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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 484

A ]vLETHOD OF CALCULATING THE

PROPELLERS, WITH SAMPLE

By Edwin P.

'UTATI_

SUMMARY

This paper contains a series of calculations showing
how the performance of controllable propellers may be de-

rived from data on fixed-pitch propellers given in N.A.C.A.
Technical Report No, 350, or from similar data.

Sample calculations are given which compare the per-
formance of airplanes with fixed-pitch and with control-

lable propellers. The gain in performance with controlla-

ble propellers is shown to be largely due to the increased

power available, rather than to an increase in efficiency.

Controllable propellers are of particular advantage when
used with geared and with supercharged engines.

A controllable propeller reduces the take-off run,

increases the rate of climb and the ceiling, but does not

increase the high speed, excep_ when operating above the

design altitude of the previously used fixed-pitch pro-
peller or when that propeller was designed for other than
high speed.

INTRODUCTION

The rapid refinement of airplanes and engines has
been accompanied by an increasing demand for a more flex-

ible type of propeller, particularly because the result-

ing higher airplane speeds have necessitated the use of

high pitch settings with a resultant sacrifice in take-off
and climbing performance.

The reduced low-speed performance of a fixed high-

pitch propeller operating on a high-speed airplane is duo

principally to two causes: (1) The drop in engine speed
and power between the high speed and standing condition

is greater for high-speed airplanes than for low-speed
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airplanes; (2) the blades are stalled during the begin-
ning of the take-off run resulting in a severe loss of
take-off thrust.

_ These_@glficulties may be overcome by the use of a
controllable propeller which may be adjusted in flight by

the pilot to a sui_ble pitch setting. The same purpose

_also be accom_hed by the use of an automatic pro-
_er whose blades accommodate themselves to the.most

favorable pitc_settings for the various conditions of op-
er_ion..

The controllable propeller has only recently been de-

veloped into a practicable form. Stimulated by the grow-

i_g need for such a propeller, several manufacturers have

now produced controllable propellers of sufficiently sat-

isfactory design to be acceptable to conservative airline

operators and airplane manufacturers. The increased in-

terest in their performance characteristics has resulted

in numerous requests for test data on them.

Since the controllable propeller is merely the equiv-

alent of a series of fixed-pitch propellers of different

pitches, it should be clear that its performance may be

calculated from propeller data already available. It is

the purpose of this report to show how such calculations
may be made, and by the use of several examples give a

quantitative indication of the benefit which may be de-

rived from the use of controllable propellers on airplanes

of various types.

PERFORMANCE CALCULATIONS

The propeller data used in this report were takem
from the results of wind-tunnel tests of a full-size_ pro-

peller operating in conjunction with several emgine-fuse-

lage comblnatiens. These data, given in reference l, con-
stitute the most extensive and reliable information avail-

able on this subject. A set of propeller curves taken
from this reference is reproduced in figure 1. In this

figure, propulsive efficiency _ and V/nD are plotted

against C s with blade angle _ as the parameter. The

nondimensional speed-power coefficient Cs is defined by

5/ 5
Cs = _ p VP nm in which V is air speed, P is input power,
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n is propeller revolution speed per unit time, and p
is the mass density of the air.

The Cs charts are particularly useful in selecting

a propeller for a given airplane. If the design engine

revolution speed, engine power, and air speed of the air-

plane are known, or assumed, one may calculate Cs and
subsequently from the charts obtain V/nD, blade angle,

and efficiency for the design condition. The diameter

may then be calculated from the V/nD thus obtained. The

details of these calculations are fully explained in ref-
erence l, and need not be recounted here.

Propeller performance as used in this report means

the ability of a propeller to convert the full-rated power

of the engine into thrust power at all flight velocities.
It is represented by a curve of full-throttle thrust horse-

power available (t.hp.a) against air speed and is the

most practical basis upon which propellers may be compared.

An additional curve of thrust horsepower required

(t.hp. r) against air speed is necessary for comparing the

performances of an airplane equipped with various types of

propellers. This curve is calculated from design and per-
formance data by a method described later.

Thrust Horsepower Available

_-D_tch l_rope_ler.- One difficulty in calculat-

ing the performance of a fixed-pitch propeller is caused

by the variation of propeller revolution speed with air

speed. Since both V/nD and Cs involve the factor n,
an indirect method of some length is usually required for
such calculations.

It is convenient in making these computations to have
a table of C s values for air speeds and revolution

speeds likely to be encountered by the propeller. Before

such a table can be made, however, it is necessary to have

a full-throttle power curve for the engine, obtained ei-

ther by test or by empirical methods. In the illustrative

examples given in this report the power curves for the un-

supercharged engines were computed from the relation

b.hp. T r.p.m, where (b.hp.) o and (r.p.m.) o are
(b.hp.)o (r.p.m.)o
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the rated power a_ speed of the engine. This relation is

fairly accurate throughout the usual fllght range of en-

gine speeds for unsupercharged engines but may be consid-
erably in error if used for supercharged engines. Actual

test results are necessary for pr oblems involving super-
7

charged engines.

With this information available the values of Cs

mentioned above may be calculated and may be conveniently

put in the form of table I.

Air speeds are selected at small intervals throughout

the flight range and for each air speed selected three

values of engine speed (r.p.m.) I are chosen in the range

•where the actual engine _Oed is likely to be. A value of

Cs is found in the Cs table for each _ value of (r.p.m.)l

and, since the blade angle is known, the V/nD for each
_ _ _ the charts in ref,value of (r.p.m.)1 may be _n_ from

erence 1. With this value of V/nD and known values of

V and D a second value of (r.p.m.)_ may be calculated

for each chosen (r.p._.)1. If (r.p.m.)1 and (r.p.m.)e

are plotted against Cs as ir figure 2, the intersection
of the two curves doter_ine_ ±h_ actual value of r.p.m.

and Cs for this particular air speed. With a little

practice a quick mental calculation will suffice to deter-
mine the common point of the two curves and plotting be-

comes unnecessary.

Now that the correct value of r.p.m, is known, the

corresponding b.hp. a may be easily found, an_ also since

the correct C s and blade angle are known the efficiency

may be found from the charts and t.hp. a calculated.

Controllable _ro_eller.- In general, the optimum per-
formance of a controllable propeller is obtained when the

pitch is controlled so as to permit the engine to develop

maximum permissible engine revol_t_on _peed a_d power at

all flight velocities. Fo__ the e_:_les._ given in this re-

port, the permissible limits of ezCine _pec_ and power will
be taken as the rated speed and po_r of the engine. The

fact that the engine revolution speed and the power are

held consta_t at all air speeds _reatly simplifies perform-
anco calculation for the controllable propeller since Cs

may be quickly and directly calcuiated for each air speed.

With the diameter of the fixed-p_tch propeller as a basis

for selection, the diameter for the controllable propeller

may be chosen, having due respect for high tip speeds.
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Since the air speed, revolution speed, and diameter are
known, the V/nD ratio for each air speed may be calcu-
lated. On the propeller charts in reference l, the known
values of V/riD and Cs determine _ and _. The thrust
horsepower available is then the product of the efficiency
and the rated horsepower of the engine.

This method of propeller-performance calculation ap-
plies to the automatic propellers only, where the blade
angle is continuously adjusted to maintain constant engine
speed. When the propeller installation provides for only
two or three blade-angle settings within the flight range
and is manually controlled, the performance may be calcu-
lated as for a fixed-pitch propeller in the air-speed in-
tervals between blade-angle changes.

Hy__othetical controllable-pitch-and-diameter _C.P.& D.[
_9_I[_[.- Theory and experiment have shown that the pro-
poller diameter that is best for one particular air speed
is not the best for all airspeeds. For optimum perform-
ance, then, not only the blade angle but the diameter must
be changed for each air speed.

It is interesting for comparative purposes to calcu-
late the performance of a hypothetical propeller whose
blade angle and diameter may be sot at their ideal values
for each condition of flight. Such a propeller has a per-
formance that cannotbe exceeded by any other propeller
of similar blade form.

The performance of a C.P. & D. propeller was calcu-
lated for each of the example airplanes in this report.

Since such a propeller is purely hypothetical in nature,

the high-tip-speed losses, which would inevitably occur

at low air speeds where the diameter is large, were inten-
tionally neglected. In actual propeller applications the

effect of hi_gh tip speeds must not be overlooked. Infor-
mation regarding this subject is found in reference 2.

The values of Cs for the C.P.& D. propeller are the
same as for the controllable propeller, but the values of

V/nD and blade angle for each speed are found from the
propeller charts at the intersection of the Cs ordinate

and the broken line designated "maximum efficiency for Cs."

Values of V/nD and blade angles on this line give effi-

ciencies falling on the envelope of the efficiency curve_.

The efficiency and thrust horsepower available are found
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as for the controllable propeller. The best diameter for
each velocity is determined from the known values of V/nD,

V, and n by simple substitution,

Thrust Horsepower Required

The thrust horsepower required by an airplane may be
calculated from the equation

p fVS 2 W_
- +

t.hP.r Ii00 _ p be _ 550 V

in which the first term iB the parasite power required and
the second is the induced power required. The terms in

this equation have the following significance:

W, weight in lb.

V, air speed in ft./sec.

f_

Dp,

q,

a parasite area, in sq. ft., defined by

parasite drag in lb.

dynamic pressure, lb./sq.ft.

f = Dp/q

p, air density in slugs per cu.ft.

bo a , an effective span squared equal to e(kb) 2

b, span in feet

k, Munkls span factor

e is a term described in reference S, page 20, as

an airplane efficiency factor the value of which usually

lies between 0.75 and 1.0, depending upon the cleanness

and other characteristics of the airplane. Its purpose is
to make allowance for differences in actual conditions from

ideal, such as nonelliptlcal span loading and variable par-
asite drag coefficient.

The parasite area f must not be confused with the

commonly used "equivalent flat plate area" which is equal
to f/1.28. The equivalent parasite area f may be de-
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termined by a summation of the drags of the component
parts of the airplane plus an allowance for interference,
but if the high speed of the airplane is hnown it is much
easier and more accurate to solve the t.hp. r equation
for f as follows:

2 W2
(b.hp.o × _max - 2 ) !lO0

f =_ TTp be Vmax 550

P Vmax

With this value of
rewritten

f the t. hp. r equation may be

t.hp. r = K V3 + KI/V

Table II gives the results of the solution of this equa-
tion throughout the speed range for the first example
airplane.

Airplane Performance Characteristics

The high speed and climb of the example airplanes were
determined from the curves of t.hp. r and t.hp. a in the
usual way, which will not be described here.

The take-off runs were calculated using Diehl's take-
off run equation, the development of which is given in
reference 4. This equation for still air is

Ks V_ T l TO
S -- _here -- = ---TI W W

W

and S, the take-off run in feet

coefficient of friction between wheels and
ground

W, gross weight in pounds

To, static thrust of propeller

Vs, take-off speed in miles per hour
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KS, a factor the value of which may be determined from
figure 3 where Ks is plotted against

\ w _,t

in which TV is the thrust at take-off speed V s ob-

tained by multiplying the thrust horsepower at V s by

375/Vs; D/L is th e reciprocal of (L/D)ma x and may be

calculated as follows.

Determination of (L/D)max

The maximum value of the ratio L/D may quite easily

be found from the t.hp. r equation, which may be written

K I
_ D V _ K V s + from which

t.hp.r S75 T-'

D = S75 K V 2 + 375 Kl
V 2

where V is in miles per hour. In order to find the min-

imum drag the first derivative of D with respect to V

must be equated to zero.

__D= 2 × S75 xV - (2 X 875 × Zl)/V S = 0,
dV

2 X 375 KV = (2 X 375 K1)/V 3

so that

and E V s = KI/V, which s2_ows that the air speed for

Dmin and therefore (L/D)ma x is the air speed at which

tLo induced power required is equal to the parasite power
required.

Then at (L/D) ma x

4/T I
v=/

t.hp. r = 2 × K_/V
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drag = (t.hp. r × Z75)/V

lift _ weight

(L/D)max = weight/drag

Static Thrust

The static thrust of propellers similar in plan form
to the one used in reference 1 may be found from figure 4,

where T°D is plotted against blade angle 6. The engine
Q

torque Q may for unsupercharged engines be taken as the

full-throttle torque of the engine calculated from its rat-

ed power and Bpeed. For supercharge_ engines Q should

be taken as the actual engine torque at the beginning of
the take-off run. The curve in figure 4 is a mean of the

To D
curves for the propeller-fuselage arrangement shown

Q
in reference 1 and may be used with fair accuracy for any

of them. More complete data with regard to static thrust

of propellers may be found in reference 5.

The blade angles of the controllable propellers at

take-off were the ones that permitted the engine to turn

at full rated speed, The blade angles and diameters of

the C,P.& D. propellers for take-off were those that gave
the greatest static thrust with the engine operating at

rated power and speed.

EXAMP LE S

Table III is a summary of pertinent data regarding

the four airplanes used as examples in this report. The

characteristics (L1/D)max and f were calculated by the

methods previously given. The airplane efficiency factor

e was chosen for each airplane roughly in proportion to

its aerodynamic cleanness, except for airplane no. 2 where

previous tests had shown this coefficie_it to be approxi-
mately 1.0. The re_aining characteristics were taken from

published data.

Airplane no. i As a low-winged V-passenger transport
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with retractable landing gear; no° 2 iS a gull-winged mon-
oplane with a well-streamlined water-cooled engine instal-
lation; no. 3 is a 14-passenger trimotore& monoplane trans-
port; and no. 4 is a pursult-type single-place biplane with
a supercharged air-cooled engine. The engine, _hich has a
critical altitude of 6,000 feet, has a manifold pressure
regulator for sea-level operation.

Performance Calculation for Airplane No. 1

Since airplane no. 1 is a high-spee d transport, the

propeller will be selected for its high-speed qualities.

0.638 x V

• _/sC a for high speed at sea level = (b.hp.)'t/z X r.p.m.

0.638 X 211
and for this example = / = 1 88.

(525) 1/5 X (19.00) 2 s

In figure l, the maximum efficiency obtainable with this

Cs is 0.865 with a blade angle of 28 ° and a V/riD of

1.088, The best diameter for the high-speed condition is

211 x 88
then = 9.00 feet.

1900 X 1.088

This airplane being a monoplane, }_unk's span factor
will be 1 and since it is a clean airplane e will be

taken as 0.9. The equivalent parasite area will be

(525X0.865 -
2 (52oo) =

_Tp(42.8) 2 X 0.9X211Xl.467X550
f _

) II00

p (211Xi.467) s

6.74 square feet.

With this value of f the t.hp. r equation may be

written t.hp. r = K V a + KJV = 0.0000458V S + 4920/V at

sea level; V is in miles per hour. In table II are

given the results of the solution of this equation for val-

ues of the air speed inthe flight range.

The performance of the fixed-pitch propeller was cal-

culated by the method proviously given. Table IV and fig-

ure 2, which indicate the procedure, are self-explanatory.

For this airplane the performance of a 9-foot and a 10-foot
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controllable propeller and a C _.& D. propeller was com-

puted. The results of all the calcvlations made up to

this point are listed in table V and are plotted in fig-

ures 5 and 6.

The high speed of the airplane is obtaim_,_ from the

intersection of the t.hp. r and the t.hp. a curves, and

the rate of climb is calculated from the excess t.hp.

in the usual way. Figure 7 is a plot of thc rate of climb

at various air speeds for this airplane.

The static thrust of the propeller and the (L/D)ma x

of the airplane must be known before take-off calculations

can be made. Table V gives the results of static-thrust

calculations for the various propellers of airplane no. l,

and is sufficiently clear to need no further explanation.

_t
(L/D)ma x the velocity = K

_2 4920

0.0000458 - 101.5 miles per hour

t.hp. r =

N

lift =

drag =

(L/D)max=

2 × 4920/101.5 = 97

weight = 5,200 pounds

97 X 375/101.5 = 358 pounds

5200/388 = 14.5 with the landing gear retracted.

The drag of a retractable landing gear when extended is

usually quite high, so that if the drag at (L/D)ma x is

assumed to be increased by a third when the gear is down

the maximum L/D ratio will be approximately ll.

The take-off runs with the various propellers may now

be calculated. For the fixed-pitch propeller,

T V = 1,151 pounds

is assumed in all examples to be 0.05

V s = 75 m.p.h, from table ii!

T O = 920 pounds, from table IV
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1 - 0,091
D/L - II

TI/W ± 0.127

TF/TI _ = 1.02

K s = 0.033, from figure 3

The take-off run for the fixed-pitch propeller is then

0.033X 752
S = = 1;455 feet

0,127

The take-off runs with the controllable propellers

were also calculated by Diehl_s meZhod, although for such

propellers the method is less rigorously correct. The re-
sults of these calculations are given in table VII.

Table VIII is a suL_mary of the performance character-

istics of airplane no. 1 when equipped with various types

of propellers.

Airplanes Nee. 2, 3. and 4

For the sake of brevity the detailed calculations for

airplanes 2, 3, and 4 will not be included in this report.

However, the results of the calculations are found in fig-
ures 8 to 14 and tables IX to XIII. The performance of

airplane no. 4 was computed for three altitudes: sea level,
6,000 feet (critical altitude for the engine), and 20,000

feet. An individual set of performance curves and a sum-

mary for each altitude are given in figures II, 12, and

13, and tables XI, XII, and XIII. The rates of climb are

plotted against altitude in figure 14. The intersection
of a straight line passing through the rate-of-climb

points, with the altitude axis, determines approximately

the ceiling of the airplane.

The time-to-climb curves, which are also plotted in

figure 14, were calculated from the following equation

! loge
T- Co I i-
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where T is the time to climb to altitude
ceiling, and CO the initial rate of climb.

h, H the

Gearing

The effect of gearing upon the performance of fixed
and controllable propellers is shown in figure 15. In
this example it was assumed that a 450-horsepower engine
having a variable gear ratio was mounted on an airplane
having a top speed of 180 miles per hour. The perform-
ance of both a fixed-pitch and a controllable propeller
was calculate_ for each of three gear ratios. The diame-
ters and blade angles of the fixed-pitch propellers were
chosen so as to give the greatest speed, whereas the diam-
eters of the controllable propellers, in accordance with
the information obtained from airplane no. l, were chosen
considerably larger than that giving the highest speed yet
not large enough to be affected by high tip speeds. Nei-
ther the increase in propulsive efficiency with propeller
body-diameter ratio nor the loss of power due to gearing
was considered. In an actual case these would tend to
balance each other.

DISCUSSION AND RESULTS

The curves in figures 6 and l0 indicate that the dif-
ference in performance between a controllable and a fixed-
pitch propeller of equal diameter is largely due to the
maintenance of engine speed and power by the controllable
propeller rather than to the difference in their propul-
sive efficiencies.

In nine examples calculated, four of which are given
in this report, the difference between the propulsive ef-
ficiencies of _ntrollable and fixed-pitch propellers of
equal diameters was quite small, the greatest difference
being in example 1 (fig. 6). In two examples the efficien-
cy of the fixed-pitch propeller was actually greater than
that of the controllable or even the C.P.& D. propeller
throughout part of the flight range.

Figures 5 and 6 indicate that with airplanes similar
to no. 1 the use of a _ntrollable propeller of larger
diameter than that for best high-speed performance in-
creases the all-round performance except for a negligible
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loss of high speed. This edvai_tage _would be 1Brgely Off -_

set if, due to the use of the larger propeller, high

tip-zpe_d losses were involved, It should be clear, then,

that slow-speed or geared engines have an advantage in air-

planes of this type.

The engines of airplane no. 3 having a rated speed

of 2,100 !.p.fz_ required the use of small-diameter propel-
lers in order to avoid high tip speeds. A considerably

better performance could be obtain0d if a moderately geared

engine and larger propellers were used.

Airplane no. 2 with its high top speed and geared en-

gine a_pears to be admirably suited for the adaptation Of

a controllable pro_eller. The slo_-turning propeller

shaft permits the use of a large-diameter propeller, thus

obtaining a perfbrmance nearly equal to that of the hypo-

thetical cOntrollable-pitch-and-diameter propeller, and

undoubtedly much better than a smaller diameter propeller _

on an ungeared engine of equal _ower.

Airplane no. 4, with its slow'turning supercharged

engine, provides the greatest possibilities for th_ use of

a controllable propeller. It will be noted in figures 10,

ll, and 12 that the :@rop in engine speed, and therefore

in engine power, with the fixed-p_tch propeller is excep-

tionally high. This effect is due to both the high speed

of the airplane, and also to the fact that with a super-

charged engine the power falls off with engine _ speed more

rapidly than with an unsupercharged engine. It is evid en_

therefore that a controllable propeller is a very valuable

asset on high-speed airplanes using supercharged engines.

Although it is generally considered that a controlla-

ble propeller has but small effect in the high speed and

cruising spe_d of an airplane it has been shown in refer-

ence 6 _Aat, due to a better correlation between manifold

pressure and revolution speed, the cruising speed of an

airplane equipped with a supercharged engine may in cer-

tain cases be materially increased by the use of a con-

trollable propeller. The example cited in this reference

of a large twin-engine transport showed an increase in

cruising speed of _½ percent when the fixed-pitch propel-

lers were replaced by controllable propellers.

As the critic_l altitude of a supercharged engine is

increased the sea-level perfornlance of a fixed-pitch pro-

peller designed for critical altitude decreases. This de-
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crease is due to the fact that with the manifold pressure

set to allow maximum permissible cylinder pressure the

propeller designed for critical altitude holds the engine

below its rated speed and power at sea level. For this

reason a controllable propeller is equally valuable at al-
titudes below critical altitude as at altitudes above crit-

ical altitude. It will be noted from the curves for the

examples given that the greatest range of blade angle for
ordinary flight covers about 7° for the airplane with the

supercharged engine and considerably less for the other
three°

....J The performance of a controllable propeller having

but two pitch settings was computed for airplane no. 2.

The performance summary for this airplane given in table

IX shows that its sea-level performance in take-off, climb,

and high speed when equipped with the 2-pitch-setting pro-

peller is very nearly as good as its performance when

equipped with a propeller having a large number of pitch
settings.

For any one altitude it appears that two pitch set-

tings may be sufficient; however, when an airplane rises

above the design altitude of the propeller the propeller

speed drops and a third and fourth pitch setting may be

highly desirable. In general then, for airplanes which

do a large _art of their flying at nearly constant alti-

tude a propeller having two pitch settings may suffice,

whereas for airplanes which operate through wide ranges of
altitude, especially for those with supercharged engines,

a multipitch setting or automatic propeller is preferable.

From figure 15 it appears that for certain types of

airplanes the effect of gearing on the performance of con-

trollablo propellers is distinctly advantageous, whereas

the effect upon the performance of a fixed-pitch propeller

is practically negligible.

CONCLUSIONS

i. The relative efficiencies of a fixed-pitch pro-

peller and a controllable propeller of the same diameter

account for only a small part of the difference in perform-

ance between the two propellers.

2o The primary benefit of a controllable propeller

comes from the fact that a controllable propeller permits
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the engine to maintain the maximum allowable revolution
speed and power at all air speeds.

3. A secondary advantage comes from the fact that
with a controllable propeller the use of a larger diameter

than that giving best high speed increases the all-round
performance of the airplane except for a negligible loss
in high speed.

4. A geared engine is desirable for use with a con-
trollablo propeller.

5. The controllable propeller is particularly desir-
able for use _ith supercharged engines.

6. The change of blade angle necessary to maintain
constant engine speed throughout the flight range is from
4_ to 8°.

7. A controllable propeller reduces the take-off run,
increases the rate of climb and ceiling, and above the
critical altitude of the engine it increases the high speed.

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., October 30, 1933.
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Table I

Airplane No. 1. Values of Cs

r.p,m.

(r.p.m.) _/6

b.hp.

(b.hp.)

v (m.p.h•)

2,000 1,900

20.95 20.50

552 525

3.54 3.505

Values

1,800

20.10

497

3.47

of Cs

1,700

19.63

468

3.425

I, 600

19.15

442

3.385

1,500

18.70

413

3.335

50

60
75

i00

125

150

175

200

225

0.430

.516

.645

•860

i .075

1.29

1.51

1.72

1.95

0.444

.532

.665

.887

i.I!

1.33

1.55

1.77

2.0O

0.457
•549

.686

.915

1.14

1.37

I. 60

1.83

2.06

0.474
.570

.711

.949

1.185

1.42

1.66

1.90

2.13

0.492
.590

.738

.984

1.23

1.48

1.72

1.97

2.21

0.511
.514
.766

1.022
1.28
1.53
1.79
2.04
2.30

Airplane No. i.

Table II

Thrust Horsepower Required at Sea Level

Air speed

v IJ.h. )

225
200

175

150

125

i00

75

V S

Parasite

power
required

II,400,000
8,000,000

5,370,000

3,370,000

1,950,000

1,000,000

422,000

Induced

power
required

522
366
246
155

89
46
19

K1/V(t.hp.

22
25
28
33
39
49
$6

Total power

required

t .hp. r

544
391

274

188

128

95

85
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Table VII

Airplane No. I.

Propeller

i. C.P.& D

2. C,P. i0 ft.

3. C.P. 9 ft.

4. F.P. 9 ft.

Dotcrmination of Takc-0ff Run

..........................s-......
(lb.;(lb.) (ft.)

2,515 1,660 0.&34 0.050 6_6 0.44

2,415 1,625 .415 .0495 669 .46

1,568 1,430 .251 .O&l 915 .63

920 1,151 .127 .033 1455=S o 1.00

Table VIII

Airplane iTo. I. Performance Summary
!

High Ratio Max. rate Ratio Take-IRatio

Propeller speed /V \, of climb ( off J/S \
(_.p._.)_Vj) (ft./m_.) _ run \_

(ft.)

1.c.P._D. ....._ ........_T_......._T_25..............1.29 646 0.4_
2. C.P. I0 ft. 209 .99 1,825 1.29 669 .46

3. C.P. 9 ft. 211 1.00 i,690 1.19 916 .63

4. F.P. 9 ft. 211=V o 1.00 1415=C0 1.00 1445= 1.00
...._0-.

Table IX

Airplane No. 2.

Propeller

i. C.P.& D.

2. C.F, 10.5 ft.

3. F.P. i0 ft.

4. C.P. I0.5 ft.

(2 pitch

settings)

High

speed

('_.p.h.)

i91

190

191=V o

190

Performance Summary

Ratio

V\

1.00

.995

!.00

Max. rate

of climb

(ft./min_

2,230

_,200

1795=C 0

2,190.995

Ratio Take- Ratio

{_9 off {s__
<0oi run '\Sol

1.24 377 0.56

i. 2 S 414 .62

!.00 674= 1.00

So

1.22 430 .639
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Table X

Airplane I_o. S. Performance Summary

Propeller

1. C.P.& D
2. C.P. 8.75 ft.
3. F.P, 8.75 ft.

High
speed

(m.p.i_.)

149

149

149=V o

Ratio Max. rate Ratio Take-

/L _ of climb /C "h off

\Vo_ (ft./r_i_.\Co_ r_
.......................................(f_t,2
1.00 1,460 1.29 681

1.00 l,SlO 1.15 766

1.00 !135=C0 1.00 952=

........................................... So

Rat io

IS \

_\So /

0.71

.80

1.00

Table XI

Airplane No. 4.

Propeller

i. C.P.& D

2. C.P. i0 ft.

S. F.P. I0 ft.

Performance Summary

Sea level)

Max. rat e

of climb

(_t./_i_.)

2 , 670

2,620

2050=C0

High Ratio

speed /V h

(m.p.h.) \Vo/

182 ]..024

182 1.024

178=V o l.OO

......................

Rat io

c h
_o__

i. 30

1.28

I .00

Take- Ratio

_S

off (gj)r_n •

(ft.)
290 0,61

314 .66

478= 1.00

So

Table XII

Airplane No. 4. Critical Altitude

(6,000 ft.)

High speed Ratio Max. rate Ratio

Propeller (_P _) _o_v_ _ of<_tcli=b/rain) _0_j_
• " I /

1.c.P._D. 195 _.oo ........._ ....[--_{
2. C.P. i0 ft. 195 1.00 2,670 ,l 1.47

S. F.P. I0 ft. 195=Vo i.00 1815=Co I 1.00
!

.......................................................................
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Figure 14.-Altitu&e performance of air_!%ne eofiipped with controllable

and fixed-pitch propellers. Airplane no. 4.
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Fi_ire 15.-Effect of gearing on the pcrfom_auce of fixed-o itch and con-

trollable propellers.




