harmonic sound pressure. This work shows that the
distortion or energy shift can, to experimental accuracy,
be indicated by the following relation,
(Y + 1) w2 ax

4 c?

IId

L e

3

4

(Y + 1) n? = % (18)

il
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where w = 2uf
.
a, maximum amplitude at the source, ¢ = a cos wt
Nie distance along tube from generator

A, wave length
Y, ratio of specific heats of air
¢, vVvelocity of sound

Thus it is seen that for plane waves the distortion varies
directly as the source amplitude, distance from the source,
and inversely as the square of the wave length.

In the present tests pressure-variation measurements
were taken well in the "pressure field" (analog to induc-
tion field of an antenna) up to within a few inches from
the tip of a propeller and no finite amplitudes were ob=-
served until within a chord distant from the plane of ro-
tatione This result would be expected from a considera-
tion of potential flow about airfoilse From this result
and considering spherical divergence it may perhaps be
said that no serious discrepancies due to finite ampli-
tudes would arise until wave lengths of the order of the
chord are considered.

The question of finite amplitudes where spherical
waves are concerned has been well summed up by Lambdb in
reference 10, "In three dimensions the effect must be very
much less, owing to the diminution of amplitude by spher-
ical divergence."

Apparently the discrepancies between the calculated
and observed sound pressures for harmonics above the firs?
cannot be attributed, at least to any great extent, to
considerations of finite amplitudes. It secms more likely
that such discrepancies are due to the theory as presented
in this paper lacking higher order considerations. It ap=
pears that the deviation of the theory from experimental
values is a question of the wave lengths of the higher
harmonics not being sufficiently large compared with the
radius R.

The discrepancies will be considered as having been
taken into account by a function described by
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G = B ma* (19)

where mp = qn KV/G, (the same as m; except that sin B
is omitted)., ZEquation (13) now becomes

Po an a HR A4y -
= L Rl B & 20
P - qn(ml) qn B2 (20)

The probdblem now is to find the coefficient Byp and the
exponent x from experimental values of Pgn and the
other known quantities in equation (20).

Data obtained from the two-=blade arrangement will be
used for determining Bqn and x. Since it is known that

the theory holds for small values of quV/C, there 1s
little choice in the number of blades to use in obtaining
data for an empirical relation. For practical reasons the
smallest number of blades to use is obviously two.

The main effect in producing these discrepancies
seems to be in the magnitude of the quantity my, which
is 2 direct measure of the ratio of the radius R to the
wave length A, Since

mg = qn KV/C

it is appreciated that it does not matter how higher val-
ues of mz are obtained, whether by increasing the number
of blades n or considering higher harmonics q with
fewer bladese Perhaps it is also well to add that the same
range of KV/C would be used in any case, it being the
main variable for any value of qn.

" Quite obviously, the exponent x may be obtained
first by plotting the logarithm of the sound pressure Pgn
and all values varying with V in equation (20), obtained
by derivation, against the logarithm of the quantity KV/C.
The slopes of the graphs so obtained can then be plottéd
against gn, which will give the relation between x and
qne It will also appear that x depends on KV/C as
well since the slope of log(an my) against 1log(XV/C)

decreases with increases of KV/(C. As the calculated val-
ue of the sound pressure of the fundamental checked the
experimental value fairly well, it would be anticipated
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that, for the fundamental, an would degenerate to 1 or,
putting it in another way, By, and mpX¥ each may be-
come 1, 3

It may be of interest that the same sort of discrep-
ancies were found between exponents given dby theory and
those obtained from experimental data for rotation noise
from propellers operating under normal conditions of speed
and thrust. Gutin's relation would, for example, give a
difference in exponent of 2 for adjacent harmonics of a
two-Dblade propeller and from experiment the difference of
approximately 1 was found.

v

EVALUATION OF THE EMPIRICAL FUNCTION

The data from the analyzer records for various speeds
o'ff the two—=blade arrangement ranging from about 1,000 to
2,000 r.pem, with the microphone in the nlane of the
blades (B = 90°) were plotted against KV/C. More spe-
cifically, the logarithm of the amplitudes hgyn of the
analyzer records for the first five harmonics was plotted
against the logarithm of XV/C. A proportionality exists

between _hqn and  DPgn- Only one of these graphs is shown

in figure 7 to indicate the dispersion of points normally
observed, The values of the slopes of these graphs, cor=
rected for frequency-characteristic errors of the equip-
ment used, were then plotted against qn (fig. 8), which
ecives the exponent x of V or (qnkKV/C) for the differ-
ent harmonics.

In figure 8 is also plotted the exponent of V in
(k®7®) and in Jp(my) with sin B = 1.0, (B = 90°) of
equation (22)., Since the exponent for an(m1) varies
with KV/G, it is plotted for KV/C = 0, KV/C = 0.48,
and XV/C = 0.80 to indicate the usual range of variation.
The value 0,48 was choscen as the intermediate value of
KV/C ©Dbecause the mean of logarithm KV/G in the speed
range used was about 0.68=1, or a value of XV/C of ap-
proximately 0.48.

The difference then betwcen the exponent x for the
sgu%d pressures as measured in experiment and the x o
E Ve giug" x “fef an(ml) gives the xy for the func-

tion an. The exponent for this function, taking {2, %)




NeA.C.A, Technical Note No. 605 7

as the origin on figure 8, would be approximately

xp = - 0.28 (qn - 2) (21)

For XV/C near 0.48 this function can be given as

-0.28 (qgn-2)
In general, as indicated in figure 8, the graph of
the exponent of an(ml) for the mneasured sound pressureées

would vary with XV/C. For values of XV/C 1less than 0,48
the graph would be steeper, and would be less steep for
values greater than 0.48. Since for KV/C near gzero the
ratio of the wave lengths to the radius R of the blade
would be large, the theory would hold without the experi-
mentally determined function and the exponent of which
would be zero for all harmonics. If then, as a first ap-
proximation, it is assumed that the exponent of this func-
tion varies directly as XV/C,

-0.28 N
e (a0~ 3) (Kg)

Ggn = Bgn m2

3 m2~0'58 (qn~2)(K%) (23)
qn

Equation (22) may now be written

Po an a HR A b -2 KE
qn Y2 v 1 qn qn (50

The coefficient can now be found by substituting

Bqn
values of the harmonic sound pressures Pgn that are ob-
tained from experiment, all other values being known. The
valucs of this coefficient for the first five harmonics
were calculated and are given for the two blades used.

Bn oo Al
By = el
Be  =ne ol
Bg = 1l.5
B 40
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These values are shown plotted against gn in figure 9
from which Bz, By, and even B;a (by extrapolation) could

be obtained for a threec-=blade arrangement.* Obviously,

values of Bqn for other arrangements are aveilable from

figure 9, up to a value of qgn equal to about 1l2.
POLAR DISTRIBUTION OF SOUND PRESSURE

Thie |sound pressures of the first four harmonics fior
the two—=blade arrangement are plotted in polar coordi-
nates, which show the distribution about the disk or equive-
a2lent ring of the blades. The axis of rotation iIs taken
as the reference axis with the front of the driving motor
teken as the gero direction., These polars are plotted in
figure 10 with the continuous lines representing the ex—
perimental values and the dashed lines &LX¥e calculated dis-
tribution. All data on these polar graphs are for a con=
stant speed of 1,780 r.pems The calculated values of
sound pressure for each harmonic were multiplied by a com-
mon factor of nearly 1 to make the calculated distridbution
coincide with the experimental distribution in the plane
of rotation (B = 90°). This method was desired for the
purpose of comparison of the shapes of the distribution
curvess It will be noticed that the observed polar curves
for the fundamental and second harmonics have their axes
of symmetry slightly ahead of the 90° position. This loca~
tion is probably due to a slight thrust on the blades that
is exerted toward the rear or 180° direction owing to a
slight unavoidable twist of the blades. For propellers
exerting a thrust forward, a pronounced peak in the sound
pressure is usually observed toward the rear near 120° for
the first two harmonics, which perhaps is the explanation
for the slight dissymmetry with respect to the plane of
rotation, The reason why the experimental values are not
zero on the axis is most probably due to the propeller
not operating in free space and not being free of obstrucw
tions, as assumed in the theory.

*The curve of rigure 9 may perhaps give a wrong impression

of the discrepancy in the theory for the higher harmonics.

It must be remembered that the coefficient Byp must be
e ~0.58(qn~8)KE . .

nultiplied dy nmng C vhich gives values less

Ghan il
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COMPARISON BETWEEN MEASURED AND CALCULATED SOUND

PRESSURE FOR A FOUR-BLADE ARRANGEMENT

In order to obtain an indication of the value of
equation (24) for cases other than for two blades, a four-
blade arrangement was made and sound-pressure measurements
made therefromes The blades of this arrangement were equal-
ly spaced, of the same length, and the blade section was
equal in all respects in the outer two-thirds of the radi-
us to that of the two-blade arrangement. The only differ-
ence in section was near the hub where the sound genera-
tion is negligibdble.

In figure 11 is plotted the measured intensity for the
fundamental of the four-blade arrangement against log KV/C.
The range is limited owing to flutter at the higher speeds
but sufficient data were taken to give a fairly reprecsenta-
tive mean line. Also, by the use of equation (24) there
were obtained three calculated points that are within 1.5
db of this mean line. This deviation is reasonably small,
It will be noticed that the dashed line through the calcu~-
lated points in figure 11 curves downward toward the lefte
hand side and the experimental mean line is drawn as a.
straight line. If the experimental mean had been correct-
ly drawn, it would probably have been similarly curved.
This contention is supported by the fact that many points
fell below the line at the lower values of log KV/C.

When the points were plotted, it was thought that these
amplitudes taken from the analyzer records were too small
and therefore too unreliable to be given much weight. A%
the time, all that could be expected, or perhaps even
hoped for, was that a line could be drawn whose slope
would give the correct value of the exponent at the mid-
point of the range of log KV/C used. Another consider-
ation of interest, at XV/C = 0, equations (13) and (24),
would be identical and the slope or exponent of V would
increase to (2 + gn).

As a matter of further check on equation (24) for the
four~blade arrangement at KV/C = 0.451, 1 = 80 feet, and
B = 90°, . second harmonic sound pressure of 0,11 bar, or
54+9 db, was experimentally obtained. Calculation gives
Osll4 bar or 55,1 db, This deviation of only 0.2 db is so
small that it may perhaps be accidental but at any rate it
indicates that equation (24) has good possibilities of Dbe-
ing quite general. It is also of interest to note that
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the experimental curve in figure 11 gives a slope of 5,1
(changing db back to 1log pqn) and equation (24) indi-

cates a slope at 1log (KV/C) = 1,584, or XV/C = 0,384
(mean of the range of log (KV/C) in figes 11) of (57«=0448)
e 151129 ~

In closing it may be well to state that, by the very

nature of the function an,“ only one value of ms 1is
correct, namely, qnKV/C. Therefore, in view of the check
on equation (24) by data obtained from the four-blade ar-
rangement, quV/C must be the correct value, or at least

nearly so, for the function selected.
CONCLUSIONS

le The theory gives the sound pressure without em=-
piricism for the fundamental and fairly satisfactory re-
sults for the second harmonic for a two-blade arrangement
with zero thrust, and XV/C less than about 0.7.

2¢ The empirical relation given takes care of cases
for values of qnkKV/C wup *o about 7 and perhaps even
higher values provided that XV/C does not exceed about
Q) (i '

3« The effect of thickness of blade sections of a
propeller in producing noise is negligible except for
very low angles of attack, that is, the rotation noise of
a propeller absorbing normal power gives sound pressures
much larger than found in these tests where only thickness
was involved. At least, this conclusion is true as re-
gards the calculation of loudness.

4, The relation (24) gives the shape of the polar
digbtribution of rotation noise for the tirst four harmon-
ics fairly well in the speed range used.

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., June 14, 1937,
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Elevation

Figure 1l.- Elevation and plan view of geometry of sound source
and point of observation.
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with propeller mounted.

Fig. =



Microphone

/"

|
|
|
|
|
|

J

235!

Recording and control room

_—_E=E§£§§:=::4> To recorder,

|

alvanometer

gear train and
motor
~~Gear box

|
|
|
|
|
|

Speed
controller

5,000 - oc ~
high pass

Microphone
amplifier
Recorder~-,\h
0-10,000 ~ ([ F
Sound —_{ oscillator
[ enalyzer A
Att, e
o——] 0-100 ~
Lo — low pass
Sound
! intensity 100 ~ = 500 ~~
i meter B.P. L.P ]
Attenuator amplifier
500 N EIEASEH 0=
Ho B, ke P
Tachometer o///
ﬁ:a 14,000~ 5,000~
a,//,/" 521 8P T
O\_\

_:‘\“____, S s

For Frequency
range

1. 0-300 ~
2. 0-1,000 ~
3. 0-3,000 ~
4, 0-10,000~

(o]

meter

Teo

Figure 3.~ Schematic sketch of sound-measuring equipment.

"ON 930 TBOTUYDSL 'V O°V'N

G809

g *3tg



[ MICROPHONE ~ INTENSITY LEVEL
AMPLIFIERS METER AND FILTERS

T SOUND

| ANALYZER

BECH ~——T

MICROPHONE
CALIBRATING UNIT

s ’ s AR

¥ O'YN

S09°ON ©30H TedoTuyods |

g

v



Fig. 5

.605

No

Technical Note

N.A.C.A.

e,

o
; -+

;9220 " obz=9

829 =WJI¥

i J i

£

PIOOSI IBZATBUY —°G 9IN3TJ

>

c
,03 =g 06=9¢
£58/ = Iva¥




AAAAAAAAAA

B—

sio
Sec. A ec. B-B ec. C-C a
b y X vy x ¥
0.62 |0.48 |0.44 [0.34 | 0.235 [0.19 -
1.85 89 .88 .41 .50 .24
2.08 .625|1.46 .44 .83 .25
2.50 .625(1.75 .44 .00 .25
3,75 56 |2.62 .39 .50 22
3.50 .25 | 8.00 .14 =
7 2.50

tj’“” ‘ afe o™ 0% e

CQQ °'ON ©30N TEe2TUYDd

— k—1/2" -




N.A,C.A, Technical Note No.

605

Heloone, §7

4 \ m |
oo
=
@
7/ rs
& g & ©
(a2 o= Gy »
F + 3
o 2 Sl
“_cmm_.
Mgl
) +> 1
< =10} <t
) Cg L N
54 = . .
Sl o e o
Q PR
R 8- AN
5 G o
N | 1
H L
o/ el <
~
mwm.o__ k.
O/ = 00N X o~
] ‘4
[¢) -
B /// 0 =l
@] 5 8K
| S = 2y
¥. By /d
|
\ N
| kﬂhm ©
, .
| \
| 3
| 4
| -y i
| N o
| o <
‘ ON
| /
| o
- nv/// 2
* N
|
- ke

.60
.40
.20



Fig, 8

N e, V5 ) 0 = pM. ﬁEv £ 393 x—
// £ w .
N < =2 {)87°0 = %'(w) "Pr 247 x| a
/ N e (#)d0 = m.m. ) L@h x4y x— )
N \ A
/ % ;
, ﬁovwﬁ.onm. ¥ 80d pomseom 193 xJ5h TPF X
> m 5
/ \ g
&
o
19}
/ H
x 3o ® o
N :
N o
S -
/I\ ¥ e 2 & m
o+ - m.
2 NN 4
© Aﬂﬂ ;
¢ ©
o \ .
= 2=y <t [}
(6}
m N ;
e
= N\ i
~ AN
2 W
o -OX+ (V]
3 LN
(6] gl
&=
AM
. "



Hles 9

N.A.C,A, Technical Note No. 605

10

Figure P.~ Bqn agains} qn.
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Fig. 11
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