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NATIONAL ADVISORY COMMITTEE FOR ASRONAUTICS 

TECEXISAL NOTE NO, 655 

PRINCIPLE3 INVOLVED IN THX COOLING OF A 

FINNED AND BAFFLED CYLINDRR 

BY ES. J. Brevoort 

An analysis of the cooling problem for a finned cgl- 
inder is made on the basis of the known fundamental prin- 
ciples of heat transfer from pipes. Experimental results 
that support the analysis are presented. The results of 
previous investigat%one on the problem-are evaluated on 
the basfs of the analysis and the results, An illusfra;. 
tion of the application of these principles to a specific 
problem is included. 

IBTRODUCTION 

The N.A.C.A. has made a study of the effect of fin 
spacing on model baffled engine cylinders (references 1, 
2, and 3). 'The purpose of this report is to present fur- 
ther information relating to the subject. 

An analysis of cooling phenomena, using the known 
principles of heat transfer for pipes, is made and the 
analysis is used to correlate the--results of the present 
study with the results presented in references 1 and 2. 

ABALYSIS OF THE PROBLBM 

In order to understand more clearly the fundamental 
principles involved in the cooling of a finned cylinder, 
it is useful to consider the simpler case of the heat -'- 1 
transfer to a fluid flowing through a pipe. McAdams (ref- . 
erence 4) gives the nondimensional formula 

- 
I 



N.A.C.A. Technical Note No. 655 
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where h is the local heat-transfer coefficient. 

d, 

k, 

5? ’ 
WI 

V, 

p, 

1, 

c 1’ 

the hydraulilc diameter of the tube. 

the conductivity of the fluid. 

the specffic heat of the fluid. 

the viscosity of the fluid. 

tMe average velocity of the fluid. 

the density of the fluid. 

the length of the pipe, 

a constant, 

The exponents m, n, and i have two sets of values, 
one for turbulent and one for laminar flow. The exponent 
i is very small and thus the ratio t/d has only a small 
influence. Prandtlts number c CL/k is a measure of the 
physical properties of the flui!? and is almost constant 
for a given fluid; 

The relation for h may be written 

Vn 
h Ca- = 

.dl -n 
n< 1 (2) 

I l ’ 

c 

t 

This relation indicates that the heat-transfer coefficient 
will increase with the velocity and increase with a de- 
crease in the pipe diameter. If the wall of the pipe is 
maintained at a'constant temperature, the fluid is heated 
up and, if the pipe is sufficiently long, the average fluid 
temperature approaches the wall temperature, as illustrated 
in figure 1. . 

If the pipe is required ;to dissipate a constant 
amount of heat per unit length and thore is no conduction . 
along the pipe, the temperature of tube and fluid varies - 
with pipe length, 1 , as illustrated in figure 2. 
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The heat-transfer coefficient is proportional-."o 

Vn/dl-n. Thus it is constant throughout the pipe and, as 
the fluid heats up, the pipe must heat up also.. This il- 
lustration pictures almost exactly the conditions imposed 
w-hen cooling is accomplished by a baffled finned cylinder. 
The air passages formed by the fins, the cylinder wall, 
and the baffle are in ree'lity only pipes through-which the 
average velocity must remain constant. If the velocity 
distribution is uniform, h will be maximum for t-hat av- 
erage velocity. It is known from reference 5 that, thrbugh- 
out the greater part of the length, the velocity distribu- 
tion does not change to any appreciable extent so that h ---. must remain relatively constant except. near the-entrance 
to andexit fram the air passages. The fact that the- fins 
transmit the heat by conduction from the cylinder iall to 
the air and thus represent indirect cooling does not enter 
the picture except as an efficiency factor. I;lith a givon 
arranganent, the fin temperature and the air temperature: 
follow curves similar to those in figure zLarong the a%*- 
passage length. 

. 
. Effect of Velocity and Tube Diameter 

It has been shown that the heat-transfer coefficient 
can be increased by increasing the velocity of the fluid 
or by decreasing the diameter of,tho tube. Since the S% 
ponant n is approximately 0.8 for turbulent flow, it is 
obvious that the heat-transfer coofficiont will be affect- 
ed much more by changes in velocity of the fluid than by 
changes in the-diameter-of the pipo. This observation 
would soem to mako the solution o C-the problem very tiimp'le. 
slower cooling is just such a solution. 

If the diameter of the tube is decreased, the heat- 
transfer coefficient is increased proportionally to l/dl-" 
giving l/d"*', for turbulent flow. This increase in it- 
self is not particularly spectacular. On a- finned cylin- 
der . ..when d, the hydraulic diameter, is decreased, how- 
ever, the number of fins is increased in inverse proportion. 

.Thus the area to which h is applied is greatly increased 
and the heat that may be dissipated is almost doubled by. 
halving d. 

Power Required for Cooling 

The power required for cooling is QAP s where Q is 
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the volume or f-1uZd (per unit time-) and Ap the -pressure 
drop.across the pipe. The volume and pressure drop are 

. functions of the velocity. Glauort (reference 61 givas 
tile relation f or turbulent flow: _ 

whore Q/d 1 fe the pressure gradient in tho pips and 2 
is the Bagnolds NumScr VU'/+ The pressure gradient 3s 
thus a function of the pipe diameter and the fluid vsloor. 
ity. For a given pipe, Ap oz V1*", where Ap Fs the 
actual pressure drop in the pipe.. The Ap 108s at the 
entrance and the exit is the same as for an orifics.and 
will therefore be proportional to- Va. Thus doubling the 
veloci-ty will increase h 75 percent (so6 oquation (2)) 
and require about sovcn times the po~or for cooling (oqua- 
tion (3)). The foregoing relationship among Ap, 2, d, 
and V is Suited to practical Work becam3e Ap is gfvon 
explicftly fn terms of the other variables, The Ap 
available for cooling being fixed, tho other variables 
must be chosen to g;ivo adequate cooling and to be consist- 
ent among thomaelvea. 

Heat Dissipation 

The heat dissipated AE in terms of the pipe dlmen- 
sions and pressure drop.can now be written 

. 

AIJ = QPcp d TA = h v d dl. (T, - Ta) (4) 

whera T, is -the ?ipe-wall temperature. 

Ta is the air temperature at any point 1. 
‘, , 

V& 
Q=y 

The inlet-air temperature is dosignated 'ia. 
. 
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Ipa 
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I a T, . . 

r 
I 1 4 h db, = 

JTia T 
W 

- T 
a 

l -fo VdPcp 

*w - Tp, 4hZ . 
loi5 =-- 

TW - Tia VdPcp 

4hZ 

'w-- Ipa - VdPc 
= e P 

'w - Tfa 

'4ht 

*a - Tia. = 1 - 8 - VdPcp 

TW .- Tfa 
= ?lp (5) 

As the heat-transfer efficiency qT approaches zero, the 
heat transfer goes to a maximum. 

The basic problem is the determination of the heat 
that can be dissipated with a given frontal area, base 
area, pressure drop, and temperature difference between 
the cooling air and the body4 The use of equation (5) in 
the second part of equation (4) gives H as a function 
of the tube dimensfona, the velocity, and the difference 
between inlet-air and tube-wall temperatures, 

4h 

= Yzld 
-VdPcp 

H 4 P cp (Tw - Tia) (1 - 0 > 

. Eliminating h and V by means of equations (2) and (3), 
respectively, 
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H= 
on.704 Ap4/7 ,l%+ p4/7 

'I 4/7 
.--Cp (Tw - Tia) 

2 I-L 
l/7 

i 
l/35 e/35-155/36 

\ 

c3 P P --- 

1'; 8 
AP 

4135 53/35 
d (6) 

Thus H is a function of the teinperature difference, 
the Ap, and the pipe dimensions. The curve of H/A 
against 1 (fig. 3) for constant Ap and constant temper- 
ature difference between inlet air- and pipe wall has a max- 
imum at a given J/d ratio. Those curves show that the 
heat dissipated from a given frontal area is almost the 
same, regardless of tube &diameter as long as the length is 
made optimum for each diameter. 

. 
The same analysis holds true for the air passage on a 

finned cylinder, where d is the hydraulfc diamotor, The 
actual constants appearing in tho equations will be diff- 
erent but the fundamental fact that thoro is an appropri- 
ate length of-air passage for each fin-spacfng is unrffect- 
ed. 

The actual values of the-heat-transfer coefficient 
are of more academic interest than. practical value: The 
real' problem rts' to. k-now what changes' to. make izig Zfqning 
and baffling to give a desired increase in cooling,‘ . - . . 

The anal'y'sis has been based largely on the case of 
turbulent bonn2ary layer. The case for laminar boundary 
layer is essentially the same, in which 

. 
0.5 

heel- 
do.5 

. . 

at low velocity, the flow thr.ough a given pipe will 
be laminar and at high velocity the flow will be turbulent. 
It follows, then, that thora must .bo a transition between 

Y 
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t 
these two flow types that will show up in both the friction 
losses and the heat-transfer coefficient. 

RESULTS 

Tests on Pipes 

A series of tests was run with pipes .in connection 
.with another problem to determine the friction loss. These 
tests were made with tubes ranging from l/l&inch diameter 
and 24-inch length to l/ 2-inch diameter and 72-fnch length. 
Similar tests were also made of tubes having square and 
rectangular cross sections. Figure 4 shows the friction 

factor 
( 

dP d f = - T plotted against the Reynolds xumber. 
dl 9 > 

The results are in complete agreement with those of 
Nikuradse (reference 7j for smooth tubes. 

The results for tubes fall on.two straight lines con- 
nected b-y transition curves. The straight line at the 
left is for laminar flow and the straight line at the right 
is for turbulent flow. The various transitions between 
these two types of flow depend upon tho entrance, the rough- 
ness, and the straightness of the tube. Transition must 
come between values of Reynolds Numbers A and B shown in 
figure 4. It may occur at A if the entrance is bad or there 
are sharp bends in the tube or if the inside of the tube is 
rough. It cannot come later than B regardless of perfect 
entrance, straight pipe, and smooth insfde pipe surface, 
(See reference 8.) Any practical arrangement, such as a 
radiator or finned cylinder, givos a transition sfmilar to 
c. A transition that occ-ars at a Reynolds Number close to 
B is extremely unstable and can be realized experimentally 
only with very elaborate tosts. 

. Figure 5 shows a curve of h against V at constant 
pipe diameter and figure 6 shows h agafnst d at con- 
stant velocfty. Each figure is for a transition like C 
(fig. 4). A study of figures 4 and 6 reveals that, for con- 
stant fluid velocity, both friction and heat transfer in- 
crease as the diameter of .the pipe decreases. Thus, as the 
pipe diameter is decreased, the friction incroases and the 
velocity would be reduced unless the pipo Length were re- 
ducod, As the pipe diameter is reduced, both the area for 
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cooling per unft length and the heat-transfsr coefficient 
increase so that as much heat can be dissipated from the 

I 

short pipe as from the long pipe when the diameter is made 
optimum for the length. It is seen that, whereas the Z/d 
ratio has little effect on the local heat-transfer coeffi- 
cient, it is all important in determining the total heat 
that may be dfssipated from a given surface, A. similar I 
analysis led to the ideas.proposed in reference 9. +aJ 

Tests on Pinned Cylinders ' 

A series of tests was run on sections of finnod cyl- 
inders in whFch the length-spacing ratios were constant, 
Table I shows tho dfmonsions of t-he elaments used. 

TABLE I 

Length 6 t Number 
arc fin spacing fin thickness of fins 

(dog.1 (in.) (in.) tested 

. 

. 

180 0.125 0.033 .6 

90 .0625 .025 - 12 . 

45 ,031 ..CEL6 21 

22.5 ,016 .006 45 

All fins were of brass 1 inch in width. The cylinder 
diameter, measured to the base of the fins, was 5.81 fnches. 
The heat-transfer coefficient U was determined for the 
base ,area A. The coefficient U .is shown plotted againet 
velocity (fig. 7) . 

u -- 
F 

= 
. . . . 

4 .- 

AAT(w - a)Z, 

The expression AT(w - a)Z, is the logarithmic mean of the 
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.difference between the base temperature and the cooling- 
air temperature. ' 

Reference 10 gives the relation 
, . 

. u= . .s ", t [ t (1 + 5,) tan h aw + a] 

'where a is ' J-wq& k, 3.8 the thermal conductivity 
of the fins, and w is the.fin width. From this relation 
for U it is possible to find the average value of h.. 
Obviously h determined in this way will be of rather low 
accuracy since all the errors of moasuroment are cumulative. 
Ffguro 8 shows Nusseltls number 
Reynolds Number, VdP/1J,. 

hd/k plotted against -. 
Tho scatter of 'the data is con- 

siderable but there is no doubt about the data having the 
usual ability to be correlated, on such a'plot. Fi,gures 7 
and 8 both show results that are-identical in every respect 
with those published for pipes. These figures show results 
covor?ng both the laminar and turbulent ranges together 
with the transition from lam2nar to turbulent flow. 

Figure 9 was constructed to show how the several vari- 
ables affect the over-all heat-transfer coqfficient U. 
Here U ',is plotted as .a function of a, each c'urvo'being 
for a particular fin width. The local heat-transfer. co<f- 
ficie'nts‘were taken from figure 8 at a velocity .of 100 
miles per hour. The optimum fin thickness was used for 
each spacing and width. FtgUr8 10 shows the-optimum fin 
thickness plotted against fin spacing for the four fin 
widths. A similar set of curves can be made for- any air 
speed. . 1 

: 
D'ISCUSSION _ 

'Thea8 results demonstrate tha,t the fundamental priq- 
ciples of heat transfer as found for pipes may be applitid 
with c,onfidenco to problems of heat transfer on finned cyl- 

' inders. The problem of application comes in the deSign.of 
air entranc.8 and exft to the fin sp;ace. (See reference 9.) . I 

When th8 results presented in rqferencos: 1, 2, and 3, 
ar.8 viewbd in‘the light of the preceding an.aly.sis, it i's 
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apparent that the optimum spacing resulted from the choice 
of fixed air-passage.length. Obviously, smaller spacings 
would have been found for shorter air-passage lengths. 

The heat-transfer coefficients defined in these i8StS 
had an inverse dependence upon the hoating up of the air; 
that is, as the air boated up, the coefficient docreasod. 
Although such a coefficient may be used to describe the rc- 
sults of a given test, it is impossible to USQ the cooffi- 
cient for purposes of prediction of results when any of the 
the test conditions are changed. -Accordingly, great care 
should be exercised in the use of these data td make certain 
that the arrangement.. to which they are to be applied is 
identical in all respects to the, one tested. 

Application of.the Principles 

The solution of a given cooljng pr-oblem can be solved 
most easily by comparison with some arrangomont whoso cool- 
ing properties are known. ff information on the increaee 
in cooling.needed onone arrangement is known, it is neces- 
sary only to change the fin di,monsions to give the desired 
increase. No Serious error Will result from assuming h 
to be constant, since it varies with d-"*a for turbulent 

flow and d"*' for laminar flow. Present fin spacings 
and air speeds are i.nvariably in the turbulent-flow range, 
The increase in pressure drop as spacing is decreased can 
be estimated by using the relations from reference 6. 

In order to illustrate how a cooling problem may bo 
solvod by comparison, assume a steel engine cylinder having 
fins l/2 inch wide with O.lGO-inch spacing and 0.0375-tnch 
thickness with a baffle in contact with the rear half of 
the cylinder. Suppose an increase in cooling of 25 percent 
is desired for the baffled part of this cylinder. The 
curves of figures 9 and 10 are for steel fins and are there- 
fore directly applicable. The original cylinder had a heat- 
transfer coefficient U = 1.6; therefore, a 25-percent in- 
crease in cooling requires. a u = 3.0. 

If the increase in U is obtained by increasing tho 
fin width, it iS necessary t0 make a cross plot Of-figures 
9 and 10 to give 
against 'w 

U against w on figure 11(a) and t 
on figure 11(b), both at 8 = 0.10. From fig- 

ure 11(a), a u = 2.0 occurs at k = 0.9 inch and from 
figure 11(b) R w of 0.9 requires-a thickness of 0.061, 

t 

l 

- , 
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. 
inch. The.velocity betw-een the fins will remain the same 
as in the original arrangement but thers will be a 55-per- 
cent increase in open area, resulting in a 55-percent in- 
crease in air for cooling. -. 

If the spacing is reduced, keeping the width constant 
and reducing the baffle length proportional to the spacing, 
another solution is obtained. In this case, using figure 
9 and following along the line for l/2-inch fin width-to 
the point where U is 2.0, a spacing of 0.075 inch is 
found. Figure 10 gives a fin thickness of 0.033 inch for 
this spacing and width. With this arrangement, the mass 
flow of air and the heat-transfer efficioncg both remafn 
practically unchanged. _A:: 

The two solutions obtai.ned by changing width and spac- 
c ing Illustrate the complete interdependence of all the var- 

iables. The solution by changing- width-gave-an ;ncrease of 
25 percent fn cooling for the original base area at an in- --- 
crease in power to cool of 55 percent. !l?he soiution 6y- 

. changing spacing gave a 25-percent increase in cooling in 
75 percent of the base area at the same power to cool. 
Both sblutions requir.e minor changes fn the baffle. These 

. - . two solutions are only illustrative of an infinite number 
of possible solutions. They do, however, illustrate the 
manner in which the principles of heat transfer as known 
for pipes may be applied to the problem of cooling a finnel?l 

b- cylinder. 

/ Langley Memorial Aeronautical Laboratory, 
National Advisory Committee for' Aeronautics, - 

Langley Field, Va,, May 11, 1938, 
. 
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Bigore 2.” Variation of air and Wall tmperatuses with pipe k&h for constant 
heat input per unit pipe length, 
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. Blgure 3.~ Variation of heat dissipated per unit frontal area with pipe length for 2 
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Bigure 9.- Variation of over-all heat-transfer coefficient with 
spacing for four fin widths, at 100 m.p.h. and optimum 

fin thickness. Steel cylinder; &=2,17 B.t.u./hr.sq.in.'P. 
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Figuxa Il.- Qariation of cylinder characteristics hkth fin width at 
O-10 in. fin spacing. 


