NATIONAL ADVISORY COMMITTEE

Yachington
March 1946

NATIONAL ADVISORY OOMMITTGE FOR AERONAUTIOS

TEOHNIOAL NOTE NO. 1009

ANALYSIS OF DEPP REOTAKGULAR SHEAR NHB ABOVM BUGKIING IOAD

By Samuel Levy, Ruth M. Woolley, 'end, Josephine N. Corrick

SUMMARY

A solution of Von Kármán's equations for plates with large deflections is presented for the case of rarectangular shear web with height-to-width ratio 2.5 reinforced by vertical struts having one-fourth the weight of rthe shear web. The results are compared with the solution of NACA TN No. 962 for a square shear web and with approximate :anqlyses by Kuhn and by Ianghaar.

The computed shear deformation differed not more than 2 percent from that for the square web. The stresses at the center and at the corners in line with the diagonal tension wrinkles and the. force at the middle of the struts differed by not more than 30 percent from that for the square web. Kuhn's analysis gare values of shear deformation and of. stresses that were up to 37 percent larger than those for the present analysis, and values for the maximum force in the struts that were smaller. Langhaarts analysis gave values for the shear deformations, stresses, and strut force that were generally much larger than those given by the present analysis; the differences were of the order of 50 to 400 percent at the largest Ioad.

INTRODUOTION

[^0]This inveatigation, conducted at the National Bureau of Standards, was sponeored by and conducted with the financial aseistance of the National Adrisory Committee for Aeronautics.

STMBOLS

The symbols have the following significance (see fig.
1b):
x, y coordinate axes with origin at corner of plate
a length of plate in x-direction
$b=2.5 a$ length of plate in ymarection
h thickness of plate '
w defleotion of plate
I Young's modulus
$\mu=\sqrt{0.1}=0.316$. Poisson's ratio
$D=H^{3} / I 2\left(1-\mu^{2}\right)$ fiexural rigidity of plate
F otress function
Q bhear load carried by beam
$\bar{\sigma}_{x}$ average normal stress in plate in x-direction
$\bar{\sigma}_{y}$ average normal strese in plate in y-direction
T median fiber ehear etreas at corners of plate
$\mathbf{r}=1 / 4$ ratio of etrut weight to plate weight
P compressive force in strut
$\varepsilon_{x^{\prime}}{ }^{\prime}, \epsilon_{y^{\prime}},^{\gamma}{ }_{x y}{ }^{\prime}$ median fiber strains
$\sigma_{z}{ }^{\prime}, \sigma_{y}{ }^{\prime}, T_{x y}{ }^{\prime}$ median fiber stresses
$\sigma_{x}{ }^{\prime \prime}, \sigma_{y}{ }^{\prime \prime},{ }^{\top} x y^{\prime \prime}$ extreme fiber bending stresees
$\sigma_{x}, \sigma_{y}, T_{x y}$ extreme fiber btresses
$A_{m}, B_{n}, b_{m, n}$ coefficients in.stress function
Wm,n coefficient in deflection function
m, n integral numbers used as subscripts
$\bar{\gamma}=2.632 \mathrm{~T} / \mathrm{B}$ apparent shearing deformation of beam

p lateral pressure if Von Kármán's equations
a
angle between direction of maximum principal atress and x-axis

FUNDAMENTAL EQUATIONS

Congider an initially flat rectangular plate of uniform thickness. The two short edges are essumed to be aimply supported by heavy flanges, integral with the plate, which allow rotation about the edges, but prevent displacement parallel to the edges and force the edges to remain gtraight. The two long edges are aimply aupported by gtruta, integral with the plate, which allow rotation about the edgea, allow displacement parallel to the edges corresponding to the shortening of the strut under load, but maintain the edges in a gtraight IIne. The panel and struts transfer a shear laad Q shown in figure

The fundamental equations governing the deformation of thin plates were developed by Von Kármén. They are (see reference 2, pp. 322-323):

$$
\begin{align*}
& \frac{\partial^{4} F^{2}}{\partial x^{4}}+2 \frac{\partial^{4} F}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} F}{\partial y^{4}}=E\left[\left(\frac{\partial^{2} w}{\partial x \cdot \partial y}\right)^{2}-\frac{\partial^{2} w^{2}}{\partial x^{2}} \cdot \frac{\partial^{2} w}{\partial y^{3}}\right] \tag{2}\\
& \frac{\partial^{4} w}{\partial x^{4}}+2 \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w}{\partial y^{4}}=\frac{p}{D}+\frac{h}{D}\left(\frac{\partial^{2} w}{\partial y^{2}}: \frac{\partial^{2} w}{\partial x^{2}},\right. \\
& \left.+\frac{\partial^{2}{ }_{F}}{\partial x^{2}} \frac{\partial^{2}{ }^{2} w}{\partial y^{2}} \div 2 \frac{\partial^{2} \xi}{\partial x \partial y} \frac{\partial^{a} w}{\partial x \partial y}\right) \tag{2}
\end{align*}
$$

where the medianmfiber stresses are
and the median fiber strains. are

$$
\begin{align*}
& \xi_{x}^{\prime}=\frac{1}{H}\left(\frac{\partial^{2} F}{\partial y^{2}}-\mu^{2} \frac{\partial^{2} H^{2}}{\partial x^{2}}\right) \\
& \epsilon_{y} i=\frac{1}{H}\left(\frac{D^{2}}{\partial x^{2}}-\mu \frac{\partial^{2} F^{2}}{\partial y^{2}}\right) \tag{4}\\
& Y_{X y} y^{\prime}=-\frac{2}{W}(1+\mu) \frac{\partial^{a_{W}}}{\partial x \partial y}
\end{align*}
$$

$$
\begin{aligned}
& \text { r... } 4 \text {) }
\end{aligned}
$$

The extreme fiber bending stresses are

$$
\begin{aligned}
& \tau_{x y^{\prime \prime}}=-\frac{H_{n}}{2(1+\mu)} \frac{\partial^{i} \hat{w}^{\prime}}{\partial x \partial y}
\end{aligned}
$$

Buckling Load

.The theory for determining the buckling load of a simply supported rectangular plate under shear loads is given by Timoshenko on pages 357 to 360 of reference 2 . This theory was worked out in detail for the case of a rectangulariplate (fig. lb) height-width ratio 2.5 in order to determine how many terms of the deflection equation

$$
\begin{equation*}
\because \quad w=\sum_{n=1}^{\infty} \sum_{n=j}^{\infty} w_{m, n} \text { sin } \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \tag{6}
\end{equation*}
$$

would be needed to give the buckling. load with a negligible error.

If the 14 terms corresponding to $W_{1,}, W_{I,}, W_{1,}, 6$,
$W_{3}, I, W_{3}, W_{3}, 5, W_{2}, 7, W_{3}, W_{3}, W_{3}, W_{3}, W_{4}, 1, W_{4}, W_{3}, W_{4}$, $w_{4,} 7^{1}$, and the theory of reference 2 are used, the buckling stresses

$$
T=5.554^{\circ} \sin ^{2} / a^{2}
$$

 W3,4 are used, the buckling stree is

$$
T=5.555 \mathrm{Th} / \mathrm{a}^{\dot{\mathrm{z}}}
$$

 are used

$$
T=5.567 \mathrm{H}^{2} / \mathrm{a}^{2}
$$

If the sixterme $W_{1,2}, W_{1,4}, W_{2, I} W_{2,3}, W_{2,5}, W_{3,}$ are used..

$$
T=5.757 \mathrm{Hin}^{2} / \mathrm{a}^{3}
$$

If the five terms $W_{1,}, W_{1,4}, W_{2,1}, W_{2,3}, W_{2,5}$ are used

$$
T=5.823 \mathrm{mh}^{2} / \mathrm{a}^{3}
$$

[^1]If the four terms $w_{1, a}, W_{1,4}, W_{a, 1}, W_{a, 3}$ are used

$$
T=5.867 \mathrm{gh}^{2} / \mathrm{a}^{3}
$$

It seems probable that the buckling stress with an unlimited number of terms would not diffar appreciably from $5.554 \mathrm{Eh}^{2} / \mathrm{a}^{3}$. In the following work it will be assumed that the shape of the buckle is adequately described by limiting the summation in equation (6) to the 14 terms $w_{1,2}, w_{1,4}, w_{1, \theta}, w_{2,1}$, $w_{a, 3}{ }^{\prime} w_{2,5}, w_{a, 7}, w_{3,2}, w_{3,4}, w_{3,6}, w_{4,1}, w_{4,3}, w_{4,5}, w_{4,7}$

At the start of buckitng, the relative magnitude of the different terms is such that $w_{1,4}, w_{2,1}$ and $w_{2,3}$ are approximately $1 / 4$ of $w_{1}, a ; w_{1}, b, w_{3, a}$, and $w_{3}, 4$ are approximately $1 / 30$ of W_{1}, a; and the remaining terms are leas than $1 / 100$ of $W_{1,8}$. It will be assumed in the following work that all products of $w_{m, n}$. coefficients can be neglected excopt those involving $w_{1,2}, w_{2,4}, w_{2,1}, w_{2,3}$.

Equilibrium of Median Fiber Forces

A suitable stress function. \mathbb{F} mut now. be chosen ta.... satigiy equetion' (1), which expresises the econdition that the median fiber forces are in equilibrium in the plane of the web. If F is taken as,

$$
\begin{align*}
& F=\frac{\bar{\sigma}_{x} y^{2}}{2}+\frac{\bar{\sigma}_{y} x^{2}}{2}-\tau x y+\sum_{m=0}^{4} \sum_{n=0}^{B} b_{m, n} \cos \frac{m \pi x}{a} \cos \frac{n \pi y}{b} \\
& +\sum_{m=2,4} A_{m} \cos \frac{m \pi x}{a}\left[\left(\frac{1-\mu}{1+\mu}-\frac{m \pi b}{2 a} \operatorname{coth} \frac{m \pi b}{2 a}\right) \cosh m \pi\left(\frac{y}{a}-\frac{b}{2 a}\right)\right. \\
& \left.+\operatorname{ma}\left(\frac{y}{a}-\frac{b}{2 a}\right) \sinh m \pi\left(\frac{y}{a}-\frac{b}{2 a}\right)\right] \\
& +\sum_{m=I, 3} A_{m} \cos \frac{m \pi x}{a}\left[\left(\frac{1-\mu}{1+\mu}:-\frac{m \pi b}{2 a} \tanh \frac{m \pi b}{2 a}\right) \sinh m \pi\left(\frac{y}{a}-\frac{b}{2 a}\right)\right. \\
& \left.+\min \left(\frac{y}{a}-\frac{b}{2 a}\right) \cosh m \pi\left(\frac{y}{a}-\frac{b}{2 a}\right)\right] \\
& +\sum_{n=a, 4,6,8} B_{n} \cos \frac{n \pi y}{b}\left[\left(\frac{1-\mu}{1+\mu}-\frac{n \pi a}{2 b} \operatorname{coth} \frac{n \pi a}{2 b}\right) \cosh n \pi\left(\frac{x}{b}-\frac{a}{2 b}\right)\right. \\
& \left.+n \pi\left(\frac{x}{b}-\frac{a}{2 b}\right) \sinh n \pi\left(\frac{x}{b}-\frac{a}{2 b}\right)\right] \\
& +\sum_{n=1,3,5,7} B_{n} \cos \frac{n \pi y}{b}\left[\left(\frac{1-\mu}{1+\beta}-\frac{n \pi a}{2 b} \tanh \frac{n \pi a}{2 b}\right) \sinh n \pi\left(\frac{x}{b}-\frac{a}{2 b}\right)\right. \\
& \left.+n \pi\left(\frac{x}{b}-\frac{a}{2 b}\right) \cosh n \pi\left(\frac{x}{b}-\frac{a}{2 b}\right)\right] \tag{7}
\end{align*}
$$

and if equations (6) and (7) are substituted into equation (1) With only products of $W_{1,2}, W_{a, 1}, W_{a, 3}$, and $W_{1,4}$ retained, it is found by a method shown in reference 3 that equation (1) is satisfied when

$$
\begin{aligned}
& \text { bo,0 }=0 \\
& b_{0,2}=\frac{\pi}{10.24}\left(-4 W_{1}, 2 W_{1}, 4+8 W_{2}, 1^{2}-16 W_{2}, 1 W_{2}, 3\right) \\
& \mathrm{b}_{0,4}=\frac{E}{163.8}\left(64 \mathrm{~m}, 1 \pi 2,3+8 \pi 1,2^{\mathrm{a}}\right) \\
& b_{0,6}=\frac{E}{829.4}\left(36 w_{1,2} w_{1,4}+72 w_{2}, 3^{2}\right) \\
& \text { bo }_{0,8}=\frac{\pi}{262 I}\left(32 w_{1,} 4^{2}\right) \\
& b_{1,1}=\frac{T}{33.64}\left(-9 W_{1}, 2 W_{2}, 1-W_{1}, 2 w_{2}, 3-25 w_{1}, 4 W_{2}, 3\right)
\end{aligned}
$$

$$
\begin{align*}
& b_{1,5}=\frac{E}{625.0}\left(4 \sigma_{1}, 2^{W_{2}} ; 3+8 W_{1}, 4 \omega_{2,1}\right) \\
& b_{1,7}=\frac{\pi}{1954}\left(121_{1} w_{1} 4^{W} 2,3\right) \\
& b_{2,0}=\frac{E}{400}\left(8 w_{1,2} 2^{2}+32 \pi_{1,4^{2}}^{2}\right) \\
& b_{2,2}=\frac{\pi}{538.2}\left(36 w_{1}, 2 w_{1}, 4\right) \\
& b_{2,4}=0 \tag{8}\\
& b_{2,6}=\frac{W}{2381}\left(-4 w_{1,2} w_{1,4}\right) \\
& b_{2,8}=0 \\
& b_{3,1}=\frac{E}{2098}\left(25 w_{1,2} w_{2,1}+49_{1} w_{1} \mathbf{w}_{2,3}+121_{1} w_{1} 4_{2,3}\right)
\end{align*}
$$

$$
\begin{aligned}
& b_{3,5}=\frac{T_{1}}{4225}\left(-w_{1,2} \mathbf{w}_{2,3}-4 w_{1,4} w_{2,1}\right) \\
& b_{3,7}=\frac{E}{7050}\left(-25 \omega_{1}, 4^{(1)} 2,3\right) \\
& \mathrm{b}_{4,0}=\frac{\mathrm{F}}{6400}\left(8 \mathrm{~m}_{2,1}{ }^{2}+72 \mathrm{~m} 2,3^{2}\right) \\
& b_{4,2}=\frac{\pi}{6922}\left(64 W_{2,1}{ }^{2} 2,3\right)
\end{aligned}
$$

$$
\begin{aligned}
& b_{4,6}=0 ; \quad b_{4,8}=0 \\
& b_{m, n}=0 \text { whenever } m+a \text { is an odd number }
\end{aligned}
$$

Boundary Conditions

The condition that the edges of the plate be simply supported is automatically satisfied by equation (6) for the lateral deflection.

The condition that the edges of the plate act integrally With the supporting struts and flanges of the beam requires that the strain at the edge of the plate be equal to the gtrain in the supporting strut or flange. This condition will be used to determine the remaining coefficientr $\bar{\sigma}_{\pi}, \bar{\sigma}_{y}, A_{m}$, B_{n} in equation (7).

The edges $y=0, ~ y=b$ (see fig lb) are considered to be supported by flanges so heavy that they do. not ghorten under load. The median fiber strain in the x-direction at the edges $y=0, y=b$ must, therefore, be zero,

$$
\begin{equation*}
\left(\epsilon x^{\prime}\right)_{y=0}, \quad y=b=0 \tag{9}
\end{equation*}
$$

The edges $x=0, x=a$ are considered to be supported by struts having I/4 the area of the sheet, that is, ah/4. If the compressive force in the strut is denoted by F (P is a function of y), the median fiber strain in the $\bar{f}-\mathrm{direction}$ at the edges $x=0, x=a$ must $b e$,

$$
\begin{equation*}
\left(\epsilon_{Z^{\prime}}\right)_{X=0, \quad x=a}=-\frac{4 P}{a h W} \tag{10}
\end{equation*}
$$

Since there are an equal number of web bays and atruta in the middie portion of the beam, the compreasive force in a strut must equal the vertical tensile force in a web bay, or

$$
\begin{equation*}
P=\int_{0}^{a} h \sigma_{y}^{\prime} d x \tag{11}
\end{equation*}
$$

Substituting from equations (3) and (7) into equation (11) and performing the indicated integration gives,

$$
\begin{equation*}
P=a h \bar{\sigma}_{y}+\frac{4 \pi h}{b(1+\mu)} \sum_{n=2}^{\theta} n B_{n} \sinh \frac{n \pi a}{2 b} \cos \frac{n \pi y}{b} \tag{12}
\end{equation*}
$$

Substituting equation (12) into equation (10) gives
$\left(\epsilon_{y^{\prime}, \ldots}\right)_{x=0,} x=a,-\frac{4}{F} \bar{\sigma}_{y}-\frac{16 \pi}{a b \#(1+\mu)} \sum_{n=6}^{8} n B_{n} \sinh \frac{n \pi a}{2 b} \cos \frac{n \pi y}{b}$ (13)

The fact that the summations in the series expansion for F, equation (7), have been limited to m.=4 and $n=8$ makes it impossible to satisfy the boundary equations (9) and (13) identically. except for a mall variation in strain of a;.. frequency higher than the fourth harmonic in x and eighth harmonic in y, however, it can be shown by expanding F into trigonometric series and by substituting equations (4), (7), and (8) into equations (9) and (13) that equations (9) and (13) are satisfied when.

$$
\begin{aligned}
& \bar{\sigma}_{y}=\frac{E}{a^{2}}\left(0.2408 \mathrm{~F}_{1}, 2^{2}+0.7242 \mathrm{w}_{1}, 4^{2}+0.3588 \mathrm{~F}_{2}, 1^{2}+0.6810 \mathrm{w}_{2}, 3^{3}\right) \\
& \bar{\sigma}_{x}=\frac{\pi}{a^{2}}\left(1.310 w_{1,} 2^{2}+1.463 w_{1}, 4^{2}+5.048 w_{2,1}{ }^{8}+5.150 w_{2}, 3^{8}\right) \\
& \mathrm{A}_{1}=\frac{\mathrm{E}}{1 \mathrm{O}^{\mathrm{B}}}\left(-0.2743 \mathrm{~F}_{1}, 2^{\mathrm{W}_{2}, 1}-0.5940 \mathrm{~m}_{1}, 2^{\mathrm{W}} 2,3-0.1770 \mathrm{~F}_{1}, 4^{\mathrm{F}} 2,1\right.
\end{aligned}
$$

$$
\begin{aligned}
& A_{2}=\frac{\pi}{10^{7}}\left(-21.46 w_{1,2} 2^{2}-75.92 w_{1,4^{2}}-7.900 w_{2,1}{ }^{8}-9.409 w_{2,3}{ }^{2}\right. \\
& \text { - } 24.46 \mathrm{~m}_{1}, 2^{\mathrm{m}} 1,4-2.158 \mathrm{~m}_{2,1} \mathrm{~m}^{2}, 3 \text {) } \\
& \mathrm{B}_{2}=\frac{\mathrm{I}}{10^{3}}\left(-0.1173 \mathrm{w}_{1,} \mathrm{a}^{\mathrm{a}}-0.4122 \mathrm{w}_{1,4^{8}}-20.84 \mathrm{~m}_{2,1^{\mathrm{B}}}-0.0917 \mathrm{~m}_{2,3^{2}}\right. \\
& \left.+43.67 \pi_{1}, 2^{*} 1,4+60.76 \pi_{2}, 1 w_{2}, 3\right)
\end{aligned}
$$

$$
\begin{aligned}
& B_{4}=\frac{\tilde{B}}{10^{5}}\left(-52.13 w_{1}, 2^{2}-7.940 w_{1}, 4^{2}-1.003 w_{2}, 1^{2}-2.237 w_{2}, 3^{3}\right. \\
& -2.51 \mathbf{w n}_{1,2 \mathrm{~m}_{1}, 4}^{4}-435.6 \mathrm{w}, 1 \mathrm{w} 2,3 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& -158.2 \mathrm{w}_{1}, 2^{\mathrm{w}_{1}, 4} \text { - } 2.320 \mathrm{w}_{2}, 1 \mathrm{~m}_{2}, 3 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& B_{8}=\frac{5}{10^{7}}\left(-5.152 w_{1,2} 2^{2}-148.0 w_{1,4^{2}}-2.775 w_{2,1} 1^{2}-8.755 w_{2,} 3^{2}\right.
\end{aligned}
$$

The struta and flanges are conildered to be stiff onough in benaing to keep stratght the four odge: ($x=0, x=a, y=0$, $y=b$) of the plate. Iquatione for the and diaplacemento, in the x and y direotiona, respectively, can be obtained from page 322 of reference 2.

$$
\left.\begin{array}{l}
\frac{\partial u}{\partial x}=\epsilon x^{\prime}-\frac{1}{2}\left(\frac{\partial w}{\partial x}\right)^{2} \tag{15}\\
\frac{\partial v}{\partial y}=\varepsilon_{y}^{\prime}-\frac{1}{2}\left(\frac{\partial w}{\partial y}\right)^{2} \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=r_{x y^{\prime}}^{\prime}-\frac{\partial w}{\partial x} \cdot \frac{\partial w}{\partial y}
\end{array}\right\}
$$

Values of u and ∇ can be obtained by austituting oquationa (4), (6), (7), (8), and (14) into equations (15) and integrating. This gives for the ralues of u and t at the odges of the plate

$$
\begin{align*}
& (u)_{x=0}=0 ; \quad(u)_{x=a}=0 \\
& (v)_{y=0}=2.632 \mathrm{~T} x / \mathrm{L} \\
& (v)_{y=b}=2.632 T x / y-\frac{4}{b}\left(1.504 v_{1,} a^{a}+4.525 r_{1,4^{a}}\right. \tag{16}\\
& +2.242 w_{\left.a, 1^{2}+4.257 w a, 3^{8}\right)}
\end{align*}
$$

It is seen from equationg (16) that the odges of the plate, corresponding to $x=0, x=a, y=0, y=b$, atisfy the condition of remaining straight after buckiing has started.

Dquilibrium of Lateral Forces

Equation (2) expresses the equilibrium between the components of the membrane forces in a direction perpendicular to the plate and the opposing forces doveloped by the plate because of its flexural rigidity. The fact that the serien
expression for $w, ~ e q u a t i o n ~(6), ~ h a ́ s ~ b e e n ~ l i m i t e d ~ t o ~ l 4 ~ 4 ~$ terms and the fact that only those square and cubic products involving the 4 biggest terms in W are considered, make it impossible to satisfy equation (2) identically. Fxcept for small unequilibreted lateral pressures of high order, however, it can be shown by expanding. F into trigonometric series and by substituting oquations (6), (7), (8), and (14) into (2) as is done in reference 3 , that equation (2) is satisfied when the equations in table 1 are satisfied. As an example of the use of this table, the first equation is

Shear Load Carried by Beam

The beam (fig. la) supports a shear load Q. At any vertical section through the beam this load is partially carried by shear in the web and partially by shear in the fianges. Part of the shear in the web may be considered as due to the diagonal tension after buckling.

Making uge of the fact that the flange bending moment is the same at each strut point, the shearing force in the upper flange is

$$
\begin{equation*}
\int_{x}^{n} \frac{h}{r}\left(\sigma_{y}\right)_{y=b} d x-\frac{1}{a} \int_{0}^{a} h\left(\sigma_{y}\right)_{y=0} x d x \tag{18}
\end{equation*}
$$

and in the lower flange is

$$
\begin{equation*}
\frac{1}{a} \int_{0}^{k} h\left(\sigma_{y^{\prime}}\right)_{y=0} x d x-\int_{x}^{a} h\left(\sigma_{y}^{\prime}\right)_{y=0}^{d x} \tag{19}
\end{equation*}
$$

where the shearing force in either flange is considered positive if it tends to support the external load Q directed as shown in figure la. The shear load carried by the web is

$$
\begin{equation*}
-\int_{0}^{b} h y^{\top} x y d y \tag{20}
\end{equation*}
$$

Adding equations (18), (19), and (20), substituting for $\sigma_{y}{ }^{\prime}$ and Txy' their values as given by equations (3), (7), (8), and (14), and integrating gives

$$
\begin{aligned}
& Q=-T b h+\frac{\mathbb{Z}}{a}\left(-1.352 w_{1,} w_{2,1}+2.427 w_{1,3} w_{a, 3}\right. \\
&\left.-0.5406 w_{1,4} w_{a, 1}-3.474 w_{1,4} w_{2,3}\right)(21)
\end{aligned}
$$

Shearing Deformation of Beam

The shearing forces acting on the end of the beam cause it to shear downward as shown in figure la. The amount of the downward displacement is given by equation (16) as:

$$
\begin{equation*}
\langle\nabla\rangle_{y=0}=2.632 \frac{T \pi}{n}=\bar{\gamma}_{x} ; \quad \bar{\gamma}=2.632 \frac{T}{\mathrm{E}} . \tag{22}
\end{equation*}
$$

where $\bar{\gamma}$ is the shear deformation of the beam.

Befective Width in Shear

The loss in shear stiffness of the beam after bucking may be coneidered as loss in effective width of the shoet. Define the effective width ratio in shear for a given ehearing deformation: $\bar{\gamma}$ as the ratio of the load Q actually carried to the load tbh which would have been carried in the absence of buckling. The effective width ratio is, therefore,

$$
\begin{equation*}
\text { تffective width ratio }=Q /(-\operatorname{Tbh}) \tag{23}
\end{equation*}
$$

Substituting the value of Q given in equation (2l) and $b=2.5 a$ gives

Effective width ratio $=1-\frac{E}{T a^{2}}\left(-0.5408 w_{1, a} w_{2,1}\right.$

$$
\begin{equation*}
\left.+0.9708 w_{1, a} w_{2,3}-0.2162 w_{1,4} w_{3,1}-1.390 w_{1,4} w_{2,3}\right) \tag{24}
\end{equation*}
$$

Compressive Force in Vertical Strut

After buckling of the web, the diagonal tension field tends to $\bar{\lambda} r a w$ the flanges of the beam together. This action is resisted. bj 'the vertical. struts. The magnitude of the resulting compressive force P in the strut is given by equation (12). Substituting for $\bar{\sigma}_{7}, B_{2}, B_{G}, B_{G}$, and B_{8} the values given in equation (14) gives
$P=\frac{T h}{a}\left\{\left(0.2408 w_{1,} a^{2}+0.7242 w_{1,4}{ }^{a}+0.3588 w_{a, 1}^{a}+0.681 w_{a, 3^{a}}^{a}\right)\right.$
$+\cos \frac{2 \pi y}{b}\left(-0.00145 w_{I, a^{2}}-0.00508 w_{I, 4^{2}}-0.257 w_{2,1}{ }^{2}\right.$
$\left.-0.00113 w_{2,3}{ }^{a}+0.539 w_{1,} a_{1,4}+0.750 w_{2,1} w_{a}, 3\right)$
$+\cos \frac{4 \pi y}{b}\left(-0.0488 w_{I, 2^{2}}^{a}-0.00744 w_{I, 4^{a}}-0.00094 w_{2,1}{ }^{2}\right.$
$\left.-0.00209 w_{2,3}{ }^{2}-0.00235 W_{I,} a_{1,4}-0.408 W_{2,1} a, 3\right)$
$+\cos \frac{6 \pi y}{b}\left(-0.00171 w_{1} ; 2^{2}-.0 .00597 w_{1,4}{ }^{2}-0.0083 w_{3,1}{ }^{2}\right.$
$-0.1489 w_{2,3^{2}}-0.0786 w_{\left.1, z_{1} W_{1}-0.00015 w_{2,1} w_{2,3}\right)}$
$+\cos \frac{8 \pi y}{b}\left(-0.00120 w_{1, a^{2}} a^{!}-0.0345 w_{1,4^{2}}-0.00065 w_{2,1}{ }^{2}\right.$
$\left.\left.-0.00204 w_{3,3^{2}}-0.00128 w_{1, a_{1,4}}-0.00111 w_{a, 1} w_{a, 3}\right)\right\}$
(25) :

Stress at Center of Shear Bay
The median fiber stress at the center of the plate is obtained from equations (3), (7), (8), and (14) by letting $x=a / 2, y=b / 2$, this gives

$$
\begin{align*}
& -1.116 w_{a, 3} 3^{3}-2.872 W_{1}, a^{\left.w_{1}, 4+1.357 w_{a}, 1 w_{a}, 3\right)} \tag{26}\\
& \left(\tau_{x y^{\prime}}\right)_{\substack{x=a / 2 \\
y=b / 2}}=\tau-\frac{E}{a^{B}}\left(-5.306 w_{1,3} W_{2,1}+1.954 W_{1,3} W_{3,3}\right. \\
& \left.+8.223 w_{1,4} w_{a, 1}-6.549 w_{1,4} w_{2,3}\right) .
\end{align*}
$$

The bending stress at the center of the plate is obtained by substituting equation (6) Into equations (5) with $x=a / a, ~$ ($y=b / 2$. This gives
$\left(\tau_{x}{ }_{\substack{x=a / 2 \\ y=b / 2}}=5.482\left(\mathbb{m h} / a^{2}\right) \sum_{n=i} \sum_{m, n} w\left(m^{2}+0.05060 n^{2}\right) \sin \frac{m \pi}{2} \sin \frac{n \pi}{2}\right.$
$\left.\left(\sigma_{y} \mid\right)_{\substack{x=a / 2 \\ y=b / 2}}=5.482\left(\mathbb{A n}_{n} a^{2}\right) \sum_{m} \sum_{n} w_{m, n}\left(0.16 n^{2}+0.316 \mathrm{~m}^{2}\right)_{B \ln } \frac{m \pi}{2} \sin \frac{n \pi}{2}\right\}$

The equations (27) show that all the bending stresses are zero in the; present problem. This result can be derived also by direct inspection of (6); noting that $\underset{m}{m}$ is odd and that consequently the point $x=a / 2, y=b / 2 i$ must life on a nodal line.

Stress at Corner of Shear Bay

The membrane stress at the upper corner of the plate $x=0, y=b, t o w a r d$ which the diagonal tension buckle points is obtained. by substituting equations (7), (8), and (14) into. equation (3). This gives

$$
\left(\sigma_{y}^{\prime}\right)_{x=0}=\frac{E}{a^{2}}\left(-0.7124 w_{I}, a^{a}-2.592 w_{i}, 4^{2}-0.1627 w_{a} I^{2}\right.
$$

$$
y=b
$$

$$
+0.3037 W_{1, a^{W}}, 1+0.7445 W_{I}, a^{W} a, 3-0.0644 W_{1}, 4 W_{a, 1}
$$

$$
\left.+0.1524 W_{1}, 4^{W} 2,3\right)
$$

$$
\left(T_{x y^{1}}\right)_{\substack{x=0 \\ y=b}}=T
$$

The bending stress at the corner of the plate is obtained by substituting equation (6) into equations (5) with $x=0$, $y=b$. This gives zero for $\sigma_{x}^{\prime \prime}$ and $\sigma_{y}^{\prime \prime}$ at $x=0, y=b$ and

$$
\left(T_{x y}{ }^{n}\right)_{x=0, y=b}=-1.500\left(E h / a^{3}\right) \sum_{m} \sum_{n} m n w_{m, n} \cos n \pi \quad \text { (29) }
$$

$$
\begin{aligned}
& -0.2033_{1,4} \mathrm{w}_{\mathrm{W}}, 3 \text {) }
\end{aligned}
$$

Principal Stresses

The maximum and minimum principal stresses may be determined from the stresses σ_{x}, σ_{y}, and $\tau_{x y}$ by the equations on page 19 of reference 4

$$
\left.\begin{array}{rl}
\sigma_{\min } & =\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y} z} \tag{30}\\
\tan Z a & =a \frac{\tau_{x y}}{\sigma_{x}-\sigma_{y}}
\end{array}\right\}
$$

where a is the angle between the $x-a x i s$ and the direction of a principal.atress.
\because TRSR ICAL SOLTTTOH
Deflection Coefficients

The deflect"on coefficients are obtained by solution of the simultaneous equations in table 1, such as equation (17). These equations were solved. for velues. $2<7.44 \mathrm{~m} h^{3} \mathrm{~b} / \mathrm{a}^{2} \cdot \mathrm{by}$ a method of successive anproximation, using the following steps:

1. Divide each equation by h^{3}.
2. Estimate values of $T a^{2} / E h^{2}, w_{1}, \dot{4} / h, W_{1,6} / h, W_{2}, 1 / h ;$ $w_{2,3} / h, w_{2,5} / h, w_{2,7} / h, w_{3}, 2 / h, w_{3,6} / h, w_{3,6} / h, w_{4}, 1 / h, w_{4}, 3 / h$, $w_{4,5} / h$, and $w_{4,7} / h$, corresponding to a given value of $w_{1,2} / h_{3}$.
3. Expand the right-hand side of each of the first four equations in a: Taylor series in $T a^{2} / \mathrm{Eh}^{2} ; \mathrm{w}_{1,4} / \mathrm{h}$, w,i/h, $w_{2,3} / h$, in the reightorhood of the estimated values, retainirge all the deflection cofffiaients in determinirg the oonstant term.
L. Solve the resuiting four linear equations for the differonce betwer the chosen values of $\mathrm{Ts}^{2} / \mathrm{Eh}^{2}, \mathrm{w}_{1}, 4 / \mathrm{h}$,
 (reference 5) was used for this.)
4. Substitute theae imptoved~values.into the remaining equations of table 1 and solve for the remaining deflection coefficients by successive approximation.
5. Repeat, using the improved values as an initial esti-

The convergence of this method was slow because of the large number of variables finolved. In order to improve the
 tion coefficientis were approximatedrbytheratios of their values at $Q=7.44 \mathrm{Fh}^{3} \mathrm{~b} / \mathrm{a}^{2}$ by taking $\mathrm{W}_{1}, 6=0.424 \mathrm{w}_{3}, 2$,

 except for including the firsf fite equations of table in stres 3 and 4 , ond determinfing the Fenaining deflection coeffitcents fromethe above finear relations. rather than from step 5. The convergence using this methrod was rapid; one or

The resufts rafe fif én table 2 for values af the sheer load Q up to about four tifmes the coritical value for buckling. The value of \bar{Y} was computed from T by using equation (22); Q was,cgmputed, from T, $W_{1,2}, W_{1,4}, W_{2,1}$ and We, 3. by using equation ($\mathrm{C} i \mathrm{i}$)!

The medtinn foer, whesses at the cehter of the shear web
 stresses at thetcentex offthe plate were seento be zero from equation (27). The maximum and minimúm pringizpal stresses were then computed from equation (30). These stresses are given in table 3 and are plotted against the shear load Q

[^2]after buckifng at $Q=5.54 \sin ^{3} b / a^{a}$. The direction of the maximum principal strese forme an angle of 45° with the flanges at the bucking load; however, this angle drops to $32^{\circ} 34^{\prime}$ at the highest load considered.

Stresses at Corner of Shear Web

The stresses at the upper corner of the shear web toward which the wrinkles point ($x=0, y=b$) were computed from equations (28) and (29) and table 2. The maximum and minimum principal median fiber stresses were then computed from equation (30). These stresses are given in table 4 and some of them are plotted against load Q in dimensionless form in figure 3.

Figure 3 shows that in the corner of the shear web, the minimum median fiber stress (compression) is about 30 percent larger in absolute value than the maximum median fiber stress (tension). This is in gharp contrast to the condition at the center of the shear web (fig. 2) where the tension is much larger than the compression. The bending stress at the corner (fig. 3). is about half as large as the median fiber etresses. The angle of the maximum median fiber atress in the corner (fig. 3) changes from 45° at buckling to about 43° at the highest load considered. This is a much smaller change in angle than was found in the center of the bay (fig. 2).

Shear Deformation of Beall

The shear deformation $\bar{\gamma}$ of the beam and the shear load Q are given in dimensionless form in table 2. They are plotted against each other in figure 4, It is seen from this figure that the break in the deformation-load curve at the buckling load, $Q=5.54 \mathrm{Eh}^{3} \mathrm{~b} / \mathrm{a}^{2}$ is not very sharp. The stiffness, as indicated by thereciprocal of the slope of the deformation-load curve, shows a drop of about ls percent after buckling.

Effective Width of Sheet

The effectiye width of the sheet, corresponding to the width of unbuckled sheet which would give the same shear deformation as the actual buckled sheet, was computed from equation (24) and table 2. The ratio of effective to initial width ia given in table 4 and lis plotted in figure 5 against
the shear deformation ratio - $\bar{Y}_{a} \bar{\beta}^{\prime} h^{a}$. Figure 5 shows that the effective width decreases alowly with increase in shear deformation. At the maximum deformation considered, about five times the deformation at the instant of buckiling, the effective width is stilh' about 8 g percent of the initial width.
.
"oofprérsive For céting strut
The dibtribution of comprésive, force P along the gtrut was coflputed frdm equation (i2) using equation (14) and table 2. Whe resultisare plotited in dimensionless form in
 force, P, along the strut is quite pronounced, the force being more than thres times as large, at the conter as at the ends. Thís ia $\begin{gathered}\text { atmuch larger variation than was found in ref- }\end{gathered}$ erence 1 for a squife shear web.

The maximan force py=b/a was computed for various loads and is plottedin dimensionless form in figure 7 as a function of load Q. The increase in strut farce with load is nearly

:
Haying Square. Baysi (Reference lyn...

The above results for a $2.5: 1$ rectangular shear web with reinforcement ratio 1/4, are compared in figures 8, 9, and 10 With the corresponding results giteh in reference l for a square shear web with the same reinforcement ratio. Curves A are taken from the present analysis, while curves bare taken from reference l... Pigure 8 shows that the differgindeln ghear deformatifori'for the deep web and for the equar'e web doe not exceed 2 'petcent. Figure shows that the diffefrence in stresese at the corners in line with the diagonal tension wrinkles (subscript 2) does not exceed io pretiont stresses at "the center of the deep web. (sirbseriptr) iar'e up to 20 per'cent smaller than those for the squate weit Figure 10 shows thit the force at the center of the strut"fefnforcing the deep Web is about 30 percent greater at the hifhed ioad than that for the square. wed.

Comparison with "tenaion Field" Theory

The curves 0 in figures 8 to 20 were computed from Kuhn's semiempirical analysis of shear webs in incomplete diagonal tension (reference 6). The shear deformation (fig. 8) is about io percent greater by Kuhn's analysis than by the present analyais; the median fiber tencion at the center of the web bay (fig. 9):1s up to l2 percent greater by Kuhn's analysis than by the present analysis; the median fiber tension at the corner of the :web bay (fig. 9) is up to 37 percent greater by Kuhn's analysis than by the present analysia; and the force at the midale of the strut (fig. 10) is about i6 percent less by Kuhn's analyeis than by the present analysis. The comparin son indicates that Kuhnta anelysia is more conservative than the present analysis except for atrut force.

The curves D in figures 8 to 10 were computed from Langhar's analysis (reference 7) which takes account of flange and strut stifeness, but neglects the effect of Poissom's ratio ($\mu=0$): The ahear deformation (fig. 8) is up to.80 percent greater by Langhaar's analysis than by the present"enalysis, the median fiber tension at the center of the web (fig. 9) is up to 50 percent greater by Langhaar's analysis than by the present analysia; the median fiber ension at the corners in line with the diagonal tension wrinkies is up to 90 percent greater by Langhaaris analysis than by the present analysis; and the force at the midale of the strut (fig. Io) is about four times as great at the highest load. The comparison indioates that Langhaar's analysis is more conservative by large margin than the present analysis.

OQNOLUSIONS

The analy'sis of a rectangular shear web with height-to-. width ratio 2.5 reinforced by strute with a weqght equal to one-fourth the welght of the webliade to the following reiults,

The maximum prinoipal otress at the conter (conresponaing to tension along the wrinkle) continuesto rise after buckinge, while the minimumprincipal otrete (corresponaing to compression perpendicular to the wrinkles)-remains constant and then decreases slowly with increasing load. The direction of the maximum principal stress at the center forms an angle of 45° with the flanges at the buckling load; the angle decrease日 with increasing load; it ia only about 32° at four times the buckling load.

In the cornere of the web that are in line with the diagonal wrinkles, the minimum median fiber stress (compression) is about 30 percent larger in absolute value than the maximum median fifber strese (tension). This is in sharp contrast to the condition at the center of the shear web where the tensicn is much larger than the compression. The bending s.tres.s. I at the corner is about one-half as large as the median fiber stresses. The direction of the maximum median fiber stress In the corner changes from 45° relative to the flanges at buckling to about 43° at four timea the buckling load. :c.j:

The slope of the shear deformation - load curve shows an abrupt decrease in shear stiffness of about 15 percent at the. bucking load. ᄃ: !
The effective width of the sheet drops off slowly as the buckling lead in excsoded. At a shear deformation of aboutit: ifit times the buckifng deformation the effective width is stili " 86 percent. of the initial width.

The compressive force in the strut is about threetimes as large at the middia as at the ends. This is a much iarger variations tham was found in refeivence 1 for a square shear web; it, ife probably caused by.ilguset" action near tho ends of the relatively longer struts reinforcing the féctangular. 3 web. : The increase in strut force with load vas roughtivilinear.

Oomparison with the corréponding analysis of reference 1 for gquare shear bays shows agreement within 2 perént for shear deformation. The stresses at the center and corners and the force in the middle of the strut differed by not more than 30 percent.

Comparison with the diagonal tension field theory as developed by Kuhn indicates that Kuhn's analysis is up to 37 percent more conservative than the present analysis except for strut force, for which the present analysis is more conservative.

Comparison with the diagonal tension field theory as developed by Langhaar indicates that Langhaar's analysis is much more coneer vative than the present analysis; the difference is of the order of 50 to 400 percent at the largest loads.

```
National Bureau of Standards,
Waihington, D. G., June 30, 1945.
```

1. Levy, Samuel, Fienup, Kenneth L., and Woolley, Ruth M.: Analysis of Square Shear Web above Buckling Load. HACA TH NO. 962, 1945.
2. Timoshenko, S.: Theory of Elastio Stability. McGraw-Hill Book Co., Inc.. 1936 .
3. Levy, Samuel: Bending of Rectengular Plates with Large Deflections. NhO\& Rep. No. 737. 1942. (Iseued also as TN No. 846, 1942)
4. Timoshenko, S.: Theory of Blasticity. McGraw-Hill Book Co., Inc., 1934.
5. Crout, Prescott, D.: A Short Nethod for fivaluating Determinants and Solving Syatems of Iinear gquations with Real or Complex Coefficients. Trans. A.I. H. . vo1. 60, 1941, pp. 1235-1241.
6. Kuhn, Paul: Investigations on the Incompletely Developed Plane Diagonal-Tension Field. NACA Rep. No. 697. 1940.
7. Langhaar, H. I.: Theoretical and Bxperimental Investigations of Thin-Webbed Plate-Girder Beamb. Trans. A.S.M. $\mathrm{H}_{\mathrm{H}} .$, vol. 65, Oct. 1943, pp. 799-802.

[See Equation (17)]

	$0=$	O=	$0=$	0	0	$0=$	0
$\square_{1,2}$	24.265 ${ }^{2}$	0	$5.888 \frac{\pi^{8}}{5}$	$-10.84 \frac{\pi \pi^{2}}{5}$	0	$-4,083 \frac{\tau^{2}}{2}$	$-2.664 \frac{\mathrm{Th}^{2}}{\mathrm{x}}$
T1,4	0	$114.3 \mathrm{n}^{2}$	$2.378 \frac{\pi \pi^{2}}{E}$	$14.63 \frac{\pi \mathrm{t}^{2}}{\mathrm{x}}$	0	$-18.96 \frac{T^{a}}{T}$	$-7.240 \frac{7^{2}}{7}$
W1,5	0	0	$1.463 \frac{\tau^{2}}{2}$	$5.860 \frac{\pi^{2}}{x}$	419.82^{2}	$80.27 \frac{\tau^{2}}{x}$	$-87.57 \frac{T a^{3}}{\mathrm{E}}$
me, 1	$5.690 \frac{T^{2}}{2}$	$2.876 \frac{\tau_{2}^{2}}{2}$	156.2h ${ }^{2}$	0	$1.483 \frac{T^{2}}{5}$	0	0
-2,3	$-10.84 \frac{T^{2}}{5}$	$14.63 \frac{77^{2}}{3}$	0	$268.9 \mathrm{~h}^{2}$	$5.889 \frac{\pi}{4}^{2}$	0	0
T2,5	$-4.063 \frac{T^{3}}{5}$	$-18.96 \frac{T^{\text {a }}}{}$	0	0	$23.27 \frac{T^{2}}{2}$	577.3n ${ }^{3}$	0
\#, 7	$-7.655 \frac{\pi^{2}}{5}$	$-7.240 \frac{\mathrm{TE}^{2}}{\mathrm{I}}$	0	0	$-27.57 \frac{\pi^{2}}{E}$	0	$1284 h^{\text {a }}$
5,2	0	0	$-10.34 \frac{T^{2}}{}{ }^{2}$	$18.43 \frac{T^{2}}{1}$	0	$7.314 \frac{T T^{2}}{E}$	$4.778 \frac{T^{2}}{}{ }^{2}$
T3,4	0	0	$4.098 \frac{T^{3}}{x}$	- $26.33 \frac{\pi^{3}}{5}$	0	$34.18 \frac{\mathrm{Ta}^{2}}{5}$	$13.03 \frac{\pi a^{2}}{z}$
$\nabla_{3,6}$	0	0	$-3.633 \frac{T^{2}}{2}$	$-10.24 \frac{\mathrm{ax}^{2}}{\mathrm{r}}$	0	$-41.89 \frac{T^{2}}{5}$	$49.62 \frac{72^{2}}{1}$
T4,1	$2.276 \frac{728}{5}$. $8102 \frac{T^{2}}{8}$	0	0	. $6851 \frac{\frac{\pi}{2}^{2}}{4}$	0	0
"4,3	$-4.096 \frac{\mathrm{~m}^{2}}{\mathrm{E}}$	$5.851 \frac{T^{2}}{}$	0	0.	$2.276 \frac{\pi^{2}}{2}$.	0	0
T4, 5	$-1.6 a 5 \frac{\pi^{2}}{2}$	$-7.685^{4^{2}}$	0	0	$8.309 \frac{\frac{T 2}{2}^{2}}{}$	0	0
- 4,7	$-1.082 \frac{\pi^{2}}{x}$	$-2.896 \frac{T^{2}}{x}$.	0	0	$11.03 \frac{{\frac{12}{}{ }^{\text {a }}}^{x}}{}$	0	0
$w_{1,2}{ }^{2}$	23.13\%1,2	. $0138 \mathrm{~F}_{1}, \dot{a}$	86.22m2,工	23.91wn, 1	$-8.388 \mathrm{~m}_{1,2}$	-23.7872,I	-.185873,1
$\Psi_{1,2}{ }^{2}$.04156w1,4	$88.58 \mathrm{~m}_{1,4}$	83.91\%2,3	88.49\%2,3	44.3271.4	4.112\%3,3	-28.75*2,3
$\pi 1,4{ }^{2}$.0490741,4	79.0751,4	175.ETra, 1	1.760\%2,1	.09244 ${ }_{1} 1,4$.970378, 1	B5.447a, 1
$\mathrm{T}_{1}, 4^{2}$	68.52m1,2	.1472\%1,2	1.760w2,3	213.1w3,3	8.339\%1,a	72.56ma,3	3.37752,3
- $2,22^{2}$	$85.38 \mathrm{ra}_{1,2}$	-59.87\% ${ }_{1}$, 8	$289.0 \mathrm{Fran}_{3} 1$	-89.75ways	$-.2030 \%_{1,3}$	$-.0009711_{3,1}$	$-.008908 \% 8,1$
$W_{2,1}{ }^{2}$	-68.87w1,4	178. $\mathrm{ErF}_{1.4}$	$-899.2 \pi 8,3$	607.5xra, 3	$-88.73 \pi_{1,4}$	-309.4\%8, 3	-.007190-8,3
- $2,3^{3}$	88.48\% 3,2	30.297i,2	.02106\%3, 3	234.0x2,3	-6.814F1,3	.07885\% 2,3	.01285052, 3
-2; 3^{3}	38.28w1,4	213.181,4	607.542, 1	.08318E2,1	-7.329\% 1,4	316.072,1	-305.179,1
	0	0	-126.5	120.5	0	85.32	-60.97
$\mathrm{F}_{1}, 2^{\text {T }} 1,4^{\text {T}} 2,3$	0	0	180.5	72.58	0	123.1	1.262
	47.82	120.6	0	0	-145.8	0	0
$\mathrm{F}_{1,4} \mathrm{~F}_{3,1} \mathrm{~F}_{8,3}$	320.6	2.520	0	0	832.9	0	0

Fable I (Oontinued)

	0	0	0	0	0	0	0
W, ${ }^{2}$	0	0	0	$0.276 \frac{T^{2}}{4}$	$-4.086 \frac{\pi^{2}}{2}$	$-1.895 \frac{\pi^{2}}{5}$	$-1.082 \frac{T^{2}}{2}$
$\nabla_{1,4}$	0	0	0	$.9108 \frac{T \mathrm{~m}^{2}}{x}$	$5.851 \frac{T^{3}}{I}$	-7.6e5 $\frac{\text { Te }}{}$	-2.806 $\frac{\pi}{}{ }^{2}$
W1, 6	3	0	0	$. \operatorname{cas} 2 \frac{\pi \pi^{2}}{x}$	$2 . a 76 \frac{\pi^{2}}{5}$	$9.300 \frac{\pi^{2}}{x}$	$-21.08 \frac{7 x^{2}}{x}$
*8, 2	$-10.34 \frac{\frac{\pi}{2}^{3}}{}$	$-4.098 \frac{T_{2}{ }^{2}}{3}$	$-2.633 \frac{\mathrm{Te}^{2}}{\mathrm{~L}}$	0	0	0	0
F8, 3	$18.43 \frac{\pi^{2}}{\mathrm{x}}$	$-88,35 \frac{T^{2}}{5}$	-10.84 $\frac{7 m^{2}}{5}$	0	0	0	0
-3,5	$9.314^{\frac{7}{2}}$	$34.13 \frac{\pi^{2}}{\mathrm{a}}$	$-41.88 \frac{\pi^{2}}{2}$	0	0	0	0
Th, 7	$4.7 \mathrm{ma}^{\frac{\mathrm{Ta}^{2}}{\mathrm{E}}}$	$28.03 \frac{\frac{7}{}^{2}}{1}$	$49.88 \frac{\mathrm{~m}^{2}}{2}$	0	0	0	0
W, 2	$838.9 \mathrm{~h}^{2}$	0 -	0	$14.83 \frac{7^{3}}{2}$	$-38.35 \frac{T^{2}}{2}$	$-10.48 \frac{m^{2}}{5}$	-6.827 $\frac{\pi^{2}}{2}$
T3,4	0	- $1208 \mathrm{~h}^{3}$	0	$6.851 \frac{70^{7}}{2}$	$37.68 \frac{7^{2}}{I}$	$-49.76 \frac{7 x^{7}}{I}$	$-18.62 \frac{7 x^{2}}{5}$
\% 3 , 6	0	0	$1885 k^{3}$	$8.78 \dot{\frac{1}{2}} \frac{\mathrm{~m}^{2}}{\mathrm{I}}$	$24.63 \frac{\pi^{2}}{5}$	$69.94 \frac{\mathrm{Ta}^{2}}{2}$	$-70,80 \frac{T^{2}}{2}$
$W_{4,1}$	$14.68 \frac{T^{2}}{x}$	$6.851 \frac{m^{2}}{3}$	$5.768 \frac{\mathrm{Ta}^{2}}{\mathrm{I}}$	$23558{ }^{3}{ }^{\text {a }}$	0	0	0
*4, 8	-28.83 ${ }^{\frac{7}{2}}$	$37.82 \frac{\pi^{2}}{2}$	$24.68 \frac{\pi^{2}}{5}$	0	$2743 \mathrm{~h}^{2}$	0	0
$\Psi_{4,5}$	$-10.45 \frac{\pi^{2}}{\mathrm{I}}$	$-48.78 \frac{72^{2}}{5}$	$50.34 \frac{\pi^{2}}{2}$	0	0	$8507{ }^{2}$	0
* 4,7	$-6.827 \frac{\frac{7}{2}^{2}}{}$	$18.62 \frac{\pi^{2}}{5}$	$-70.80 \frac{\pi^{2}}{x}$	0	0	0	5188 ${ }^{\text {n }}$
$\nabla_{1,2}{ }^{\text {a }}$	-2.702\% ${ }^{\text {, }} 8$	-.0888071,2	-.3500\%1,2	3.784m, 1	2.91372, 1	-.05447wn, 1	-. 1596min,
$\square_{1,2}{ }^{2}$		-10.0511,2	$-.1818 W_{1,4}$	-14.23m2, 5	-18.25mz, 3	-.4101rg, 3	+.02393*2,3
$\nabla_{1,4}{ }^{\mathrm{a}}$	$-.8948{ }_{1,4}$	$\cdots{ }_{-40.86 \pi_{1,4}}$	$-.1050 \mathrm{~m}_{1,4}$	-47.36m2,1	$-1.608 \mathrm{ma,1}$	$-1.396{ }^{2,1}$	- $21.2312,1$
$\pi_{1,4}{ }^{8}$	-40.60\% 1,7	-.6972m1,2	$-4.6711_{1,2}$	-7.672ra,	-41.9342,8	-10.0478,5	-.80797a, 3
$\square_{0,1}{ }^{8}$	37.4271,2	-15.1812, 2	1.88271,8	-1.28472,2	.118Ema,	-.05100 $\mathrm{w}_{2,1}$	-.0581610,1
*a, ${ }^{\text {a }}$	-58.49w1,4	97.21\%1,4	-48.18\%1,4	7.37278,3	-2.08\%m2,	.8581w ${ }^{\text {, }} 3$	-.01417m, 5
$w_{2,3}{ }^{2}$	39.79w1,8	11.14*1,2	$-.800171,2$	-.07861w 3,3	-1.004 12.5	-.159752,3	.001370wn, 3
- $\nabla_{2,}{ }^{2}$	$123.8 \mathrm{~m}_{1,4}$	123.9\%1,4	$-1.018 w_{1,4}$	$-18.13 \pi 8,1$	-.07163m2.2	$-1.03772,1$	
	0	0	0	28.11	6.650	7.458	. 4738
	0	0	0	-39.47	-53.80	-30.94	-. 7123
	58.17	56.97	-28.88	0	0	0	0
$\mathrm{m}_{1}, 4 \mathrm{~m}_{2,2} \mathrm{~m}_{3}$, 5	101.5	11.08	80.47	0	0	0	0

Table 2 - Valuos of dofleotion cooffioienta an a funotion of apparent oboaring defornation $\bar{\gamma}$ or of ahear load Q

$\frac{q_{n}^{2}}{m_{2} y_{b}}$	$-\overline{8} \frac{\frac{a}{}^{2}}{h^{2}}$	$\frac{\mathrm{Ta}^{2}}{\mathrm{~m}^{2}}$	$\frac{-122}{2}$		VR.1	\#2.3 ${ }^{\text {2 }}$	$\frac{13}{12}$	$\underset{\square}{2}$	$\frac{\mathrm{w}_{2,5}}{\mathrm{~h}}$	$\frac{127}{12}$	$\frac{W 3.4}{6}$	$\frac{\pi 3.6}{n}$	$\frac{74 .}{1}$	$\frac{74.3}{h}$		$\frac{\text { What }}{6}$
5.54	0	-5.54	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.55	14.62	-5.55	0.050	-0.010	0.010	-0.016	-0.003	-0.001	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000
5.51	24.78	-5.61	. 100	-. 020	. 020	-. 039	-.005	-. 000	. 000	. 000	. 003	. 001	. 000	. 001	. 000	. 000
5.74	15.16	-5.76	. 200	-. 041	. 039	-. 065	-. 011	-. 004	-. 000	. 000	. 007	. 002	. 000	-. 001	. 000	. 000
6.00	15.90	-6.04	. 300	-. 064	. 057	-. 101	-. 017	-. 007	-. 007	. 000	. 012	. 003	. 001	-. 001	-. 001	. 000
6.32	16.85	-6.412	. 400	-. 092	. 074	-. 143	-. 025	-. 0011	. 000	. 001	. 018	. 004	. 002	-.002	-. 0001	-.001
6.50	18.31	-6.95	. 500	-. 132	. 056	-. 196	-. 035	-. 015	. 004	. 002	. 029	. 006	. 002	-. 002	-. 001	-. 001
7.10	19.21	-7.30	. 550	-. 258	. 090	-. 228	-.042	-. 018	. 008	. 004	. 037	. 007	.002	-. 002	-. 001	-. 001
7.44	20.22	-7.6s	. 600	-. 182	. 094	-. 260	-. 049	-. 021	. 009	. 004	. 043	. 008	. 003	-. 002	-.002	-. 0001
7.82	R1. 36	-5.12	. 650	-. 209	. 096	-. 295	-.056	-. 025	. 011	. 005	. 050	. 009	. 003	-. 002	-. 002	-. 002
8.24	22.68	-8.61	. 700	-. 239	. 098	-.374	-.068	-. 029	. 013	. 006	. 059	. 011	. 004	-. 003	-. 002	-. 002
9.30	25.91	-9.64	. 800	-. 310	. 097	-. 424	-. 093	-. 040	.028	. 008	. 081	. 015	. 005	-. 004	-. 003	-. 003
10.60	29.98	-11.39	. 900	-. 395	. 092	-. 537	-. 126	-. 054	. 024	. 021	. 110	. 027	. 007	-. 005	-.004	-. 003
12.22	35.06	-13.33	1.000	-. 489	. 083	-. 652	-. 271	-. 073	. 032	. 015	. 249	. 026	. 009	-. 007	-.006	-.005
14.12	41.12	-15.62	1.100	-.585	. 076	-.780	-. 227	-. 096	. 043	. 020	. 197	. 037	. 012	-. 009	-.008	-. 006
16.36	45.32	-18.36	1.200	-. 697	. 067	-.920	-. 295	-. 125	. 056	. 026	. 257	. 048	. 016	-. 012	-. 010	-. 008
18.60	55.54	-21.10	1.300	-. 775	. 065	-1.054	-. 376	-. 160	. 071	. 033	- 327	. 061	. 020	-. 015	-. 013	-. 020
21.18	63.93	-24.29	1.400	-. 867	. 062	-1.199	-. 471	-. 200	.089	. 042	- 410	. 077	. 025	-. 018	-. 016	-. 013
23.97	73.12	-27.76	1.500	-. 959	. 060	-1.351	-.505	-. 248	.113	.052	. 510	. 096	. 031	-. 023	-. 020	-. 016

Table 3 - Nedian Fiber Stresses at Center, Maximum and Kinimum Princioal Stresses, and Direction of Maximum Princioal Stress

$\frac{Q a^{2}}{E h^{3} b}$	$\frac{\sigma^{\prime} a^{2}}{E n^{2}}$	$\frac{\sigma_{y}^{\prime} a^{2}}{E h^{2}}$	$\frac{T_{x y} a^{2}}{E h^{2}}$	$\frac{\sigma^{\prime} \min ^{a^{2}}}{E h^{2}}$	$\frac{\sigma_{\text {max }}^{\prime}}{\operatorname{mh}^{2}}$	α^{*}
5.55	. 01	.00	-5.55	-5.53	5.59	$44^{\circ}{ }^{\prime}{ }^{\prime}$
5.61	.03	.02	-5.59	-5.57	5.61	44058:
5.74	. 22	. 06	-5.68	-5.58	5.75	44052'
6.00	. 27	. 15	-5.84	-5.61	6.03	$44^{\circ}{ }^{\prime \prime}$
6.32	. 50	. 27	-6.04	-5.62	6.39	440261
6.80	. 86	. 45	-6.33	-5.62	6.93	$44^{\circ} 6^{\prime}$
7.10	1.09	. 58	-6.50	-5.61	7.28	43051'
7.44	1.35	. 71	-6.70	-5.6I	7.67	$43^{\circ} 371$
7.82	1.66	. 86	-6.92	-5.59	8.12	$43^{\circ} 20^{\prime}$
3.24	2.02	1.04	-7.16	-5.56	3.63	$43^{\circ} 2^{\prime \prime}$
9.30	2.94	1.49	-7.76	-5.48	9.92	$42^{\circ} 20^{\prime}$
10.50	4.20	2.08	-8.46	-5.27	11.56	41025
12.22	5.85	2.82	-9.29	-4.98	13.65	40022^{1}
14.12	7.93	3.67	-10.26	-4.57	16.17	$39^{\circ} 81$
16.36	10.53	4.75	-11.30	-3.90	19.18	37050 '
13.60	13.48	5.64	-12.32	-3.26	22.38	$36^{\circ} 11^{\prime}$
21.18	17.06	6.73	-13.41	-2.37	26.17	. $4^{\circ} 28^{\prime}$
23.97	21. 31	7.88	-14.51	-1.28	30.48	$32^{\circ} 34^{\prime}$

* α angle between direction of maximum principal stress and flanges.

Table 4 - Stresses at upper corner of Shear Feb, towards Which Wrinkles Point,

$\frac{\mathrm{Qa}^{2}}{\mathrm{En}^{3} \mathrm{~b}}$	$\frac{0 x^{2} \mathrm{~m}^{2}}{} \operatorname{ch}^{2}$	$\frac{\sigma_{y}{ }^{1} \mathrm{a}^{2}}{\mathrm{Eh}^{2}}$	$\frac{T^{4} y^{2} \mathrm{E}^{2}}{\text { En }}$	$\frac{\sigma^{\prime} \mathrm{min}^{2} \mathrm{a}^{2}}{E h^{2}}$	$\frac{\sigma_{\text {max }}^{\prime} \mathrm{m}^{2}}{E h^{2}}$	$\frac{10 y^{\prime \prime} a^{2}}{E h^{2}}$	α^{*}	Effective width ratio
5.55	0.00	0.00	5.55	-5.55	5.54	-0.22	44059'	1.000
5.61	. 00	-. 01	5.61	-5.62	5.61	-. 44	$44^{\circ} 501$. 999
5.74	-. 01	-. 03	5.76	-5.78	5.74	-. 90	$44^{\circ} 57^{\prime \prime}$. 996
6.00	-. 02	-. 07	6.04	-6.09	6.00	-1.38	$44^{\circ} 54$.	. 992
6.32	-. 05	-. 12	6.41	-6.50	6.33	-1.89	$44^{\circ} 4.91$. 986
6.80	-. 08	-. 21	6.96	-7.10	6.81	-2.43	44044'	. 978
7.10	-. 10	-. 26	7.30	-7.48	7.12	-2.70	$44^{\circ} 41^{\prime \prime}$. 973
7.44	-. 13	-. 32	7.68	-7.91	7.46	-3. 02	$44^{\circ} 3^{17}$. 968
7.82	-. 16	-. 40	8.12	-8.39	7.84	-3.36	$44^{\circ} 34^{\prime \prime}$. 963
8.24	-. 19	-. 49	8.62	-8.96	8.27	-3.73	$44^{\circ} 30^{\prime \prime}$. 957
9.30	-. 29	-. 73	9.84	-10.36	9.34	-4.54	$44^{\circ} 21^{\prime}$. 944
10.60	-. 42	-1.07	11.39	-12.14	10.65	-5.49	$44^{\circ} 11{ }^{\prime}$. 931
12.22	-. 60	-1. 54	13.33	-14.41	12.26	-6.49	$43^{\circ} 59.1$. 917
14.12	-. 83	-2.14	15.62	-17.12	14.15	-7.76	$43^{\circ} 48^{\prime}$. 904
16.36	-1. 12	-2.91	18.36	-20.40	16,37	-9.03	$43^{\circ} 3^{\prime \prime}$. 892
18.60	-1.41	-3.72	21.10	-23.70	18.56	-10.48	$43^{\circ} 26^{\prime}$. 882
21.18	-1.78	-4.72	24.29	-27.58	21.09	-12.04	$43^{\circ} 16^{\prime}$. 872
23.97	-2.19	-5.87	27.78	-31.87	23.81	-13.75	$43^{\circ} 6^{\prime}$. 863

* angle between direction of maximum principal stress and flenges.

(b)

Figure 1.- Beam under shearing force Q and typical bay of shoar web.

('T •89\%x

Figure 2.- Principal median fiber stresses at center of shear bay and direction of maximum principal strese. Bending stresses are zero at center of bey.

Figure 3.- Principal median fiber stresses and bending stresees at corner of shear bay, and direction of maximum principal modian fiber strese. Bending stresses $\sigma_{x}{ }^{\prime \prime}$ and $\sigma_{y}{ }^{\prime \prime}$ are zero at corner.

Pigure 4.- Shear deformation of beam as a function of load.

Figure 5. - Effective width of sheet after buoking.

Figure 6. - Distribution of foroe P in $Q=9 \cdot .30 \mathrm{Eh}^{3} \mathrm{~b}_{\mathrm{b}} / \mathrm{a}^{2}$.

Figure 8.- Kaximum median fiber stress versus sinearing force for shear webs with reinforcement ratio, $r=1 / 4$. Ourve Al: present analysie, center of plate, b/a $=2.5$; curve A2: present analysis, corner of plate in line with diagonal tension wrinkles, $b / a=2.5$; curve B_{1} : reference 1 , center of plate, $b / a=1$; curve B2: ieference I, corner of plate in line with diagonal tension wrinkles, $b / a=1 ;$ curve 0: reference 6, throughout plate, bda=2.5;. curve D: reference 7, tinroughout plate, b/a=2.5.

Figure IO.- Strut force P versus shearing force Q for shear webs With reinforcement
ratio, $r=1 / 4$. Curve A: present analysis, midpoint of strut. $b / a=2.5$; curve $B:$ reference 1 analysis, mid-point of strut, $b / a=1$; curve c : reference 6 analysis, throughout strut, $b / a=2.5 ;$ curve D: reference 7 analysis, throughout strut, $b / a=2.5$.

[^0]: An analysis of a square shear web above the buckifig load was presented in reference l. Actual shear websare frequently rectangular rather than square, with a depth-width ratio considerably greater than 1 . The analysis of reference l therefore was repeated for: a shear web with depth/width =2.5. Comparison of the resulte with those for the square web then would indicate the effect of changes in the depthwidth ratio.

[^1]: ${ }^{1}$ It will be noted that the computation $i s$ confined to the deflection coefficients for which m $+n$ is an odd number, while Timoshenko confines his computation to the coefficients for which m $+n$ is an even number. Preliminary computation showed that Timoshenko's selection of coefficients gave the lower buckling load for a square plate while the present seelection gave a lower bucking load for a plate with bia = 2.5. The reason for this is obvious after considering probable buckling modes for plates with $b / a=1$ and $b / a=2.5$.

[^2]: sesponaing to tension alońgthe; winkleq continuestorise
 sponding to eompression qurossitsownink?esjodecreases slowly

