NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

DEL 201946
technical note

No. 1158

FLUTTER AND OSCILLATING AIR-FORCE CALCULATIONS FOR AN
AIRFOIL IN A TWO-DIMENSIONAL SUPERSONIC FLOW
By I. E. Garrick and S. I. Rubinow
Langley Memorial Aeronautical Laboratory Langley Field, Va.

Washington
october 1946 .

NATIONAL ADVISORY CONEITTES FOR AERONAUGIOS

TECHITCAL NOTT: NO. 1158
FIUTTER AND OSCIEIATING AIR-FGRGE CALCULATIONS FOR AN
AIRFOIL IN A TNO-DTMENSIONAL SUPERSONTS FLON $\quad=$
By I. E. Garrict and S. I. Rubinow
sum:Lary

A conncctod account is given of the Passio theory of nonstationary filow for small disturbances in a twodimensional supersonic ilow ari af its appliontion to the determination of the aerodymamic forces on an oscillating airfoil. Fuxther application is made to the problem of ving fiuttor in the cegraes of froedom - torsion, bending, end aileron torsion. Wuatical tables for flutter calculations are provided for vafious valucs of the Mach number greatur than mity. Results for bondingtorsion wing fluttor aro shown in ficuros and discussed. The static instabilities of divergonce and ajlaron reversal are examined as is a one-dagroo-af-frcedon caso. of torsional oscillatory instability.

INTRODTCTION

The problem of flutter or aefodynamic instability for high-spood aircrart is of consicierablo importanco and hence interest is directod to the aerodynamic problom of the oscillating afrfoll movirg forward at high speed. Although for conventional aircraft the aubsonic and the near-sonic or transonic speed ranges are still of main interest, the purely supersonic speed ranee is becoming inereasingly signiricent.

A checretical treatment of the oscillating airfoil, of infinite aspect rstirs, moviry at supersonic speed tas been given by Possio (reference 1). This treatment is bused on the theory of small perturbations to the main stream, thus is essentially an acoristic theory, and leads to linearization of the equation satisfied by the relocity potential. the airfoil is thersfore assumed to
be very thin, at small angle of attack, and the flow is assumed nonviscous, unseparated, and free from strong shocks.

The small-disturbance linearized theory, being much less complicated than a more rigorous nonlinear theory, is to be regarded as an expedient which allows an initial theoretical solution. The theory permits the occurrence of weak (infinitosimally small) shocks and thus the basic trends and effects of the paramoters of the simplified problem can be indicated. The theory reduces to that of Ackeret in the stationary (static) case and, like it, is not expected to be valid too near $M=2$. In view of the restrictions and assumptions in the analysis important modifications may be required in cortain cases for tinick finite 日irfoils, but oven here the simple theory for thin wing sections may serve as a basis.

In addition to Possio's brief work an equivalent extended treatment has been given ky Borbely (reference 2) which utilizes contour integrations to carry out the solution of the partial differential equation for the velocity poiential according to the Hsavigide operator method or Laplace transform method. Feoentiy, enother eçua valent treatment has been given 1 ne Engiand by Templo and Jahn employing the method of characteristics. In reference I a few curves are glven for the aerodynamic coefficients but no numerical vaiups are tabulated. Fiference 2 contains no numerical resulta. Temple and John recognize the laok of numertcal rosults and supply some inftial calculations for the functions nocessary for flutter calculations.

A paper has recently appeared by Schwarz (roferm once 3) devoted to computing and tabulating the koy mathematical functions that arise in the theory. The present paper makes use of referonce 3 to supply more exiensive numerical tables for application of tho theory. The formulas of the theory are recast in more familiar form for application to the flutter problem and a series of calculations on bonding torsion fluttor are carried out and discussed. The performanee of similar calculations for wing-aileron fiutter is indicatole Erief discussions also aie given of the static instabilities, divergence and alleron reversel, and of a one-degreemoffreedom torsionai oscillatory instability.

For nompleteness, a connected account of the Possio theory is presented since the original presentation in Italian is quite terse and also since it is believed thas this treatment is the simplest and most suitable for croneral extensions. The extension of its application to include the aileron is given.

ATR OROBS AND MORENTS ON AIT OSCILLATING AIRFOIL MOVING
AT SUPERSGNIC SPEED IN TRO-DIMENSIONAL FLOW
Differential Equation for the Velocity Potential

The differential equation satisfied by the velocity potential in fixed coordinates in tie case df infinitesimal disturbances is the wave equation

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}=\nabla^{2} \phi \tag{1}
\end{equation*}
$$

where c is the velocity of sound in the undisturbed. madium. (For the adiabatic equation of state $c^{2}=\frac{\dot{\alpha} p}{\dot{\partial} \rho}=\gamma \frac{p}{\rho}$.
ieferred to a system of rectangular coordinates moving ficrward at a canstant supersonic speed v in the nefative x-direction the wave equation satisfied by the velocity potential in two-dimensional flow becomes

$$
\frac{1}{c^{2}} \frac{\dot{\partial}^{2} \not \phi}{\partial t^{2}}+\frac{2 v}{c^{2}} \frac{\partial^{2} \phi}{\partial x \partial t}+\left[\left(\frac{v}{c}\right)^{2}-1\right] \frac{\partial^{2} \not x}{\partial x^{2}}-\frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

It is mropossd to treat the effect of a slightly cambered thin airfoil aovine forward at a supersonic snoed ∇ at; small (zerc) anclo of attack as that of a distribution of small disturt ances placed along the
 x-axis and hence to utilize oquation (2). The velocity components in the x - and \bar{y}-airections relative to tie moving airfoil are, respectively,

$$
v_{x}=\frac{\partial \phi}{\partial x}
$$

and

$$
v_{y}=\frac{\partial \not \varnothing}{\partial y}
$$

which may be considered the additional components to the main stream due to the disturbance created of the presence of the alrfoil．Relative to cocrdinates fixed in space the velocity components are $v+v_{X}$ and v_{y} ．

Effect of a Source

Squation（2）is lincar and sdlutions are therefore additive．an important parsiculsp solution of equa－ tion（2）having the properto of alsource pulse is
$\phi_{0}=\frac{A(\xi, \eta, T)}{\sqrt{c^{2}(t-T)^{2}-[x-g-v(t-T)]^{2}-(Y-\eta)^{2}}}$

This solution may be considered to aive the effect at a point（ x, y ）at time t of a disturbence of magni－ tude A originating at a point (ξ, η) at an earlier time T．Tire potential \varnothing_{0} is thus a retarcied potential and the elapsed time at (x, y) since the creation of the disturbance is $\tau=t-T$ ．

Unlike the situation for a subsonts flow，for a supersonic flow the effect of the kistiroaice is propa－ gated only downstream，that is，the point oging injluenced（ x, \bar{y} ）is always constidarad to be aft of the boint of disturbance（ $\check{5}$ ，ij）．Equation（3）is thus valid in the ancular resion with vertex at（ s, ij ）and bounded by two straight linos makine the Mach aneles $\pm \mu= \pm_{\sin }-\frac{10}{v}= \pm \sin ^{-1 \frac{1}{N}}$ with rospact to the x－axis． （ Nee fig．1．）Upstrean from this Engular ragion the value of \varnothing_{0} is zera．It follows also that disturbancos in the wake need not be considered and the solution to
the boundary problem may be attempted by a distribution of potentials of the type ϕ_{0} taken along the projection of the airfoil on the x-axis.

A disturbance at (ξ, η) created at time T is first felt at a point (\bar{x}, \bar{y}) after a certain time T_{1} has elapsed. The point (x, y) penetrates the wave front of the disturbed region and because it is moving at a speed greater than that of the wave front it emerges from the disturbed region at a later time T2. Thus, the duration of this initial disturbance at (x, y) is $T_{2}-T_{1}$. (See fir. 2.) The transition at (x, y) from a region of quiescence to a region of disturbance and vice vera is assuciated with the vanishing of the denominator in equation (3). The values of T_{7} and T_{2} for a disturbance created on the axis $\eta=0$ are thus eiven by

$$
\begin{equation*}
T_{1,2}=\frac{m(x-G) \mp \sqrt{(x-y)^{2}-y^{2}\left(M^{2}-I\right)}}{o\left(M^{2}-1\right)} \tag{1}
\end{equation*}
$$

where the minus sign is associated with T_{I} and the plus sign with T_{2} and where $M=\frac{V}{C}$. It may also be observed. that a negative quaritity under tine radical sin in equation (3) is to be interpreted as associated with an undisturbed region. (that is, with $\varnothing=0$).

Potential for a Distribution of Sources

The total effect at any point (x, y) is the sum of the effects of disturbances originating between tie leading edge $\xi=0$ and the intersection of the Mach line through (x, y) with tho s-axis

$$
s=s_{1}=x-\bar{y} \sqrt{12}-1
$$

(since only disturbances created forward of the Mach angle region can affect (x, r); see fig. 3).

The total potential at (x, y) at any time t is thus given by

$$
\begin{align*}
\not \not(x, y, t) & =\int_{0}^{\xi_{1}} \int_{\tau_{1}}^{\tau_{2}} \frac{A(\xi, 0, t-\tau)}{\sqrt{c^{2} \tau^{2}-(x-S-v T)^{2}-y^{2}}} d \tau d S \\
& =\frac{1}{\sqrt{v^{2}-c^{2}}} \int_{0}^{\xi_{1}} \int_{\tau_{1}}^{\tau_{2}} \frac{A(\xi, 0, t-\tau)}{\sqrt{\left(T-\tau_{1}\right)\left(\tau_{2}-\tau\right)}} d \tau d S \tag{5}
\end{align*}
$$

Boundary Condition and Strength of Diatribution
The function $A(\xi, 0, t-T)$ Giving the magnitude or the source distribution 1 s now to be determined by the usual boundary condition of tanegential flow elons tho airfoil. If the ordinate of any point of the moan ine derining the airfoil is givon as. $y=y_{m}(x, t)$ the boundary comition may be written

$$
\begin{align*}
\left(\frac{i g}{\partial y}\right)_{y=0} & =w(x, t)=\frac{\partial y}{\partial t} \\
& =v \frac{\partial y_{m}}{\partial x}+\frac{\partial y_{m}}{\partial t} \tag{6}
\end{align*}
$$

where $w(x, t)$ thus represents the vertical volocity induced by the source distribution in order to realize tancential flow at the airfoll boundary. (In the stationary case - Ackeret treatrent - the two surfacas of tire alrfoil may be considerea ais acting indopondentiy, which can also be done for the nonstationary case. However, for the purpose of obtainitng tho cscillating forces in the linear treatment it la smiflent to consider sopandeli; the upper and lower sides of only the mean $\operatorname{lin} \theta$.)

The evaluation of $\frac{\partial \phi}{\partial y}$ as y approaches zero may be readily obtained by use of the variable " θ instead of T where $2 T=\left(T_{2}-T_{1}\right) \cos \theta+T_{2}+T_{1}$. This substitution in equation (5) yields
$\phi=\frac{1}{\sqrt{v^{2}-c^{2}}} \int_{0}^{\xi_{1}} \int_{0}^{\pi} A\left(\xi, 0, t-\frac{T_{2}+T_{1}}{2}-\frac{T_{2}-T_{1}}{2} \cos \theta\right) d \theta d \xi$

By differentiation with regard to y and with the aid of an integration by parts

$$
\begin{aligned}
\frac{\partial \phi}{\partial y}= & \frac{I}{\sqrt{v^{2}}-c^{2}} \frac{\left.\partial \xi_{2}\right]}{\partial y} \pi A\left(\xi_{1}, 0, t-\frac{M y}{c \sqrt{M^{2}-1}}\right) \\
& +\frac{I}{\sqrt{v^{2}-c^{2}}} \frac{y}{c \sqrt{2}-1} \int_{0}^{i_{1}} \int_{0}^{\pi} \frac{\partial^{2} A}{\partial t^{2}} \sin ^{2} \theta d \theta d s
\end{aligned}
$$

Since $\xi_{1}=x-7 \sqrt{2}-1$, there results in the limit as Y approaches zero on the positive side, the important relation

$$
\left(\frac{\partial \phi}{\partial y}\right)_{y=+0}=-\frac{\pi}{c} A(x, 0, t)
$$

or, briefly,

$$
\begin{equation*}
A(x, t)=-\frac{c}{\pi} w(\bar{x}, t) \tag{7}
\end{equation*}
$$

For \dot{y} approaching 0 on the negative side an equal and opposite result is obtained and hence the distribution of singularities to be utilized to replace the airfoil is of the source-sink type. Thus \varnothing is to be understood in the subsequent analysis to be prefixed
by a \pm sign, + for the upper side and - for the lower side.

The totel potential for $y=0$ may now be expressed by means of equations (5) and (7) as
$\phi(x, t)=-\frac{1}{\pi} \frac{1}{\sqrt{n^{2}-1}} \int_{0}^{x} \int_{\tau_{I}}^{\tau} \frac{w(\xi, t-\tau)}{\sqrt{\left(\tau-\tau_{I}\right)(\tau 2-\tau)}} d \tau d \xi(8)$
where; from equation (4) with $y=0$,

$$
\tau_{1}=\frac{x-\xi}{c} \frac{1}{M+1}
$$

and

$$
\tau_{2}=\frac{x-\xi}{c} \frac{1}{M-1}
$$

Application to Oscillating Airfoil

The general result given by equation (8) may now be applied for definiteness to the case of an airfoil porforming small sinusoidal oscillistions in several dogrees of freedom. Let the wing jundergo the following motions: a motion due to displacement h (velocity ${ }_{j}$) in a vertical direction; a torsional motion consisting of a turning about $x=x_{0}$ with instantaneous englo of attack a; a rotation of an aileran about its hinge at $\mathrm{x}=\mathrm{x}_{1}$ with instantaneous alleron angle is measured with respect to α. (See flig. $\mathrm{H} \cdot$).

In accordance with equation (6) the vertiogl velocity st any point x of the airfoil situatod at $0 \leqq x \leqq 2 b$ (of chord $2 b$ and leading edge at $: x=0$) is easily recognized to be
$w(x, t)=-\left[\dot{n}+v \alpha+\left(x-x_{0}\right) \dot{\alpha}+\dot{v}_{j}+\left(x-x_{1}\right) \dot{\beta}\right]$
where tine β-terms are ta be interpreted as zero for $x<x_{1}$ (and where the minus sign is introduced because
the vertical velocity w is positive upwards whereas the terms within the brackets are positive downards).

It is convenient in treating sinusoidal motion to utilize the complex notation

$$
\left.\begin{array}{l}
h=h_{0} e^{i \omega t} \tag{10}\\
a=a_{0} e^{i \omega t} \\
\beta=\beta_{0} e^{i \omega t}
\end{array}\right\}
$$

where $h_{0},{ }_{0}$, and β_{0} ere complex amplitudes and hence include phase angles.

Since the further analysis is concerned only with exponential time variations of the type given in equation (10), the function w($\mathrm{s}, \mathrm{t}-\mathrm{T}$) occurring in aquation (8) is of the form $w(\xi) e^{i \omega(t-\tau), ~ w h i c h ~ m a y ~}$ also be written for convenience as $w(s, t) e^{-i \omega T}$. The potential \varnothing given by equation (8) may now be written as

$$
\begin{equation*}
\phi(x, t)=-\frac{1}{\sqrt{M^{2}-1}} \int_{0}^{x} w(\xi, t) I(\xi, x) d \xi \tag{II}
\end{equation*}
$$

where

$$
I(\xi, x)=\frac{I}{\pi} \int_{T_{1}}^{T_{2}} \frac{\theta^{-i \omega \tau}}{\sqrt{\left(\tau-\tau_{1}\right)\left(\tau_{2}-\tau\right)}} d \tau
$$

The integration with regard to τ may be readily performed by substitution of the variable θ where $2 T=\left(T_{2}-T_{1}\right) \cos \theta+T_{2}+T_{1}$. Then
$I(\xi, x)=\frac{1}{\pi} e^{-i \omega\left(\tau_{c}+\tau_{1}\right) / 2} \int_{0}^{\pi} \theta^{-i \omega \cos \theta\left(\tau_{2}-\tau_{1}\right) / 2} d \theta$

With T_{1} and T_{2} replaced by their values as given for equation (8) and with the aid of the Bossel function relation

$$
\frac{2}{\pi} \int_{0}^{\pi} e^{-i \lambda \cos \theta} d \theta=J_{0}(\lambda)
$$

It is recognized that

$$
\begin{equation*}
I(\ddot{s}, x)=e^{-i \omega \frac{x-\xi}{c}-\frac{M}{M^{2}-1}} J_{0}\left(\frac{x-\xi}{c} \frac{\omega}{M^{2}-1}\right) \tag{12}
\end{equation*}
$$

Throughout the subsequent analysis it is convenient to employ the variables x and if in new sense to mean nondimensional quantitics obtained by dividing tho old. variables by the chord 26 . The retaining of the symools x and ξ for the nondimensional variables should lead to no confuaion.

The potential $\not \subset$ of equation (11) is then

where with the introduction of the important frequency paranetors

$$
\begin{aligned}
& k=\frac{m b}{v} \quad \\
& \bar{\omega}=\frac{2^{n} n^{2}}{m^{2}-1}
\end{aligned}
$$

the function $I(\xi, x) b e c o m e s$

$$
\begin{equation*}
I(\xi, x)=e^{-i \bar{\omega}(x-\ddot{s})} x_{0}\left[\frac{\bar{\omega}}{M}(x-\dot{\xi})\right] \tag{121}
\end{equation*}
$$

Thus, $I(\xi, x)$ is a function of the variable $x-\xi$ and of tiro parameters M and $\bar{\omega}$, or, alternatively, M and k.

It is desirable to express the potential \varnothing as the sum of the separate effects due to position and motion of the airfoil associated with the individual terms in equation (12). Thus

$$
\begin{equation*}
\phi(x, t)=\phi_{\alpha}+\phi_{\dot{h}}+\phi_{\dot{\alpha}}+\phi_{\beta}+\phi_{\dot{\beta}} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \phi_{\alpha}=\frac{2 b}{\sqrt{h^{2}-I}} v a \int_{0}^{x} I(\xi, x) d \xi \\
& \phi_{\dot{h}}=\frac{2 b}{\sqrt{H^{2}-1}} \dot{h} \int_{0}^{x} I(\xi, x) d \xi \\
& \phi_{\dot{\alpha}}=\frac{1 b^{2}}{\sqrt{n^{2}-I}} \dot{a} \int_{0}^{x}\left(\xi-x_{0}\right) I(\xi, x) d \xi \\
& \phi_{\beta}=\frac{2 b}{\sqrt{n^{2}-1}} v \int_{x_{1}}^{x} I(\xi, x) d \xi \\
& \phi_{\dot{\beta}}=\frac{1 b^{2}}{\sqrt{n_{1}^{2}-1}} \dot{\beta} \int_{x_{1}}^{x}\left(\xi-x_{1}\right) I(\xi, x) d \xi
\end{aligned}
$$

Forces and Moments

The basic pressure formula in the theory of small disturbances is

$$
p=-p \frac{\partial \phi}{\partial t}
$$

which in the present case of the moving airfoil may be expressed as

$$
p=-p\left(\frac{\partial \phi}{\partial t}+v \frac{\partial \phi}{\partial x}\right)
$$

where ρ is the density in the undisturbed medium. The local pressure difference on the airfoil surface betwoen the upper and lower surfaces at any point x (nondimensionai) is

$$
\begin{equation*}
p^{\prime}=-2 c\left(\frac{\partial \phi}{\partial t}+\frac{v}{2 b} \frac{\partial \phi}{\partial x}\right) \tag{15}
\end{equation*}
$$

The total force (positive downward) on the airfoil is

$$
\begin{align*}
p & =2 b \int_{0}^{1} p^{\prime} d x \\
& =-2 \rho v \int_{0}^{1} \frac{\partial \phi}{\partial x} d x-4 \rho b \int_{0}^{1} \dot{\phi} d x \tag{16}
\end{align*}
$$

The moment (positive clockwise; fig. 4) on the entire airfoil about any point x_{0} is : $=$

$$
\begin{align*}
M_{\alpha} & =4 i^{2} \int_{0}^{1}\left(x-x_{0}\right) p^{\prime} d x \\
& =-4 \rho b v \int_{0}^{1} \frac{\partial \phi}{\partial x}\left(x-x_{0}\right) d x-8 p v^{2} \int_{0}^{1} \dot{\phi}\left(x-x_{0}\right) d x \tag{17}
\end{align*}
$$

Similarly, the moment (positive clockwise; fig. (f) on the aileron about the hinge point X_{1} is
$M_{\beta}=L b^{2} \int_{x_{1}}^{1}\left(x-x_{1}\right) p^{\prime} d x$
$=-4 \rho b v \int_{x_{1}}^{1} \frac{\partial \not \varnothing}{\partial v}\left(x-x_{1}\right) d x-8 \rho b^{2} \int_{x_{1}}^{1} \ddot{\phi}\left(x-x_{1}\right) d x \quad$ (18).

In the further reciuction of equations (16) to (18), with the potential \varnothing replaced by its separated form given in equation (I / L), the following sets of integral evaluations are required:

$$
\begin{aligned}
& \int_{0}^{1} \frac{\partial \phi_{\alpha}}{d x} \cdot d x=\frac{2 b}{\sqrt{m^{2}-1}} \operatorname{var}_{I}(M, k) \\
& \int_{0}^{n} \frac{\partial \not \phi_{\dot{\alpha}}}{\partial x} \cdot d x=\frac{4 b^{2}}{\sqrt{n^{2}-1}} \dot{a}\left[r_{2}(k, k)-x_{0} r_{1}(n, k)\right] \\
& \int_{x_{1}}^{11} \frac{\partial \varnothing_{j}^{\prime}}{\partial x} d x=\frac{2 b}{\sqrt{W_{2}^{2}-1}} v \beta t_{1}\left(M, k, x_{1}\right) \\
& \int_{x_{I}}^{1} \frac{\partial \not \phi_{3}}{\partial x} d x=\frac{4 b^{2}}{\sqrt{m^{2}-1}} \dot{\beta} t_{2}\left(M, k, x_{1}\right) \\
& \int_{0}^{1} \phi_{\alpha} d x=\frac{2 k}{\sqrt{n^{2}-1}} \operatorname{var}_{2}(M, k) \\
& \int_{0}^{11} \phi_{\dot{\alpha}} d x=\frac{4 b^{2}}{\sqrt{n^{2}-1}} \dot{a}\left[\frac{1}{2} r_{3}(M, k)-x_{0} r_{2}(M, k)\right]
\end{aligned}
$$

14

$$
\begin{aligned}
& \int_{x_{I}}^{1} \phi_{\beta} d x=\frac{2 b}{\sqrt{M^{2}-1}} v \beta t_{2}\left(1, k, x_{1}\right) \\
& \int_{x_{I}}^{1} \phi_{\dot{\beta}} d x=\frac{4 b^{2}}{\sqrt{M^{2}-1}} \dot{\beta} \frac{1}{2} t_{3}\left(M, k, x_{1}\right) \\
& \int_{0}^{1} \frac{\partial \phi_{\alpha}}{\partial x} x d x=\frac{2 b}{\sqrt{w^{2}-1}} v \alpha q_{1}(M, k) \\
& \int_{0}^{1} \frac{\partial \phi_{i x}}{\partial x} x d x=\frac{4 b^{2}}{\sqrt{M^{2}-1}} \dot{\alpha}\left[\frac{1}{2} q_{2}(M, k i)-x_{0} q_{1}(M, k)\right] \\
& \int_{x_{1}}^{1} \frac{\partial \phi_{\beta}}{\partial x} x d x=\frac{2 b}{\sqrt{M^{2}-1}} v f\left[x_{1}\left(N, i, x_{1}\right)+x_{1} t_{1}\left(N, k, x_{1}\right)\right] \\
& \int_{x_{1}}^{1} \frac{\partial \phi_{\dot{\beta}}}{d x} x d x=\frac{4 b^{2}}{\sqrt{M^{2}-1}} \dot{\beta}\left[\frac{1}{2} s_{2}\left(n, k, x_{1}\right)+x_{1} t_{2}\left(M, k, x_{1}\right)\right] \\
& \int_{0}^{1} \phi_{a^{x}} d x=\frac{2 b}{\sqrt{m^{2}-1}} \operatorname{va} \frac{1}{2} q_{2}(H, k) \\
& \int_{0}^{1} \phi_{\dot{\alpha}} x d x=\frac{4 b^{2}}{\sqrt{n^{2}-1}} \dot{a}\left[\frac{1}{6} q_{3}(M, k)-\frac{1}{2} x_{0} q_{2}(M, k)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \int_{x_{1}}^{1} \mathscr{F}_{\beta} x d x=\frac{2 b}{\sqrt{M^{2}-1}} v \beta\left[\frac{1}{2} s_{2}\left(M, k, x_{1}\right)+x_{1} t_{2}\left(h, k, x_{1}\right)\right] \\
& \int_{x_{1}}^{1} \mathscr{\varphi}_{\beta} x d x=\frac{4 b^{2}}{\sqrt{n^{2}-1}}\left[\frac{1}{6} \dot{s}_{3}\left(M, k, x_{1}\right)+\frac{I}{2} x_{1} t_{3}\left(n, k, x_{1}\right)\right]
\end{aligned}
$$

$$
\int_{x_{1}}^{1} \frac{\partial \phi_{I}}{\partial x}\left(x-x_{1}\right) d x=\frac{2 b}{\sqrt{n_{2}^{2}-1}} v a p_{1}\left(\mathrm{n}_{1}, k, x_{1}\right)
$$

$$
\int_{x_{1}}^{1} \frac{\partial \phi_{\alpha}}{\partial x}\left(x-x_{I}\right) d x=\frac{4 b^{2}}{\sqrt{m^{2}-1}}\left[\frac{1}{2} p_{2}\left(M, k, x_{I}\right)-x_{0} p_{I}\left(M, k, x_{I}\right)\right]
$$

$$
\int_{x_{1}}^{1} \frac{\partial \phi_{\dot{B}}}{\partial x}\left(x-x_{1}\right) d x=\frac{2 b}{\sqrt{x_{1}^{2}}-1} v \beta s_{1}\left(M, k, x_{1}\right)
$$

$$
\int_{x_{1}}^{1} \frac{d Q_{\beta}}{d x}\left(x-x_{1}\right) d x=\frac{1 b^{2}}{\sqrt{n^{2}}-1} \dot{\hat{F}} \frac{1}{2} s_{2}\left(i, k, x_{1}\right)
$$

$$
\begin{aligned}
& \int_{x_{1}}^{1} \phi_{a}\left(x-x_{1}\right) d x=\frac{20}{\sqrt{M^{2}-1}} \text { va } \frac{1}{2} \varphi_{2}\left(M, k, x_{1}\right) \\
& \int_{x_{1}}^{1} \phi_{\dot{\alpha}}\left(x-x_{1}\right) d x=\frac{4 b^{2}}{\sqrt{1 n^{2}-1}} \dot{\alpha}\left[\frac{1}{6} p_{3}\left(1 ; k, x_{1}\right)-\frac{1}{2} x_{0} p_{2}\left(N, k, x_{1}\right)\right] \\
& \int_{x_{1}}^{I} \phi_{\beta}\left(x-x_{1}\right) d x=\frac{2 b}{v^{2}=1} v \beta \frac{1}{2} x_{2}\left(M, k, x_{1}\right) \\
& \int_{x_{1}}^{1} \phi_{j}\left(x-x_{1}\right) d x=\frac{1 b^{2}}{\sqrt{h^{2}}-1} \dot{1} \frac{1}{6} \frac{1}{3}\left(M, k, x_{1}\right)
\end{aligned}
$$

The functions defined by the foregoing integral evaluations are further discussadin the following secion; first, However, the force arid moments (equations (16) to (18)) are given in their final forms as

$$
\begin{align*}
& P=-\frac{4 p b}{V^{2}-1}\left[v\left(v a+\dot{h}-2 b x_{0} \dot{a}\right) r_{1}+2 b\left(2 v \dot{a}+\ddot{h}-2 b x_{0} \ddot{a}\right) r_{2}\right. \\
& \left.+4 b^{2} \ddot{a} \frac{r_{3}}{2}+v^{2} \beta t_{1}+4 b v t_{2}+4 b^{2} \cdot \frac{t_{3}}{2}\right] \tag{161}\\
& M_{\alpha}=-\frac{8 b^{2}}{v^{2}-1}\left[v\left(v a+\dot{h}-2 b x_{0} \dot{a}\right) q_{1}+2 b\left(2 \nabla \dot{a}+\ddot{h}-2 b x_{0} \dot{a} \dot{a}\right) \frac{q}{2}\right. \\
& +4 b^{2} \ddot{a} \frac{a_{3}}{h}+v^{2} \beta\left(s_{7}+z_{1} t_{1}\right)+\operatorname{libv}\left(\frac{a_{2}}{2}+x_{1} t_{2}\right) \\
& \left.+4 b^{2} \ddot{p}\left(\frac{33}{6}+x_{1} \frac{t_{3}}{2}\right)\right]-2 b x d P \tag{171}
\end{align*}
$$

$$
\begin{align*}
M_{p}=- & \frac{\delta p b^{2}}{\sqrt{k^{2}}-1}\left[v\left(v a+\dot{h}-2 b x_{0} \dot{\alpha}\right) p_{1}+2 b\left(2 v \dot{\alpha}+\ddot{h}-2 b x_{0} \ddot{a}\right) \frac{p_{2}}{2}\right. \\
& +4 b^{2} \ddot{\alpha} \frac{p_{3}}{6}+v^{2}\left[s_{1}+4 b v \dot{\beta} \frac{s_{2}}{2}+4 b^{2} \ddot{\beta} \frac{s_{3}}{6}\right] \quad(18 i) \tag{18:}
\end{align*}
$$

Reduction and Evaluation of Foregoing Integrals It is convenient to introduce the substitution $u=x$ - u^{s} and to express the function $I(g, x)$ (equation (121)) as

$$
\begin{equation*}
I(\xi, x)=I(u)=e^{-i \bar{\omega} u} J_{0}\left(\frac{\bar{\omega}}{M} u\right) \tag{19}
\end{equation*}
$$

The various functions defined by the foregoing sets of integrals may now be expressed as follows:

$$
\begin{aligned}
& r_{1}(M, k)=\int_{0}^{1} I(u) d u \\
& r_{2}(M, k)=\int_{0}^{I} \int_{0}^{x} I(u) d u d x \\
& r_{3}(M, k)=2 \int_{0}^{I} \int_{0}^{x}(x-u) I(u) d u d x \\
& a_{1}(M, k)=\int_{0}^{1} u I(u) d u \\
& q_{2}(M, k)=2 \\
& q_{3}(M, k)=6 \int_{0}^{1} \int_{0}^{1} \int_{0}^{x} x(x(u) d u d x
\end{aligned}
$$

$$
\begin{aligned}
& 18 \\
& p_{1}\left(u, k, x_{1}\right)=\int_{x_{1}}^{1}\left(u-x_{1}\right) I(u) d u \\
& p_{2}\left(M, k, x_{1}\right)=2 \int_{x_{1}}^{I} \int_{0}^{x}\left(x-x_{1}\right) I(u) d u d x \\
& p_{3}\left(M, k, x_{1}\right)=6 \int_{x_{1}}^{1} \int_{0}^{x}\left(x-x_{1}\right)(x-u) I(u) d u d x \\
& t_{1}\left(M, k, x_{1}\right)=\int_{0}^{1-x_{1}} I(u) d u \\
& t_{2}\left(M, k, x_{1}\right)=\int_{0}^{1-x_{1}} \int_{0}^{x} I(u) d u d x \\
& t_{3}\left(M, k, x_{1}\right)=2 \int_{0}^{1-x_{1}} \int_{0}^{x}\left(x-u_{i}\right) I(u) d u d x \\
& s_{1}\left(M, k, x_{1}\right)=\int_{0}^{1-x_{1}} u I(u) d u \\
& s_{2}\left(M, k, x_{1}\right)=2 \int_{0}^{1-x_{1}} \int_{0}^{1 x} x I(u) d u d x \\
& { }_{3}\left(M, k, x_{1}\right)=6 \int_{0}^{1-x_{1}} \int_{0}^{\pi} x(x-u) I(u) d u d x
\end{aligned}
$$

Borbely (reference 2) has shown by means of reduction formulas that the six r - and q-functions may be obtained from a single integral. In a similar manner it may be indicated how the foregoing 15 functions may be obtained from the evaluation of the same integral. The reduction is accomplished in two stages. Firet, consider integrals of the following type:
$f_{\lambda}=f_{\lambda}(M, \bar{\omega})=\int_{0}^{I} I(u) u^{\lambda} d u$
$g_{\lambda}=f_{\lambda}\left(M, \bar{\omega} x_{1}\right)=\frac{1}{x_{1}} \int_{0}^{x_{1}} \int_{0} I(u) u^{\lambda} d u$
$n_{\lambda}=f_{\lambda}\left[M, \bar{\omega}\left(I-x_{I}\right)\right]=\frac{1}{\left(1-x_{I}\right)^{\lambda+1}} \int_{0}^{1-x_{I}} I(u) u^{\lambda} d u$
By integration by parts it can be readily verified that the following relations hold

$$
\begin{aligned}
& r_{1}=f_{0} \\
& r_{2}=f_{0}-f_{1} \\
& r_{3}=f_{0}-2 f_{1}+f_{2} \\
& q_{1}=f_{1} \\
& q_{2}=f_{0}-f_{2} \\
& q_{3}=2 f_{0}-3 f_{1}+f_{3}
\end{aligned}
$$

$$
\begin{aligned}
& p_{1}=q_{1}-x_{1} r_{1}+x_{1} 2\left(g_{0}-g_{1}\right) \\
& p_{2}= q_{2}-2 x_{1} r_{2}+x_{1} 3\left(g_{0}-2 g_{1}+g_{2}\right) \\
& p_{3}=q_{3}-3 x_{1} r_{3}+x_{1} 4\left(g_{0}-3 g_{1}+3 g_{2}-g_{3}\right) \\
& t_{1}=\left(1-x_{1}\right) h_{0} \\
& t_{2}=\left(1-x_{1}\right)^{2}\left(h_{0}-r_{1}\right) \\
& t_{3}=\left(1-x_{1}\right)^{3}\left(n_{0}-2 n_{1}+h_{2}\right) \\
& t_{1}=\left(1-x_{1}\right)^{2} h_{1} \\
& s_{2}=\left(1-x_{1}\right)^{3}\left(h_{0}-h_{2}\right) \\
& s_{3}=\left(1-x_{1}\right)^{4}\left(2 h_{0}-3 h_{1}+h_{3}\right)
\end{aligned}
$$

The final stage in the reduction of these functions is to utilize the following recursion formula (referonce 2) obtained by integration by: parts:

$$
\begin{align*}
\frac{M^{2}-1}{M^{2}} \bar{\omega}_{\lambda}(M, \bar{\omega})= & {\left.\left[1+(1-\lambda) \frac{1}{\bar{\omega}}\right]\right]_{\theta}-1 \bar{\omega} J_{0}\left(\frac{\bar{\omega}}{M}\right)-\frac{1}{M} e^{-1 \bar{\omega}} J_{1}\left(\frac{\bar{\omega}}{M}\right) } \\
& +1(1-2 \lambda) f_{\lambda-1}(\bar{m}, \bar{\omega}) \\
& +(1-\lambda)^{2} \frac{1}{\bar{\omega}} f_{\lambda-2}(\bar{H}, \bar{\omega}) \tag{21}
\end{align*}
$$

where $\lambda \geqq 1$ and f with a negative subscript is to be interpreted as zero.

The function $f_{\lambda}(M, \bar{\omega})$ may clearly refer also to the foregoing g-and h-functions, if $\bar{\omega}$ is replaced by the appropriate parameter; namely, $\bar{\omega}^{x}{ }_{0}$ for g_{λ} and $\bar{\omega}\left(1-x_{0}\right)$ for h_{λ}. (See equations (20).) The recursion relation (equation (21)) thus reduces the various functions to the single function

$$
\begin{equation*}
f_{0}(\bar{m}, \bar{\omega})=\frac{1}{\bar{\omega}} \int_{0}^{\bar{\omega}} e^{-i u} J_{0}\left(\frac{u}{m}\right) d u \tag{22}
\end{equation*}
$$

which is therefore the mly integral needed in the evaluation of the forces and monents.

The important integral in equation (22) has been recently made the subject of a mathomatical investigation by Schwarz (referonce if). Schwarz gives tables of the values of its real and imacinary parts to eight decimal flaces for $0 \leqq \bar{\omega} \leqq 5$ anci for $1 \leqq$ 1 10 for conveniently small intorvals. For values of $\overline{0}>5$ not given in Schwarz' tiables, the function f_{0} may be evaluated by means of the following series development (reference 2):
$f_{0}(M, \bar{\omega})=e^{-i \bar{\omega}} \sum_{n=0}^{-\infty}\left(\frac{n^{2}-1}{\mu^{2}} \bar{\omega}\right)^{n} \frac{1}{2^{n} n(2 n+1)}\left[J_{n}(\bar{\omega})+i J_{n+1}(\bar{\omega})\right](23)$
Table I gives values of the functions $f_{C}(M, \bar{M})$ based on the tables of Schwarz and on equation (23) for selected values of the mach number $M=\frac{10}{9}, \frac{5}{4}, \frac{10}{7}, \frac{5}{3}$, $2, \frac{5}{2}, \frac{10}{3}$, and 5 and for varicus appropriate valuos ${ }^{9}$ of ${ }^{2} \bar{\omega}$ (or $\frac{1}{\bar{z}}$). Later use is macie of the values given in taile I for obtaining tables for flutter calculations.

EQUATIONS OF MOTION AND DETERMINANTAT EQUATION FOR

FIU'תTER CONDITION

The equations of motion and the border-line conditin of unstable equilibrium yielding the flutter speed and frequency may be obtained exactly as in the incomepressible case treated, for example, in reference 4. The two -dimensional treatment (infinite aspect ratio) is retained herein. Modifications: due to assumed vibration modes of the finite wing may of course be introduced as in current practice (for example, reference 5). The modification of the forces and moments due to the threedimensional nature of the flow is more difficult problem which remains to be studied.

The equilibrium of the verticid forces, of the moments about the torsional axis $x=x_{0}$, and of the moments on the aileron about its hinge $x=x_{I}$ yields the three equations,

$$
\left.\begin{array}{c}
\ddot{h} M+\ddot{\alpha} s_{\alpha}+\ddot{\beta} s_{\beta}+h c_{h}=p \\
\ddot{\alpha} I_{\alpha}+\ddot{\beta}\left[I_{\beta}+2 b\left(x_{I}-x_{0}\right) s_{\beta}\right]+\ddot{h} s_{\alpha}+a c_{\alpha}=M_{\alpha} \\
\ddot{\beta} I_{\beta}+\ddot{\alpha}\left[I_{\beta}+2 b\left(x_{I}-x_{0}\right) s_{\beta}\right]+\ddot{h} s_{\beta}+\beta c_{\beta}=M_{\beta}
\end{array}\right\}
$$

where the various parameters are defined in the list of notation. (See appendix.)

In order to define the border-1ine condition of unstable equilibrium separating damped and undamped oscillations, the variables h, α, and β are used in the sinusoidal exponential form given in equation (10). For the desired condition, it is necessary that the equations (al) have a (nontrivial) solution for the complex amplitudes h_{0}, α_{0}, and; β_{0}, or that the following detorminantal equation hold:

$$
\left|\begin{array}{lll}
\bar{A}_{c h} & A_{c \alpha} & A_{c \beta} \tag{25}\\
A_{a h} & \bar{A}_{a \alpha} & A_{a \beta} \\
A_{b h} & A_{b \alpha} & \bar{A}_{b \beta}
\end{array}\right|=0
$$

where the complex elements of the determinant in separated form are

$$
\begin{aligned}
& \bar{A}_{c h}=\Omega_{h} X-\mu+L_{1}+i L_{2} \\
& A_{c \alpha}=-\mu x_{\alpha}+I_{3}+i L_{4} \\
& A_{c \beta}=-\mu x_{\beta}+I_{5}+i I_{6} \\
& A_{a h}=-\mu x_{\alpha}+M_{1}+i M_{\alpha} \\
& \bar{A}_{a \alpha}=\Omega_{\alpha} X-\mu r_{a}^{2}+M_{3}+i M_{4} \\
& A_{a \beta}=-\mu\left[r_{\beta}^{2}+2\left(x_{1}-x_{0}\right) x_{\beta}\right]+M_{5}+i M_{6} \\
& A_{b h}=-\mu x_{\beta}+N_{1}+i N_{2} \\
& A_{b \alpha}=-\mu\left[r_{\beta}^{2}+2\left(x_{1}-x_{0}\right) x_{\beta}\right]+N_{3}+i N_{4} \\
& A_{b \beta}=\Omega_{\beta} x-\mu r_{\beta}^{2}+N_{5}+i N_{6}
\end{aligned}
$$

and where the I's, N's, and is are defined by the force and moment equations (16'), (17'), and (18:) expressed in the following forms:

24

$$
\begin{aligned}
& \left.p=-4 \rho b v^{2} k^{2} i \omega t\left(\frac{h_{n}}{b}\right)\left(L_{1}+i L_{2}\right)+\alpha_{0}\left(I_{3}+-i L_{4}\right)+\beta_{0}\left(I_{5}+i L_{C}\right)\right]^{i} \\
& M_{a}=-L_{. \rho} b^{2} 2_{k} 2^{2} e^{i \omega t}\left[\left(\frac{h_{0}}{b}\right)\left(M_{1}+i M_{2}\right)+\sigma_{0}\left(M_{3}+i M_{4}\right)+g_{0}\left(M_{5}+i M_{6}\right) \dot{i}(26)\right. \\
& M_{\beta}=-4 \rho b^{2} v^{2} k^{2} \theta^{i} \omega t\left[\left(\frac{h_{0}}{b}\right)\left(N_{1}+i N_{2}\right)+a_{0}\left(N_{3}+1 N_{4}\right)+\beta_{0}\left(N_{5}+i N_{C}\right)\right]
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& I_{1}+i I_{2}=\frac{1}{\sqrt{2}{ }^{2}-1}\left(-2 r_{2}+\frac{1}{w} r_{1}\right) . \\
& L_{3}+i L_{4}=\frac{1}{3 m^{2}-1}\left[-2 r_{3}+\frac{21}{k} r_{2}-\frac{1}{h^{\prime}}\left(-2 r_{2}+\frac{1}{k} r_{1}\right)\right. \\
& -2 x_{0}\left(-2 r_{2}+\frac{1}{k} r_{1}\right) \\
& I_{5}+i I_{6}=\frac{1}{\sqrt{M^{2}-1}}\left[-2 t_{3}+\frac{21}{k} t_{2}-\frac{1}{1}\left(-2 t_{2}+\frac{1}{k} t_{1}\right)\right] \\
& M_{1}+i M_{2}=\frac{1}{\sqrt{n^{2}-1}}\left[-2 q_{2}+\frac{21}{k} q_{1}-2 x_{0}\left(-2 r_{2}+\frac{1}{k} r_{1}\right)\right] \\
& M_{3}+1 M_{4}=\frac{1}{\sqrt{n^{2}-1}}\left(\frac{4}{3} q_{3}+\frac{21}{k} q_{2}-\frac{1}{n}\left(-2 q_{2}+\frac{21}{k} q_{1}\right)\right. \\
& -2 x_{0} \left\lvert\,-2 r_{3}+\frac{2 i}{k} r_{2}-\frac{1}{k}\left(-2 r_{2}+\frac{1}{k} m_{1}\right)-2 q_{2}+\frac{21}{k} q_{1}\right. \\
& \left.\left.-2 x_{0}\left(-2 x_{2}+\frac{1}{r_{2}} r_{1}\right) \right\rvert\,\right\} \\
& M_{5}+i M_{6}=\frac{1}{\sqrt{M^{2}-1}}\left\{-\frac{4}{3} s_{3}+\frac{2 i}{k} y_{2}-\frac{1}{k}\left(-2 s_{2}+\frac{21}{k} s_{1}\right)\right. \\
& \left.+2\left(x_{1}-x_{0}\right) \left\lvert\,-2 t_{3}+\frac{2 i}{k} t_{2}-\frac{p}{k}\left(-2 t_{2}+\frac{1}{k} t_{1}\right) i\right.\right\}
\end{aligned}
$$

$$
\begin{aligned}
& N_{1}+i N_{2}=\frac{1}{\sqrt{k^{2}-1}}\left(-2 p_{2}+\frac{21}{k} p_{1}\right) \\
& N_{3}+i N_{4}=\frac{1}{\sqrt{n^{2}-1}}\left[-\frac{4}{3} p_{3}+\frac{21}{k} p_{2}-\frac{1}{k}\left(-2 p_{2}+\frac{21}{k} p_{1}\right)\right. \\
& \\
& \left.\quad-2 x_{0}\left(-2 p_{2}+\frac{21}{k} p_{1}\right)\right] \\
& N_{5}+i N_{6}=\frac{1}{\sqrt{n^{2}-1}}\left[-\frac{4}{3} s_{3}+\frac{21}{k} s_{2}-\frac{1}{k}\left(-2 s_{2}+\frac{21}{k} s_{1}\right)\right]
\end{aligned}
$$

The determinantal equation (25) with the foregoing complex elements is equivalent to two real simultaneous equations and hence may be solved fcr two unknowns. In a given case the usual unkmovins are the fluttor speed v and the flutter frequency ω or, more conveniently, the related nondimensional parameters X and $1 / k$. The paramoter X appoars linesily aind only in the major diagonal elements (witi bars), filile the parameter $1, k$ armears transcendentaly in every element of the determinent. Hence an obvious proceature though not the simplest for obtalrint the simultaneois solutions of the two equations is to fix values of $1 / k$, to solva for the roots of the two polynomials in X, to plot graphically these roots against $1 / k$, and to note the points of interacction.

In a syatematic numerical study of flutter any two paramsters may be utilized as unincwns instead of X and $1 / \mathrm{k}$, which is of ten more convenient. A discussion of such procedurs and the use of a method of elimiration for simplifying the calculations is siven in the appendix of reference G.

The application to tho two-derree-of-Freadom subrase of bending-torsion flutter is treated more fully in the following section.

APPLICATION TO BENDING-TORSION FLUTTER

The determinantal equation in the two degrees of freedom h and a is

$$
\left|\begin{array}{ll}
\bar{A}_{\mathrm{ch}} & A_{\mathrm{ca}} \\
\mathrm{~A}_{\mathrm{ah}} & \overline{\mathbb{A}}_{\mathrm{a} \mathrm{\alpha}}
\end{array}\right|=0
$$

or

$$
\left|\begin{array}{ll}
\Omega_{1} x-\mu+I_{1}+1 L_{2} & -\mu x_{a}+I_{3}+1 I_{4} \\
-\mu x_{\alpha}+M_{1}+1 M_{2} & \Omega_{\alpha} x-\mu r_{\alpha}^{2}+M_{j}+1 M_{4}
\end{array}\right|=0 \text { (27) }
$$

The two equations in X obtained by equating the real and imaginary parts separately to: zero are
$\Omega_{n} \Omega_{\alpha} x^{2}+\left[\Omega_{\alpha}\left(J_{1}-\mu\right)+\Omega_{h}\left(N_{j}-\mu \mu_{\alpha}^{2}\right)\right] x+C_{R}=0$
and

$$
\left(\Omega_{a_{2}}+\Omega_{m^{\prime}} J_{4}\right) x+C_{I}=0
$$

where

$$
I_{R}=\mu\left[x_{\alpha}\left(M_{1}+I_{3}\right)-\left(M_{3}-\mu r_{\alpha}^{2}\right)-L_{1} r_{\alpha}^{2}-\mu x_{\alpha}^{2}\right]+D_{R}
$$

and

$$
C_{I}=\mu\left[x_{\alpha}\left(m_{2}+L_{4}\right)-M_{4}-L_{2} r_{a}^{2}\right]+D_{I}
$$

where

$$
D_{R}=L_{1} M_{3}-I_{3} M_{1}-I_{2} M_{4}+L_{4} M_{2}
$$

and

$$
D_{I}=I_{1} M_{4}-I_{4} M_{1}+I_{2} M_{3}-I_{3} M_{2}
$$

For convenience in numerical tabulation, it is desirable to introduce primed quantities, independent of the parameter \dot{x}_{O}, defined by the following relations:

$$
\left.\begin{array}{l}
I_{3}=I_{3}:-2 x_{0} I_{1} \\
I_{4}=I_{4}:-2 x_{0} I_{2} \\
M_{I}=M_{1}:-2 x_{0} I_{1} \\
M_{2}=M_{2}:-2 x_{0} I_{2} \tag{28}\\
M_{3}=M_{3} \prime-2 x_{0}\left[\left(M_{1}:+I_{3}{ }^{\prime}\right)-2 x_{0} I_{1}\right] \\
M_{4}=M_{4}:-2 x_{0}\left[\left(M_{2},+I_{4}{ }^{\prime}\right)-2 x_{0} I_{2}\right]
\end{array}\right\}
$$

In table II convenient expressions for the quantities $I_{1}, I_{2}, I_{3}{ }^{\prime}, I_{4}{ }^{\prime}, M_{1}{ }^{\prime}, M_{2}{ }^{\prime}, M_{3}{ }^{\prime}$, and $M_{4}{ }^{\prime}$ are given and tabulated together with the cambinations $M_{1}{ }^{\prime}+L_{3^{\prime}}{ }^{\prime}$ and $M_{2}{ }^{\prime}+I_{4}{ }^{\prime}$. Clearly these quantities depend on the function f_{0} given in table I, and hence the tabulation is made for the same values of M and I / k (or $\bar{\omega}$). In addition, table II contains values for the quantities D_{R} and D_{I} which, in fact, are independent of x_{0} and may be expressed as

$$
D_{R}=L_{1} M_{3}^{\prime}-L_{3} M_{1}^{\prime}-I_{2} M_{4}^{\prime}+I_{4}^{\prime} M_{2}^{\prime}
$$

and

$$
D_{I}=I_{1} M_{4}^{\prime}-I_{4} M_{1}^{\prime}+I_{2} H_{3}^{\prime}-I_{3}^{\prime} M_{2}^{\prime}
$$

The numerical application in the case of bendingtorsion flutter has been performed for various selected examples. In most of the calculations the numerical procedure was to fix values of $1 / k$, eliminate X, and
solve for tho parameter x_{α}. Interpolation was also used to obtain additional points in order to improve the falring of some of the curves. Values of $1 / \mathrm{k}$ less than 1 did not yield any flutter points in this procedure. Results are shown plotted in a number of figures (figs, 5 to 20); however, before these figures are discussed, it is desiraiole to explain the signiflcance of the parameters and the numerical values assigned to them.

The parameter μ may be cansidered to signify the wing density and three selected velues $3.927,7.854$, and 15.708 in the order of increasing wing density have been mainly used: in the calculations. (These values correspond to values of $\frac{1}{k}=5,10$, and. 20 in the notation of reference 4.) Alternatively, an increase in μ may be interpreter as an increase in altitude for a fixed wing density. The parameter μ may be expected to range up to high values for actual suparsonic wings at high altitude. only a few calculations, however, heve been made for high values of $\mu \quad(\mu=73.54$, $\frac{1}{\kappa}=100$; see f1E. 18).

The parameter $\omega_{h} / \omega_{\alpha}$ is the ratio of the wing bending frequency to the wing torsional frequency and may be expected normally to be liess than unity. The three values $0,0.707$, and 1 have been largely used in the caloulatioxs although other values up to 2 have also been studfed.

The parameter x_{0} represents the position of the olastic axis measured from the leading odge and the three values $0.4,0.5$, and 0.6 represent, respectively, positions at 40, 50, and 60 percent chord. (These values corresponci to values of $a=-0.2,0$, and 0.2 in the notation of ref'erence 4.)

The parameter x_{α} represents the distance of the
center of gravity from the elastic axis. For example, $x_{0}=0.2$ represents a position of the center of gravity 10 percent of the chord behind the elastic axis. In many of the calculations x_{α} has been regarded as variable.

The parameter $r_{\alpha}{ }^{2}$ represents the radius of gyration of the wing about the elastic axis and has been lept fixed at the value $r_{\alpha}{ }^{2}=0.25$.

The ordinate in figures 5 to 20 is the nondimensional flutter coefficient $v / b \omega_{\alpha}$ where $b \omega_{\alpha}$ is a convenient reference speed. This coefficient is also a function of the Mach number $M=\frac{V}{c}$ and several values of M have been employed in the calculations.

In a plot of the flutter coefficient $v / b \omega_{\alpha}$ against M, straight lines drawn from the origin at angle δ and intersecting the curves may be given an interesting interpretation (fig. I7). The siope of the line is given by $\frac{v / b \omega_{\alpha}}{v / c}=\frac{c}{b \omega_{\alpha}}$ or $\cot \delta=\frac{b \omega_{a}}{c}$. Thus, cot δ is directiy proportional to the product of the chord and the torsional frequency. The question of whether at a given value of M the value of $b \omega_{a}$ which will just prevent flutter is also sufficient to prevent flutter at neighboring higher values of N is answered by the simple criterion of whe ther cot δ increases or decreases. In figure 17 two typical flutter curves are shown. In curve B the value of $b \omega_{a}$ just necessary to prevent flutter at a speed corresponding to the value of M at P_{2} is insufficient to prevent flutter at any higher value of M for which the flutter curve is below the straight line OF_{2}. For the type of curve A a maximum value of δ occurs at the "design critical points" P_{1}. The valves of b_{a} just necessary to prevent flutter at a spesd corresponding to the value of M at P_{7} is also sufficient to prevent flutter at all higher speeds.

The following salient facts may be extracted by inspection of the figures. Flutter exists or is posilible for various ranges of the parameters but, in general, compared with subsonic cases the ranges of the parameters yielding flutter are more restricted.

The chordwise position of the aerodynamic center, the center of the oscillating pressure, is an important
factor in the consideration of flutter. In the simple theory the midchord is the serodynamic center for $M \gg 1$. For subsonic speeds, $M \ll 1$, the inearized theory indicates the quarter-chord position as the aerodynamic center. It should be expected that in the transonic region near $M=1$ the eerodynamic center may shift considerably. From this point of view alone conclusions drawn from the simple theory for the range near $M=1$ may require large modifications. The nature of the modifications may be roughly inferred by further experimentel and theoretical study of the behavior of center-of-pressure locations.

For low values of the ratio of bending frequency to torsional frequency $\frac{\omega_{h}}{\omega_{\alpha}} \approx 0$ the position of the center of gravity relative to the aerodynamic center is important. For center-of-gravity positions forward of the midchord no flutter exists, whereas for nositions behind the midchord there is a sharp decrease in the flutter coefficient from infinity; the position of the elastic axis influences the value of the flutter coefficient in this region, forward positions being more favorable (figs. $5(a)$ to 16(a)).

For values of $\frac{\omega_{n}}{\omega_{\alpha}} \approx 1$ the position of the center of gravity relative to the elastio axis becomes of more importance. For center-of-Eravity positions forward of the elastic axis no flutter exists, whereas for positions behind the elastic axis flutter does occur, and a relative minimum coefficient appears for center-of-gravity positions only slightly (a few percent of the chord) behind the elastic axis.

The intermediate case, for which $\frac{\omega_{h}}{\omega_{\alpha}}=0.707$,
shows a blending of the effects in which the center-of-gravity position relative both to the aerodynamic center and to the elastic axis is significant.

In figures 12 and 14 there are shown, for reference, some numerical values of ω / ω_{α}, the ratio of the flutter frequency to the torsional frequency.

The effect of the wing-density parameter μ is rather complicated but, in general, an increase in μ yiel.ds a corresponding increase in the flutter coefficient. For low values of $\omega_{h} / \omega_{\alpha}$ and for high wing densities this increase is expected to be proportional to $\sqrt{\mu}$. In the resonance-like region near $\frac{\omega_{h}}{\omega_{\alpha}}=1$ and for small values of \bar{x}_{α} the flutter coefficient is relatively unaffected by the value of μ, and in this region the structural damping may be expected to be particularly effective in increasing the flutter coefficient.

For valides of the Mach number near unity (for example $M=\frac{10}{9}$, a value for which the validity of the theory is in question), the flutter calculations become difficult to plot because of the appearance of other branches. In some cases (for instance, $x_{0}=0.6$) the flutter instability appears limited to a definite range of speed. Calculations to include damping were performed to verify the existance of the range. (The appearance of these other branches seems to involve values of $1 / k$ for which the quantity M_{4} is negative. The condition of negative M_{4} is significant for the one-degree-offreedom instability discussed in the next section.

A plot of the flutter coefficient against Mach number for two values of x_{a} is shown in figure 17 . The significance of the straight lines drawn from the origin has already been discussed. The type of curve A is representative of the effect of forward location of the center of gravity and the type of curve B is representative of rearward locations of the center of gravity. Figure 18 gives a plot of the flutter coefficient against M for various values of the wing-density parameter μ and for a rearward location of the center of gravity, The subsonic values for $M=0$ and $\mathrm{M}=0.7$ shown on these curves and on some of the other figures have been either taken from raference 7 or calculated in the manner outlined therein. The subsonic and supersonic parts of the curves (figs. 17 and 18) have deen arbitrarily joined by a dashed smooth curve in
the transonic range. In figure 19 there is given a cross plot of flutter coefficient against frequency ratio $\omega_{h} / \omega_{\alpha}$, for various values of M, and in $I^{\prime} i g-$ ure 20 is given a similar aross plot.for three values oj the elastic-axis parumeter X_{0}.

An indication of the effect of structural damping in increasing the flutter speed in a few examples may bo obtalned from the following table, where E_{α} and g_{h} are the torstonal and flexural damping coefficients, respectively, and whero $M=\frac{10}{7}, \quad \mu=7.854$, $a=0$, and $x_{a}=0.2$:

$\omega_{h} / \omega_{\alpha}$	${ }^{1}$	Eh	ω / ω_{α}	$\mathrm{v} / \mathrm{c} \omega_{\mathrm{c}}$
0	0	0	0.673	2.438
0	. 05	0	-6) 48	2.551
0	. 10	0	. 628	2.669
.707	0	0	. 777	1.535
.707	. 05	0	.771	1. 553
.707	. 10	0	.766	1.569
.707	0	. 05	.788	I. 592
.707	0	.10	.797	1. 64.2
.707	. 05	.05	. 782	1. 6.23
.707	. 10	.10	.784	1.725

STATIC CASES - ITWG DIVERGERTCE AND AILERON REVERSAL

It is of some interest to examine the expressions for the rorces and moments in the linit case in which the frequancy anprosches zero. frery follow then for the mean-line wing section the well-mown static-caso results which may of course be obtained directiy without the use of a liniting process, as oricinaliy treated by Ackerst, This, with the use of the followine relation easily verified from equations (20),

$$
\lim _{k \rightarrow 0} f_{\lambda}(m, k)=\frac{1}{\lambda+1}
$$

there are obtained from equations (161) to (18r) for the lift and moments in the static case,

$$
\begin{aligned}
L & =-\frac{4 \rho b v^{2}}{\sqrt{n^{2}-1}}\left[a+\left(1-x_{1}\right) \beta\right] \\
M_{\alpha} & =-\frac{4 \rho b^{2} v^{2}}{\sqrt{\sqrt{n} 2}-1}\left[\left(1-2 x_{0}\right) \alpha+\left(1-x_{1}\right)\left(1+x_{1}-2 x_{0}\right) \beta\right] \\
M_{\beta} & =-\frac{4 \rho b^{2} v^{2}}{\sqrt{4 n^{2}-1}}\left(1-x_{1}\right)^{2}(\alpha+\beta)
\end{aligned}
$$

$$

$$

These relations for the mean-line wing section are now used to obtain the critioal spesds for the static instabilities - wing divergence and wing-eileron revarsal (for wing of infinste span). At the wing divereenco speed the effective torsional stiffness of the wing vanishes, hence the total monent about the elastic axis is zero. The sum of the structural restoring monent and the serodyname twiting mosert is

$$
a v_{a}+\frac{4 p b^{2} v^{2}}{\sqrt{\sqrt[L]{2}^{2}-1}} a\left(1-2 x_{0}\right)
$$

which when equated to zero yields the divergence speed

$$
v_{D}=b \omega_{\alpha}\left(m^{2}-I\right)^{1 / 4} \sqrt{1 r_{\alpha}^{2}} \frac{I}{\sqrt{2 x_{0}-1}}
$$

Thus, the divergencs speed is eeal cnly for positions of the elastic axis behind the amodynamic center (midchord, in the simplo theory). nimis formula obviously should not be used for values of in too near unity.

For comparison lt is of interest to note the corresponding result for the divergance speed in the suiosonic case, where the aerodynamic center is (approximately) at the quarter-chord point. Thus,

$$
v_{D}=b \omega_{\alpha}\left(z-M^{2}\right)^{1 / 4} \sqrt{\frac{r_{\alpha}^{2}}{k}} \frac{1}{\sqrt{4 x_{0}-1}}
$$

whore $M<$ about 0.7 .
The alleron roversal speed is doterminad by the condition that the change in ancle of attack due to wing torsion nullifies the sffuct of movement of tho aileron so as to yield no change in lift (in rolling moment, in the case of finite wing span). There are bwo equations to be satisflod for this condition: namely,

$$
a+(z-2) b=0
$$

(that is, $L=0$) ard
$\alpha C_{\alpha}+\frac{4 \rho b^{2} v^{2}}{\sqrt{1^{2}-1}}\left[\left(i-2 x_{0}\right) \alpha+\left(1-x_{1}\right)\left(1+x_{1}-2 x_{0}\right) \dot{i}\right]=0$

The aileron reversal speed, obtained by olimination of α and β, is

$$
v_{R}=b \omega_{\alpha}\left(N_{1}^{2}-I\right)^{I / 4} \sqrt{1 r_{\alpha}^{2}} \frac{I}{\sqrt{x_{1}}}
$$

For hinge positions aft of the midchord, the factor I/ $\sqrt{x_{1}}$ in this expression varies from 1.4 to 1.0 . The silaron reversal speod is thus relatively unaffoctad by the bosition of tho hinge. In general V_{P} may bo oxpocted.
to be lower tian $V \mathrm{D}$.

ONF-DEGRIF-OF-FFEGDON OBCIR LATORY IVETABIIITY

As was pointed out by nossid, the tieory indicates the existence of a torsional tinstabilit\% which may arise for a win-; having onl. y one degrue of friedom. This instability is due to the wing being negatively damped in torsion and is associated with the venishing (and
change in sign) of the torsional damping coefficient $=M$ (equation (26)).

Certain considerations for the oase of slow oscillations made. by Possio (reference l) and further diseussou by Tomale and Jahn serve te bring out the min rosults. Thus from equation (20): for slow oscillations,

$$
f_{\lambda}(M, k) \approx \frac{1}{\lambda+1}-i \frac{2 k M^{2}}{M^{2}-1} \frac{1}{\lambda+2}
$$

and

$$
M_{4} \approx \frac{1}{\sqrt{M^{2}-1}} \frac{1}{-2} \frac{2}{3}\left[4-9 x_{0}+6 x_{0}^{2}-\frac{M^{2}}{M^{2}-1}\left(2-3 x_{0}\right)\right]
$$

The condition $M_{4}\left(M, x_{0}\right)=0$ is shown plotted in figure 2l, where the shaded area is the region in which the instability is possible (negative M_{4}). The maximum ranges for the parameters x_{0} and M in this region are x_{0} less than $2 / 3$ and M less than $\sqrt{2.5}$ (and greater than unity).
(It may be appropriate to mention that a similar torsional instability is theoretically indicated even in the subsonic (incompressible) case for positions of the axis of rotation between the leading edge and the quarter-chord point. However, the combination of parameters required for this indicated instability is practioally unattainable.)

The torsional instability may be studied more fully in tho general case. It is found that the range of instability for the parameters X_{0} and M remains essentially as in the simpla case (large $1 / k$) but more inticrmation may be obtained regarding the critical sneed and frequency. The moment equation is equivalent to $\vec{A}_{a \alpha}=0$, or to the two equations

$$
\begin{array}{r}
\Omega_{a} X-\mu r_{\alpha}^{2}+M_{3}\left(r, x_{0}\right)=0 \\
M_{4}\left(M, x_{0}\right)+g_{\alpha_{\alpha}} X=0
\end{array}
$$

where the structural damping coefficient in torsion $g a$ has been introduced as in reference 6. The critical speed and frequency may be studied as functions of the parameters X_{0}, M, g_{a} and the product combination $\mu r_{a}{ }^{2}$. Results of a few selected calculations are shown plotted in figure 22. Since instabilities are indicated for the range of near-sonic values ($1<M<1.58$) it would seem that a more comprehensive investigation of this problem is very desirable.

It may be remarked that a similar analysis for pure bending exhibits no instabili ty while the case of the aileron alone does exhibit a range where such instability may occur. This range for an aileron hinged at lts leading edge is $1<M \leq \sqrt{2}$.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics Langley Field, Va., May 29, 1946

APPENDIX

SYMBOLS

\varnothing	disturbance velocity potential
t	time at which disturbance influence is felt
T	time at which disturbance is created
$T=t-T$	
p	pressure
p^{\prime}	pressure difference
ρ	density
Y	adiabatic index (for air, $\gamma \sim 1.4$)
v	velocity of main stream (supersonic)
c	velocity of sound in undisturbed medium
M	Niach number (v / c)
x	coordinate measured in direction of main stream
Y	ordinate
x_{0}	abscissa of axis of rotation of wing section (elastic axis)
x_{1}	abscissa of aileron hinge
S. n	abscissa and ordinate of point of disturbance
b	one-half chord

After equation (12) the quantities x, y, x_{0}, x_{7}, and \mathcal{S} are employed nondimensionally and are referred to the chord 2 b as reference length.
$\mathrm{w}(\mathrm{x}, \mathrm{t}) \underset{\mathrm{vertical}}{\mathrm{velocity}} \mathrm{at}$ at position x on chord and
h vertical displacement of exis of rotation
$a \quad$ angular displacement about axis of rotation
β angular displacement of aileron; measured with respect to α
$\omega \quad$ angular frequency of oscillation
$k \quad$ reduced frequency ($\omega \mathrm{b} / \mathrm{v}$)
$\bar{\omega} \quad$ frequency parameter $\left(\frac{2 k M^{2}}{M^{2} L I}\right)$
$I(\underline{g}, \mathrm{x})$ function given in equations (12) and (121)
$J_{n}(\lambda) \quad$ Bessel function of order $!n$
The following additional symbols, employed in the flutter equations, conform to the notation used in references 4 and 6 , in which the half-chord b is the unit reference length.
$M \quad$ mass of wing per unit span
$S_{\alpha} \quad$ static moment of wing-aileron combination per unit span referred to the elastic axis
$S_{\beta} \quad$ static moment of aileron per untt span referred to aileron hinge
$I_{\alpha} \quad$ moment of inertia of wingtaileron combination about elastic axis per unit span
$I_{\beta} \quad \begin{gathered}\text { moment of inertia of aileron about its hinge per } \\ \text { unit span }\end{gathered}$

coordinate of elastic axis measured from mid-
chord
$\left(2 x_{0}-1\right)$
c coordinate of aileron hinee axis measured from the mid.chard $\left(2 x_{1}-1\right)$
location ot center of cravity of wing-aileron
system measured from elastic axis S system measured from elastic axis $S_{\alpha} / \mathrm{A}_{\mathrm{b}}$; location of center of $\overline{\text { ravity }}$ in percent total chord measared from, leadiry edge is $100 \frac{1+a+x_{a}}{2}=100\left(x_{0}+\frac{x_{\alpha}}{2}\right)$

X_{β}	reduced location of center of gravity of aileron referred to $c\left(\sum_{\rho} / M_{b}\right)$
r_{a}	radius of gyration of wing-aileron combination referred to $a\left(\sqrt{\frac{I_{\alpha}}{\mathrm{Mb}^{2}}}\right)$
r_{3}	reduced radius of gyration of aileron referred to $c\left(\sqrt{\frac{\mathrm{I}_{f}}{M b^{2}}}\right)$
${ }^{C}$	torsional stiffness of wing around a per unit spen
${ }^{C}{ }_{\beta}$	torsional stiffness of aileron system around Q, per unit span
c_{h}	stiffness of wing in deflection
ω_{α}	natural angular frequenct of torsional vibration about elastic axis $\left(\sqrt{\frac{C_{\alpha}}{I_{\alpha}}}\right) ;\left(\omega_{\alpha}=2 \pi f_{\alpha}\right.$, where f_{α} is in cycles per second)
ω_{β}	natural angular frequency of torsional vibrations of aileron around $c\left(\sqrt{\frac{C_{\beta}}{I_{\beta}}}\right)$
ω_{h}	$\begin{aligned} & \text { natural angular } \\ & \operatorname{tion}\left(\sqrt{\frac{G_{h}}{M}}\right) \end{aligned}$
$\mu=\frac{\pi}{4} \frac{1}{\kappa}$	wing density parameter, where $k=\frac{p}{M}$ is tine ratio of a mass of cylinder of air of a diameteri equal to the chord of the wing to the mass of the wing, both taken for equal length along the span; this ratio may be expressed as $k=0.24\left(b^{2} / w\right)\left(\rho / \rho_{0}\right)$ where W is the weight in pounds per foot span, b is in feot and p / ρ_{ρ} is the ratio of air density at altitude to that for normal standard air $\left(\mu=\frac{M}{4 \rho b^{2}}=\frac{\pi}{4} \frac{1}{k}\right)$

g_{α}, g_{β}, E_{h} structurgi damping coefficients (see refer-
$I_{1}, I_{2}, I_{3}, I_{4}, M_{1}, M_{2}, M_{3}, M_{4}$ quantities defined in table II and by equations (26) and (28)
$\nabla / b w_{a} \quad$ flutter coefficient; that is, fluttor sposd divided by referende speed b ω_{α}.
$\Omega_{\alpha} X=\mu r_{\alpha} 2\left(\frac{\omega_{\alpha}}{\omega}\right)^{2}$
$\Omega_{\beta} X=\mu r_{\beta} 2\left(\frac{\omega_{\beta}}{\omega}\right)^{2}$
$\Omega_{h} X=\mu\left(\frac{\omega_{h}}{\omega}\right)^{2}$
where ω. is the ancular (flutter) frequency and
$x=\mu r_{\alpha} 2\left(\frac{\omega_{\alpha}}{\omega}\right)^{2}$
for case of bending-torsion (ifote trat in the incompressible case (reforences H_{1} and 6) H is replaced by $1 / k_{0}$)

REFERENCES

1. Possio, C.: L'azione aerodinamica sul profilo oscillante alle velocita ultrasonore. Acta, Pont. Acad. Sci., vol. I, no. II, 1937. pp. 93-105.
2. v. Borbely, $S .:$ Aerodynamic Forces on a Harmonically Oscillating Wing at Supersonic Velocity (2-Dimensional Case). R.T.P. Translation No. 2019, British Ministry of Aircreft Production. (From Z.f.e.M. M. BA. 22, Heft 4, Aug. 1942, pp. 190-205.)
3. Schwarz, Io: Uritersuchung einiger mit den Zyinderfunktionen nullter ordnung verwander Funktionen. Luftfahrtforschung, Ba. 20, Lfg. 12s Feb. 8, 1944, pp. 347-372.
4. Theodorsen, Theodore: General Theory of Aerodynamic Instability and the Mechanism of Flutter. NACA Rep. No. 496s 1935.
5. Smilg, Benjamin, and Vasserman, Les S.: Apolication of Three-Dimensional Flutter theory to Aircraft Structures. ACTR No. 4798, Materiel Div., Ais Corps, July 9, 19l42.
6. Theodorsen, Theodore, and Garrick, I. E, Plutter Calculations in Three Degrees of Freedom. NACA Rep. No. 741, 1942.
7. Garrick, I. E: Bending-Torsion Flutter Calculations Modified by Subsonic Corpressibility Corrections. INACA TH NO. 1034, 1946.

TABLE $I_{-}-$VALUES OF $f_{0}(M, \bar{w})=\left(f_{0}\right)_{R}+i\left(f_{0}\right)_{I}$

$$
\begin{aligned}
& \left(r_{0}\right)_{R}=\frac{I}{\bar{\omega}} \int_{0}^{\bar{\omega}} J_{0}\left(\frac{u}{M}\right)^{-} \cos u d u \\
& \left(r_{0}\right)_{I}=-\frac{1}{\bar{\omega}} \int_{0}^{\bar{\omega}} J_{0}\left(\frac{u}{M}\right) \sin u d u
\end{aligned}
$$

TABLE I.- VALUES OF $f_{0}(M, \bar{\omega})=\left(f_{0}\right)_{R}+1\left(f_{0}\right)_{I}$ - Concluded

$\bar{\omega}$	$\frac{1}{1}$	$\left(\varepsilon_{0}\right)_{R}$	$\left(r_{0}\right)_{I}$	$\bar{\omega}$	$\frac{1}{2}$	$\left(r_{0}\right)_{R}$	$\left(r_{0}\right)_{I}$		
$M=2$				$M=5$					
$\begin{array}{r} 20.00 \\ 10.00 \\ 5.00 \\ 2.70 \\ 2.10 \\ 1.60 \\ 1.30 \\ 1.10 \\ .80 \\ .64 \\ . .44 \\ .42 \\ .36 \\ .26 \\ .14 \\ .06 \\ .02 \end{array}$	0.133		$\begin{array}{\|l} -0.06337016 \\ -.08615197 \\ -.29541589 \\ -.59458735 \\ -.63550404 \\ -.59698731 \\ -.53566558 \\ =.47882893 \\ -.371 .721 \\ -.305330 \\ -.261128 \\ -.205798 \\ -.177347 \\ -.128996 \\ -.069843 \\ -.029983 \\ -.010000 \end{array}$		0.104	-0.1854996	-0.06011798		
	$\bigcirc .267$			10.00	. 208	-.00207595	-.12707440		
	. 533			5.00	.147	-. 15446620	-. 17734818		
	. 988				.496	-. 16645177	-. 35826002		
	1.270			2.10	.992	. 41122567	-. 70315051		
	1.667				1.225	. 58072358	-. 65532307		
	2.051			1.20	1.736	-77380710	-. 52771202		
	2.424			1.201.00.84	2.083	. 83908297	-. 4.5746891		
	3.333				2.480	. 884607	-. -3.544811		
	4.167			. 62	3.360	-936018	-. 394511		
	4.938			-50	4.167	.958080	- -2, 2532		
	. 6.349				$4 \cdot 960$. 970300	206750		
	7.407			. 63	6.127	$\cdot 980474$	168271		
	10.256			-28.	7.440	-986729	139032		
	19.048			. 20	10.417	-993215	-. 099645		
	4 4.444				20.833	-998300	-. 049960		
	133.333				$34 \cdot 722$	- 999383	-. 029983		
					104.167	. 999950	-. 010000		
$M=\frac{5}{2}$				$M=\frac{10}{3}$					
20.00	0.119	0.00671539	-0.04537548	20.00	0.110		-0.05304109		
10.00	. 238	. 02216359	-. 0.06784796	10.00	. 220	. 02509080	-. 08576219		
5.00	.476	-. 05520172	-. 25614005	5.00	.440	-. 11086610	-. 21422339		
4.80	.496	-. 05938671	-. 27691360	4.40	. 500	-. 12438914	-. 31880518		
2.40	.992	. 29706773	-. 65923330	2.20	. 999	. 37034955	-. 68956543		
1.90	1.253	. 49182591	-. 65290610	1.80	1.221	. 53617331	-. 65968944		
1.40	1.701	. 69153899	-. 57126881	1.30	1.691	. 73436415	-. 55334513		
1.20	1.984	. 76519653	-.51684512	1.10	1.998	. 80420000	-. +9023486		
. 96	2.480	. 844299	-. $43632{ }^{\text {d }}$. 88	2.498	. 871331	-. 408825		
-7.2	3.307	-909960	-. 341204	.66	3.330	-926118	-. 316656		
. 58	4.105	-940834	-. 280086	- 52	4.227	-953675	-. 253427		
$\cdot 48$	4.960	-959181	-. 234350	. 44	4.995	. 966677	-. 216005		
.38	6.266	-974266	-. 187184	. 36	6.105	.977606	.. 177806		
.32	7.440	-981697	-. 158316	. 30	7.326	.984410	-. 148727		
. 24	9.921	. 989675	-. 119288	. 22	9.990	- 991595	-. 109495		
. 12	19.841	- 997408	-. 059908	.10	21.978	. 998260	-. 049950		
. 06	39.683	. 999350	-. 029983	$\begin{aligned} & .06 \\ & .02 \end{aligned}$	36.630	- 999367	-. 029983		
. 02	119.048	. 999950	-. 010000		109.890	. 999950	-. 010000		

Taste it.- taldes of functions obed ir ter fletim calcolations

Figure 1.- Mach angle μ. The disturbance at point ($\mathcal{\xi}, \pi$) moving forward with supersonic velocity v influences the angular region having half vertex angle $\mu=\sin ^{-1} \frac{\frac{1}{\nabla}}{}$.

Figure 2.- Influence of impulse created at point ($\mathcal{\xi}, 0$) at time $t=T$ on a point
(x, y) fixed relative to ($\bar{\xi}, 0$) and moving with supersonic velocity v. (Observe
that the disturbance influences the point (x, y) only during the time fnterval
$\tau_{2}-\tau_{1}$.)

Figure 3.- Sketch showing that only disturbances created forward of the Mach angle region with vertex at \leftrightarrows, can affect (x, y).

Figure 4.- Sketch illustrating the three degrees of freedom h, a, and β of the oscillating airfoll.

Center-of-gravity location, percent chord
(a) Measured from leading edge.

NATIONAL ADVISORY
(b) and (c) Measured from elastic axis.

Figure 6.- The flutter coefficient against center-af-gravity location for several positions of elastic axis and for three values of the frequency ratio. $M=\frac{10}{9} ; \mu=7.854$.

Figure 7.- The flutter coefficient against center-af-gravity location for several positions of elastic axis and for three values of the frequency ratio. $M=\frac{10}{3} ; \mu=15.708$.

Flgure 8.- The flutter coefficient against center-of-gravity location for several positions of elastic axis and for three values of the frequency ratio. $M=\frac{10}{7} ; \mu=3.927$.

Figure 9.- The flutter coefficient against center-of-gravity location for several positions of elastic axis and for three values of the frequency ratio. $M=\frac{10}{7} ; \mu=7.854$.

(a) Measured from leading edge.
(b) and (c) Measured from elastic axis.

FYgure 10.- The flutter coefficient against center-of-gravity location for several positions of elastic axis and for three values of the frequency ratio. $M=\frac{10}{7} ; \mu=15.708$.

Center-of-gravity location, percent chord
(a) Measured from leading edge.
NATIONAL ADVISORY
(b) and (c) Measured from elastic axds. COMMITTEE FOR AERONAUTICS.

Figure 11.- The flutter coefficient against center-of-gravity location for several positions of elastic axis and for three values of the frequency ratio. $M=2 ; \mu=3.927$.

(a) Measured from leading edge.
(b) and (c) Measured from elastic axis.

NATIONAL ADVISORY COMMITTEE FO AEROMAUTICS.
Figure 13.- The flutter coefficient against center-of-gravity location for several positions of elastic axis and for three values of the frequency ratio. $M=2 ; \mu=15.708$.

 and for three values of the frequency ratio. $M=5 ; \mu=7.854$.

Figure 17.- The filutter coefficient against Mach number for two locations of the center of gravity. Other parameters are $\frac{\omega_{h}}{\omega_{\alpha}}=0.707 ; \mathrm{a}=0$;
$\mu=7.854$.

Flgure 18.- The flutter coefficient against Mach number for several values of H. Other parameters are $\frac{\omega_{h}}{\omega_{\alpha}}=0 ; x_{\alpha}=0.2 ;=0$.

Figure 19.- The flutter coefficient against frequency ratio for several values of M. Other parameters are $a=0 ; x_{c}=0.2 ; \mu=7.854$.

Figure 20.- The flutter coefficient against frequency ratio for three values of x_{0}. Other parameters are $M=\frac{10}{7} ; a=0 ; \mu=7.854$.

Figure 21.- Plot of $M_{4}\left(M, X_{0}\right)=0$.

Figure 22.- Curves for one-degree-of-freedom torsional instability.

