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* FLUTTER AXD OSCILLATI~~G AIR-FORCE CALCULATIC'NS FOR AZJ 

AIRFOIL IX A 'F&O-DIXENSIONAL SUPERSONIC FL&V 

By I. E. Garrick and S. I. Rubinow 

2XJKXiRY T--- .- 

A connected account is given of the F’assio theory 
of nonstationary flea for amall disturbances in a Mc- 
d-lmensioocl sup.crsonfc flow and-of ita. application to 
the determination of the aerodmmic forces pn ar~o3cil-.~ 
12ting airfoil. Fkrthar appl-lcution is made to the pro- 
blem of wing flutter in the degrees of frwdon - torsion, 
bending, and aileron- torsion. Mzericsl tables for 
fluttar calculations a~% provided for vnflouti valuca of 
the Kach number greater than unity. Results for Stind.ing- 
torsl_on wing flutter art? ghown in figures and r',iscussed. _ 
The static j-pLstabilitfe3 of divcrgonco and alaron - 

-. 

mveraal are cxami.ned a3 is u om-dsgrac-of-frcedon ca3a 
of torsional oscillatory in3tabilityc 

The problem of flutter or aerodmamic irrstzibilS^ty 
for high-spcod aircraft is of ccnsidcrabl? iTport:!nco 
and hence interest is directed to the. aar~o'8$i$Xc prbblam 
of khe oscillating af.rfoil moving forward at high speed. 
Although for conventional aircraft the ktibsonfc 'and the 
near-sontc or transonic speed ranges are still of main 
interest, t;ho purely supersonic apeed range is beCOMing 
increasingly 3 ignificknt. ,.e.. I 

A thecrefical treatment of.the osciLlat1ng airfoil, 
of infinite aspect ratio, moving at auperscnf-c speed 
kLa3 been given by Possio (reference 1). This treatment ._ 
is brtsed on the theory of small p5rturbntions to the -- -- .: 
main stream, thus i3 essentially an qco7~3t;ic theecry, and 
leads to linearization of the equation s'atisfied by the 
velocitg potential. 'I'hs airfoil is 'iherelors t3ssumod to- -l ._ .: . u- 
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be very thin, at small angle of attack, and the flow is 
assumed nonviscous, unseparated, and free from strong 
shocks, 

The amall-disturbance linearized theory, being much 
less complicated than a more rigorous nonlinear theory, 
is to be regarded as an expedient which allows an initial 
theoretical solution. The theory permits the occurrence 
of weak (inflnftcsimally small) shock3 ard.thus the basic 
trends and effects of the parameters of the simplified 
problem can be indicated. The theory reduces to that of 
Ackeret in the stationary (static) case and, like It, 
is not expected to be valid- too near M = 1. In tiew of 
the restrictfons and assumptiona QI the analysis Lmportant 
modifications may be roqtired In c,ertain caaea for thick 
finite airfoils, but even here t-he simple theory for thin 
wing sections may Serve as a basis. 

* 

s 

In addition to Po33Fo~s brief work an eqtivalent 
extended treatment has been given by Borbely (refor- 
ence 2) which utilize3 contour Fntegrations to carry out 
the solutfon of the partial differBnSia1 equation for 
We velocity potential according tr, the Eeavi3ide operator- _.. . . . ..- 
method or -place transform methnd. Recently, anot;lner 
equivalent treatment has been given in England.by Temple 
ard Jahn employing the method of cbaracter%stics, Ill & 
reference 1 a few curves are given for the aerodynamic 
coefficients but no numerical vaLues are tabulated. 
Reference 2 contains no numerical i7eGilts. Temple and 

* 

Jahn recognize the lask of nume-rical roaulta and swply 
some i-nitial calculation3 for the functions ncoesaary 
for flutter calculations. .- .- 

A paper has recently appearedlby Schwarz (rofer- 
enco f) devoted to coz@uting and tgbulating the key 
mathematical function3 that arise M the theory. The 
present paper makes use of referonce 3 to supply more 
extensi.ve numerical tables for application of tho theory, 
The formulas of th3 t;zeory are racasz in more familiar 
form for applicatfon to the flutter problem and a series 
of calculationa on bondingqtorsion flutter ore carried 
out and discussed, The performancd of 3imLlar calcula- 
tions for wing-aileron flutter is indicateI% Erief 
discuasfons al30 are given of the 3tatic instabiZitie3, 
divergence and aileron reversal, and of a one-degree-of- 
freedom torsional oscillatory instability. 

* 

l t 

. 
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For ?oppletcness,a connected account of the Possio 
theory is presented since the original p.resentation in 
1tali.m is quite terse and als.3 since it 13 believed. 
*ha2 khis treatment 13 the stinglest'and most suitable 
for .yoneral extensions. The extension of its applica- ---- ..-z 
tion i;o include the alleron is given. . 

2. ?-3 3RC3S AND YGEYZXTS ON AIT OSCILLATING AIRFOIL hiGVIN$ 

AT SUPEZSGNIC SPEED IN TX'-DIMENSIONAL FLOW 

. Xfferential Equation for the Velocity Potential 

_ ._.. 

The differential equation eatisfied by the velocity 
potential in fixed coord?nztz 3.i.n trie case 6f infinitesimal 
distcrsances is the wave equation -- ._ I 

(1) 

where c is the velocj.ty of sound in .thc undisturbed 
rnabilTm. (For the adiabatic equation of state 

dn _z_ -. 
C 2 E-2-Z 

6 f-J 
Y 

ilaferrsd to a sgstom of rectangular CoO??&inatos 
movl.n,r fcrwurd at a constant superso.nic sp?Gd v in 
the negative x-dirtiction the wavs equation satiisfled 
S:;r the veloc!.ty potential in two-d2mensional flow becomes . 

- 
. 

It is proposed to treat the .effe.ct of a-.a&ightly _ 
cambered thfn airfoil I.:os,ing forward at a.supers0ni.c .- 
dqoed v at; smali (zsrc) mylo of attack as that of a 
dfS~ributi.0~ of small MsturJzanaeo placed.along..i;& 
x-axFa and hence t.o utflize equation (2). The velocitj; .:' - -- 
comy,2nonts in thi, x- and g-Urect?ons relative to 
tile moving airfoil are, respectively, 



vX 
=?J 

ax i 
s., 

1 

and 

which may be considered the additional components to 
the main stream due to the disturbance created by the 
wesence of -the airfoil. RelatLvo to cacrdlnates fixed 
-In space the velocity components are v-l-v, and vyw 

Xffcct of a Sotirce ' -. - 

Xquation (2) fs linear and solutions are therefore 
additive. An imDortant paPticulti solution Of Bqua- 
tion (2) having ,t,he pPopert:; of a!souTce pulse IS 

A(& “1: T) ':- 
*--.---.-CL- - (31 ._ -7. 
1 x-+V(t ; Tf12 - (y - d2 

This solution may be considered to givs the effect at a 
,point (x, y) at time t of a dasturbance of magni- 
tude A oriflinating at a PoI.nt G, r)) at an earlier 
th??.e I'. The potential. 6 0 is thus a retarded potential 
and the elapsed time at (x, y) tiince the creation of 
the disturbance is T = t - T. ' 

TJnlike tile aftuation for a subsonic flow, ror a 
3uper3onic flow the effect of ,tl:e tiisturbai~cc 1s propa- 
ga'ted onl$ downstream, that is, the point osing 
ins:'luenced (x, y) is always cons$&red to be aft of the 
point of disturbance (c, i-1). Eqytlon (3) is thus 
valid in the an.Tular region with v$rts;r at (g, '11) and 
bounded by two straight lines. ma'-rikl: the Each an;~les 

bt to the x-axis. 

- _-. 
-a 

L 
- 

.- 

. I  

. 

--a 
. - 

._ 

(See fig. 1.) TJpatream from this bngular region the 
value of la0 is zero. It folloivsi also that desturbancos 
in the wake need not be cansiderediand the solution to 
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the boundary problem may be attempted by a distribution 
of potentials of the type $. taken along the projection 
of the afrfoil on the x-axis. 

A disturbance at lg., rlj created at time T is 
f'irst felt at a point L (x, Y> after a certain time 71 
has elapsed. The point t-u, y) penetrates the wave - - 
front of the disturbed region and because it is tzoving 
at a speed greater. than that of the wave front it 
emerges from the disturbed-region at a lacer time TV. 
Thus, the duration of tBis initial disturb!zxe at 
(x, y) is ~~ - T1. (See fig. 2,) The t.ransitlon .- 
at (x, Y) from a region of quiescence to a region of 
disturbance and vice vei'ea is assticiatdd with tkse 

__ 
i -.; 

vanishing of the denominator in equntFon (3). The 
values of '1. and T2 for a disturbance created on .- ..~ -~._. ;l 
the axis q = 0 are thus: given by 

where the minus sign 1s assocrated with 71 and tbx? plus 
Si@-l with 72 and where M = g. It may also be observed. 
that a negative quantity under ths radical sign Jn 
equation (3) is to be interpreted as associated vith an 
undisturbed region. (that is, with jif= oi. 

_ 
_ 

POteiltfal X' or a Distribution of Sources 

The total effect at any point (x, y) la the sum 
of the effects?of disturbances 0riginat;in.g between the _-_- .-- -: 
leading edge __, = 0 and the intersection of the-R!ach 
lisle through (x, y) sith tho &axis 

(since only disturbances created for;vard of the Xach -- 
angle region can affect (x, ~7); see fig. 3). . ..a.-. _ - 
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The total potential at (x, 9) at any time t is 
thus given by 

A(g, 0, t - T) 
..-- dr dg 
c2,2 - (x - :g - vT)2 - y2 

1 A@,, 0, t---r) 
= d-r dg 

J v2-,2 - 7 

Boundary Condition and Stranqth of Distribution 

The function A(g, 0, t - T ) $iving the magnitude 
of the source distrLbution I.3 now CC ‘be detarminsd by 
the usual boundary CGnditfon of tk.~ential flew along 
the afrfoil. If the ordinate of any point-of the mean 

Y = y&-, t> the line defining the .airfoil is gLv3q as 
bollndary corrcl.ition may be written' 

where w(x, t) thus represents t& vertical velocit;Y 
induced by the source distributicti fn order to realize 
tangential flow at the airfoil boun2arg. (In the 
stationary case - dckeret treatrderk - the two surfaces 
of t7rle airfoil may be considered a!s acttng independent-ly, 
which can also be done for the noristationarv case. 
However; for the purpose of obtain$ng the oscillating 
forces in the linear treatment 1t 1s s;$ficix~t to-con- 
sider sopilr.?;telj: the uqpsr and lowar sides of only the 
mean line. f 

- 
-a- c - 
-- 
e-y 

: 
Y 
*- i 
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The evaluation of iZ as 
bs 

y approaches zero may 

be readily obtaIned by use of the variable - 0 instead 
of 7 vzhere 2-r = (T2 - 7-1) CO3 8 + T2 f ‘1. This 
SubStitutioiI fn equation (5) yields 

.- 

By differentiation with regard to y and with the aid of 
an integration by parts --.L __ 

1 f 7 - 
J v- -------2 3 - c 4:2 .-- I 1 

Since 51 = x - &VP - 1, there results In the limit 
as y- approaches zero on the gosi.tive ,.sidg, the important 
relation 

bi 

(> 
- =1-- 
by y-z+0 

l-r Ah, 0, t> 
c 

or, briefly, 

a(x, t> =- f w(x, t) (7) 

Tar y anproaching 0 on the-negative aide -an 
equal and ogposite result 1s ootained and hence the - I."-- 
tiistributlon of s.ingulari.tles to be utilized to replace. 
the airfoil is of the source-sink tyype. Thus P, is to 
be understcod in the subsequent analysis tobe prefixed 
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bya f sign, + for the upper side ati - for .the .-A 
lower side. .~ plllc 

'Ihe total potenteal for y = 0 may now be expressed 
by means of equatl.ons (5) and (7) as i 

2 -7 w(g, t - 7 > 
J(T - ‘T&2 - 

- dT dE (8) 
T) 

where ; from equation (4) with y + 0, 

and 

1 
- 

- 
x-s 1 

72 = 
C Ii! - 5. 

Applicaticn to Oscillating Mrfoi.1 

The general result given by equation (8) may now 
be applied for definiteness to the; case of an airfoil G- 
performing small sinusoidal oscillations inseveral ..- 
dogrees of freedom.. 
motions: 

Let t?le wing iur.derao the follovfirq 
a motion due to dLsplacqent h (velocity h) -111 

l.n a vertical direction; a torsional motion consisting 
of a turning about x=x(j Wit% instantaneous angle of I 

attack cc; a rotation of an aileran about its hiwe atr -- 
x = Xl wI.th instantaneous aileron angle ~~ measured - =- 
with. respect to a. (See fl.g . !t_. )r .. 

In accordance with equation (6) th6 vertical velocity 
at any point x of the airfoil sstuated at Olxj-2b = 
(of chord 2b and leading edge at ;" " 0)' is easily 
recognized to be : 

w(x, t) = - Ii + vu + (x - x0)& + y;.l + I ;r (?K - x$] (7) 
.I-- . 

where the F-terms are ta be interpreted as zero for 
x < x1 (and where the minus si,:n;is Introduced because 

-. 
r 



. 

” 

the vertical velocity w is positive upwards whereas 
the terms within the brackets are positive downwards). 

It is convenient in treating sinusoidal motion to 
utilize the comolex notation 

h = hgeiot 
1 

a = aoelWt i c (10) 

where hc), aO, and PO are complex amplitudes and 
hence include phase angles. 

Since the further analysis is concerned only with 
exponential time variations of the type given in equa- 
tion (lo), the function w{c, t - T) occurring in 
equation (e) is of the form w(F)eiw(t-T), J' which may 
also be written for convenience as W (5, t)8-lWT. The 
potential $ given by equation (8) may now be written as 

where 

r 
% 

$h, t) = - L-- 
\h42 - 

w(S, t> I(& x) dg (11) 
l\ 
1. 0 

I .  

-_-- -  

i 

IT2 
I(& x) = + 

8-iOT 
, 

\Tl 4 T -T1 72-7 )C 
) dr 

The integration with regard to T may b; readily per- 
formed by substitution of the variable where 
27 = (7-2 - T1) Co9 8 + T2 + Tl. Then .----- 

- 

I(s, x) = $ e 
-io;(7z+7L)/2 e-iWcosO(Tz-T1)/2 de 

, 

. _ -- 



With Tl and 72 replaced by their values as given for 
equation (8) and with the aid of the 3essel function 
relation I 

it is recognized that 

I(& x) = e 
> 1 

(1-a 

Throughout the aubsequont analysfs it is convenient 
to employ the variables x and it: in a new sense to 
~rlean nondimensional quantities obtained b;y dividing the 
old varrtables by the chord 2b. The retaining of the 
syxibols x and 5 for the nondLmensiona1 varfablee 
should lead to no confusion. 

The potential J3 of equatiorj -[ll) is then 

-.- 
.- 

. 
- 

where with the introduction of tti important frequency 
parameters 

the functfon I(g, x) becomes -: 

I( g, x) = e-Gix-g) zok (x - F-g (12’ > 

I! 



Y 
l 

XACA TN NO. 1158 11 .- - 

Thus, I(& x) is a function of the variable x - 5 and 
of two parameters M and E, or, alternatively, M 
and k. 

It is desirable to express the potential j8 as the 
sum of the separate effects due to positior and motion of 
the airfoil associated with tha individual terms in 
equation (13). Thus 

where 

Lb2 
x 

$8 
=----+ 

\Ai2 - 1 
( i$-xl) I(T_?,,x)d$, 

1 .- - 

, 
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Forces and Momer_ts 

The basic Dressure formula iti the theory of small 
disturbances is 

which in the present case of the nioving airfoil may be 
expressed as 

p = +(g +3> 

where p is the densllty in the unUsturbed mediti. The 
local pressure dlf-ferance on the .t;Yrf'oil surface bctwoon 
the upper and lower surfaces at an+ point x (tiondimensfon.& 
iS 

(15) 

The total,force (gosit?ve downviard) on t% airfoil is 

i’ 
1 

P =2b . 17' dx 
10 

= -2pv 
P 

ki!! dx - 
ax 

&pb 

t.:O 
(16) 

The moment (positive clocl;wis&; ffg. 4) on the entire 
airfoil about any point x0 is i 

M, = Ic'o" ‘l(x - x&3 du 
I 

( 
;O 

= -!+pbv ;.(x - xo) ti - - x0) dx on 



-- 

Similarly, the moment (positive clockw!_se; fig. 1~) 
on the aileron flbout the hinge point x1 is 

1 
M P = 1cb2 f< x J - "1)p' dx 

x1 

.i 

= -4pbv 
ir - 

1 $(x - x1) dx - 8pb2J1$(x - x1) dx (18) . 
' x7 Xl 

in the further re&uctLon of equations (16) to (181, 
wI.th the potential 
yiven in I"' 

replaced by its separated form 
equation (lo), the followin& sets of integral 

evaluations are requtred: 4 

- 
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s 

' d'a x dx 2b -- va cl+% 1~). 
0 6X 

- x0 q,JM, k) 3 

x dx - 2 2 3- +-xl t&,k,xl)] 

- 

Y 

r- 

.- 

31 
J ) 0 

jZfax dx = -$+ va $ q2(i?+ k) 
I , ..II .- ..- +-: - 

. 



. 
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J 

11 

I 
p,x c!!JE = 2b VP 2 

1 
p s2(hl, k, x1) + x1 t2(M, 

JAI2 - 1 - 
k, x1 )] 



J 
?l 

9,(x - xl) dx = ..,a. 
j/s - 1 

va 4 92 ( M, k, x1 ) 
"1 : 

s 

' g&(x - xl) dx 

x1 

= --$.! tck p$' k,xl) - go p2(Q k, xl] 

. 

-- 

k, xl) 
:- 

.- -- 

T?le ftinctions defined by 'ihe rforegoing integral 
evaluations are further discuss:!diln the ~ollowirq sec- 
tion; first, T~owever, the force arid mom&t3 (equations (1.6) 
to (18)) are given in their final:fornls as 

.-- 

: 1= 

m i-. 

9 + 4b2s -y t3 + v2C,tl -I- &b&2 + /.Lb'; -y 1 (10) 

07’ > 

. - 



. 

6pb2 bI = - --z v p2 

h 
r; va + fl - 

I, 2- IL 
2bxC&)pl + 2b(2vd + g - 2bxgii - ) 2 

0.8’ 1 

3educticn and Evaluation of Foregoing Integrals 

It is convenient to introduce the substitution 
17 =x-g and to express the function 
(equation (121)) as 

us, x) 

I& x) = I(U) = o-~'~ JO (19) 
-.~ 

The various functions defined by the foregoing sets of. 
I.ntegrals may now Se expressed as follows: -. 

rl(X, k) = I(u) du 

r2(M, k) =' I(u) du dx 

(x - u) I(u) du dx 2 : 

I>1 
q$A, k) = u I(u) du I 

x I(u) du dx 

.* _ 1- - .-1 .- z 
x(x - u) I(u) du dx -- +. 

- 
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p&, k, x1 

) i;( 

= u - x1) I(u) du 

IX1 

k, x1) = 2j;; [cx - x1) I(u) du dx 

p&q, k, x1) = 6 r’ s’” - x$x - u> I(u) du dx 

bXl 0 

tl(M, k, x1 
l-x1 

I(u) du : 

k, Xl) = 

(-- -k -;u) I(u) du dx 

l-X1 

u I(u) dd 

8 
(M, k, x1> = 2 

Sl-“1 /IX 
"2 I I x I('u) du dx 

b0 b0 

33 
(M, k, xl) = 6f--'~' $ x(x ._ u) L(u) du dx 

. 
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Sorbelg (rcferencel2) has shown by-means of 
reduction formulas that the six r- and q-functions may _. 
be obtained from a single integral, In a similar manner 
it may be indicated how the foregoing 15 functions may 
be obtained from the evaluatfon of the same integral. 
The reduction is accomplished in two stages. 
consider integrals of the following type: 

First, 

s 

1 

fh = fh(M, G) = I(u) uh du 

0 

1 
Xl 

tQ = f&b KxJ = ;+l I(u) uh du 
X 1 0 

(20) 

hh = f-&b w(l - x1>1 = ( ' )h+l 

71-x1 - 

i 

I(u) uh du 
1 - x1 0 

/. By integration by parts it can 'bo readily verified that 
the following relations hold 

rl = f. 

r2 = f. - fl 

r3 = fo - 2f1,+ f2 

91 = fl 

0 = - -7 L fo f2 -.2- 

q3 = 2f0 - 3fl * f3 

I 
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Pl = cl.1 - y-1 + Xl2 go - ( 621. > 
P2 = 92 7. +‘2 + xlJ(PJ, - +3;1 + i!3;?) 

“3 = 93 - 3x,“3 + x1.4(~o - 3fQ + 3Q - 

tl = (1 - xl)hO ,; 

t2' = (1 - xl.j2(ho - hl) 

t3 = c 1 - x1 3 ho - 2?$ f- h2) ) c 

“1 = (1 - x1)2hl ' 1. 

s2= L- ( x1)3(ho - $9 

s3 = (1 - x$(2h0 c 3j~ + h3) 

is 
The final stage in the reductgon of t11ssFj functions 

to utilize the foll0lrpi.r~~ rocurf3L,on formula (refer- 
ence 2) obtained by integration byi paztyt3: 

, 

‘ - 

-. 

* 
-I- (1 - hy 1 i;"-l(x, E;j! (21) 

-...- & 
!I) L - L 

l 

where h z-.1 and f wj.th a negattve subscript is to be 
-- 

interpreted as zero, 
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L 

, 

The function fh(M, E) may clearly refer also to 
the foregoing g- and h-functions, i.f E 
by the appropriate parsmeter; namely, ojxO 

isfE.;placed 
g;h 

and w(l - x0) for %. (See equations (20).) The 
recursion relation (equatioii (21)) thus reduces the -.~ - 
various functions to the single function 

= ,-iU du (22) 

which is therefore the only i-iltegral needed in the 
evaluation of the forces and moments. ' 

The important integral in equation (22) has been 
recently made' the subject of a mathematical investiga- 
tion by Schware (reference 1~). Schwarz gives tables 
of the values of its real and Jma.$nsry parts to eight 
decimal Flaceo for 0 5 z z 5 and for l$&l~ 10 for 

conveniently small intervals. 3or values of i-3 > 5 not 
given in Schwarz* tablea, the flElCtiOn fO may f:a .- --- 
evaluated by.means of t!:e folioMng series development _- 
(reference 2): 

Table I gives values of tL"e functions f,(X, G;) 
based on the tables of Schwarz and cn equation (23) for 

, 
- 

selected values of the ?Zash number M = B 2 10 5 
9 ’ 4’ -7 3.’ 

end for varicus appr,opriate values 

Later use is made cf the values given 
in table I for obtaining tables for flutter calculations. m . 
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EQUATIGNS OF MOTION AND DETZWINANTAL EQUATION FOR 
. 5 

E'LUTTER CONDITION 

The equations of motion and the border-line condi- 
tion of unstable equilibrium yielding the flutter Sp88d 
and frequency may be obtained exactly as in the incom- 
pressi'ble Case trehted, for eXEIIllplfe, in reference 4. 
The two-dimensional treatment (infinite aspect ratio) 
is retained herein. Modifications due to assumed vibra- 
ti.On modes of the finite wing may jof COUr38 be intzoduced 
as in current practice (-for example, reference 5). The 
modification of the forces and motients due.to the three- 
dimensional nature of the flow i3 la more difficult 
problem which remains to be studled. 

- 

- 

- 

The eqllilibri1un of the verticiul forces, of t-he 
moment3 about the torsional axI. x = x0, and of fdl8 

moments on i&e aileron about its hinge x = x1- yield3 
the three eqUatiOn3, 

Ear + Esa + psp + q1 = P 

Where the various Darmetcrs are dnfined in the list of 
notation, (see appendix.) / 

In order to define t1t.e border:-line condition of 
Unstable equilibrium separating damped and Undamped 
oscillations, the variables h, a', and p are Used 
in th8 sinusoidal exponential f'c.m given in equation (lo), 
For the desired condition, it iS nDC8S3ary thElt the 
equations (2)+) have a (nontrivial) solution for the 
complex um.pljltudes hO, aO, and ; PO, or that the 
f-o-Ilowing detorminantal equation hold: 

_I 

4 
,- 
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c 

‘- 
I Ach Aca *cP 

AaP = 0 

% 

(25) 

where ths complex elements of the determinant in 
separated form are 

%h = i&x - p + Ll + IL;! 

A ca = 'wa + L3 + iL 4 
&p = -Fxt7 + T3 + =‘6 

- -. :- - - -r_L=-l 

'aa = fi,x - pra2 + M3 + iId4 
P -aP 

+ 2(x1 - + I!75 f iM6 

and where the L's, &I' 9, and N's are defined by the 
force and moment equations (161), (l'i"), and-(l8r) 
expressed in the following forms: 
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Hence, 

. 

Ll + iL2 
* 

r - 

L3 + iL4 = 
._ 

-2x0 .^ 
.? 

. 
L5 + iLc; = 1 

. 
- 

Ml + "iv2 = + 7 ql - 
.tl 

3 
"3 + iM4 = 

, 

.I 
. 

F 

. ---- 
, .z -- . 

M5 f iM6 = 
c 
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. 

1 N1 + iN2 = --II= 
d 6 1 

N3 f iN4, = ?-l 

N 
5 

+ iN6 = 
- 

The determinantal equation (25) w.i.th the foregoing 
complex element3 is equivalent to two real simultaneous 
equations and hence rn3-g be solved fcr two unknowns. In 
a ,given case the usual unknov;~~s are' i;he flutter speed _v.-.. 
and the flutter frequency w or, rnorc cca=vcniantly, the ---- 
related nonClimensiona1 parameter3 X and l/k. The 
parameter X appears l.?.'i.ne.ai*lg aad only in the major . .I ~ 
diagonal elements (NitIt bars), tivllile the parameter 1,'k 
appears transcendentally in ever;3 element of the deter- 
minant. Hnnco an obvious procedure though not the 
slmplsst for obtaf.niv; the simultanoo~ls solutions of 
the two equations is t@ fix values of l/k, to solm -- 
for the roots of the two PolTJnomials in X, 'to plot 
grapbicallg these roots against l/k, an3 to note the 
points of intersection, 

In a systematic numerical study of flutter any two 
parameters may be utilized as unlnowna instead-of .X 
and l/k, which is often more convenient. A discussion 
of such procedure and the use of a method of elimination _ 
for simplifyins the calculaticns is .rr;iven in t&he 
appendix of reference 6. 7s-4 .- 

The application to the two-degree.-of-freedom subcase 
of bending-torsion flutter Is treated more fully in the 
following section, 
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APPLICATION TO BENDING-TORSION FLUTTER 

The determinantal equation in the two degrees of . 
freedom h and a is 

.- 
*ch a CCL = 0 
A -. 

ah A aa 

or 

w- p + L1 + iL2 qLxa f 43 + iL4. 
= 0 (27) 

‘pxa + Ml + iEI2 ba,x - pra2 + hbj t iN4, 

The two equations in X oStained.b$ equating the real 
and imaginary parts separately to--zero are 

and 

where 

, !s (27') 
c ,AaL;! t c?$4)x t CI := 0 

4 I 

and 

CI = 4xa(bT2 + Ld - ML~ -1 L2s2] + DI 

where 

Dy: = L$3 - L3h11 - L2h& -I- ~~~~ 

and . 

- 



. 

L 
. 

. 

, 

ile 
of 

For convenience 
sirable to introduc 

the parameter x0, 
_. 

in numerical tabulation, it is 
,e primed quantities, independent 

defined by the following relat 

=Ll 
L3 3 - &oL1 

L4 4 - 2"oL2 EL' 

MI = Ml' - &oL1 

M2 = M2f - &oL2 

M 3 
= M3' 

=M f N4 4 ‘- ho PM21 + $’ > - 2xoL2] 
c 

ions: 

In table II convenient expressions for the quantities 
LlJ L2J L3’, $5 by' M$’ y, and M4’ are 

given and tabulated together with the- canbinations 
Ml' + L ' 3 and M2' + L2c 

*. clearly these quantities 
depend on the function f. given in,table I.ar+d hence 
the tabulation is made for the same values of N 
end l/k (or ?i7). In addition, table II contains 
values for the quantities DR and DI which, in fact, 

i 

are independent of x0 and may be expressed as 

(: 

DR = L1”3r - L3'Ml' 
- L2M4’ + +-?2* 

and 

DI = LlM 1 - 4 +-k 
'bll( + L2b13t - L3’M2’ 

The numerical application in-the case of bending- 
torsion flutter has been performed for-various selected 
examples. In most of the calculations the numerical 
procedure was to fix values of l/k, eliminate X, and 
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solve for the parameter Xam Interpolation was also 
used to obtain additional points in order to improve the 
fa!ring of some of ‘the curves, :Values of l/k less 
than 1 did not yield any flutter p0iilts in this 
procedure, Results are shown plotted in a number of 
figures (figs. 5 to 20); however, before these figures 
are discussed, it is,desirable to explain the significance 
of the parsmeters and the numerical values assigned to 
them. 

and 15.708 in the order of increasing wi:g &ns!ty have 
been mainly used:in the calculations. (These values 

1 correspond to values of T = 5, '10, and 20 in the 

notation of reference 4.) Alternatively, an increase 
in P may be interpreted as an increase in altitude for 
a fixed wing density. The pardeter. p may be expected 
to range up to high values for actual supersonic Wings 
at high altitude. Only a few calculations, however, 
have be-en made for high values 0% [\ (F = 73.54, 
1 
- - 100; see ~5~1.8). K 

The parameter Wh/On is th@ ratio of the wing 
bending frequency to the wiLng torsional frequency and 
may be expected normally to be Less than unity. The 
three values 0, Q.707, and 1 havje been largely used in 
the calculatio:*s although other palues up to 2 have 
also been studied. 

The parameter x0 represents the pzsition of the 
elastic axis measured from the lcading.edge and the three 
values 0.4, 0.5, and 0~6 reprsseht, respectively, posi- 
tions at 110, 50, and 60 percent bhord, (These values 
corresaonii to values of a = -0.2, 0, and 0.2 in the 
notation of re-f'erence 4.) 

The parameter x, represents the distance of the 
centor of gravity .from the elastic axis, For example, 
X = 0.2 recresents a position 0P the centar of gravity 
18 percent of the chord behind tti elastic asis. In 
many of the calculations 
variable. ' 

x, has been'regarded as 

L - 

-- 

. 

7 

..--7 

* 

* . 



29 . 

The parameter. ra2 represents the radius of gyration . 
of the wing about the elast.ic axis and has been kept 
fixed at the value r,2 = 0,25. L 

-. 
_.- 

The ordinate in fi 
flutter coefficient v A 

ures 5 to ,20 is the nondimensional 
Oa where tw, is a convenient 

reference speed, This coefficient is also a function 
of the Mach nUmb8r M = z and several ValU8S of M 
have been employed in the calculatLons, .- 

In a plot Of the flutter CO8ffici8nt v'bwa 
against M, straight lines drawn from the ori 
angle f 

in at 
b and intersecting th8 curves may bet-g venan 

jnteresting interpretation (fig, 17). The slope of the 
C 

line is given by vPa 
=- or baa r 

-- /- V/G ‘L I.\ cot u = y-9 . fhuc, 
Uwa " * 

cot 6 is directly proportional to the produot-of the 
chord and the' torsional frequency. The question of 
whether at a given value of M the value-of. bw, 
which will just prevent flutter 1s also sufficient to 
prevent flutter at neighboring higher ValU8S of_ 51 .is 

* answered by the simple criterion of whether cot 6 a increases or decreases. In figure 17 two typical 
flutter curves are sho:vn. In curve B the value of boa - 

- just necessary to prevsnt flutter at a speed corresponding 
to the value of M at P2 is inaurfYcient to prevent 
flutter at any higher value of M for which the flutter 
curve is below the straight line 0P2. For the typ8 of 
curve A a maximum value of 6 occurs at the 'design 
critical points" Pl. The values of bw, just necessary 
to prevent flutter at a spesd corresponding to ths 
value of M at P 

F!i 
is also sufficj.ent to prevent fluttor 

at all higher spee s* _ _ , ._ __.-- - . 

The following salient facts may be extracted by 
inspection of the figures. Flutter ex$sts-6r ispostiIbld 
for various ranges of the parameters but, in general,. 
compared with subsonic cases the ran&es af the parameters 
yielding flutter are more restricted.' 

-- 

The chordwise position of th8 aerodynamic center, 
the center of the oscillating pressure, is an important 
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factor in the consideration of flutter. In the simple 
theory the.midchord is the aerodynamic center for 
M >> 1, For subsonic Sp88d3, M<< 1, the linea3?iz8d 
theory indicates the quarter-chord position as the aero- 
dynamiq center. It should be expected that in .the 
transonic region near M = 1 the aerodynamic center 
may shift considerably. From thi-s point of view alone 
conclusions drawn from the simple theory for th8 range 
near N = 1 may require large morjificatlons, The 
nature of the modifications may be roughly inferred by 
further experimental and theoretical study of the 
behavior of center-of-pressure locations. 

For low values owfhthe ratio of bending frequency to 
torsional frequency - =: c) the position of the center 

&a 
of gravity relative to the aerodynamic center is important, 
For center-of-gravity positions forward of the midchord 
n0 flutter BXiStS, whereas for positions behind the mid- 
chord there is a sharp d8Cr8aSe in the flutter coeff'i- 
cient from infinity; the position of the elastic axis 
influences the value of the flutter coefficient in this 
region, forward positions being more favorable {figs, 5(a) 
to 16(a)). 

For values of 011 
I 

- s 1 the position of the center 
wa 

of gravity relative to the elastic axis becomes of more 
importance. For center-of-gravity positions forward of 
the 8laStiC aXiS no flutter exists, whereas for positions 
behind the elastic axis flutter does occur, and a relative 
minimum coefficient appears for center-of-gravity poai- 
tions only slightly (a few percent of the chord) behind 
the elastic axis. 

Oh Oh The intermediate case, for which ,o The intermediate case, for which ,o = 0.707, = 0.707, 
& & 

shows a blending of the effects in which the center- shows a blending of the effects in which the center- 
of-gravity position relative both.to the aerodynamia of-gravity position relative both.to the aerodynamia 
center and to the elastic axis is significant. center and to the elastic axis is significant. 

In figures 12 and 14 there are shown, for refer- 
ence, some numerical values of W/ma, the ratio of the 
flutter frequency to the torsional frequency, 

. 

, 



. 

L 

I 

The effect of the wing-density parameter p is 
rather complicated but, in general, an fncrease in p 
yields a corresuonding increase in the flutter coeffi- 
cient. For low-values of Wh/wa and far high wing 
densities this increase is expected to be prOp6TtiOnal 

to q$-. Oh In the resonance-like region near 0 = 1 

and for small values of xa the flutter coef;icient is 
relatively unaffected by the value of CL, and in this 
region the structural damping may be expected to be 
particularly effective in increasing the flutter 
coefficient. 

For values of the Mach number near unity (for 
example M = =, 

9 
a value ,for which the validity of t& 

_' 
theory is -in question), the flutter calculations become U-fl- 
difficult .to plot because of the appearance of other 
branches. In some cases (fz instance, x0 = 0.6) the 
flutter instability appears limited to a definite range 
of speed. Calculations to include damping were performed 
to verify the existance of the range. --(The appearance- 
of these other branches seems to involve values of l/k 
for which the quantity Mh is negative. The condttion 
of negative yl is s-lgnificant for the one-degree-of- 
freedom instability discussed in the next section. -- .- 

A plot of the flutter coefficient against,Mach 
number for two values of xa 1s shown in figure &7.- __-- 
The significance of the straight lines drawn from the 
origin has already been discussed, The type of curve--A 
is representative of the effect of forward location of 
the center of gravity and the type of curve B is 
representative of rearward locations of t&e center of 
gravity. Figure 18 gives a plot of the flutter cceffiI- 
cicnt against M for various values of .the wing-density 
parameter CL and for a rearward location of the center 
of gravity. The subsonic values for H = 0 and 
M = 0.7 shown on these curves-and on some-of the other 
fi.zures have been either taken-from raference 7 or 
calculated in the manner outlined thereIn. The sut~sani.c 
and supersonic parts of the curves (figs. 17 and 1.8) 
have been arbitrarily joined by a dashed smooth curve in 



the transonic ran.ge. In figure 19 there is gi.ven a 
:zroaa olot of flutter coeffic:ent against frequency 
ratio +JQ, for V&riOUS value3 Of M, and in fig- 
ure 20 is given a almilar cross plot- for three values 
01' the elastic-axis parmeter x0. 

An i.ndLcation of the ef'fszt of structural damping 
in increasing the flutter speed in a few examples may 
bo obtained from the follo;luing table, where -g, 
and gh are the torstonal and flexural daiging coef- 
ficients, respectively, and where M = 1o 7' iJ, = 7,8r,4, 
a==, and x,=0,2r 

1.725 

-. 

. 

It fs of some interest to e-amino the exnresaions for 
the forces and moments in thr.- Litit case in'mhich the 
froqu-sncy anproaches zero. 'J!i;c:!r3 follow then for the 
mean-152~ ;7ing section the well-known ataticrcaso results 
which nap of course be obtained dLrectly without the 
use of a 1i:rl;ting pro3esa, aa originally treated by ,1 
Ackeret., Thus , with the use of tl~ followin: relation 
easily verified from e.quations (2U), 

. 

l-h fh(m, k) -,' ' 
. 

k-9 h +1 , 



. 

. 

m 
. 

, 

there are obttined from equations 
the lift and moments in the static 

(10) to 
case, 

(18’) for 

L =-. g... b + (1 - x&j 

These relations for the mesn-ljne wing section are 
now used to obtain the critioal apeada forthe-~stZtic -.-I -- 
instabiliti38 -wing divcrgeilce and wing-siicron reversal 
(for wing of infinite span). 
speed the effective 

At the w'ing'-divergeGo .- _ .=< 
torsional stiffness of th3 Wing . . -_ 

vanishes, hence the total moment about the elastic axis 
is zero. The sum of the structural restoring moment and 
the aerodgna~ic tw-! 3ting nodat is 

which when equatsd to zero yields the divergence ageed 

= VD = ..- --- -- 
&x0 - 1 

Thus, the divergence speed 13 roal on17-for Tositions 
of the elastic a=<ia behind the rt3rodm2ic center (mid- 
chord, Ln thts simolo theory). This .fornula obvfouslg 
should not be used for values of TJ too-near unity. -- - 

2or comparison .Lt is of intoreat to note the 
corresponding result for the divergance speed in tha 
subsonic case, wh3rs the aerodynamic &enter is (approxi- 
mately) st the quarter-chord point.. Thua, 



m 
where hl: < about 0.7. - 

The aileron roversal. spsed rls dGtmminad by the 
condition that the cliarlgc in an.$J.e of attack due W-wing 
torsion nullifies th 6f’fuct of inovemant of the aileron 
so as to yield no change 3.n lift, (in rolling moment, In 
the case of finite w.l.np; span), There are Cwo equations 
to be satisfied for this condition; namely, - 

(that is, L = 0) and -. 

UC, + I:pb2,2 “1 - 2xG)a f (1 - Xi) (J. -!- X1 
$ 

-- 
:a2 - 1 

Ii 
-2x(& =o 1 

Tho al.leron reversal speed,; obta3ned by elimination 
of a and p, is .- 

f-- 

For hft.no;e posItions aft oF the m?dchord, the factor - I 
l/V5 ill t2lf.s ~2xprossion vari.es: from 1.l~ to 1.0. The - 
e.l.loron reversal s,?eod Is thus relatively r3naffcctq.d by 
the nositJ.on of the hinge. In grneral vn may bc expected 
to bc l.Tb,rcr than vD. s. -- G ‘ 

. 
As ~1s poInted cm-thy ??33:D, the theory kdfcates 

tha cxistsnce of a torsional ii~tiaitS3.lit~~ which may ~~3.30 
for a sin,; having only one d,agri,& of fr>odom, This 
instability is due to the wing b$ing negs-t3vely damped 
3.n torsion and is associated with the vanishing (and 
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change 'In si n). 
(equation (2 2 1). 

of th& torsional,damping coefficient h¶4 

Certain considerations for the case-of slow oscilla- 
tions made.by Posaio (reference 1) and further discussod by 
Tomnle and Jzibn serve to, bring 'out the main results. 
Thus from equation (20); for slow oscfllations, 

fh(M, k) z ’ - i 2w’12 1 
h+l hf2- lh+2 : - 

The condition Mb(M, x0) = 0 is shormn plotted -in fig- 
ure 21, where the shaded area is-t& region in which the 
instability is possible (negative ML). The maximum 
ranges for the parameters "0 and G in this region 
are x0 less than 2/3 and hl less than $!?5 (and 
greater than unity).. 

(It may be approprfate to mention that a similar 
torsional instability is theoretically indicated even 
in the subsonfc (incompressible) case for positions of 
the axis of rotation between the leading edge and ths 
quarter-chord point. However, the combination of 
parameters required for this fndlcated instability is 
practically unattainable.) 

The torsional instability may be studied more 
fully in the general case. It is found that the range 
of instability for the parameters x0 and M remains 
essentially as in the simple case (large l/k) but more 
infcrmation may Se obtained regarding the critIca 
sneed and frequency. The moment equation is equivalent 
to ;iiaa=o, or to the two equations 

-- 

n,x - l-T-J2 + M3+, x0) = 0 

M&, x0) -t- g~,X = 0 , 
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where the structural damping coe.ffj.cient in torsion ga 
has been introduced as in reference 6. The critical 
speed and frequency may be studied as functions of the 
parameters ~0, MI ga and the‘ product combination pra2. 
Results of a few selected calculations are shown plotted 
in figure 22. Since instabilities are indicated for the 
range of near-sonic values (1 < M < 1.58) it would 
seem that a more comprehensive investigation of this 
problem is very desirable. 

. 

. 

It may be remarked that a similar analysis for pure It may be remarked that a similar analysis for pure 
bending exhibits no instability while the cue of the bending exhibits no instability while the cue of the 
aileron alone does etibit a ran aileron alone does etibit a ran 

!T !T 
e e where such instability where such instability 

may occur. may occur. This range for an ai cron hinged at its leading This range for an ai cron hinged at its leading 
edge is 1-C M<$?. edge is 1-C M<$?. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., May 29, 1946 
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APPENDIX 

SYMBOLS 

. 

1 
. 

P( 
t 

disturbance velocity Potential 

time at which disturbance influence is felt 

T time at which disturbance is created 
7 t-T = 

P pressure 

P' pressure difference 

P 

Y 

density 

adiabatic index (for air, y =: 1.4) 

V velocity of main stream (supersonic) 

C velocity of sound in undisturbed medium 

M Kach number (v/c) 

X coordinate measured in dlrection of main stream 

Y ordinate 

xo abscissa of axis of rotation of wing section 
(elastic axis) 

_i 
.- 

x1 abscissa of aileron hinge 

&., abscissa and ordinate of point of disturbance ..~ 

b one-half chord 

After equation (12) the quantities Y-, y, x0, 
and 5 are employed nondimensionally and are referre % 

, 
to the chord 2b as reference length. 

w h, t) vertical velocity at position x on chord and 
at time t 



h 

a 

P 

vertical displacement of axis of rotation 

angular disolaoement 

angular displacement 
respect to .a 

about axis of rotation 

of. aileron; measured with 

a 

- 

m 
.- 

&I angular frequency of osc$&lation 

k 

G 

reduced frequency (#b/v) 

frequency parameter 

I(?., x> function given in equations (12) and (12') 

J,@ ) .A 

The 

ESessel.function. of order In 

following additional symbols, employed in the 
flutter equations, conform td the notation used in refer- 
ences 4 and 6, in which ths half-chord b is the unit 
reference length. 

mass of.wing per unit span 

%c static moment of wing-aileron combination per 
unit span referred to $he elastic axis 

s P static moment of aileron per unf.t span referred 
to aileron hinge 

moment of inertia of wing'aileron combination 
about elastic axfs 3er:uni.t span. 

IP moment of inertia of aileron about its hinge per 
unit span 

a coordinate -of elastic axI.@ measured from mld- 
chord c 2x0 - 1) 

C coordinate of aileron hi axis measured from 
the midchord -(2x3- - 1 

xa location of center of ,-rawty of wing-aileron 
system measured from elastic axis sabJb ; 
location of center2 of li;;ravity in percant 
total chyr$ y;s;red 
is 100 

2 

m 

. ..A 

..- 

. 
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w 
. 

. 

xi3 reduced location of 
referred to c 

r? 

'h 

% 

radius of gyration 

referred to a 

reduced radius of gyration of aileron referred 

to c 

torsional stiffness of wing around a per unit 
span 

torsional stiffness of aileron system around c ~- 
per unit span 

stiffnass of wing in deflect.ion L 

natural angular fl;equency of torsionalvibrat~o~~&out 

elastic axis = 2nf,, where fa 

is in cycles per 

natural angular frequency of torsional vibrations 

,of aileron around c : 

,zl 
p IT; wing density parameter, where K = 

npb2 - ~-~ 
-'- M 

is the ratio of a mass of cylinder of air of 
a diameter equal to the chord of the wing to 
the mass of the wing, both taken for equal T- 
length along the span; this ratio may be 
expressed as K= 0.&(b2/W)(p/po) where i-Y 
is the weight in pounds per foot span, b is 
in feet and P/P is the ratio of air density 
at altitude to &at for normal standard air 



ga, gFF, gh structur 
ence 

; damping coqfficients (see rcfer- 

L L 1, L M M PII M 13 2' 3j 42 1' 2) 3’ 4 q uantit$es defined in tab18 II 
and by equations (26) and (28) 

flutter coefficient; that is, flutt-o-r spood 
divided by referendo Speed bw,' 
2 

3 

where MU .is the angular (flutter frequcncyszd 

0 2 
-r = Oa A Pra2 W 

r 

for case of bendin?ptorsinn (Xotti tknt in ths lncom- 
pressible case(refer&mCeS I$ and 4) p, is replaced 
by l/K.) 

. 



. 
NACA TH No. 1158 4-1 

. 

. 

REFERENCES 

1. Possio, c.: L'azione a8rodinamiCa sul prOfi.10 
oscillante all.8 velocit& ultrasonore. Acta, 
Pont. Aca.d. Sci., vol. I, no, 11, 1937, 
PP* 93-105* 

2. V. Borbely, S.: Aerodynamic Forces on a Harmonically 
Oscillating Wing at Supersonic Velocity 
(2-Dimensi onal Case). R.T.P. Translation 
No. 2019, British Ministry of Aircraft Production. 
(From Z.f.a,M, M. Ed. 22, H8ft 4, Aug. l9&, 
pp. 190-205.) 

3. Schwarz, Lo: Untersuohung eini$or mit den Zylinder- 
funktionen nullter Ordnvq verwandter Funktionen. 
Luftfahrtforschung, 
PP. 3bl-372a 

Bd. 23, Lfg. l-2, Feb. 8, 1944, 

4. Theodorsen, TheOdOr8: General ‘23280~ of A~rodynando 
Instability and the Mechanism of Flutter. HACA 
Rap. No. 496, 1935. -- 

5. Smilg, Benjamin, and Kass8rm%n, Lee S.: Application 
Of Three-Dimensional Flutter !ih8Ory to Aircraft 
Structures. ACTR No. 4.798, Materiel Div., Air 
Corps, July 9, lylt2, 

6. Theodorsen, Th8OdOr8, and Garrick, I. E,: Flutter 
Calculations in Three Degraes of Freedom. NACA 
Rap. No. 7'41, 1942. 

. 
7. Garrick, I. E.: Bonding-Torsion Flutter Calculations 

Modifi8d by Subsonic CompressibilZty Corract1ons. ---- ---- 
NACA TN No. 1.034, 1946. 

. . 

. 



. 

, 

NACA TN No. 1158 42 .-. 

TABLE I.- VALUES OF fO(M, c') = (fO& + i(f& 

volR = 6 r J;(: j oo8 u du 

(iolI = -+r JO(+.ln u du - 

Ei it ( > f. 9 ( J r0 I v 
1 
ii ( ) " R (: 1 f" I 

MAi! 
7 

92.593 .999200 
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TABLE I.- vAm!xi OF ro(& z) = (fo)~ + +o)~ - Conaluded 
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NACA TN No. I.158 Figs. 1,2 
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. 

Figure l.- Machangle P . The disturbance at point (H ,q) moving forward with 
eupereonfo velocity v influences the angular region ha* haU vertex angle 
P- eln-1%. 

-- 
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F&ure 2.- Influence of impulse created at point (&O) at time t - T 011 a potit 
(X,Yl fLxsd relative to (&O) and moving with supersctic velocftp v. (Observe 
-the disturbance influences the point (x,y) only during the time tit& 
7 -71.) 2 
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Figure 3.- Sketch showin@; that only disturbances created iorward Of the Mach 
angle region with vertex at b , can affect (XA. 
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Figure 4.- sketch 3ll.u~trd.ng the three degrees of freedom h, a, and B cd the - 
0scilLa~ ah-roll. 
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Center-of-gravity location, percent chord 
(a) Measured from lea&g edge. 
(b) aal (c) Measured from elastic ads. 
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Figure 5.- The flutter coefElcient agdnst center-of-gravity location for sevwal positions of elastic axis 
and for three values of the frequency ratfo. M = f; P = 3.927. 
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Center-of -gravity location, percent chord 
(a) Measured from leadbg edge. 
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(b) aud (c) Measured from elastic axis. 
COMMITTEE FOR AERONAUTICS. 

Figure 6.- Tfie flutter coefficient egainst center-&gravity location for several positions of elastic axis 

and for three values of the frequency ratio. M = $$ P= 7.854. 
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center-of-gravity location, percent chord 
(a) Measured from leadlng edge. 
03) and (4 Meemred from elsstfc axis. 
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FifpB 7.- The fluthr coefplclent against cemier-of-gravltg locate for several positions of elastic a&3 
and for three values of the hquency ratio. M = $$ ; P= 15.7&i. 
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Center-of -graviQ location, percent chord 
(a) Measured fmm leading edge 
(b) and (c) Measured from elastic z&s. 
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Figure 8.- The flutter coefficient against center-of-gravity location for several positions of elastic axis 
and for three values of the frequency ratio. Id = JQ; or. = 3.937. 
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Center-of-gravity location, percent chord 
(a) Measured from leadin@; edge. 
(b) and (c) Measured from elastic axis. 
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Figure 9.- The flutter coefficient against center-of-gravity location for several positions of ela&c axle 
ml for three values of the ~Yequency ratio. M = $!-; P = 7;854. 
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Center~f-gravity location, percent chord 
(a) Measured from leading edge. 
(b) and (c) Measured fmm elastic axis. 
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Figure lO.- Tbe flutter coefkient against center-of-gravity locatIon for several positions of elastic axi6 
and for three values of the frequency ratio. M = $; IL= 15.706. 
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Center-of -gravity locatior~, petient chord 
(a) ?db3sured from leading edge. NATIONAt ADVISORY 

(b) and (c) Measured from elastic’&. COM+llTTEE FOR AERONAUTICS. 

Figure ll.- The flutter coeftkient against center-of-gravity location for several positions of elastic axis 
andforthreevaluesofthefrequencyratko. M= 2; P= 3.927. . 



Center-of-gravity location, percent chord 
(a) Measured from leading edge. NATIONAL ADVISORY 

(b) and (12) hteasured ii-cm elastic atis. COMMITTEE FDR MRDHAUTKS 

l%glre 1x- The flutter coeffkient against center-of-gravity location for several positions cd elastic axis 
ami for three values of the frequency ratio. M = 2; P = 7.854. 
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Center-of-gravity location, percent chord 
(a) Measured from leadlna; edge. 
(b) and (c) Measurd from elavtic ~05~. 
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Figure 13.- The flu’ctm coeffident agabst center-of-gravity location for several positions of elastic axle 
and for three values of the f?equency ratio. M = 2; P = 15.708. 
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Center-of-gravity locatlon, percent chord 
(a) Measured from leading edge. 
@) and (c) Measured from elastic ax&. 
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Fijpre 14. - The flutter coefficient against center-of-gravity location for several positione of elastic axis 
and for three values of the frequency rap. M = 6; P = 3.927. 
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Center -of -gravity locatioion, percent chord 
(a) Measured from leadIng edge. 
(b) aud (c) Measured from elastic ads. 
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Figure 15.- The flutter coeificlent against ceder-of-gravity location for several positions of elastic a& 
am3 for three values aP the frequency ratio. M = 5; V = 7.854. 
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Center -of -gravity location, percent chord NATIONAL ADVISORY 
(a) Measured from lead& ed&e. COWITTEE WWONAUTICS 
(b) and (c) Measured from elastic axis. 

Figure le.- The flutter coefficient against center-of-gravity location for several positions of elastic axis 
and for three values of the frequency ratio. M = 5; p = 15.706. 
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Figure 17.- The flutter coefkient against Mach ynber for two locatIons of 
the=cegz~ of gravity. Other parameters axe * = 0.707; a = 0; 
CL . . 
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Ylroh number, Y 

we la.- The nutter ,5omicient againclt Mach number for several values of 

p. Other garametars are f-i& 1.0; xa = 0.2; c - 0. 
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Figure lQ.- The flutter coefficient against frequency ratio for severalvalues Of 

M. Otherparsmeters are a = 0; s = 0.2; P = 7.8%. 
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Figure 20.- The flutter coefficient agabstk-equency ratio for three values of 
x0. Other paramete’rs are M = 9; a = Oj IL = 7.854’. 
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Figure 21.- Plot of M&A&J = 0. 
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(a) Flutter coefricieIlt aga=t ++ 
af-rotationpdtiqn~for sevf?ml 
vsllles of M (P =' 15.703). 
Note that the range of x0 
narrows with irci-ease in M 
atld disappears at hi = 1.58 
and ~0 = 0.33. 

(b) ??hltt.er coeffltit against tar- 
atonal duping coefficient for 
twovalues of x0 (M = *; 
P = 15.708). Negative damping 
values are ehown dashed end 
have no physical existence. 

(c) Flutter coefficient against vhg- 
density parameter P for 
severalvaluesofx, (M= 3). 
The straight-line curve shown. 
corresponds to MS = 0 
(x0 = 0.327). 

Figure 2X- Curves for or+degree-af-beedom torsional instabilltg. 


