GOVT. DOC.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Y3, N21/5:6/1265

1

TECHNICAL NOTE

No. 1265

BOUNDARY-INDUCED UPWASH FOR YAWED AND SWEPT-BACK

WINGS IN CLOSED CIRCULAR WIND TUNNELS

By Bertram J. Eisenstadt

Langley Memorial Aeronautical Laboratory Langley Field, Va.

Washington May 1947

> BUSINESS, SCIENCE & TECHNOLOGY DEP'T,

MAY 16 1947

T. STATE LIBRARY

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1265

BOUNDARY-INDUCED UPWASH FOR YAWED AND SWEPT-BACK

WINGS IN CLOSED CIRCULAR WIND TUNNELS

By Bertram J. Eisenstadt

SUMMARY

The tunnel-induced velocities for yawed and swept-back airfoils in a closed circular wind tunnel were determined. The calculations were performed for elemental horseshoe vortices having one tip of the bound vortex on the tunnel axis for a range of yaw angles and bound-vortex lengths. From these results, the correction for complete yawed and swept-back wings of arbitrary span loading may be obtained by a superposition of solutions.

Charts and tables of the induced velocity normal to the plane of the tunnel axis and bound vortex are presented. In addition, formulas are given for obtaining the tunnel-induced velocity normal to any other plane containing the tunnel axis. These velocities are needed for swept-back wings at high angles of attack, where the tunnel axis and the two halves of the wing do not all lie in the same plane. Curves are presented for converting the tunnel-induced velocities into corrections to the geometric angle of attack of the wing.

For the case of the unyawed wing, comparison of the present results for the induced velocities along the tunnel axis with those obtained by Irmgard Lotz and by J. M. Burgers shows agreement with Burgers' results. Since the method of Lotz was used in the present study, it would appear that her computations were incorrect.

A proof of the validity of the method presented by Lotz is given in the appendix.

INTROLUCTION

Wind-tunnel testing of yawed and swept airfoils has considerably increased with the development of maneuvers involving flight at large angles of sideslip and with the development of interest in the use of swept wings for transonic, supersonic, and tailless aircraft. The corresponding tunnel corrections have been difficult to derive, inasmuch as the problem is not reducible, as with a straight unyawed airfoil, to that of a two-dimensional potential flow. Rectangular tunnels, however, may be treated by the method of images, as was done in reference 1 in which corrections for 7- by 10-foot closed tunnels are given. The boundary conditions for tunnels of circular cross-section cannot be satisfied by the use of images alone. The purpose of the present study is to develop a method for treating this case of the closed circular tunnel and to evaluate the corrections for a range of conditions.

The method used follows essentially that of reference 2 in which the tunnel-induced potential is broken up into two parts that of a reflection vortex system which makes the tunnel a streamline far from the airfoil, and a residual potential, whose effect is zero at infinity. In order that the results be readily applicable to both yawed and swept airfoils, the bound vortex of the elemental horseshoe vortex simulating the wing was assumed to have one tip at the tunnel axis, so that, for example, a swept-back wing with fairly uniform loading would be represented by two such swept-back vortices, and a yawed wing with uniform loading by one swept-back and one swept-forward vortex. Since the bound vortices meet the tunnel axis, the results are applicable only to wings with lifting lines that approximately fulfill this condition.

Computations were made for a range of sweep angles between -45° and 45°, and a range of spans up to 0.9 of the tunnel radius, so that results for arbitrary loadings may be found by superposition. The induced velocities normal to the plane of the horseshoe vortex were computed for a range of locations in this plane. In addition, data are given by which the induced velocity normal to any plane containing the tunnel axis may be computed. These velocities are shown to be of interest for highly swept wings at large angles of attack.

No attempt has been made to describe the methods for converting the induced velocities to corrections to the measured acrodynamic parameters, inasmuch as such methods are described in reference 1. Methods for adjusting the results for compressibility effects have also not been discussed, inasmuch as the basic concepts and procedures are now well known.

SYMBOLS

V angle of yaw or sweepback of bound vortex

4 angle of yaw or sweepback of bound vortex in horizontal plane

8	length of bound vortex
ro	tunnel radius
σ	s/r _o
x, y, z	rectangular coordinates (see fig. 1)
x, r, 0	cylindrical coordinates (see fig. 1)
š, n, ŝ	x/r ₀ , y/r ₀ , z/r ₀
ρ	r/r _o
β	variable of integration
₫0	potential of elemental horseshoe vortex
	tunnel induced potential
P 1	potential of reflection vortices
₫2	residual potential, $\Phi - \Phi_1$
Г	circulation of elemental horseshoe vortex
em	m th Fourier coefficient of $-\frac{4\pi r_0}{\Gamma} \frac{\partial(\Phi_0 + \Phi_1)}{\partial r}$
wl	$\frac{\partial z}{\partial t_1}$
	9051
w5	Jz z=0
W .	$w_1 + w_2 = \frac{\partial \phi}{\partial z} \Big _{z=0}$
α	angle of attack about fixed horizontal axis
ā	angle between plane of airfoil and plane of horseshoe vortex ,
ø	twice angle between plane of horseshoe vortex and

horizontal plane

$$w_{d} = w_{1_{d}} + w_{2_{d}} = -\frac{1}{r_{0}\rho} \frac{\partial \Phi}{\partial \theta}\Big|_{\theta = \pi + \phi}$$

- C_T lift coefficient of wing
- L lift of wing
- S wing area

ANALYSIS

The elemental horseshoe vortex is illustrated in figure 1. It consists of a bound vortex of constant strength, of length s, and sweepback angle ψ , with one tip on the tunnel axis and two trailing vortices running in the downstream direction from the tips. The two coordinate systems used herein (fig. 1) are related as follows:

x = x $y = r \cos \theta$

$z = r \sin \theta$

and are disposed so that the x-axis coincides with the tunnel axis, and the xy-plane is the plane of the horseshoe vortex.

Let $\Phi_0(x, r, \theta)$ be the potential of the elemental horseshoe vortex. The velocity normal to the tunnel wall, $r = r_0$, induced by this vortex is

$$\frac{\partial \Phi_{0}(\mathbf{x}, \mathbf{r}, \theta)}{\partial \mathbf{r}} \Big|_{\mathbf{r}=\mathbf{r}_{0}}$$

The problem consists of finding a function $\Phi(\mathbf{x}, \mathbf{r}, \theta)$ which is harmonic inside the cylinder $\mathbf{r} = \mathbf{r}_0$ and for which

$$\frac{\partial(\Phi_0 + \Phi)}{\partial r} \bigg|_{r=r_0} = 0 \tag{1}$$

The function Φ is then the potential of the additional flow due to the tunnel walls.

The particular external reflection vortex system chosen to make the tunnel a streamline at infinity is shown in figure 1. It consists of two semi-infinite vortex lines, one in the direction of positive x, and the other in the direction of positive y, joined at the point $(x, y, z) = (0, \frac{r_0^2}{s \cos \psi}, 0)$. The potential of this vortex system is designated Φ_1 .

The residual potential which makes the tunnel a streamline everywhere is designated Φ_2 . Then,

 $\bar{\Phi} = \bar{\Phi}_1 + \bar{\Phi}_2$

and by equation (1)

$$\frac{\partial \Phi_2}{\partial r} \bigg|_{r=r_0} = \frac{\partial (\Phi_0 + \Phi_1)}{\partial r} \bigg|_{r=r_0}$$
(2)

This potential Φ_2 is harmonic for $r < r_0$, because it is the difference of two harmonic functions; moreover, the derivative of Φ_2 normal to the tunnel wall approaches zero as |x| approaches infinity The function is sought in the form of an infinite series of harmonic functions of the type $[X(x) R(r) \Theta(\theta)]$. If for a bounded harmonic function of period 2π in θ , and of arbitrary period 21 in x, such a representation exists, it must take the following form (reference 3, chapter 1):

$$\begin{split} \Phi_2 &= -\frac{\Gamma}{2\pi} \sum_{m} \sum_{n} \left\{ \sin m\theta \left(A_{mn} \cos \frac{\pi m x}{l} + B_{mn} \sin \frac{\pi n x}{l} \right) + \cos m\theta \left(C_{mn} \cos \frac{\pi m x}{l} + D_{mn} \sin \frac{\pi m x}{l} \right) \right\} \end{split}$$

where J_m is the mth order Bessel function of the first kind, and the A's, B's, C's, and D's are constants to be determined. Subsequently 2 will be made to approach infinity.

It is convenient to introduce the nondimensional variables:

$$\tilde{S} = \frac{x}{r_0}$$

$$\eta = \frac{y}{r_0}$$

$$\tilde{\zeta} = \frac{z}{r_0}$$

$$\rho = \frac{r}{r_0}$$

$$\lambda = \frac{1}{r_0}$$

$$\sigma = \frac{g}{r_0}$$
(3)

The series for Φ_{ρ} then becomes

$$\Phi_{2} = -\frac{\Gamma}{4\pi} \sum_{m} \sum_{n} \left\{ \left[\sin m\theta \left(A_{mn} \cos \frac{\pi m\xi}{\lambda} + B_{mn} \sin \frac{\pi n\xi}{\lambda} \right) + \cos m\theta \left(C_{mn} \cos \frac{\pi n\xi}{\lambda} + D_{mn} \sin \frac{\pi n\xi}{\lambda} \right) \right] J_{m} \left(\frac{i\pi m}{\lambda} \rho \right) \right\}$$
(4)

Since

$$\frac{\partial \Phi_2}{\partial r} = \frac{1}{r_0} \frac{\partial \Phi_2}{\partial \rho}$$

formal differentiation gives

$$\frac{\partial \Phi_2}{\partial r}\Big|_{r=r_0} = \frac{1}{r_0} \frac{\partial \Phi_2}{\partial \rho}\Big|_{\rho=1}$$

$$= -\frac{\Gamma}{4\pi r_{0}} \sum_{m} \sum_{n} \left\{ \sin m\theta \left(A_{mn} \cos \frac{\pi n\xi}{\lambda} + B_{mn} \sin \frac{\pi n\xi}{\lambda} \right) \right\}$$

+ cos m
$$\theta$$
 $\left(C_{mn} \cos \frac{\pi n \xi}{\lambda} + D_{mn} \sin \frac{\pi n \xi}{\lambda} \right) \left[\frac{i\pi n}{\lambda} J_{m'} \left(\frac{i\pi n}{\lambda} \right) \right]$ (5)

In order to satisfy the boundary condition at the tunnel wall, by equation (2) this series must be made equal to

$$\frac{\partial r}{\partial (\bar{\Phi}^0 + \bar{\Phi}^1)} \Big|_{r=r_0}$$

This function, which is the velocity normal to the tunnel wall induced by the horseshoe and reflection vortices, is obtained by the Biot-Savart law as

$$\frac{\partial(\phi_0 + \phi_1)}{\partial r}\Big|_{r=r_0} =$$

$$\frac{\Gamma}{4\pi r_{0}} \begin{cases} \sigma \cos \psi \sin \theta \\ 1 - 2\sigma \cos \psi \cos \theta + \sigma^{2} \cos^{2} \psi \end{cases} \left[\sqrt{\xi^{2} \sigma^{2} \cos^{2} \psi + 1} - 2\sigma \cos \psi \cos \theta + \sigma^{2} \cos^{2} \psi \right] \\ \frac{\xi - \sigma \sin \psi}{\sqrt{\xi} - \sigma \sin \psi^{2} + 1} - 2\sigma \cos \psi \cos \theta + \sigma^{2} \cos^{2} \psi \right] \\ - \frac{\xi \sin \theta}{\xi^{2} + \sin^{2} \theta} \left[1 + \frac{\sigma \cos \psi \cos \theta - 1}{\sqrt{\xi^{2} \sigma^{2} \cos^{2} \psi + 1} - 2\sigma \cos \psi \cos \theta + \sigma^{2} \cos^{2} \psi} \right] \end{cases}$$

$$\frac{\xi \cos \psi \sin \theta}{\sin^2 \theta + \xi^2 \cos^2 \psi - \xi \sin 2\psi \cos B + \sin^2 \psi \cos^2 \theta} = \frac{\xi \sin \psi + \cos \psi \cos \theta}{\sqrt{1 + \xi^2}}$$

$$-\frac{\xi \sin \psi + \cos \psi \cos \theta - \sigma}{\sqrt{(\xi - \sigma \sin \psi)^2 + 1 - 2\sigma \cos \psi \cos \theta + \sigma^2 \cos^2 \psi}}$$
(6)

Z

In order to satisfy the boundary conditions on Φ_2 , it is necessary to determine the constants A_{mn} , B_{mn} , C_{mn} , D_{mn} so that equation (2) is satisfied. The first step is to expand the function

 $\frac{\partial (\Phi_0 + \Phi_1)}{\partial r} \bigg|_{r=r_0}$ in a Fourier series in θ . Since this function is an odd function of θ , the series contains only sine terms. Thus

$$-\frac{\partial(\Phi_{0} + \Phi_{1})}{\partial r}\Big|_{r=r_{0}} = -\frac{\Gamma}{4\pi r_{0}} \sum_{m} g_{m}(\tilde{S}) \sin m\theta \qquad (7)$$

Equating coefficients in the expansions of equations (5) and (7) gives

$$g_{m}(\xi) = \sum_{n} \left(A_{mn} \cos \frac{\pi n \xi}{\lambda} + B_{mn} \sin \frac{\pi n \xi}{\lambda} \right) \frac{i \pi n}{\lambda} J_{m} \left(\frac{i \pi n}{\lambda} \right)$$
$$0 = \sum_{n} \left(C_{mn} \cos \frac{\pi n \xi}{\lambda} + \frac{i}{mn} \sin \frac{\pi n \xi}{\lambda} \right) \frac{i \pi n}{\lambda} J_{m} \left(\frac{i \pi n}{\lambda} \right)$$

These series are the Fourier expansions of the functions $g_m(\xi)$ and 0, where these functions are assumed to be of period 2λ in ξ . Therefore

$$A_{\rm mn} = \frac{1}{\frac{1\pi n}{\lambda} J_{\rm m}'(\frac{1\pi n}{\lambda})} \frac{1}{\lambda} \int_{-\lambda}^{\eta\lambda} g_{\rm m}(\beta) \cos \frac{\pi n\beta}{\lambda} d\beta$$

$$B_{mn} = \frac{1}{\frac{1}{\lambda} J_{m}'(\frac{i\pi n}{\lambda})} \frac{1}{\lambda} \int_{-\lambda}^{\lambda} g_{m}(\beta) \sin \frac{\pi n \beta}{\lambda} d\beta$$

 $C_{mn} = D_{mn} = 0$.

Thus, from equation (4)

$$\Phi_{2} = -\frac{\Gamma}{4\pi} \left\{ \sum_{m} \sum_{n} \sin m\theta \frac{J_{m} \left(\frac{i\pi n}{\lambda} \rho\right)}{\frac{i\pi n}{\lambda} J_{m}' \left(\frac{i\pi n}{\lambda}\right)^{\lambda}} \frac{1}{\lambda} \int_{-\lambda}^{\lambda} g_{m}(\beta) \cos \frac{\pi n}{\lambda} (\beta - \xi) d\beta \right\}$$

Consider formally $\lim_{\lambda \to \infty} \Phi_2$. The term $\frac{\pi n}{\lambda} = q$ is considered a continuous variable running from 0 to ∞ ; then $\frac{\pi}{\lambda} = dq$ and $\sum_{n=0}^{\infty}$ is replaced by \int_{0}^{∞} with respect to q, so that the aforementioned limit is

$$\Phi_{2} = -\frac{\Gamma}{4\pi} \left\{ \sum_{m} \sin m\theta \frac{1}{\pi} \int_{0}^{\infty} \frac{J_{m}(iqp)}{iq J_{m}'(iq)} dq \int_{-\infty}^{\infty} g_{m}(\beta) \cos q(\beta - \xi) d\beta \right\} (8)$$

A discussion of the convergence of this series and its formal derivatives to the desired function and derivatives is given in the appendix.

The upwash velocity due to the tunnel wall at points in the plane of the airfoil is given by

$$w = \frac{\partial \overline{\Phi}_1}{\partial z} \bigg|_{z=0} + \frac{\partial \overline{\Phi}_2}{\partial z} \bigg|_{z=0}$$

The term

$$w_{1} = \frac{\partial \Phi_{1}}{\partial z}\Big|_{z=0} = \frac{\Gamma}{4\pi r_{0}} \left\{ \frac{\sigma \cos \psi}{1 - \eta \cos \psi} \left[1 + \frac{\xi \sigma \cos \psi}{\sqrt{\xi^{2} \sigma^{2} \cos^{2} \psi + (1 - \eta \sigma \cos \psi)^{2}} \right] \right\}$$

$$-\frac{1}{g}\left[1-\frac{1-\eta\sigma\cos\psi}{\sqrt{g^{2}\sigma^{2}\cos^{2}\psi}+(1-\eta\sigma\cos\psi)^{2}}\right]\right\}$$
(9)

is the velocity due to the reflection vortices. The term $w_2 = \frac{\partial \Phi_2}{\partial z} \Big|_{z=0}$ is obtained by differentiating the series for Φ_2 , term by term. The series (a Fourier series in θ) is very suitably arranged for this differentiation normal to the plane of the vortex, since

$$\frac{\partial \Phi_2}{\partial z} \bigg|_{\substack{z=0\\y>0}} = \frac{1}{r_0 \rho} \frac{\partial \Phi_2}{\partial \theta} \bigg|_{\theta=0}$$
$$\frac{\partial \Phi_2}{\partial z} \bigg|_{\substack{z=0\\y<0}} = -\frac{1}{r_0 \rho} \frac{\partial \Phi_2}{\partial \theta} \bigg|_{\theta=\pi}$$

Thus, defining $\delta_m^{}(\eta)=1$ when $\eta>0$ and $\delta_m^{}(\eta)=(-1)^m$ when $\eta<0$ gives

$$w_{2} = -\frac{\Gamma}{4\pi r_{0}} \left[\sum_{m} m \delta_{m}(\eta) \frac{1}{\pi} \int_{0}^{\infty} \frac{J_{m}(i\rho q)}{i\rho q J_{m}'(iq)} dq \int_{-\infty}^{\infty} g_{m}(\beta) \cos q(\beta - \xi) d\beta \right]$$
(10)

(11)

The total correction to the vertical velocity in the plane of the airfoil is then

$$w = w_1 + w_2$$

METHOD OF COMPUTATION

The determination of w_2 is dependent upon an evaluation of the functions $g_m(\xi)$ and performance of the operations indicated in equation(10). In making these calculations, it must be remembered that the functions $g_m(\xi)$ and, therefore, the final upwash velocity due to the tunnel wall depends upon the parameters σ and ψ ; consequently, a different computation must be performed for each combination of these two parameters. The present computations were performed for $\sigma = 0.45$ and 0.90 and for $\psi = 0^{\circ}$, $\pm 15^{\circ}$, $\pm 30^{\circ}$, and $\pm 45^{\circ}$. The functions $g_m(\xi)$ were calculated for these values of σ and ψ and for m = 1, 2, 3, 4, 5. Only the first three functions $g_m(\xi)$ were used, since $g_m(\xi)$ for higher values of m were found to be too small to affect the results. The calculation of $g_m(\xi)$ required the expansion of

 $-\frac{\partial(\Phi_0 + \Phi_1)}{\partial r} = F(\xi, \theta)$

in a Fourier series. For $|\xi| > 10$, this calculation could be done analytically by first expanding $F(\xi,\theta)$ in a power series in $\frac{1}{\xi}$. Terms of order $\frac{1}{\xi^4}$ and higher were ignored. In order to to obtain $g_m(\xi)$ for $|\xi| < 10$, $F(\xi,\theta)$ was computed for the desired values of ξ and for 30° intervals of θ and a numerical Fourier analysis was performed for each value of ξ . The integral

$$\int_{-\infty}^{\infty} g_{m}(\beta) \cos q(\beta - \xi) d\beta$$

was then evaluated by breaking $g_m(\xi)$ into two parts (fig. 2):

 $g_{m}(\xi) = g_{m}^{i}(\xi) + g_{m}^{ii}(\xi)$ (12)

For $|\xi| \ge 10$, $g_m^{i}(\xi)$ is taken equal to $g_m(\xi)$. For $|\xi| \le 10$, $g_m^{i}(\xi)$ is defined by the three straight lines intersecting the curve $g_m(\xi)$ at the points $\xi = -10$, $-\frac{10}{3}$; $\xi = -\frac{10}{3}$, $\frac{10}{3}$; and $\xi = \frac{10}{3}$, 10. The equations of these staight lines are also known analytically. The function $g_m^{ii}(\xi)$ is then defined by equation (12).

Since $g_m^{i}(\xi)$ is thus known either as a linear function of ξ or as an inverse power series in $\frac{1}{\xi}$, the expression

$$\int_{-\infty}^{\infty} e_{m}^{i}(\beta) \cos q(\beta - \xi) d\beta$$

may be integrated to give simple functions plus integrals of the

form
$$\int_{0}^{\infty} \frac{\sin q\beta}{\beta} d\beta$$
 and $\int_{0}^{\infty} \frac{\cos q\beta}{\beta} d\beta$. These latter integrals

are tabulated in reference 4. Each of the separate loops of $g_m^{11}(\beta)$ was expanded in a Fourier series by numerical methods, and the integral

$$\int_{-\infty}^{\infty} g_{\rm m}^{\rm ii}(\beta) \cos q(\beta - \xi) d\beta$$

was then obtained analytically. The integral

$$\int_{-\infty}^{\infty} g_{m}(\beta) \cos q(\beta - \xi) d\beta$$

was then finally obtained in the form

$$2 \sin q \xi l_m(q) + 2 \cos q \xi k_m(q)$$

The functions $l_m(q)$ and $k_m(q)$ have been given in table I for values of q running from 0 to 2π in steps of 0.05π . Integration with respect to q over this range was enough to ensure essentially complete convergence to their limiting values of all the integrals involving q. The functions $\frac{J_m(iq\rho)}{i\rho q J_m'(iq)}$ were obtained, for these same values of q and various values of ρ , by use of the tables of reference 4 and the relation between the derivatives of Bessel functions and the functions themselves (reference 5). These results are presented in table II. The product

$$\frac{J_{m}(ipq)}{ipqJ_{m}'(iq)} \left[\sin q \xi l_{m}(q) + \cos q \xi k_{m}(q) \right]$$

was determined for various values of the position parameters ρ and ξ and of the wing parameters σ and ψ . The final integration with respect to q was performed numerically by use of Weddle's formula (reference 6).

The functions

$$\frac{m}{\pi} \int_{0}^{\infty} \frac{J_{m}(ipq)}{ipqJ_{m}'(iq)} dq \int_{-\infty}^{\infty} g_{m}(\beta) \cos q(\beta - \xi) d\beta$$

obtained as described are presented in table III. The velocity correction w_2 is then obtained by summing these functions as indicated in equation (10); the velocity correction w_1 is computed by use of equation (9), and the total tunnel induced velocity w is thus obtained.

An additional computation was performed to find the tunnelwall corrections for the limiting case of a wing with zero span but with finite lift. The functions $g_m(\xi)$ simplified so that the integral with respect to β reduced to an expression involving simple functions and the tabulated Bessel functions, K_0 and K_1 (reference 3). The second integration was then performed in the same way.

RESULTS AND DISCUSSION

The velocities w normal to the xy-plane have been converted to the nondimensional form $\frac{4\pi r_0 W}{\Gamma \sigma \cos \psi}$. This function is presented for different values of the position and wing parameters in figures 3 to 7 and table IV. The values given for $\sigma = 0.25$ and $\sigma = 0.7$ were obtained by a numerical interpolation. The reciprocals of the upwash velocities were used in this interpolation, since 1/w tends to vary linearly with σ , as is shown by the equation

 $\begin{bmatrix} \frac{4\pi r_{oW}}{\Gamma \sigma \cos \psi} \end{bmatrix} = \frac{1}{1 - \eta \sigma}$

for the upwash velocity at an unyawed wing (reference 7).

The variation along the tunnel axis of the induced velocity w has been computed by Lotz (reference 2) and Burgers (reference 8)1 for the special case of a wing at zero angle of yaw. These values are not in complete agreement with each other. The results obtained herein for this case, by methods essentially similar to those of Lotz, check the results obtained by Burgers (fig. 8). In reference 2, moreover, Lotz has stated that the induced velocity obtained by the calculations of Burgers (reference 8) does not have a maximum. An extension of these calculations showed, however, that a maximum is obtained. It must accordingly be concluded that Lotz is in error both as to results and accusation. Burgers' method was not used in the present work because it appeared from preliminary study to be very unwieldy. Closer inspection, however, has since indicated that the computations involved would probably have been less laborious than those needed with the method of Lotz.

Wings at High Angles of Attack

In general, a yawed wing in a wind tunnel is rotated about its quarter-chord line and this angle of rotation $\overline{\alpha}$ is the angle of attack of the wing. In correcting for the tunnel-induced

¹Although reference ⁸ is published under the joint authorship of von Kármán and Burgers, the preface states that the chapter cited herein was contributed by Burgers.

(15)

velocity, it is assumed that only the velocity normal to the plane of the lifting line and free-stream direction, the xy-plane, has any effect on the lift. The correction is made to the angle of attack and is given by

$$\Delta \vec{a} \approx \tan \Delta \vec{a} = \frac{W}{V \cos \Psi}$$
(13)

where w is the tunnel-induced velocity normal to the xy-plane and V cos ψ is the component of the free-stream velocity normal to the axis of rotation. It is this velocity, w which is tabulated herein in terms of the parameter $\frac{1}{T\sigma} \frac{1}{\sigma} \frac{1}{\sigma}$

$$\Delta \overline{\alpha} \approx \left(\frac{4\pi r_0 w}{\Gamma \sigma \cos \psi} \right) \frac{\Gamma \sigma}{4\pi r_0 v}$$

or, by using the relation between circulation and lift coefficient (if the wing can be assumed to be adequately represented by a single lifting line of uniform circulation)

$$C_{\rm L} \approx \frac{2\Gamma}{VS} (2\sigma r_0 \cos \psi)$$

the correction may be rewritten as

$$\Delta \bar{\alpha} \approx \left(\frac{4\pi r_{o} W}{\Gamma \sigma \cos \psi}\right) \frac{SC_{L}}{16\pi r_{o}^{2} \cos \psi}$$
(14)

Special consideration must be given to the case of swept-back wings. For this case, the wing is rotated about a fixed horizontal axis normal to the tunnel axis, the y_0 -axis. As this angle of rotation α varies, the angle of yaw ψ (defined as the angle between the lifting line and the plane perpendicular to the freestream direction) and the angle $\langle /2 \rangle$ between the xy-plane and the xy_0-plane vary also (fig. 9. The xy-plane is still the plane of the x-axis and the lifting line.) The dependence takes the form

 $\cos \psi = \cos \psi_0 \sqrt{1 + \tan^2 \psi_0 \sin^2 \alpha}$

 $=\frac{\cos\psi_0}{\cos 2}$

where Ψ_0 is the angle of yaw at zero angle of attack. This variation of the yaw angle must be taken into account in using the charts and tables of this report.

The desired correction to α is still the one associated with the change in lift and therefore depends again only on the velocity w normal to the xy-plane. A change in the angle α , however, involves a change in the vertical velocity normal to the xy_0 -plane. In order to obtain the same lift, the correction to the angle α must be such that the additional vertical velocity associated with it must have the component w normal

to the xy-plane. This velocity is $\frac{w}{\cos \frac{y}{2}}$ and thus

 $\Delta c \approx \left(\frac{4\pi r_0 W}{\Gamma \sigma \cos \psi}\right) \frac{\Gamma \sigma \cos \psi}{4\pi r_0 V \cos \psi}$

 $\Delta \alpha \approx \tan \Delta \alpha = \frac{W}{V \cos \frac{Q}{2}}$

The circulation about each semispan of the swept-back wing results in a force normal to the xy-plane. The lift force measured in the tunnel, however, is the vertical component of this force and, therefore, the equation connecting the lift and circulation is

$$\frac{L}{\cos \frac{y}{2}} = \rho V (2\sigma r_0 \cos \psi)$$

The angle correction then becomes

$$\Delta \alpha \approx \left(\frac{4\pi r_{\rm OW}}{\Gamma\sigma \cos\psi}\right) \frac{SC_{\rm L}}{16\pi r_{\rm O}^2} \sec^2 \frac{\phi}{2} \tag{17}$$

The drag correction does not involve ϕ directly and is merely who $\cos \psi$.

Plots of ψ , ϕ , and $\sec^2 \frac{\phi}{2}$ against ψ_0 and α are given in figures 10, 11, and 12.

(16)

For swept-back wings at an angle of attack α , there is an additional difficulty. For these wings the tunnel axis and the two quarter-chord lines of the wing do not lie in one plane. The correction to $\bar{\alpha}$ on each half of the wing is still obtained from the induced velocity normal to the plane of the tunnel axis and the quarter-chord line. The velocity normal to the plane of its own quarter-chord line induced by a half wing is exactly the velocity w which has been found (equation 11). The velocity induced by this same half wing normal to the plane of the tunnel axis and the other quarter-chord

W

line, however, is not $-\frac{1}{r_0\rho} \frac{\partial \Phi}{\partial \theta} \Big|_{\theta=\pi}$ but is

1-

$$\int = -\frac{1}{r_{0}\rho} \frac{\partial \Phi}{\partial \theta} \Big|_{\theta=\pi+\phi}$$

The function $w_{l\phi} = \frac{1}{r_0 \rho} \frac{\partial \Phi_l}{\partial \theta} \Big|_{\theta=\pi+\phi}$ is given by

$$w_{l\phi} = \frac{F}{4\pi r_{o}} \left\{ \frac{\sigma \cos\psi \left[\cos\phi - \rho\sigma \cos\psi\right]}{\left[\cos\phi - \rho\sigma \cos\psi\right]^{2} + \sin^{2}\phi} \left[1 + \frac{\xi\sigma \cos\psi}{\sqrt{g^{2}\sigma^{2}\cos^{2}\psi} + \left[\cos\phi - \rho\sigma \cos\psi\right]^{2} + \sin^{2}\phi} \right] \right\}$$

$$-\frac{\xi\cos\phi}{\xi^{2}+\rho^{2}\sin^{2}\phi}\left[1-\frac{1-\rho\sigma\cos\psi\cos\phi}{\sqrt{\xi^{2}\sigma^{2}\cos^{2}\psi}+\left[\cos\phi-\rho\sigma\cos\psi\right]^{2}+\sin^{2}\phi}\right]$$
(18)

The function

$$-\frac{1}{r_{0}\rho}\frac{\partial\Phi_{2}}{\partial\theta}\Big|_{\theta=\pi+\phi} = w_{2\phi}$$

$$= \frac{\Gamma}{4\pi r_{\rm c}} \left[\sum_{\rm m} (-1)^{\rm m} \cos m \not m \frac{m}{\pi} \int_0^{\infty} \frac{J_{\rm m}(i\rho q)}{i\rho q J_{\rm m}'(iq)} \, dq \int_{-\infty}^{\infty} g_{\rm m}(\beta) \, \cos q(\beta - \xi) \, d\beta \right]$$
(19)

The required velocity correction is then

$$w\phi = w_1\phi + w_2\phi$$

It was considered neither feasible nor desirable to compute and tabulate the function w_{ϕ} for a range of values of ϕ . For any particular case desired $w_{1\phi}$ may be computed by equation (18), and $w_{2\phi}$ may be computed simply by using table III and equation (19).

For values of \emptyset of about 30° or less, $w_{\emptyset}(\xi, \rho)$ is, to a good approximation, $\cos \emptyset w(\xi, -\rho \cos \emptyset)$ and therefore can be obtained readily from figure 3 or table IV. This approximation is most accurate for small values of ρ where w_{\emptyset} is comparatively large, and is least accurate for large values of ρ where w_{\emptyset} is a very small part of the total correction. For this reason, the approximation may be considered adequate over the entire range of values of ρ .

The preceding discussion concerns only one of the difficulties associated with calculations for high angles of attack. At least two other sources of comparable inaccuracy may be pointed out, although no effort has been made here to evaluate their effects: (1) the pronounced distortion of the trailing vortex system at high angles of attack, and (2) the fact that the center of a swept-back wing may not be on the tunnel axis at high angles of attack, because the axis of rotation of the wing is usually behind the wing roots.

Langley Memorial Aeronautical Laboratory National Advisory Committee for Aeronautics Langley Field, Va., October 9, 1946

APPENDIX

PROOF OF VALIDITY OF METHOD

In this appendix the formal expression of equation (8) for the tunnel-induced potential will be called $\Phi_2^{(1)}$. The derivatives obtained by the formal differentiation of this expression will be called the derivatives of $\Phi_2^{(1)}$ and will be written as ordinary derivatives. The harmonic function which satisfies equation (2) will be called Φ_2 .

It is necessary to prove that $\Phi_2^{(1)} = \Phi_2$ and $\nabla \Phi_2^{(1)} = \nabla \Phi_2$. The proof will consist of the proofs of the following statements:

 $\Phi_{2}^{(2)} \stackrel{(1)}{\text{for } \rho \leq 1 \text{ and } \nabla \Phi_{2}^{(1)} \text{ converges to an harmonic function} } \\ \Phi_{2}^{(2)} \stackrel{(1)}{\text{for } \rho \leq 1 \text{ and } \nabla \Phi_{2}^{(1)} \text{ converges to } \nabla \Phi_{2}^{(2)} \text{ for } \rho \leq \rho_{0} < 1. \\ (2) \frac{\lim_{r \to r_{0}} \frac{\partial \Phi_{2}^{(2)}}{\partial r} = \frac{\partial \Phi_{2}}{\partial r} \Big|_{r=r_{0}} \\ \end{array}$

Then by the uniqueness theorem for harmonic functions (reference 9), it follows that $\Phi_2(1) = \Phi_2$. This theorem and the others used herein, which are derived in reference 9 for bounded regions, are immediately extensible to the infinite region of the present problem for functions which approach zero as ξ approaches infinity.

In order to prove the first statement, it is sufficient to show that the infinite integrals and the infinite series appearing in $\Phi_2(1)$ converge uniformly with respect to ξ , ρ , θ (Harnack's first theorem on convergence, reference 9).

The convergence of the infinite integrals depends upon the characteristics of the functions $g_m(\xi)$. The characteristics used in the following discussion, which are easily verified by expansion of $F(\xi, \theta)$ in a Fourier series are:

(a) The functions $g_m(\xi)$ are bounded and continuous for all values of ξ and approach zero as $|\xi|$ approaches infinity

(b) The derivatives $dg_m(\zeta)/d\xi$ exist and are absolutely integrable from minus infinity to plus infinity.

(c) As $\xi \rightarrow \infty$, $g_m(\xi) + g_m(-\xi) = O(1/\xi^2)$

An integration by parts gives

$$\int_{-\infty}^{\infty} g_{m}(\beta) \cos q(\beta - \xi) d\beta = \frac{g_{m}(\beta) \sin q(\beta - \xi)}{q} \Big|_{-\infty}^{\infty}$$
$$-\frac{1}{q} \int_{-\infty}^{\infty} g_{m}'(\beta) \sin q(\beta - \xi) d\beta$$

It follows from preperties (a) and (b) that the integral converges for q > 0. From property (c) it follows that the principal value of the integral converges for q = 0. Since $\frac{J_m(ipq)}{iqJ_m'(iq)}$ is bounded for all values of q, the function

$$\frac{J_{m}(jpq)}{iqJ_{m}'(iq)} \int_{-\infty}^{\infty} g_{m}(\beta) \cos q(\beta - \xi) d\beta$$

has no singularities and the convergence of the integral

$$\frac{1}{\pi} \int_0^\infty \frac{J_m(i\rho q)}{iq J_m'(iq)} \left[\int_{-\infty}^\infty g_m(\beta) \cos q(\beta - \xi) d\beta \right] dq$$

with respect to q need only be considered in the infinite region of q. Since for $\rho \leq 1$ (reference 4),

$$\left|\frac{J_{m}(i\rho q)}{iJ_{m}'(iq)}\right| \leq 1$$

it is sufficient to prove that

$$\int_{K}^{\infty} \left| \int_{-\infty}^{\infty} \mathcal{E}_{m}(\beta) \cos q(\beta - \xi) d\beta \right| \frac{dq}{q}$$

converges in order to prove that the original integral converges uniformly in ξ , ρ , θ in the region $\rho \leq 1$. From the integration by parts and properties (a) and (b) it follows that

$$\int_{K}^{\infty} \left| \int_{-\infty}^{\infty} g_{m}(\beta) \cos q(\beta - \xi) d\beta \right| \frac{dq}{q} \leq C \int_{K}^{\infty} \frac{dq}{q^{2}}$$

which converges. Therefore
$$\int_{K}^{\infty} \left| \int_{-\infty}^{\infty} e_{m}(\beta) \cos q(\beta - \xi) d\beta \right| \frac{dq}{q}$$
 converges.

In order to complete the proof of the first statement, the infinite series of infinite integrals must also be shown to converge uniformly in ξ , ρ , θ for $\rho \leq 1$.

$$G_{\rm m}(\xi, \rho, \theta) \equiv \frac{\sin m\theta}{\pi} \int_0^\infty \frac{J_{\rm m}(i\rho q)}{iq J_{\rm m}'(iq)} dq \int_{-\infty}^\infty g_{\rm m}(\beta) \cos q(\beta - \xi) d\beta$$

can be shown to be less in absolute value than K/m^2 where K is an arbitrary constant, the proof will be complete, for then

$$\sum_{m=M}^{\infty} G_m(\xi, \rho, \theta) \leq \sum_{m=M}^{\infty} |G_m(\xi, \rho, \theta)| \leq \kappa \sum_{m=M}^{\infty} \frac{1}{m^2} < \epsilon$$

for M sufficiently large. The functions $g_m(\xi)$ are the Fourier coefficients of a function $-\frac{4\pi r_0}{\Gamma} F(\xi, \theta)$ which has continuous first and second derivatives. Therefore (reference 10, p. 84), there exists a sequence of functions, $c_m(\xi)$, uniformily bounded in m, such that

 $m^2g_m(\xi) \equiv c_m(\xi)$

The integrals

$$\frac{1}{\pi}\sin m\theta \int_0^{\infty} \frac{J_m(i\rho q)}{iq J_m'(iq)} dq \int_{-\infty}^{\infty} c_m(\beta) \cos q(\beta - \xi) d\beta \equiv m^2 G_m(\xi, \rho, \theta)$$

are therefore uniformly bounded in m. Thus

$$G_{\rm m}(\tilde{S}, \rho, \theta) \leq \frac{K}{m^2}$$

and the proof of the first statement is complete.

The proof of the second statement proceeds as follows:

 $\lim_{r \to r_0} \frac{\partial \Phi_2(2)}{\partial r} = -\frac{\Gamma}{4\pi r_0} \lim_{\rho \to 1} \frac{\partial}{\partial \rho} \left[\sum_{m} \sin m\theta \int_0^{\infty} \frac{J_m(i\rho q)}{iq J_m'(iq)} dq \int_{-\infty}^{\infty} g_m(\beta) \cos q(\beta - \xi) d\beta \right]$ In the proof of the first statement it was shown that $\left| q \int_{-\infty}^{\infty} g_m(\beta) \cos q(\beta - \xi) d\beta \right|$ is bounded. A second integration by parts shows that, since $g_m^{11}(\beta)$ is bounded and absolutely integrable from $-\infty$ to $+\infty \left| q^2 \int_{-\infty}^{\infty} g_m(\beta) \cos q(\beta - \xi) d\beta \right|$ is bounded. Thus the integrand obtained by differentiating under the integral sign is such that the integral converges uniformly for $\rho \leq 1$, and the differentiation is therefore valid. Since the infinite

$$\lim_{r \to r_0} \frac{\partial \Phi_2^{(2)}}{\partial r} = -\frac{\Gamma}{4\pi r_0} \sum_{m} \sin m\theta \frac{1}{\pi} \int_0^\infty dq \int_{-\infty}^\infty g_m(\beta) \cos q(\beta - \xi) d\beta$$

From the remark following theorem 7, reference 11, it follows that

$$\lim_{r \to r_0} \frac{\partial \mathfrak{G}_2^{(2)}}{\partial r} = -\frac{\Gamma}{4\pi r_0} \sum_{m} \sin m\theta \ \mathfrak{g}_m(\tilde{\mathfrak{S}})$$

and since the Fourier expansion of a function which is continuous and has continuous first derivatives converges to the generating function,

$$\lim_{r \to r_0} \frac{\partial \overline{\phi}_2(2)}{\partial r} = \frac{\partial \overline{\phi}_2}{\partial r} |_{r=r_0}$$

The second statement has thus been proved and the validity of the operations performed in the analysis has been established.

REFERENCES

- 1. Swanson, Robert S.: Jet-Boundary Corrections to a Yawed Model in a Closed Rectangular Wind Tunnel. NACA ARR, Feb. 1943.
- 2. Lotz, Irmgard: Correction of Downwash in Wind Tunnels of Circular and Elliptic Sections. NACA TM No. 801, 1936.
- 3. Gray, Andrew, Mathews, G. B., and MacRobert, T. M.: A Treatise on Bessel Functions and Their Applications to Physics. Second ed., Macmillan & Co., Ltd., 1931.
- Jahnke, Eugen, and Emde, Fritz: Tables of Functions with Formulae and Curves. Rev. ed., Dover Publications (New York), 1943.
- 5. Churchill, Ruel V.: Fourier Series and Boundary Value Problems. McGraw-Hill Book Co., Inc., 1941.
- Milne-Thomson, L. M.: The Calculus of Finite Differences. Macmillan & Co., Ltd., 1933.
- 7. Glauert, H.: The Elements of Aerofoil and Airscrew Theory. Cambridge Univ. Press, 1937.
- von Kármán, Th., and Burgers, J. M.: General Aerodynamic Theory - Perfect Fluids. Influence of Boundaries in the Field of Motion around Airfoil Systems. Vol. II of Aerodynamic Theory, div. E, ch. IV, pt. C. W. F. Durand, ed., Julius Springer (Berlin), 1935, pp. 265-273.
- 9. Kellogg, Oliver Dimon: Foundations of Potential Theory. Julius Springer (Berlin), 1929.
- Tamarkin, J. D., and Feller, Willy: Partial Differential Equations. Advanced Instruction and Research in Mechanics, Brown Univ., Summer 1941.
- 11. Titchmarsh, E. C.: Introduction to the Theory of Fourier Integrals. The Clarendon Press (Oxford), 1937.

TABLE I.- VALUES OF THE FUNCTIONS $l_m(q)$ and $k_m(q)$ FOR VARIOUS VALUES OF σ , ψ , q

 $\left[l_{m}(q, \sigma, \psi) = l_{m}(q, \sigma, -\psi); k_{m}(q, \sigma, \psi) = -k_{m}(q, \sigma, -\psi) \right]$

		σ	= 0.45	, ψ = - ¹	+5°			σ	= 0.45	, ψ = -30	00	
q /π	2 ₁ (q)	k _l (d)	2 ₂ (q)	k ₂ (q)	2 ₃ (q)	k ₃ (q)	l ¹ (d)	k _l (q)	2 ₂ (q)	k ₂ (q)	2 ₃ (q)	k3(d)
q/π 0 .05 .20 .25 .30 .55 .30 .35 .35 .30 .35 .35 .30 .35 .35 .30 .35 .35 .35 .35 .35 .35 .35 .35	21(9) 1.5708 1.1663 .9013 .6006 .3900 .3279 .3343 .306 .2233 .1977 .1822 .1607 .1247 .0978 .0879 .0774 .0621 .0505 .0488 .0466 .0377 .0294 .0270 .0242 .0175	k1(9) 0.0509 0.523 .0522 .0518 .0516 .0509 .0492 .0470 .0454 .0441 .0418 .0389 .0389 .0333 .0311 .0289 .0245 .0225 .0208 .0192 .0154 .0154	22(9) 0.1564 .1683 .1198 .0784 .0740 .0845 .0816 .0686 .0612 .0585 .0483 .0388 .0388 .0388 .0291 .0257 .0203 .0173 .0174 .0164 .0134 .012 .0108 .0097 .0072	k2(q) 0.0208 .0211 .0224 .0234 .0226 .0217 .0210 .0207 .0210 .0207 .0200 .0182 .0177 .0172 .0170 .0179 .0172 .0179 .0125 .0125 .0125 .0122 .0102 .0096 .0088 .0075 .0066	23(q) -0.0283 -0.347 -0259 -0180 -0191 -0228 -028 -0191 -028 -0219 -0185 -0166 -0153 -0153 -0166 -0153 -0121 -0197 -0096 -0089 -0072 -0056 -0057 -0057 -0056 -0057 -0056 -0057 -0056 -0057 -0057 -0056 -0057 -0056 -0057 -0057 -0056 -0057 -0056 -0057 -0056 -0057 -0056 -0057 -0056 -0057 -0056 -0057 -0056 -0057 -0056 -0057 -0056 -0057 -0056 -0057 -0056 -0057 -0056 -0057 -0056 -0054 -0057 -0056 -0054 -0056 -0057 -0056 -0054 -0056 -0056 -0057 -0056 -0054 -0056 -0054 -0056 -0056 -0054 -0056 -0056 -0054 -0056 -0056 -0054 -0056 -	k ₃ (q) -0.0093 0079 0071 0074 0074 0071 0071 0071 0075 0074 0065 0065 0064 0061 0057 0053 0053 0049 0049 0049 0049 0049 0049 0049 0049 0049 0039 0039 0029	1.2716 1.2716 1.0151 .6834 .4473 .3843 .3940 .3654 .2931 .2445 .2265 .1997 .1557 .1234 .1121 .0993 .0801 .0654 .0654 .0593 .0493 .0391 .0362 .0390 .0249 .017h	k1(9) 0.0446 .0452 .0462 .0468 .0461 .0444 .0408 .0401 .0386 .0362 .0362 .0366 .0315 .0297 .0277 .0240 .0230 .0214 .0197 .0181 .0168 .0152 .0182 .0188	22(9) 0.1819 .2034 .1500 .1038 .018 .1165 .1133 .0968 .0875 .0842 .0744 .0594 .0496 .0463 .0414 .0294 .0292 .0278 .0228 .0192 .0184 .0164 .0164 .0208	k2(9) 0.0219 .0209 .0202 .0189 .0170 .0152 .0142 .0142 .0151 .0163 .0200 .0204 .0188 .0200 .0204 .0197 .0182 .0164 .0140 .0197 .0182 .0164 .0140 .0197 .0091 .0075 .0068 .0070 .0078 .0078	23(q) -0.0350 0443 0350 0302 0302 0356 0347 0304 0285 0283 0264 0219 0189 0189 0189 0189 0180 0144 0125 0119 0113 0099 0085 0078 0072 0069	k ₃ (q) -0.0107 0099 0094 0104 0107 0097 0088 0089 0092 0090 0083 0079 0081 0079 0069 0069 0065 0060 0051 0051 0049 0045 0040 0035
1.25 1.30 1.35 1.40 1.45 1.50	.0115 .0108 .0113 .0085 .0121 .0067	.0142 .0130 .0118 .0108 .0098 .0086	.0052 .0048 .0047 .0036 .0028 .0034	.0060 .0055 .0048 .0042 .0038 .0036	0021 0020 0021 0017 0014 0014	0026 0024 0022 0020 0018 0017	.0174 .0164 .0167 .0134 .0110 .0116	.0128 .0117 .0109 .0101 .0090 .0082	.0098 .0096 .0090 .0074 .0063 .0071	.0090 .0105 .0118 .0124 .0124 .0117	0049 0047 0036 0036 0031 0031	0035 0032 0031 0029 0026 0025 0023
1.55 1.60 1.65 1.70 1.75 1.80 1.90 1.95 2.00	.0035 .0075 .0048 .0040 .0045 .0029 .0005 .0002 .0012 0	.0079 .0068 .0058 .0048 .0040 .0032 .0024 .0017 .0011 .0004	.0037 .0030 .0023 .0020 .0021 .0015 .0008 .0008 .0011	.0031 .0029 .0027 .0027 .0026 .0023 .0022 .0022 .0021 .0021	0013 0013 0011 0011 0009 0006 0006 0006	0015 0014 0014 0013 0012 0012 0011 0010 0009	.0139 .0120 .0087 .0077 .0085 .0068 .0039 .0033 .0045 .0044	.0066 .0057 .0048 .0041 .0034 .0028 .0023 .0018 .0013	.0065 .0053 .0050 .0050 .0041 .0030 .0027 .0031 .0030	.0085 .0048 .0037 .0033 .0037 .0048 .0063 .0063	0026 0023 0023 0021 0018 0015 0014 0012	0023 0022 0022 0021 0021 0020 0019 0019 0017

TABLE I.- VALUES OF THE FUNCTIONS $l_m(q)$ AND $k_m(q)$ - Continued

		σ	= 0,90	$\psi = -4$	5°			σ	= 0.90,	, ψ= -3	30 ⁰	
q/ π	2 ₁ (q)	kl(d)	2 ₂ (q)	k ₂ (q)	2 ₃ (q)	k ₃ (q)	2 ₁ (q)	k _l (q)	2 ₂ (q)	k ₂ (q)	2 ₃ (q)	k ₃ (q)
0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50	0 1.5249 1.2838 .8786 .5770 .5059 .5372 .4987 .4038 .3394 .3125	0.15 ⁸⁴ .1861 .1894 .1978 .2075 .2086 .1999 .1988 .1837 .1821 .1760	0 .22662 .2017 .1481 .1563 .1813 .1773 .1414 .1243 .1192	0.1722 .1717 .1694 .1674 .1557 .1644 .1608 .1559 .1510 .1471 .1410	0 0205 0384 0520 0561 0512 0500 0502 0500 0454 0385	-0.1139 1134 1128 1119 1106 1088 1067 1041 1009 0980 0944	0 1.5956 1.3801 .9550 .6373 .5692 .6084 .5680 .4645 .3954 .3676	0.1319 .1573 .1622 .1707 .1791 .1793 .1718 .1620 .1561 .1542 .1499	0 .2487 .2995 .2365 .1845 .1982 .2300 .2253 .1963 .1802 .1760	0.1597 .1578 .1598 .1609 .1611 .1594 .1567 .1543 .1516 .1493 .1449	0 0273 0490 0664 0741 0682 0736 0759 0776 0746 0688	-0.1214 1239 1232 1232 1226 1215 1203 1186 1163 1143 1117
.55 .60 .65 .70 .75 .80 .85 .90 .95 1.00	.2688 .2033 .1566 .1388 .1166 .0862 .0652 .0652 .0560 .0383	.1650 .1541 .1446 .1350 .1251 .1163 .1090 .1025 .0954 .0886	.1037 .0782 .0600 .0524 .0429 .0293 .0202 .0173 .0130 .0051	.1336 .1264 .1193 .1115 .1032 .0950 .0872 .0796 .0723 .0654	0331 0279 0223 0159 0107 0070 003 ¹ 4 .0007 .0039 .0061	0906 085 0823 0778 0733 0687 0641 0595 0550 0505	.3210 .2487 .1966 .1766 .1540 .1232 .1002 .0948 .0854 .0676	.1424 .1340 .1266 .1197 .1124 .1043 .0978 .0899 .0865 .0802	.1605 .1334 .1132 .1035 .0917 .0753 .0637 .0586 .0522 .0415	.1395 .1341 .1290 .1233 .1168 .1099 .1036 .0976 .0914 .0851	0643 0597 0543 0478 0420 0375 0325 0269 0221 0180	1086 1053 1018 0979 0938 0897 0854 0811 0768 0724
1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50	.0230 .0191 .0141 0015 0139 0161 0158 0210 0248 0206	.0814 .0732 .0633 .0529 .0414 .0287 .0157 .0033 0073 0159	0006 0024 0052 0105 0142 0140 0135 0153 0160 0141	.0589 .0526 .0471 .0419 .0368 .0320 .0275 .0236 .0201 .0167	.0084 .0109 .0122 .0135 .0145 .0159 .0163 .0161 .0159 .0161	0462 0420 0379 0340 0302 0267 0234 0203 0174 0148	.0539 .0495 .0421 .0266 .0145 .0126 .0113 .0041 0007 .0031	.0749 .06°0 .0618 .0566 .0521 .0473 .0423 .0382 .0346 .0317	.0332 .0291 .0238 .0163 .0100 .0073 .0052 .0011 0001 0013	.0792 .0734 .0680 .0627 .0528 .0481 .0438 .0391 .0362	0143 0110 0074 0054 0031 0008 .0013 .0027 .0042 .0063	0682 0639 0597 0557 0517 0480 0443 0408 0376 0345
1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00	0152 0161 0190 0177 0136 0136 0153 0129 0073 0037	0217 0239 0223 0182 0188 0066 0061 .0057 .0097 .0116	0120 0126 0134 0128 0115 0119 0121 0109 0091 0079	.0137 .0111 .0091 .0074 .0060 .0048 .0039 .0031 .0023 .0015	.0161 .0153 .0142 .0137 .0131 .0123 .0112 .0105 .0100 .0094	0124 0102 0082 0064 0047 0032 0019 0007 .0004 .0013	.0070 .0029 0025 0028 0014 0040 0083 0080 0045 0035	.0290 .0266 .0247 .0225 .0207 .0191 .0178 .0160 .0144 .0132	0012 0035 0056 0061 0062 0077 0092 0092 0082 0080	.0328 .0296 .0267 .0242 .0221 .0221 .0185 .0170 .0150 .0136	.0081 .0090 .0092 .0094 .0094 .0088 .0080 .0073 .0073	0315 0287 0261 0236 0212 0190 0169 0133 0116

		σ	= 0.45	,ψ=-:	150			σ	= 0.45	,ψ=0) ⁰	
q/π	2 ₁ (q)	k1(d)	2 ^{2(q)}	k ₂ (q)	2 ₃ (q)	k3(d)	2 ₁ (q)	k _l (q)	2 ₂ (q)	k ₂ (q)	2 ₃ (q)	k ₃ (q)
0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50	1.5708 1.3232 1.0722 .7268 .4790 .4161 .4350 .4003 .3228 .2712 .2523	0.0243 .0248 .0283 .0313 .0313 .0286 .0258 .0243 .0231 .0206	0.1894 .2176 .1662 .1191 .1206 .1371 .1345 .1180 .1084 .1048	0.0130 .0118 .0126 .0145 .0148 .0140 .0133 .0135 .0137 .0133	-0.0393 -0488 -0409 -0344 -0386 -0449 -0445 -0404 -0385 -0384	-0.0084 0073 0068 0081 0086 0074 0063 0063 0068 0068 0064	1.5708 1.3563 1.1086 .7479 .4888 .4275 .4515 .4149 .3327 .2816 .2665	000000000000000000000000000000000000000	0.1956 .2261 .1728 .1256 .1438 .1424 .1424 .1424 .1157 .1123		-0.0402 0526 0432 0366 0424 0501 0490 0438 0421 0447	000000000000000000000000000000000000000
.55 .60 .65 .70 .75 .80 .85 .90 .95 1.00	.2233 .1751 .1395 .1266 .1126 .0918 .0758 .0734 .0704 .0588	.0181 .0167 .0161 .0152 .0139 .0133 .0133 .0134 .0127 .0120	.0939 .0774 .0668 .0623 .0564 .0478 .0426 .0413 .0387 .0333	.0122 .0117 .0119 .0118 .0108 .0105 .0105 .0102 .0096 .0091	0361 0312 0280 0268 0248 0248 0248 0198 0188 0188 0178 0159	0055 0051 0053 0048 0045 0045 0045 0045 0044 0040	.2383 .1833 .1441 .1322 .1196 .0974 .0799 .0775 .0738 .0602	000000000000000000000000000000000000000	.1017 .0851 .0736 .0687 .0620 .0524 .0460 .0439 .0408 .0353	00000000000	0402 0345 0311 0305 0291 0260 0233 0224 0214 0191	0000000000
1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50	.0483 .0453 .0419 .0330 .0246 .0230 .0233 .0195 .0146 .0171	.0116 .0111 .0101 .0091 .0084 .0076 .0066 .0056 .0049 .0046	.0290 .0272 .0244 .0196 .0159 .0142 .0135 .0108 .0090 .0091	.0088 .0084 .0077 .0072 .0069 .0065 .0062 .0057 .0054 .0050	0141 0130 0119 0103 0089 0081 0075 0066 0056 0052	0039 0038 0037 0035 0035 0032 0028 0026 0023 0021	.0484 .0470 .0441 .0326 .0214 .0206 .0241 .0222 .0182 .0197	000000000	.0307 .0289 .0262 .0218 .0183 .0173 .0163 .0134 .0117 .0116	000000000000000000000000000000000000000	0166 0152 0140 0122 0092 0092 0085 0074 0064 0059	000000000000000000000000000000000000000
1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00	.0193 .0172 .0133 .0120 .0124 .0105 .0068 .0065 .0077 .0077	.0041 .0038 .0035 .0036 .0025 .0025 .0020 .0017 .0011 .0003	.0094 .0076 .0058 .0052 .0048 .0037 .0024 .0019 .0023 .0019	.0046 .0041 .0036 .0032 .0028 .0024 .0020 .0016 .0013 .0010	0049 0041 0034 0029 0027 0022 0016 0015 0014 0012	0019 0017 0016 0014 0014 0014 0014 0013 0014 0013	.0232 .0213 .0165 .0146 .0155 .0133 .0089 .0076 .0090 .0089		.0114 .0093 .0059 .0054 .0048 .0033 .0018 .0015 .0022 .0025	0 0 0 0 0 0 0 0 0 0	0055 0046 0037 0030 0028 0021 0014 0012 0012 0010	

TABLE	I.	- VALUES	OF	THE	FUNCTIONS	2m	(q)	AND	km(q) -	- (Continued
-------	----	----------	----	-----	-----------	----	-----	-----	-----	---	-----	-----	-----------

		σ	= 0.90,	$\psi = -1$	5°			σ	= 0.90,	ψ= 0	0	
q /π	2 ₁ (q)	k _l (q)	1 ₂ (q)	k ₂ (q)	2 ₃ (q)	k ₃ (q)	l ¹ (d)	k _l (q)	1 ₂ (q)	k ₂ (q)	2 ₃ (q)	k ₃ (q)
0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50	0 1.6383 1.4343 1.0071 .6854 .6183 .6614 .6229 .5189 .4487 .4197	0.0683 .0878 .0863 .0927 .1042 .1069 .1022 .0876 .0862 .0866 .0863	0 .2574 .3161 .2575 .2091 .2272 .2636 .2622 .2355 .2210 .21 ⁸ 0	0.0867 .0883 .0915 .0905 .0905 .0902 .0897 .0932 .0883 .0877 .0863	0 0317 0486 0799 0912 0857 0980 1010 1076 1066 1023	-0.0691 0751 0736 0728 0725 0721 0717 0711 0701 0694 0683	0 1.6663 1.4620 1.0180 .6872 .6270 .6802 .6425 .5300 .4563 .4300		0 .2672 .3286 .2686 .2204 .2434 .2847 .2746 .2593 .2563 .2479	000000000000000000000000000000000000000	0 0460 0731 0862 0946 1038 1106 1202 1211 1209 1195	000000000000000000000000000000000000000
.55 .60 .65 .70 .75 .80 .85 .90 .95 1.00	.3716 .2979 .2453 .2202 .1984 .1632 .1408 .1353 .1280 .1069	.0832 .0787 .0746 .0707 .0664 .0623 .0587 .0552 .0517 .0484	.2034 .1772 .1576 .1484 .1367 .1206 .1092 .1045 .0978 .0870	.0845 .0824 .0804 .0783 .0758 .0728 .0696 .0669 .0641 .0611	0990 0953 0906 0846 0792 0753 0708 0657 0611 0572	0671 0658 0646 0629 0614 0598 0581 0565 0548 0531	.3839 .3106 .2585 .2389 .2132 .1771 .1523 .1492 .1421 .1201	0000000000000	.2321 .2059 .1866 .1781 .1662 .1488 .1362 .1307 .1229 .1101	000000000000000000000000000000000000000	1167 1128 1108 1037 0991 0950 0907 0866 0826 0784	
1.05 1.10 1.15 1.25 1.35 1.40 1.45 1.50	.0890 .0836 .0760 .0592 .0448 .0413 .0405 .0333 .0269 .0295	.0455 .0422 .0387 .0382 .0325 .0297 .0270 .0248 .0229 .0213	.0781 .0736 .0673 .0588 .0512 .0478 .0447 .0397 .0358 .0349	.0579 .0551 .0522 .0494 .0466 .0439 .0413 .0387 .0360 .0337	0531 0486 0446 0415 0381 0346 0317 0295 0274 0249	0513 0494 0496 0457 0437 0437 0418 0398 0358 0358 0358	.1012 .0959 .0885 .0715 .0568 .0542 .0538 .0466 .0408 .0408 .0439		.0993 .0931 .0852 .0749 .0651 .0596 .0546 .0476 .0475 .0387		0741 0699 0653 0613 0526 0488 0450 0415 0384	
$ \begin{array}{c} 1.55 \\ 1.60 \\ 1.6' \\ 1.7' \\ 1.8' \\ 1.8' \\ 1.9' \\ 1.9' \\ 2.0' \end{array} $	5 .0332 0 .0290 5 .0221 0 .0201 5 .0207 0 .0166 5 .0101 0 .0090 5 .0091	2 .0196 0 .0188 + .0180 + .0172 7 .0163 .0157 0 .0141 8 .0131 4 .0125	.0339 .0304 .0268 .0249 .0232 .0201 .0168 .0152 .0146 .0133	.0315 .0257 .0270 .0248 .0229 .0248 .0229 .0212 .0193 .0193 .0176 .0151 .0146	0225 0209 0196 0180 0161 0146 0133 0119 0101 0087	0318 0299 0281 0262 0214 0226 0214 0226 0214 019 017 016	3 .0481 .0441 .0373 2 .0354 4 .0356 .0308 .0262 3 .0217 7 .0228 2 .0213		.0360 .0311 .0263 .0235 .0211 .0182 .0151 .0139 .0139 .0125		0355 0327 0302 0277 0258 0237 0219 0202 0188 0173	

TABLE I.- VALUES OF THE FUNCTIONS $l_m(q)$ AND $k_m(q)$ - Concluded

			J ₁ (ipq) ipqJ ₁ '(iq)					J ₂ (ipq) ipqJ ₂ '(iq)				J ₃ (1pq) 1pqJ ₃ '(1q)	
q/m P	0	0.2	0.5	0.7	0.9	0	0.2	0.5	0.7	0.9	0	0.2	0.5	0.7	0.9
0. .05 .10 .15 .20 .25 .30 .35 .40 .45 .50	1.000 .990 .963 .921 .867 .805 .738 .670 .603 .537 .477	1.000 .990 .964 .922 .869 .808 .742 .674 .608 .543 .483	1.000 .991 .967 .928 .879 .821 .759 .633 .572 .515	1.000 .992 .970 .935 .889 .837 .780 .780 .721 .663 .606 .553	1.000 .994 .973 .943 .903 .857 .807 .755 .705 .654 .606		0.100 .100 .098 .096 .094 .091 .087 .087 .083 .078 .074 .069	0.250 .249 .246 .242 .236 .229 .220 .211 .202 .191 .180	0.350 .349 .345 .340 .333 .225 .314 .303 .291 .278 .264	0.450 .449 .445 .440 .433 .424 .413 .402 .390 .375 .362		0.013 .013 .013 .013 .013 .013 .012 .011 .011 .011	0.083 .083 .082 .080 .079 .077 .075 .073 .070 .068	0.163 .163 .161 .159 .156 .153 .150 .146 .142 .138	0.270 .270 .268 .267 .264 .261 .258 .258 .254 .249 .244 .239
.55 .60 .65 .70 .75 .80 .85 .90 .95 1.00	.421 .370 .325 .284 .248 .216 .188 .164 .142 .123	.428 .377 .332 .291 .255 .223 .195 .171 .149 .130	.462 .413 .370 .330 .294 .262 .234 .208 .186 .166	.503 .458 .416 .378 .343 .312 .284 .259 .236 .215	.564 .521 .482 .448 .417 .388 .361 .338 .315 .295	0 0 0 0 0 0 0 0 0 0 0	.064 .060 .055 .051 .047 .042 .039 .035 .032 .029	.169 .158 .148 .137 .128 .118 .109 .101 .092 .085	.251 .238 .224 .211 .199 .186 .175 .164 .153 .143	.349 .334 .320 .306 .293 .280 .267 .255 .244 .232		.010 .010 .009 .008 .008 .007 .007 .007 .006 .006 .006	.065 .062 .059 .056 .053 .050 .048 .045 .043 .040	.133 .128 .123 .118 .113 .108 .103 .099 .094 .089	.233 .227 .221 .215 .208 .202 .196 .190 .183 .177
1.051.101.151.201.251.301.351.401.451.50	.107 .093 .080 .070 .060 .052 .045 .039 .034 .029	.113 .098 .086 .075 .065 .057 .049 .043 .033	.148 .132 .118 .106 .094 .085 .076 .068 .061 .055	.196 .180 .165 .151 .138 .128 .117 .108 .099 .092	.277 .261 .246 .231 .218 .206 .196 .196 .176 .167	000000000000000000000000000000000000000	.026 .023 .021 .019 .017 .015 .014 .012 .011 .010	.078 .072 .066 .060 .055 .050 .046 .042 .038 .035	.134 .125 .116 .109 .011 .095 .088 .082 .077 .072	.222 .212 .202 .193 .184 .176 .168 .161 .154 .148		.005 .004 .004 .004 .003 .003 .003 .003 .003	.037 .035 .032 .030 .028 .028 .024 .022 .021 .019	.085 .080 .076 .072 .068 .065 .061 .058 .054 .051	.172 .166 .160 .15h .149 .144 .139 .134 .129 .124
1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00	.025 .019 .016 .014 .012 .010 .009 .008 .007	.028 .025 .021 .019 .016 .014 .012 .011 .009 .008	.049 .044 .040 .036 .032 .029 .026 .024 .021 .019	.085 .078 .072 .067 .062 .058 .053 .050 .046 .043	.160 .151 .144 .138 .132 .126 .120 .115 .110 .106	000000000000000000000000000000000000000	.009 .008 .007 .006 .005 .005 .004 .004 .003 .003	.032 .029 .026 .024 .022 .020 .018 .017 .015 .014	.067 .052 .058 .055 .051 .048 .044 .042 .039 .036	.141 .135 .130 .125 .120 .115 .110 .106 .102 .098	000000000000000000000000000000000000000	.002 .002 .002 .001 .001 .001 .001 .001	.018 .017 .015 .014 .013 .012 .011 .010 .009 .009	.049 .046 .043 .041 .038 .038 .036 .034 .032 .030 .029	.120 .116 .112 .108 .104 .101 .097 .094 .091 .087

TABLE	II	VALUES	OF	THE	FUNCTIONS	$\frac{J_{m}(1\rho q)}{1\rho q J_{m}'(1q)}$	FOR	VARIOUS	VALUES	ρ	AND	q	
						III · · ·							

. . .

• •

*

TABLE III. - VALUES OF THE FUNCTIONS $F_m = \frac{m}{\pi\sigma \cos\psi} \int_0^\infty \frac{J_m(1pq)}{1pqJ_m'(1q)} dq \int_{-\infty}^\infty g_m(\beta) \cos q(\beta - \zeta) d\beta$

FOR VARIOUS VALUES OF ρ , ξ , σ , AND ψ

$$\left[\mathbb{F}_{m}(\sigma, \psi, \xi, \rho) = -\mathbb{F}_{m}(\sigma, -\psi, -\xi, \rho)\right]$$

						σ = 0.4	5					
E		ψ = 45°			$\psi = 30^{\circ}$			ψ = 15°			ψ=.00	
7	Fl	F ₂	F ₃	Fl	F2	F3	Fl	F2	F3	Fl	F2	F3
						p = 0						
-0.9 6 4 2 0.2 .4 .6 .9	0.6738 .5591 .4488 .3124 .1556 0107 1754 3253 5072	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0.7678 .6266 .4011 .2653 .1116 0493 2050 3449 5083	0 0 0 0 0 0 0 0 0 0		0.5832 .4624 .3483 .2107 .0582 0980 2457 3745 5197	0 0 0 0 0 0 0 0 0		0.5511 .4187 .2973 .1547 0 1547 2973 4187 5511		
						p = 0.2						
-0.9 6 4	0.6763 •5537 •4513	0.0418 .0396 .0346	0.0019 .0031 0	0.6341	0.0441	0.0023	0.5912 .4658 .3508	0.0453 .0439 .0336	0.0025 0 0	0.5547 .4222 .3002	0.0442 .0353 .0280	0.0029 0 .0011
3 2 1 0	.3149 .1571	.0267 .0167	0	.1917	.0185	0	.2128	.0221 .00 ⁸ 1	0 0	.1564	.0149	0
.1 .2 .3 .4 .6 .9	0113 1779 3199 5110	.0053 0069 0170 0280	0 0031 0019	1306 3482 5166	0077 0234 0354	0 0028 0023	0991 2491 3780 5268	0064 0207 0334 0403	0 0 0 0025	1564 3002 4222 5547	0149 0280 0353 0442	0 0011 0 0029
	1					p = 0.5						
-0.9 7 6 5 4 2 1 0 .1 2 .3 .4 .5 .6 .5 .6 .7 9	0.6930 .6257 .5299 	0.1050 .1021 .0971 .0544 .0544 .0317 .0588 .0748	0.0167 .0170 .0157 .0082 .0082 .0082 .0083 .0091	0.6467 .5343 .4221 .2787 .1180 0570 2189 3654 3654	0.1111 .1047 .0108 .0667 .0351 0015 0375 0667 0942	0.0218 .0213 .0187 .0144 .0090 .0021 0049 0100 0131	0.1847 .2991 .1442 .0617 0223 1859 3959	0.1077 .0759 .0416 .0221 .0021 0377 0828	0.0221 .0168 .0092 .0055 .0016 0076 0143	0.3818 .1653 0 1653 3818	0.0882 0407 0 0407 0882	0.0193 .0091 0 0091 0193 0193

			~			σ = 0.9	90					
9		ψ = 45°			ψ = 30°			ψ = 15°			$\psi = 0^{\circ}$	
S	Fı	F2	F3	Fı	F2	F3	Fı	F2	F3	Fı	F2	F3
						p = 0						
-0.9 4 4 2 0.2 .4 .6 .9	0.6128 .5646 .5019 .4142 .3008 .1697 .0270 1133 2970	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.5271 .4725 .4090 .3214 .2117 .0884 0403 1620 3110	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.4659 .3957 .3206 .2228 .1078 0146 1340 2397 3589	000000000000000000000000000000000000000		0.4076 .3157 .2267 .1162 0 1162 2267 3157 4076	000000000000000000000000000000000000000	000000000000000000000000000000000000000
						ρ = 0 .2						
-0.964 4321 21 0.123469	0.6186 .5676 .5057 .4169 .3033 .1705 .0270 .1150 3044	0.0594 .0677 .0717 .0702 .0636 .0514 .0349 .0159 0079	0.0068 .0105 .0086 .0090 .0090 .0090 .0090 .0064 .0071 .0024	0.5325 .4756 .3708 .2708 .2139 .1520 .023 ¹ 16 ¹ 44 3177	0.0567 .0652 .0661 .0622 .0532 .0432 .0286 .0286 .0008 0200	0.0074 .0112 .0092 .0089 .0091 .0089 .0069 .0067 .0060 .0010	0.4710 .3988 .3268 .2250 .1088 0154 1395 2426 3649	0.0507 .0542 .0517 .0428 .0289 .0113 .0113 .0113 .0061 .0211 .0328	0.0064 .0087 .0071 .0051 .0051 .0005 .0007 0030	0.4136 .3188 .2291 .1178 0 1178 2291 3188 4136	0.0451 .0412 .0319 .0176 0176 0176 0319 0412 0451	0.0016 .0048 .0040 0 0020 0020 0040 0048 0016
						ρ = 0.5	Ĺ					
0.7%5.4 0.0 H 0 H N D H D O T O	0.6278 .6050 .5572 .3166 	0.1482 .1662 .1793 .1656 .0646 .0160 0275	0.0314 .0402 .0531 .0531 .0632 .0374 .0154 .0035	0.5409 .4910 .4284 .3392 .2247 .0919 0466 1767 3313	0.1416 .1656 .1727 .1654 .1404 .09 ⁰ 7 .04 ⁰ 0 0022 0583	0.0334 .0491 .0603 .0651 .0626 .0504 .0328 .0130 0074	0.4152 .2914 .1755 .1147 .0467 0834 2576	0.1395 .1271 .0971 .0767 .0534 .0036 	0.0431 .0484 .0420 .0435 .0284 .0100	-0.2919 .1283 0 1283 2919	0.0994 .0478 0 0478 0994	-0.0317 .0169 0169 0169 0317

TABLE III .- VALUES OF THE FUNCTIONS F_m - Continued

						σ = 0	.45					
4		¥ = 45°		4	r = 30°		٦	r = 15°		Y	$r = 0^{\circ}$	
5	Fı	F2	F3	Fl	F2	F3	Fı	F ₂	F ₃	Fl	F2	F ₃
						p ≈ 0	•7					
-0.9 7 6 5 4 3 2 1 0 1.2 .3 .4 .5 .6 7 .9	0.7115 .6477 .5537 .1741 2866 4371 5537	0.1493 .1496 .1417 .0663 	0.0314 .0346 .0333 .0189 .0189 .0075 0151 .0207	0.6659 .5576 .4447 .2977 .1252 0585 2343 3872 5540	0.1576 .1519 .1350 .1008 .0531 0033 0580 1016 1350	0.0305 .0434 .0405 .0318 .0198 .0046 0108 0218 0308	0.5061 .3179 .0653 0246 1997 4159	0.15 ⁸ 3 .1143 .0637 .0334 .0030 0577 1251	0.0488 .0377 .0214 .0127 .0035 0156 0327	0.4038 .1769 0 1769 4038	0.1322 .0618 0 0618 1322	0.0411 .0204 0 .0204 0204
	1	1		lang property data of the solution of the		p ≈ 0	•9					
-0.7 6 5 4 2 0 .2 .14 .5 .6 .7	0.5273	0.1 ⁸ 13 .0930 0 ⁴ 31	0.0549 .0339 0069	0.5905 .4778 .3231 .1363 0649 2581 4201	0.2048 .1868 .1440 .0770 0069 0852 1463	0.0739 .0734 .0600 .0364 .0062 0216 0416	0.5 ⁸ 59 .4224 .2613 .0711 1270 3064 5082	0.2225 .1886 .1295 .0485 0421 1210 1939	0.0835 .0780 .0571 .0242 .0138 .0444 0444	0.4367 .1951 1951 4367	0.1853 .0898 0898 0898	0.0756 .0387 03 ⁸ 7 0756

TABLE III .- VALUES OF THE FUNCTIONS Fm - Continued
						σ = 0.	90					
	ų	r = 45°		ψ	= 30°		V	/ = 15 ⁰		ψ	= 0°	
5	Fl	F2	F3	Fl	F2	F3	Fl	F2	F3	Fl	F2	F3
						ρ = 0).7					
-0.9 76 54 3 2 1 0 1.2 3.4 5 9	0.6424 .6240 .5784 	0.2110 .2360 .2561 .2436 .2436 .0911 .0157 0460	0.0635 .0798 .0990 .1304 .0704 .0314 0003	0.5547 .5092 .4486 .3589 .2389 .0964 0534 1926 3522	0.2017 .2367 .2507 .2435 .2089 .1463 .0662 0117 0903	0.0652 .0962 .1192 .1339 .1307 .1050 .0643 .0213 0205	0.4339 .3105 .1906 .1224 .0512 0919 2745	0.2242 .1911 .1475 .1154 .0785 .0008	0.0870 .1018 .0898 .0764 .0588 .0185 0306	0.3112 .1390 0 1390 3112	0.1510 .0742 0 0742 1510	0.0682 .0376 0 0376 0682
						ρ = 0	.9			,		
-0.7 6 5 2 0.2 .4 .5 6 .7	0.6342 .5759 .3581 .0259 1518	0.3220 .3488 .3363 .1741 .0602	0.1457 .1820 .2296 .1556 .0812	0.5521 .5326 .4781 .3862 .2611 .1060 0636 2157 2827	0.2956 .3132 .3392 .3383 .2934 .2021 .0831 0309 0770	0.1369 .1586 .2032 .2362 .2356 .1887 .1080 .0254 0081	0.4867 .3896 .2787 .1256 0263 1800	0.2619 .2822 .2479 .1647 .0503 0622 1658	0.1279 .17 ⁸⁵ .1805 .1405 .0650 0124 07 ⁸⁰	0.3408 .1560 0 1560 3408	0.2160 .1103 0 1103 2160	0.1277 .0733 0 0733 1277

TABLE III .- VALUES OF THE FUNTIONS Fm - Concluded

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

35

														4 11	v										a			-	
														To co	s V														
												0.1	-		- 1				0.70						σ	= 0.9	0		
	σ = 0				σ = 0.2	5						= 0.4	2				0.1	- 0	0.10		0	1-0	1-01	- 0	01	(a)	TEO	200	1.59
E X	All	-450	-300	-15°	00	15°	30°	45°	-45°	-30°	-15°	00	15°	300	45°	-450	-30	-15	00	15	300	450.	-450	-300	-15	0-	15	30	45*
															η = 0								1						
-0.9	0.260	0.310	0.294	0.280	0.258	0.244	0.227	0.221	0.352	0.321	0.292	0.254	0.228	0.203	0.186	0.404	0.353	0.298	0.246	0.207	0.176	0.147	0.437	0.373	0.296	0.238	0.190	0.157	0.121
8	.318								.419	.382	.347	.308	.277	.249	.222								.61	.47	.35	.20	.28	.24	.20
7	.302	.522	.502	.480	.453	.430	.408	.395	.580	.540	.497	.449	.409	.373	.346	.650	.585	.511	.441	.381	.334	.290	.702	.616	.515	.432	·359	.305	.251
5	.532	606	671	648	616	.580	.563	.545	.667	.623	.580	.530	.481	.443	.417	.842	.770	.687	.606	.535	.474	.421	.902	.807	.697	.599	.510	.439	.373
3	.708						*		.857	.813	.761	.706	.651	.607	.572	1 042		.886	.708	.716	.641	.579	1.00	.90	.79	.68	.60	.601	.45
2	.802	.888	.863	.836	.002	.771	.742	. /22	1.057	1.015	.952	.898	.840	791	.749								1.20	1.10	1.00	.90	.79	.70	.61
0	1.000	1.086	1.063	1.033	1.000	.966	.937	.913	1.156	1.112	1.058	1.000	.942	.888	.844	1.239	1.170	1.087	1,000	.913	.031	.761	1.301	1,212	1.20	1.10	1.00	.89	.80
.1	1.100	1.280	1.258	1.228	1.198	1.164	1.136	1.112	1.344	1.305	1.254	1.200	1.141	1.089	1.043	1.421	1.359	1.284	1.202	1.117	1.032	.958	1.478	1,399	1.309	1.205	1.101	.989	.894
.3	1.292	1.456	1.437	1.411	1.384	1.352	1.325	1.303	1.428	1.397	1.435	1.292	1.235	1.101	1.141	1.579	1.526	1.465	1.394	1.313	1.231	1.160	1.627	1.561	1.490	1.401	1.303	1.193	1.098
.5	1.468								1.584	1.556	1.517	1.472	1.416	1.372	1.333	1 708	1 666	1.618	1.550	1.490	1.417	1.351	1.69	1.63	1.56	1.48	1.40	1.384	1.20
.6 .7	1.546	1.607	1.592	1.571	1.547	1.519	1.497	1.470	1.710	1.682	1.660	1.628	1.579	1.542	1.507								1.81	1.76	1.71	1.64	1.56	1.46	1.39
.8	1.682	1 780	1 772	1 757	1 740	1.710	1.705	1.688	1.762	1.740	1.721	1.689	1.647	1.617	1.583	1.852	1.824	1.793	1.754	1.703	1.649	1,598	1.879	1.843	1.811	1.762	1.704	1.627	1.563
.9	1.140	1.102	1.113	1.171	T.14C	1.119	1.10)	11000					- 1-2		- 0.	2													
															00	-	0 - 06		0.00	0.011	0.170	0 116	la hak	10 100	0 228	0.250	0 200	0 160	0.110
-0.9	0.257	0.314	0.296	0.282	0.262	0.244	0.228	0.224	0.367	0.361	0.301	0.263	0.231	0.205	.221	0.439	0.300	0.319	0.262	0.214	0.119		.59	.52	.40	.32	.25	.21	.16
7	.376								.535	.484	.444	.400	.352	.319	.300	720			180	h15	255		.70	.61	.49	.40	.32	.26	.21
6	.450	.539	.516	.495	.470	.442	.419	.409	.620	.676	.628	.402	.518	.473	.304				.409				.93	,84	.71	.60	.48	.41	.32
4	.614	.715		.674	.642	.613	675	.560	.811	.775	.722	-662	.607	.560	.510	.941		.779	.684	.595	.609	.445	1,050	1.082	.021	.82	.501	.49	.48
2	.8008	.920		.876	.840	.807		.743	1.026	.986	.939	.873	.810	.752	.690	1.171		1.019	.915	.811		.621	1.294	1.21	1.084	.950	.811	.69	.567
1	.900	1.120	1.006	1.075	1.053	1.015	.875	.945	1.136	1.100	1.041	.986	.918	.051	•793 .894	1.394	1.344	1.251	1.163	1.049	.932	.826	1.522	1.461	1.353	1.220	1.068	.908	.770
.1	1.100		1.215				1.084		1.346	1.317	1.270	1.214	1.142	1.069	1.000		1.458		1 110	1 207	1.051	1.06	1.63	1.581	1.48	1.35	1.21	1.035	.88
.2	1.199	1.331	1.416	1.297	1.265	1.227	1.292	1.153	1.445	1.423	1.484	1.427	1.361	1.291	1.223	1.790	1.666		1.410		1.289		1.81	1.792	1.72	1.61	1.48	1.287	1.12
.4	1.386	1.520		1.489	1.464	1.427		1.362	1.634	1.620	1.583	1.536	1.469	1.395	1.333	1.779		1.717	1.641	1.535		1.206	1.896	1.00	1.040	1.84	1.600	1.53	1.35
.5	1.550	1.669	1.672	1.660	1.636	1.606	1.573	1.531	1.772	1.778	1.759	1.716	1.660	1.594	1.515	1.911	1.920	1.897	1.836	1.743	1.623	1.495	2.031	2.043	2.022	1.950	1.823	1.648	1.478
.7	1.624								1.838	1.841	1.833	1.798	1.751	1.683	1.617								2.13	2.17	2.17	2.10	2.02	1.84	1.69
.9	1.743	1.854	1.863	1.858	1.846	1.819	1.794	1.757	1.948	1.964	1.959	1.934	1.890	1.838	1.768	2.070	2.097	2.098	2.054	1.994	1.897	1.784	2.173	2.209	2.221	2.158	2.093	1.949	1.798

TABLE IV.- TUNNEL INDUCED VELOCITY PARAMETER $\frac{4\pi r_o v}{\Gamma \sigma \cos \psi}$ for various values of η , ξ , σ , and ψ

^aValues given to three significant figures are calculated values; the others are interpolated values.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

NACA TN No. 1265

														477	W														
	a = 0																-												
> 1/1		1=0	200	150	00	150	200	450	-450	-30°	-15 ⁰	o°	15°	30°	45°	-45°	-30°	-15°	00	15°	30°	45°	-45°	-30°	-15°	o°	15°	30°	45°
5/	AII	-42 -	.30 -	.15	0	1)	50	4)	47	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~																		
															= 0.	,						0.216	O Em	hok				0.18	0.13
9876543210123456789	0.238 .294 .359 .431 .511 .599 .693 .792 .895 1.000 1.105 1.208 1.307 1.401 1.489 1.569 1.569 1.641 1.762	0.307 .455 .640 1.210 1.722 1.872 1.986	292 527 730 958 1.201 1.431 1.646 1.825 2.024				0.216 .417 .595 .808 1.039 1.280 1.510 1.714 1.950	0.205 .323 .471 .980 1.552 1.737 1.885	0.378 .461 .555 .660 .773 .898 1.024 1.158 1.244 1.158 1.244 1.529 1.641 1.743 1.849 2.020 2.089 2.144 2.201	0.345 .421 .518 .623 .741 .862 .999 1.126 1.404 1.533 1.658 1.780 1.892 1.995 2.079 2.158 2.224 2.281	0.578 .688 .816 .941 1.061 1.367 1.509 1.640 1.776 1.894 2.000 2.100		0.456 .553 .660 .780 .918 1.046 1.189 1.333 1.474 1.615 1.718 1.862 1.978	0.204 .260 .327 .495 .592 .700 .823 .948 1.080 1.217 1.354 1.496 1.622 1.722 1.861 1.966 2.059 2.140	0.178 .228 .361 .435 .519 .614 .724 .962 1.098 1.231 1.359 1.480 1.605 1.713 1.824 1.918 2.000	0.490 .714 .986 1.725 2.272 2.410 2.513	0.423 .773 1.071 1.396 2.025 2.285 2.482 2.682	0.670	.6%6 1.1 6 5 1.538 1.911 2.388	0.467 .847 1.176 1.334 1.538 1.895 2.351	0.191 .390 .587 .844 1.145 1.476 1.804 2.101 2.449	0.145 .248 .388 .940 1.677 1.950 2.174	0.592 .866 1.02 1.194 1.36 1.53 1.69 2.012 2.37 2.37 2.38 2.582 2.582 2.582 2.582 2.582 2.582 2.582 2.715 2.808	.494 .61 .76 .917 1.10 1.278 1.48 1.48 2.906 2.24 2.56 2.694 2.694 2.694 2.694 2.694 2.694 2.900 2.99 3.05 3.093	0.742 .91 1.11 1.54 1.762 2.004 2.42 2.624 2.624 2.80 2.94 3.065	.746 .89 1.10 1.335 1.57 1.818 2.06 2.301 2.52 2.72 2.890	0.473 .60 .74 .914 1.12 1.319 1.534 1.776 2.00 2.227 2.43 2.62 2.796	.26 .32 .377 .47 .583 .71 .863 1.04 1.211 1.41 1.41 1.603 1.999 2.18 2.360 2.51 2.66 2.783	1.6 .218 .28 .352 .44 .53 .64 .73 .921 1.08 1.24 1.45 1.739 1.90 2.067 2.21 2.344
	-		-	+											η = Ο.	7							1 64						10.100
-0.99 8 7 6 5 4 1 1 1 0 0 .1 .1 .2 2 .3 .1 	$\begin{array}{c} 0.213\\$	0.288 .444 .641 .641 1.264 3.1.826 8.1.980 6.1.980 6.1.980 7.2.095	0.275 .522 .744 1.000 1.271 1.532 1.764 1.951 2.152		0.569 .934 1.212 1.491 1.858	0.435 	0.205 .404 .589 .820 1.079 1.351 1.609 1.832 2.080	0.187 .298 .451 1.01 1.636 1.834 1.99	0.373 .464 .568 .683 .963 1.119 1.267 1.410 1.546 1.681 1.817 1.939 2.050 2.146 2.231 2.295 2.406	0.341 .426 .533 .649 1.247 1.417 1.577 1.72 1.77 2.022 2.14 2.255 2.49 2.49 2.55	0 0.603 .728 0 .728 1.031 5 1.200 7 1.370 9 1.880 2 .043 1 2.300 4 2.41 3 2	0.649 783 .940 1.105 1.280 1.460 1.635 1.979 2.133 2.271	0.464 .570 .695 .834 .992 1.154 1.326 1.505 1.678 1.844 2.001 2.147 2.272	0.199 .251 .327 .504 .609 .738 .71 1.022 1.177 1.342 1.506 1.652 1.624 1.967 2.210 2.222 2.32 2.41	0.165 213 .274 .346 .427 .531 .639 .758 .890 1.027 1.181 1.337 1.475 1.624 1.766 1.880 2.00 2.200	0.517 .785 1.113 2.017 2.017 2.66 2.810 30 2.92	0.445 .864 1.245 1.680 7 2.121 2.516 2.835 7 3.065 9 4 3.286	0.750 1.350 1.847 2.112 2.362 2.813 5 3.287	0.734 1.421 1.961 2.496	0.509 .967 1.441 1.693 1.955 2.446 3.035	0.190 .416 .650 .972 1.370 1.810 2.241 2.618 - 3.033	0.140 .248 .404 1.060 2.285 2.285	0.652 .81 1.006 1.21 1.429 1.65 1.88 2.511 2.511 2.68 2.98 3.11 2.3.217 3.314 5.3.484	0.541 .69 .88 1.088 2.181 2.48 2.706 3.304 3.52 3.706 3.304 3.52 3.706 3.304 3.52 3.4.07 4.15 4.21	0.880 1.11 1.40 2.08 2.463 2.868 3.622 3.622 3.931 2.4.20 4.40 3.4.55	0.896 1.12 1.43 1.829 2.703 3.15 3.576 3.97 4.26 4.509	0.554 .70 .91 1.178 1.50 2.240 2.646 3.03 3.40 3.71 3.99 4.229	0.103 .25 .34 .428 .56 .700 .88 1.097 1.34 1.622 2.52 2.52 2.52 2.52 2.52 3.07 3.313 3.72 3.86	0.122 .127 .229 .32 .389 .61 .74 .92 1.096 1.31 1.52 1.74 1.52 1.74 2.177 * 2.38 2.601 2.75

TABLE IV.- TURNEL INDUCED VELOCITY PARAMETER $\frac{k_{\text{MTO}}v}{\Gamma\sigma\ \cos\psi}$ - Continued

NATIONAL ADVISORY

"Values given to three significant figures are calculated values; the others are interpolated values.

37

38

AMETER 4nrow - Continued

TABLE	IV	TUNNEL	INDUCED	VELOCITY	PARAMETER	To cos V - Co	n
						,	

		and the second second																				1					-	
													4π Γσ	г _о ч сов ¥														1
	σ = 0			σ = 0.2	25						J = 0.4	5	7.3				c	s = 0.7	0				1		(a)	0		
1 mg	All	-45° -3	0° -15	° 0°	150	30°	45°	-45°	-30°	-15°	00	15°	30°	45°	-45°	-30°	-15°	00	15°	30°	45°	-45°	- 30°	-15°	. 0°	-15°	30°	456
														η = σ.	9							+						
-0.9 8 7 6 5 4 5 4 5 4 3 1 0 .1 2.3 1 0 .1 2.3 7 .6 6 .7 8.9	0.184 .237 .300 .373 .456 .549 .652 .763 .880 1.000 1.237 1.348 1.451 1.514 1.627 1.700 1.763 1.816	0.757 	0.33 506 751 .7 041 1.07 352 1.3 647 1.6 900 1.9 900 1.9 900 1.9 2.22	91 0.562 23 .968 41 1.290 1.616 26 2.026 29	0.331 .628 .901 1.210 1.532 1.829 2.174	0.382 .576 .824 1.118 1.431 1.726 1.975	0.514 1.028 1.610	1.006 1.188 1.370 1.542 1.717 1.878 2.028 2.028 2.167 2.292	0.663 .821 .994 1.184 1.382 1.593 1.790 1.982 2.159 2.320 2.460 2.578 2.679	0.486 .621 .773 .940 1.136 1.344 1.571 1.786 2.002 2.206 2.393 2.562 2.707 2.834 2.925	0.676 .835 1.014 1.222 1.44 1.681 1.914 2.139 2.346 2.524 2.685	0.364 .46 .582 .723 .895 1.079 1.282 1.499 1.720 1.941 2.146 2.345 2.520 2.670 2.803 	0.40 .500 .621 .760 .921 1.098 1.291 1.492 1.698 1.896 2.087 2.261 2.2417	0.511 .622 .75 ⁸ .911 1.086 1.261 1.442 1.622 1.796	2.430	0.957 1.463 2.078 2.723 3.284 3.698 3.968	0.633 1.332 2.027 2.860 3.623 4.186 4.656	0.870 1.796 2.703 3.578 4.478	0.420 .916 1.495 2.265 3.059 3.729 4.409	0.447 .720 1.157 1.721 2.354 2.949 3.448	0.537	1.437 1.74 2.051 2.36 2.68 2.96 3.264 3.48 3.51 3.51 3.51 4.092 4.22 4.337	0.997 1.293 1.64 2.034 2.51 3.025 3.57 4.140 4.67 5.132 5.50 5.800 6.03 6.190 6.321	0.760 1.06 1.40 2.36 3.074 4.01 5.026 6.08 6.912 7.54 7.991 8.25 8.41 8.263	1.088 1.48 2.04 2.826 3.92 5.265 6.59 7.700 8.51 9.05 9.438	0.482 .68 .90 1.200 1.64 2.278 3.12 4.165 5.20 6.117 6.84 7.395 7.770 8.08 8.184	0.380 .510 .66 .866 1.17 1.568 2.560 3.02 3.674 4.20 4.657 5.07 5.407 5.704	0.345 .45 .589 .76 .96 1.19 1.417 1.70 2.00 2.31 2.31 2.630 2.94 3.245
-0.9 8 7 6 5 4 5 4 1 0 .1 2 .3 7 8 9	0.257 .314 .376 .450 .529 .614 .705 .801 .900 1.000 1.100 1.199 1.295 1.386 1.471 1.550 1.624 1.686 1.743	0.298 0. 	280 0.26 480 .44 66 736 .736 .736 .92175 92175 92175 .921	67 0.248 63 .433 20 .590 97 .765 54 .952 59 1.140 39 1.315 90 1.471 .653	0.232 .419 .568 .739 .923 1.110 1.285 1.443 1.639	0.216 .391 626 .898 .995 1.180 1.437 1.636	0.218 -393 -532 -699 884 1.076 1.259 1.421 1.630	0.331 .398 .472 .550 .631 .713 .804 .895 .987 1.081 1.166 1.257 1.337 1.413 1.425 1.542 1.600 1.653 1.701	0.297 .360 .431 .501 .555 .842 .935 1.028 1.109 1.204 1.286 1.367 1.440 1.505 1.567 1.621 1.667	0.270 .323 .390 .467 .541 .618 .703 .791 1.061 1.147 1.223 1.310 1.381 1.516 1.576 1.629	0.239 .287 .347 .410 .569 .651 .738 .824 .917 1.008 1.342 1.486 1.342 1.486 1.543 1.595	0.211 .261 .323 .369 .460 .529 .611 .693 .779 .869 .959 1.049 1.137 1.222 1.297 1.373 1.442 1.511 1.569	0.188 .232 .286 .350 .490 .569 .652 .736 .828 .920 1.010 1.100 1.100 1.100 1.274 1.354 1.430 1.558	$\begin{array}{c} 0.179\\.225\\.279\\.339\\.406\\.547\\.624\\.712\\.890\\.985\\1.075\\1.167\\1.251\\1.330\\1.412\\1.483\\1.550\end{array}$	2 0.364 .595 .759 .938 1.115 1.280 1.423 1.542 1.681	0.316 .524 .773 .947 1.034 1.118 1.276 1.478	0.267 .461 .608 .7779 .952 1.122 1.282 1.282 1.411 1.575	0.226 .398 .542 .706 .877 1.049 1.212 1.357 1.538	0.186 	0.159 .306 .508 .667 .750 .837 1.012 1.261 1.469	0.136 .275 .396 .540 .705 .883 1.063 1.229	$\begin{array}{c} 0.380\\ .46\\ .53\\ .617\\ .70\\ .965\\ 1.05\\ 1.136\\ 1.293\\ 1.36\\ 1.429\\ 1.48\\ 1.59\\ 1.63\\ 1.666\end{array}$	0.326 .39 .46 .538 .62 .70 .780 .87 .954 1.054 1.312 1.19 1.266 1.33 1.39 1.455 1.50 1.55 1.590	0.259 .31 .37 .450 .51 .595 .68 .766 .84 .937 1.02 1.103 1.18 1.267 1.32 1.326 1.44 1.49 1.536	0.215 .27 .32 .45 .521 .60 .681 .76 .847 .92 1.014 1.08 1.174 1.28 1.314 1.38 1.44	0.167 .22 .28 .38 .38 .446 .52 .60 .68 .767 .938 1.03 1.118 1.19 1.254 1.39 1.245	0.140 .17 .22 .40 .465 .54 .618 .6950 1.02 1.11 1.192 1.26 1.34 1.404	0.109 :14 .29 .346 .41 .482 .56 .638 .73 .809 .907 1.08 1.157 1.25 1.324

.

Values given to three significant figures are calculated values; the others are interpolated values.

.

NACA TN No. 1265

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

PARAMETER

TABLE	IV	TUNNEL	INDUCED	VELOCITY	PARAMETER	To cos ¥	Continued
-------	----	--------	---------	----------	-----------	----------	-----------

-		•										411	w														
	7 - 0			- 0.95						= 0.45		Го с	08 1/				1 = 0.7	0						σ = 0.0	90		
× V	All	-45° - 30°	-150	00 1	50 300	450	-450	-300	-15°	00	150	300	45°	-45°	-30°	-15°	00	15°	30°	45 ⁰	-45°	- 30°	-15 ⁰	(a) 0 ⁰	150	300	45°
5					- 50			5-					-0.5		50	->			54			50	-/				
												η =	-0.5									_					
-0.9	0.238	0.270 0.25			0.18	3 0.191	0.293	.267				0.159	0.152	0.310	0.271				0.132	0.113	0.313.	0.268				0.116	0.090
7	·359	·395				.292	.419	.380				.252	.240	.435						.186	.436	.38				.19	.153
5	.511	.541	0	.464		.422	.562	.521	.477	0.429	.400	.367	.355	.582	.440		0.390		.290	.284	.592	.440	.42	0.361	.31	.227	.19 .238
4	·599 .693	.59	.653 -		602		.642	.596	.548	.500	.467	.432	.426		.588	.585		.469	.367		.66	.578	·49 ·557	.42	.36	.324	.29
2	.792	772	821	.709	666	5	.806	.756	.703	.653	.619	.583	.578		.740	 72h	.592	612	.497		.82	.723	.63	.550	.48	.440	.41
0	1.000	.988 .959	.919	.889 .	867 .846	.853	.981	.929	.867	.816	.776	.745	.744	.975	.893	.813	.741	.681	.641	.626	.973	.866	.778	.690	.616	.573	.40
.1 .2	1.208	1.139	1.009 -	.068	1.033	3	1.147	1.012	.946	.900	.938	.033	.918		1.037	.002	.890	.760	.797		1.04	·93 ·999	.839	.76	.696	.64	.62
·3	1.307	1.30	1.184 -	1.	131		1.224	1.166	1.105	1.060	1.021	1.000	1.001		1.168	1.025		.910	.948		1.17	1.05	·973	.89	.837	.78	.76
.5	1.489	1.419	1	.314		1.295	1.371	1.310	1.247	1.203.	1.166	1.156	1.163	1.317		1	1.092			1.022	1.280	1.17	1.09	1.018	.90	.92	.925
.0	1.641	1.550			302 1.300	1.438	1.485	1.428			1.230	1.298	1.307	1.413	1.2//	1.205		1.115	1.090	1.170	1.362	1.26	1.139		1.031	1.06	1.00
.8	1.706	1.651 1.610	5		1.546	1.563	1.532	1.479				1.359	1.373 1.433	1.487	1.403				1.266	1.296	1.40	1.29				1.12	L.14 L.204
			4			1						n = -	0.7	-					I							-	
-0.0	0 212	0 211 0 22			0 16	0 170	0.058	0 000				0 122	0 120	0.068	0.000				0 105	0 088	0 264	0.005				0.080	, de
8	.264				0.10		.314	.280				.162	.166								.32	.28				.12	.08
7	.332	.360	3 0.388 -	0.	342 .31	- 0.267 B	.377	.342	0.367		0.294	.207	.211	.392	.400	0.337		0.241	.214	1.54	·393 .46	·33 ·392	0.311		0.206	.15	.120
5	.487	.506	0	.426	h6	.394	.520	-479	.427	0.383	.357	.324	.320	.533	528		0.335			.243	.541	.46	.36	0.302	.25	.22	.195
3	.675		.613 -		565		.681	.628	.571	.526	.488	.461	.459			.527		.405			.68	.59	.497	.41	.350	.31	.24
2	.700	.73	.794 -	.671	740	+	.764	.712	.649 .735	.600	.562	.534	.535 .615		.685	.675	.526	.539	.431		.76	.669	.56	.477	.42	.365	·35 .41
0	1.000	.966 .92	+ .881	.851 .	831 .81	.819	.944	.878	.811	.760	.722	.694	.691	.924	.834	.745	.671	.611	.568	.56	.912	.808	.705	.614	.538	.486	.472
.2	1.220	1.10	1 1	.032	1.00	L	1.100	1.038	.968	.921	.881	.860	.869		.971		.816		.717		1.04	.929	.83	.750	.68	.625	.62
.4	1.423	1.27	5	1.	1.17	5	1.247	1.183	1.115	1.079	.962	.940	·977 1.039		1.090	•971		.030	.866		1.14	1.029	.093	.88	.80	.767	.69
.5	1.513	1.392	1		321 1.32	- 1.274	1.316	1.251	1.180	1.151	1.110	1.091	1.116	1.238	1.190	1.115	1.014	1.022	1.005	.952	1.188	1.07	.99	.925	.87	.83	.843
.7	1.668	1.520				- 1.417	1.424	1.359				1.228	1.258	1.328						1.097	1.264	1.15				.96	.991
.8	1.736	1.616 1.57	5		1.51	0 1.534	1.506	1.439				1.342	1.377	1.394	1.299				1.176	1.221	1.319	1.205]	1.069	.119

Values given to three significant figures are calculated values; the others are interpolated values.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

39

			A Contraction of the local division of the l																										
														4π;	W														
														Ta	0														
		10.00		-					_					100	ψ														
	a = 0				a = 0.	25						a = 0.4	5			1		(J = 0.7	0			1		C	= 0.90)		
	-					+																				(8)			
E	All	-45°	-30°	-15°	00	150	300	45°	-45°	- 30°	-15°	00	15°	300	45°	-45°	-30°	-15°	00	15°	30°	45°	-45°	-30°	-15°	00	150	300	450
							(η =	-0.9														
			_			1							-				1	-	1	-			1		-				
-0.9	0.184																												
8	$ \begin{array}{c} 8 \\ 7 \\ .300 \\ .6 \\ .373 \\ \\ 0 \\ .367 \\ \\ 0 \\ .367 \\ \\ 0 \\ .49 \\ .29 \\ \\ 0 \\ .240 \\ 0 \\ .217 \\ \\ 0 \\ .240 \\ 0 \\ .217 \\ \\ 0 \\ .240 \\ 0 \\ .217 \\ \\ 0 \\ .240 \\ 0 \\ .217 \\ \\ \\ 0 \\ .240 \\ 0 \\ .27 \\ \\ 0 \\ .240 \\ 0 \\ .27 \\ \\ \\ 0 \\ .240 \\ 0 \\ .27 \\ \\ \\ 0 \\ .240 \\ 0 \\ .27 \\ \\ \\ 0 \\ .240 \\ 0 \\ .27 \\ \\ \\ 0 \\ .240 \\ 0 \\ .27 \\ \\ \\ 0 \\ .240 \\ 0 \\ .27 \\ \\ \\ 0 \\ .240 \\ 0 \\ .27 \\ \\ \\ 0 \\ .240 \\ 0 \\ .27 \\ \\ \\ 0 \\ .240 \\ .27 \\ \\ \\ 0 \\ .25 \\ \\ \\ .240 \\ .27 \\ \\ \\ .240 \\ 0 \\ .27 \\ \\ \\ \\ \\ 0 \\ .25 \\$																												
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															0 102													
5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.13													
4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.176													
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.22													
2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.27													
1	.880				076		900		.820	.751	.680	.626	.588	+562	.564	888	800	608	671	510	1.80	1. 81.	.80	.72	.58	.48	.39	.32	.32
0	1.000	.930	.009	.046	.010	.002	.003	.007	.907	.030	. (00	.712	.0/2	.045 .72h	.040	.000	.000	.090	.014	.942	.402	.404	.007	.84	.002	.772	.400	.304	.304
.2	1.237		1.082	1.034	1.003	.992	.991		1.062	1.001	.931	.878	.841	.813	.826		.933	.846	.766	.693	.634		1.00	.898	.801	.699	.600	.522	.52
.3	1.348								1.140	1.080	1.002	.952	.917	.891	.914								1.04	.93	.84	.76	.67	.60	.59
.4	1.451	1.304	1.258	1.204		1.158	1.162	1.188	1:219	1.147	1.076	1.025	.994	.977	1.000	1.141	1.045	.964		.840	.795	.805	1.096	.983	.901	.81	.746	.680	.680
.5	1.544				1.251					1.209	1.141	1.095	1.059	1.042			1 107		.956				1.12	1.01	-94	.873	.80	.74	.77
.0	1.627		1.395	1 105		1 250	1.302			1.250	1.19/		1 178	1.114			1.151	1 006		1 017	.931		1.110	1.045	1 007		.00	801	.042
.8	1.763			1.405		1.309					1.243							1.090		1.011							.921	.094	
.9	1.816																												
						1																				NATION	AL AD	ISORY	
a																									со	MMITTEE	FOR AE	RONAUT	ICS

TABLE IV.- TUNNEL INDUCED VELOCITY PARAMETER $\frac{4\pi r_{o}w}{\Gamma\sigma\cos\psi}$ - Concluded

a Values given to three significant figures are calculated values; the others are interpolated values.

.

.

NACA TN No. 1265

Fig. 2

.

Figure 3.- Tunnel-induced-velocity parameter normal to the plane $\,\xi$ = 0, plotted against $\,\xi\,$ for different values of $\,\eta\,.\,\sigma$ = 0; all values of $\,\psi\,.\,$

(a) $\psi = -45^{\circ}$.

.

Figure 4.- Tunnel-induced-velocity parameter normal to the plane $\xi = 0$ plotted against ξ for different values of η . $\sigma = 0.25$.

NACA TN No. 1265

.

Fig. 4a

Fig. 4b

Figure 4.- Continued.

Fig. 4d

NACA TN No. 1265

Fig. 4e

Figure 4.- Concluded.

Fig. 4g

 $(a) \psi = -45^{\circ}$

Figure 5.- Tunnel-induced-velocity parameter normal to plane S = 0 plotted against ξ for different values of η . $\sigma = 0.45$.

Fig. 5a

Fig. 5b

Fig. 5c

07 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS đ 1111 N 83 50 0 - $(\mathbf{d}) \psi = 0^{\circ}_{\circ}$ 91 3 1-9 80 0 50 Ф 5.0 10 12 \$ 500 D MAUD

Fig. 5d

Figure 5. - Continued.

Fig. 5e

Fig. 5f

Fig. 5g

(a) $\psi = -45^{\circ}$.

Figure 6.- Tunnel-induced-velocity parameter normal to plane 5 = 0 plotted against ξ for different values of η . $\sigma = 0.7$.

(b) $\psi = -30^{\circ}$. Figure 6. - Continued. Fig. 6b

(c) $\psi = -15^{\circ}$. Figure 6. - Continued.

(d) $\psi = 0^{\circ}$. Figure 6. - Continued. Fig. 6e

(e) $\psi = 15^{\circ}$. Figure 6. - Continued.

 $⁽f)\psi = 30^{\circ}.$ Figure 6.- Continued.

Fig. 6g

(g) ♥ = 45°.
Figure 6.- Concluded.

(a) $\psi = -45^{\circ}$.

Figure 7.- Tunnel-induced-velocity parameter normal to plane S = 0 plotted against \dot{S} for different values of η . $\sigma = 0.9$.

(b) $\psi = -30$. Figure 7.- Continued.

(c) $\psi = -15^{\circ}$. Figure 7.- Continued.

Fig. 7d

(e) $\psi = 15^{\circ}$. Figure 7.- Continued.

(f) $\psi = 30^{\circ}$. Figure 7.- Continued.
NACA TN No. 1265

(g) $\psi = 45^{\circ}$. Figure 7.- Concluded. Fig. 7g

-

Fig. 8

Figure 10.- Relation between $\mathcal W$ and $\mathcal V_0$ for different values of a.

NACA TN No. 1265

Figure 11.- Relation between a and ϕ for different values of ψ_{o} .

Fig. 11

Fig. 12

