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TECHNICAL NOTE NO. 1297

BENDING STRESSES DUE TO TORSION

IN A TAPERED BOX BEAM

By Fdwin T. Kruszewski
SUMMARY

A methed is presented for the calculation of bending stresses
due to torsion in a tapered box beam. A special taper was assumed ,
in which all flanges, if extonded, would mest at a2 point. The general
procedure of analysis given 1s similar to the procedure for a non-
tapered beam presented by Faul Kuhn in his paper "A Method of
Calculating Bending Stresses Due to Torsion, " NACA ARR Dec. 1942,
Recurrence formulas developed for use in this calculation are
included. A comparison was made of flange and sheet gtresses in
boxes with varying taper, including a nontapered box.

The results obteined by this method were compared with experi- |
mental data obtained from tests performed on & tapered box beam. !
The box beam was tested under two independent conditions of loading:
first, a concentrated torque at the tip end later, a concentrated
torgue at the quarter point of the span. The experimental results
obtained from these tests showed good agreement with the calculated
results. Calculations for the test specimen for the two loading
conditiong are also shown.

INTRODUCTICN

The basic load-carrying structure of many aircraft wings is a
box of approximately rectangular cross section consisting of the
front and rear spars end the top and bottom skins of the wing. This
box is etressed by both bending and torsional loads. Only the
torsional loads are discussed in the vresent paper.

The determination of the stress distribution in a box under
torsion is a relatively simple problem provided that the cross
section of the box 1s not constreined in eny mannexr against warping.
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In this case the well-known Bredt formule for thin-walled torsion
tubes is epplicable. If some restraint is offered to warping,
however, a sct of secondary stresses is introduced in the box.
Because the resultants of these secondary stresses ere actually
bending moments in the plenes of the walls and are accompanied by
the shear forces necessery to cause spanwise variation of the
bending moments, these stresses are usually referred to as bending
stresses due to torsion.

A method for the calculetion of these bending stresses 1is
presented in reference 1. In order to simplify the calculation,
Kuhn utilizes an assumption that the cross-sectional dimensions
and the torques are conetent within each bay of the box and gives
the solution only for bexes in which the sides are parallel.

Actual wings, however, are usually tapered both in depth and in
width. The present work is intended to furnish a thecretical
golution of the effects of taper on bending stresses due to torsion
end also to present experimental verification of the method of
calculation. : ;

The body of this paper is divided into two parts. The first
pert deals entirely with the theoretical development of -the formulas
for tending stresses due to torsion in & tapered box beam. The
general procedure of analysis presented is gimilar to the procedures
presented by Kuhn in reference 1 and by.Ebner in reference 2a In
order to simplify the mathematicel &nalysis a gpeclal taper is
assumed; that is, the sides of the box are assumed to taper linearly
in such a way as to meet at a point.’

The second part of the paper deals with the experimentel
verification of the theoretical formulas. A description of the test
specimen and the test setup is given. Comparisons &are then made of
the calculated and experimental resulte for two independent conditions
of loading. Complete numerical solutions for both loading conditions
are given in the appendix. :

SYMBOLS
A effective flange area, square inches -
AF area of flange angle, square inches
A area of cover stringer, square inches
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E Young's modulus of elasticity, psi
F flange load at any point, pounds
G shear modulus, psi
Ky, Kp, Ko taper constants
L length of flange in individual bay, inches
R taper ratio (~P9L-or wiﬁ_)
n-1 ®n-1
T external torque, inch-pounds
v volume of material, cubic inches
X redundent flange force, pounds
a distance between bulkheads, inches
b width of cover, inches
C depth of spar, inches
s A o warping constants
m designation for general term in serles
n designation for typical dbay
q ghear flow, pounds per inch
e designation of root bay
8 distance in each bay measured along axis in flange, inches
t gheet thickness, inches
W warping deformation, inches
® distence in each bay from outboerd bulkhead measured

along axis, inches

o, angle between flange and center line of cover, radians




b NACA TN No. 1297

Qg angle between flange and center line of spar, radians
(o] normal. flange stress, psi

i shear stress, psi

<Y average velue of shecar stress, psi
Subscripts:

b refers to covers

c refers to spars

al designates inboard end of bay

o degignates outbcard end of bay
Superscripts:

)i designates stresses due to torque

U designates stresses due to dummy unlt loads
X designetes stresses due to X-forces

The subscripts of the redundant flange force X and of
dimensions b end c designate the stations at vhich they exist,
whereas the subscripts for T, w, p, J, and f designate the bay
under ccnsideration. : ;

The bulkheads or stations are denoted by 0, 1, 2,... n-1, n,
n+l,... r, starting from the tip or outboard end and proceeding to
the root or inboard end. (See fig. 1.) The bays are also numbered
from the tip, the tip bay being designated as number one (cee
fig. 1). A bay therefore carries the number of its inboerd bulkhead
or station.
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TEVELOPMENT OF THEORETICAL FORMUTAS

In ectual wing design neither the spanwise variaticn of the
torque nor the cross-sectional dimensions can be represented by
gimple mathematical expressions. In order to simplify the
mathematical calculations the box is divided at the bulkhceds into
a number of bays and the torque 1s assumed constent within each
individuval bay.

A box beam under torsiocn is an indeterminate structure. In
order to make the structure statically determinate, the box is cut
at each bulkhead end redundant flange forces X are applied at
all flanges. These X-forces are axial forces applied at each
flange, as shown in figure 2. Under the action of the torque T
and the flange forces X the box is deformed as shown by the
dashed lines in figure 2. The amount of deformation is calculated
by the use of the principle of virtual work, sometimes knowvn as
the dvmmy-unit-load method. The X-forces are then found by the
application of the principle of consistent deformation of adjacent
bays. ‘

Sign convention. - External torques T are positive when acting
clockwise as viewed from the tip. Shear stresses T are positive
when acting in the direction of shear stresses caused by positive
torque. The X-forces are positive when acting in the directions
shown in the sketch in figure 2. Normal stresses o are positive
when caused by positive X-forces. The warping deformation w is

positive in the direction as shown by the dashed lines in figure 2.

Gencral assumptions.= The cross section of the box is assumed to
be roctanguler and doubly symmetrical. The shape of the cross section
is maintained by the bulkheads, which are assumed to be rigid in
their own planes. In place of the actual structure, the cquivalent
structure shown in figure 2 is used, in which all the area capable
of carrying normal stresses is concentrated in the flanges. The
walls of the equivalent structure are assumed to carry cnly shear
stresses and the flanges, all the normal stresseg. In crder to
allow for the fact that the walls can actually carry normal stresses,
each flange area 1s increased by one-sixth of the area of both a
cover and a spar web. If the covers include stringers, an effective
stringer erea is added to each flange. This effective stringer aree
is that area which, when concentrated at the flange, gives the same
_section modulus about the neutral axis of the cover as the actual
stringers. In the case of equelly spaced stringers the effective
stringer area is simply one-sixth of the total stringer area. The
taper of the box is such that the flanges meet at a point. The
effective flange area is assumed constant within each bay.
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Stresses in an Individual Bay

The formules given hersin are derived for a typicel bay n,
bounded by the bulkheads n-l and n, (fig. 2). The bay is acted

on by three independent sets of loads: a torque Tn on both ends

of the bay, & group of X -forces on the inboard end, and a group

of Xnkl-forces on the outboerd end. Formulas are derived for the

 stresses due to each of these indspendent loads. The final stress
distribution may be obtained by superposing the individual stresses.

Strecses caused by toraue.- The shesr stresses ceused by the
torque acting on a bay are given by the well-kncown formula for
shells in torsion (Bredt's foriaula)

Il

T 1
T I eaiie s o ‘
b~ 2bety g
> 1
i (1)
T = ...-'-J-:‘—r-l‘-.._. ‘
5 ot J

where b 1s the width of the cover and ¢ the depth of the sper
at.some distance x from the outboard end (fig. 3). In the case of
pure torque nc normel etresses are set up in the flange.

Stresses caused by the X-forces.- When a set of X-forces is
applied to the end of the bay, both axial stressges in the flanges
end sheavr stresses in the walls are set up within the bay. Unlike
the cheer stresses for the nontapered box, the shear stresses in tho
tapered box are not constent throughout the bay.

In order to study the distribution of the shear stresses
within the individual walls, & section of a wall is isolated as
shown in figure 3(a). The free btody shown in this figure 1ls e part
of a spar web bounded by two planes cutting the spar Jjust inside
the flanges and by two parallel planes, one just inside the mn-)l Thulk-
head and another pareallel to it end at a distance x from it. The
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loading on the body is also shown in the figure.: By summation of
moments about the point of intersection of the flanges, an expression
is obtained for the shear flow ¢, in the spar in terms of the out-
board shear flow e, -

32
(Cn-l ¥
Tl ) Qe (2a)
and, similarly, 1In the cover
= bn-l :
" —(_E"_) pa Lk

where the notation is the same as thet shown in figure 3(a).

The distribution of the shear flow qox is obtained from an

infinitesimal section of & spar web isolated as shown in figure 3(b).
The free body shown in this figure is a section of the spar web
bounded by two parallel planes an infinitesimal distence dx apart
and by twe planes cutting the spar just inside the flange. From

a summation of moments, the fundamental shear-flow relation in the
spar for a tapered box beam is obtained,

a, = 4 (3a)

end, similarly, in the cover

U = % (3p)

This equation shows that at every point along the box the shear flow
acting on the flange is equal to the shear flow in the walls at
that point.

Tn order to obtain a relationship between the shear forces in
the cover and in the spars, a free body of a cross section of the
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box is considered. Since the teper of the box is such that the
center lines of the flanges meet at a point, the flange loads
contribute no torque end the condition IZT = O gives the equation,

qbbc + qcbc =0

g

qb e (l")

Two exprescions for the flange loads are derived, one for the
X, ~forces and another for the Xn_l-forces. The free body of the

flange in figure 3(c) shows the loading of the flange under Xn-forces

only. A summation of forces along the flange shown in figure 3(c)
gives an expression for the flange load F at any point alcng the
bay:

X fix
ds f ds |
= dx wam =0
F ik qcx 3 ; qu dx (5)
Jo W0
where g8 is a constant depending on the taper of the box. The

ccubination of equations (2) to (5) gives

If the integration is performed with c¢ given as a function
of x by the equation
X
Y
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equation (6) becomes

=]
|

o
% BT =l X 8
def-17e. B (8)

where L 1s the length of the flenge and a is the distance between
bulkheeads.

applied at the outboard end of the bay,

With the forces Xn'l

the flange loads become

c
P =X_ .14 2L q A=l X 9)
n=l Wy B B (
In ordsr to cbtain g, in terms of the X-forcos, the value
o
of F for both Xn-1- and X -forces is calculated for x = a.
For the case of the X, -forces
Cn-
B 81 ©n
or
X
% = Gy SRl (lO)
n~ik n-l 27T,
For the case of the Xn_l-forces
c
o
RS R aat 1
nei qcn-l Cn
or
-
q‘C = -qb = =R .r_l_l‘.. (ll)

Tial -1 2L
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by Cn
where R 1is the taper ratio = = »

bp-1 Cpn-1

By substituting equation (10) in equations (2), (4), and (8) and
equation (11) in equations (2), (4), and (9), a summary of the stresses
in the bay in terms of the X-forces at the end can be made. For
the Xn-forces

c..C - TR i
a, e a0 2 HERR 1)
N 02 211
x :
21,
X b2
o AT Y
=S A TG B R v
and for the .Xn_w-forces
i *
q = = ?_Il(in_';l._ ,}.{.Q.'Z_]:
°x 02 2L
b_b X
O = o7l _g.:}. p (13)
b4 b2 1,
g = .1_;‘. = - SQ.).C_ _n-i
A c a/ A

where A 1is the effective arca of the flange.
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Deformation of an Individual Bay

Principle of calculation.- Under the action of the torque
and groups of X-forces the cross section of the box warps out of
its plens, as shown in figure 2. The magnitude of this warping is
calculated by the method of virtual work. The following three steps
are necessary to obtain the magnitude of the warping. First, the
stresses T and ¢ due to the %pplied loads arc obtained and
second, the stresses TU and o due to a system of dummy loads
are calculated. These dummy loads are unit loads applied at the
point where the deflections are desired end also in the direction
desired. The last step is to obtain the deformation by use of the
equation

noan
! U iy
S = ///9%—»- av + //]'LG“E&V (14)

Ui

where V iz the volume of the stressed material. This equation is

based on the principle that the external work done by the unit force
must equal the internal energy stored by virtue of the existence of

the unit force.

Examination of figure 2 shows that the warping is doubly
antisymmetrical and consequently the dummy loads employed in the
solution are elso doubly antisymmetrical. This group of unit loads
is similar to the group of X-forces and therefore the formulas for
the X-forcee can be used in the calculation of the stresses caused

by durmy loads.

Warping caused by torque.- The stresses caused by the torque
acting on the box are, from formula (1),

¢ =0 !
T
T = o— 5 (15)
b 2vet, il
T = EI_L_
“ 2bet, "
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In order toc obtain the warping in the nth bey at bulkhead n, the
antisymmetrical group of unit loads is applied at the inboard end
of the bay. The stresses caused by these forces are calculated
from formules (12) by placing X = -1. The results are

O'U =" _SI}_ .JS l’ \
e Vg=A
¢ ¥ o Sfaon A % (16)
P 2 By ‘
1+ 9. Pgbny il
o R
bg 2Ltb y

The results for o, T, end T, and for cU, TbU, and TCU

given in equetions (15) emd (16) are now substituted in equation (1k4)
to give .

C

Py ;
+ 2 2 ( PnPn-l —m | Dy iy
0 G 2betp \ 12 2Lty

T '8¢ 3 Tn cntn-1 1
=2 | = = = g, 4X
by Jo G 2bete gr g o S

which yields when integrated

T=______T_n___,.(ab}?a-_l.-ﬂg‘im)l+3 (17)
2R
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In order to obtain the warping due to torsion at bulkhead n-1,
the groups of unit loads are applied at the outboard end of the bay.
Now the stresses due to the dummy loads are calculated from
formula (13) with Xn-1 = 1. The results are as follows:

\
oV =1 (l - 3&;&)
A c 8
U
AR e e e S N (18)
CL.. 2LtC ! ,
T.bU a bnbn'l _:_L_
a
b2 2th )

The stresses due to the torque acting on the bay are those
shown in equation (15). An inspection of the stresses (equations (16)
and (18)) caused by the unit loads gives

2 ¥ JH
W, = = W il
B, ng n | (19)

Warping caused by Xn~forces.- The warping at the inboard end

of the bay caused by the X -forces is obteined by the application
of equation (14) in the form

In TR 7 L
b, = b / 99 5 ds+ 2 / r-bab-wtb a%,
Jo (0]
na, T U ;
19 [ 97e% o4 ay (20)
JO G (e} C

Substitution of the values for the stresses dve tc the unit loads
(equation (16)) and the stresses due to the X -forces (egquation (12))
in equation (20), causes the equation for werping to become

Wni = 9 X (21)
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where.
L I g gl vl 4o : 1‘. e i
= K2 a8 ___b nl+..9 L - +R 22).
RO WX _@_L(L % T ) e (22}
b
and
° s
K, = R -1 .2 10 R (23)

R R

The constant Kl is dependent entirely on the taper ratio for
the individual bays.

As the value of the teper ratio approaches unity, the
expression for X; in equation (23) becomes too sensitive for

practical use. By expanding the logerithm into an infinite series
oft (R =1},

1

it 2
Kl=l+*2~'(R “l) -_‘j—(R-l)

4

+-l—~(R -3
10

1 12

m+
+ (1) -
(m+ 1)(m +2)(m + 3)

® - 1) (24)

This expression can only be used for smell values of R, since the
geries converges only for values of R < 2. The rate of convergence
is very slow, however, after R reaches a value of approximately 1.5.
For values of R <1.5 only four terms of the series are needed to
evaluate K; within ) percent. A greph of numerical velues for K,

from R = 1.00 to R = 3.00 can be seen in figure L.

The warping at the outboard end of the bay ceused by the
X,-forces cen be written in the form

X,

Yoy, i b e o )
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vhere the coefficient Jn is obtained by the application of

equation (lh). By substituting the velues for unit stresses from -
equation (18) and the value for X -strosses from equation (12) into
equation (14) and integrating the result, Jp 1s found to be given by

sk L.l fenPh  BcOn-l JR41 5
’n K26AE+8GL(L o L, % 2 it

where

| oR2 - 2R - (1 +R) R log, R

Fof=. 6 t PR (27)
For_small values of R, again the expanded series Tfor Ké,
K2=l-1%(R-l)2+-f‘6(R-l)3..
i (_i)m+l 6(m - 1) @ - l)m (28)

(m+ 1)(m+2)(m + 3)

is more practical. As for Kl’ the rate of convergence of the

geries makes the expression practical only for the renge from R = 1.00

to R = 1.50. The numerical values for K, are plotted in figure k.
Warping caused by Xn_l-forces.- The warping at the inboard

end of the bay, caused by the X _,-forces, can be shown, by meeans

of Maxwell's law of reciprocal deflection, tc be equal to

X

Bk by
Tay? wedikan (29)

where J, 1is the expression given in equation (26).
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The warping at the outboerd end of the bay 1s derived by
cubstituting the valves of the stresses for wnit loads from
equation (1:8) and the velues of the stresses for the X, .{-forces
from equation (13) into equation (14). Upon integrating the Yesult,
the following expression is obtained: RN R T

'Xn‘-l ;
who = fnxn~l (30)
where
L 1 f&pPn-1, 2 Cp-l Y1+
f =K 6 — + St 2 s e ]
73 1A G, (L t, 1" Y 2 (31)
and.
{R‘o“ - 1)- 2R log_R
K:} o it B 3 (32)
i (R -1 l).J

For small values of R, the expanded series form for X,
3

il AT . (UREIREN S LMY,
K,=1:5@ l)+lO(R W AR WFtdee

s - iy e
(m +2)(m + 3) _

should be used. As was the case for the expressions for. K; and K,
the rate of ccnvergence of the series mekes the expreseion for KQ

J

practical only within the limits of R = 1.00 end R = 1.50.

Comparison of tepered-box formulas with uniform crosg ~section
formulas.~ A comparison of the formulas derived for the tapered
box beams with those Tormulas derived for the nontepered box
by Kuhn in reference 1 can easily be made by obtaining the formulas
for the special case of taper where the taper ratio is unity.
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With this essumption, the following relations hold true

Equation (17) now becomes
“" lT — -—T‘-._.. »P_ - - c
27 Hbe \ty

which is identical with equation (21) of reference 1. Equations (22)
and (31) become ' ;

5 b e
e B w e iR B
Pn D 3BA 8ga (tb tc)

which is identical with equation (23) of reference 1. Equation (26)
becomes

which is identical with equations (27) of reference l.

This comparison shows that all the tapered-box formulas for the
special case of R = 1.0 or uniférm cross section are identical
with those formulas developed in reference 1.

Derivation of a recurrence formula.- The total warping at the
ends of the bay n due to the combined effocts of the three separate
forces T, X,, and X,.; can now be obtained by a summation of all

the ccmponent parts. The equation for the warping et the inboard end of
bay n is given by the sum of equations (19), (21), and (29)

Iy
Vi, =% T PaXy + dnXp-y (34)
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The equaticn for warping at the outboard end of bay n given by
the summation of equations (19), (25), and (30) is

Wy = Wt~ Joll 4 BpXon (35)

The cquation for warping at the outboard end of bay n + 1 18
obtained merely by increasing all subscripts of equation (35) by
one end is et

T

According to the principle of concistent deformation, the
warping at the outboard end of one bay must be equal to the werping
at the inboard end of the adjacent bey. A recurrence formula can
therefore be obtained by equating the warping formulas of two
adjacent bays. By equating the expression for w, in equaticn (34)

: 2l

and the expression for w(n+l) in equation.(36), the general
o) _

recurrence formula becomes

: i . 8 e, v T n
S S ( Casi ¥ Pn X, * Jper¥nel = Yo+l " Vn (

By giving n successive values from n=1 to n=r, a
get of r equations is obtained, each of which ccntains three of
the redundant X-forces. These equations represent the continuity
conditions at stations 1 to r. The tip of the box is usually free
from any restraint, thereby making the force X, at the tip of the

box zero. Therefore, for a box divided into r bays, r redundent
forces and r equations exist. ' ¥ (2] :

Boundery condition.=~ With the tip of the box free from any
restraints and the tip force XO = 0, the first equation of the

gystem is

“\ Lo + P1, X, + Jexe = WQT - wlT (38)
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When a beam is attached to & rigid foundation, the foundation may
be considered a bay r + 1 having infinite shear stiffness and
infinite axial stiffness; therefore,

v = T 0

4], el = dpa1 T
The last equation of the system now becomes

b 7 Begs Bei¥ee, (39)

! Comparison of stresses for bhorxes with verying taper ratio end
‘flange aree.- In order to sihow the effect of taper on the bending:
stresses due to torsion, calculations were made of the flange and
sheet stresses for boxes with varying taper ratio and flange area.
All boxes were 120 inches long and were divided into six bays of
equal length. The root sections of the boxes were identical. The
dimensions for the boxes at the root and tip can be seen in table 1.

In figure 5(2), curves of the flenge stresses are drawn for
the three boxes with constent flange areas and also for the
moderately and highly tapered boxes with a tapered flenge area.

In figure 5(b), curves of the sheet stresses are drawn only for the
three boxes with the tepered flange area.

Figure 5(a) shows that the flange stresses for the case of the
moderately tapered box (curves C and D) are only slightly greater
than those of the nontapered box (curve E). Examination of the root
flange stresses for all cases shows that the increase in these
stresges for en increase in tapsr is very small; the root flange
stress for the highly tapered box is approximately 10 percent above
that of the nontapered box. Since, as in the nontepered box, the
flange stresses for the box with moderate taper decrease very rapidly,
the only appreciable flenge stresses occur in the vicinity of the root.
As the taper becomes greater, however, the flenge stresses along the
total span increcse. Inspection of curves A and B shows that
the flange stresses at a peint 20 inches from the tip are approxi-
mately one-third of the maximum flange stresses at the root.
Consequently, for the box beam with moderate taper the bending stresses
due tc torsion in the outboard end ars negligible as comparsd with
the stresses near the root, whereas in the highly tapered box the
flange stresscs do become appreciable. A similar conclusion for the
sheet stresses can be reached by the inspection of figure 5(b).
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Compericon of curves A and B and curves C and D in
figure 5(a) shows the effect of a variation of flange area along
the span on the flange stresses. The maximm effect appears near
the tip of the box where the flange stress for the box with tapered-
flange areas is approximately 20 percent higher then the flange
stress in the box with constant flange area.

Two sets of calculations for the root stresses were mede for
a moderately tapered box vnder a distributed torque loading. The
distribution of the torque wes such that the increment of torque
in each bay was proportional to the chord of the bay at the inboard
end. The method presented herein is used for the firet calculation
which was an exact solution of the root stresses. The second
calculation was made on the assumption that the box consisted only of
the root bay with the total torque acting on the outboard end. The
result of these calculations showed that the root stresses calculated
by means of the exact method were approximately 10 percent greater
than the root stresses calculated by the approximate method. Similar
results were cbserved for a calculation of the stresses in the highly
tapered box under a similer distribution of torque. When only the
approximate value of the stresses at the root is required, a satis-
factory answer cen be cbtained by assuming that the box consists only
of the root bay and that the total torque is concentrated at the
outboard end of that bay.

In both sets of calculations with the distributed torque, the
flange stresses near the tip of all the boxes irere approximately of
the same order of megnitude as those of the moderately tepered box
with tip loading shown in figure 5(a).

EXPERIMENTAL VERIFICATION OF FORMUTAS

Test specimens.- In order to obtain experimental verification
of ‘the formulas derived herein, a large tapered box beem was
constructed and tested. The box was made symmetrical about the midspan
and was supported there by a rigid frame as shown in figure 5.
Becauss of this setup, complete restraint agsinst warping at the
root, which is the midspan of the box, was assured. ZEqual torques
were applied at the tips end later at the querter points of the span.

The material uced for the box wes 24S-T alumimm alloy and the
general dimensions of the specimen are shown in figure 7. The
thicknesses of the covers end the spar webs and the sizes of the
flanges, stiffeners, and stringers ere also shown in figure T.
Genoral dimensions and stringer spacing of voth the root and
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tip sections are shown in figure 8, along with the dimensions for
the equivalent substitute sections. The dimensions of the box
vary linearly from the tip to the root, whereas the thicknesses
of the sheets and sizes of the flanges and stringers are constant
for the whole box. Although the flenge area of the simplified
structure varies linearly from the tip to the rcot, due to the
addition of one-sixth the area of the cover and spar web, an
average flange area in each bay is used in the calculations. In
order to assure that the bulkheads were rigid for all practical

purposes, the bulkheads were made of formed-%—inch steel plate.

Test setup.=- The general test setup is shown in figure 6.
The box beam was connected to the center tower by means of four
steel flexure plates, one on each side of the box. In order to
reduce the end effects as much as possible, the box was connected

to the flexure plates at the root by closely spaced i-inch bolts.

This type of connection permits the torque reaction to be distributed
as a uniform shear flow around the perimeter of the box. Figure 6
shows the loading arrangment at the tips of the box. The same
method of loading was used when the tests were run with loads at

the quarter-gpan points.

Test procedure.~ Strain surveys were made for both loadings
with 2-inch Tuckerman optical strain gages. Shear-strain measurements
were taken around the perimeter of the box at sections near the

center line of each bay, and also at sections 1% inches on either

gide of bulkheads 4 and 5. The shear-strain measurements across

any cross section consisted in measurements made between the
stringers and between the flange and adjacent stringer on the covers
and three equally spaced measurements in the spar web. The shear
stresses were obtained from strain readings at 450 and 1350 from the
axie of the structure. The normal strains were measured along each

flange at approximately 3-inch intervals starting at hé inches from
the root. |

For each test run, strain-gage readings were taken at zero
torque end after each of four equal increments of 75,000 inch-pounds
of torque. The load was then released and another zero reading was
teken. If the two sets of zero readings did not agree within 100 psi,
& new test run was maede. The strain readings for each gage were then
plotted ageinst torque and the best straight line was drawn through
the points. If the line did not intersect the origin, a parallel line
was drawn through the origin. If, however, the new line was displaced
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from the original line by more than a strain equivelent to 200 psi,
& new set of readings was taken. The values of strain were then
obtained from this new parallel line.

Test results.=- In converting the results obtained from the
strein surveys to stresses, Young's modulus was teken as 10,600 ksi
and the shear modulus es h 000 ksi.

The obgerved shear stress of & cover or a spar at any section
i1s the average of the shear stresses obtained for the two opposite
covers or spars at that section. Figure 9 shows that the distribution
of the shear stresses across the covers and spars is constant
throughout the section, except for the part cf the skin between
the flange and the adjacent stringer. These plots substentiate in
part the original assumption of uniform shear stresses over the
cross section.

The observed fleange stress at any section is the average of
the flange stresses obtained for the four flanges at that section.
In figure 10 & plot of the stringer stresces at a cross section
in beys 5 and 6 is shown. Strain readings were taken on each
stringer on the leg adjacent to the cover. The cross section in
bays 5 and 6 were chcsen because the norual stresses were the largest
in those beys. Figure 10 shows that the chordwise distribution of
the stringer stresses in the cover is approximately linear; thereby
the use of the theoretical equivalent-area coefficlent of one-sixth
appeers to be Jjustified.

Comparison of test results with theoretical curves.=- A comparison
of the observed and calculeted shear flow and normal flange stresses
for both loading conditions can be seen in figures 11 to 14. The
stresses were calculated as shown in the appendix by means of the
formulas presented in this paper.

Exemination of figures 11 and 12 shows very good agreement
between the observed end calculated shear-stress valves. .The only
point in the tip loading condition (fig. 11) that does not fall
on the calculated curve within the accuracy of the Tuckermsn gage
readings is a point on the gpar 7.5 inches from the tip, which is
epproximetely 5 percent greater then the corresponding cealculated
value. This deviation from the calculated curve is probably caused
by the fact that the section at which this measurement is taken is
neer the tip of the box where the load is being applied.

Examination of figures 13 end .14 shows good agreement between
the experimental and calculated values of the axlal loads in ‘the
flange due to torsion. For both loading conditions, the observed
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values in bays 5 and 6, vhich include the most critical loads (the
loads at the root of the box), agree within the accurecy of the
Tuckermen gage reading. The cobserved values in bays 3 and 4 compare
favorably with the calculated velues for the tip-loading condition.
For the gquarter-point loading condition, however, the observed
values for the test pointe in the vicinity of bullhead 3 are
slightly greater than the calculated values for the same points.
This deviation from the calculated values can be explained by the
uncertainty of the conditions at the point of loading. The extent
to which the loading fixture restrains the flanges from warping

and the fact that the torque applied to the box through the spar
webe needs an appreciable distance to be distributed are only the
obvious reasons for deviations to occur in the wvicinity of the
loading bulkheads. Also for these reasons, no ettempt was made

to evaluate the stresses in the tip bay for the tip loading condition.

The values of the experimental stresses in figures 13 and lh,
taken within 5 inches of bulkheads 1 and 2, are somewhat greater
than the calculated values. This deviation may be explained in
part by local bending of the flange. The flange acts as a
continuous beem supported by en elastic foundation and loaded at
each bulkhead. The bending moment in this beam is the greatest
at the bulkheads where the deviation of the observed values from the
calculated values are the greatest.

CONCLUDING REMARKS

The agreement that was obtained between the experimental
bending stresses due to torsion in & tapered box beam and the
calculated values indicates that the method presented can be used
to obtain the bending-stress distribution in a tapered box beam
under torsion.

For boxes with very small teper the flange stresses in the
outboard half of the box are very small. In these boxes a first
approximation of the bending stresses due to torsion can be made
by using the properties of the tapered box at the root, by
considering the box nontapered, and then using the method of
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analysis described by Paul Kuhn in his paper on bending stresses

due to torsion (NACA ARR, Dec. 1942). For more accurate calculations
- of the bending stresses due to torsion in a tapered box, however, the
method presented herein should be used.

Langley Memorial Aeronsutical Laboratory
National Advisory Committee for Aeronautics
- Langley Field, Va., February 13, 1947
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APTENDIX
SOLUTION OF STRESS DISTRIBUTION IN TAPERED BOX BEAM

In order to give en illustration of the method, a complete
solution of the shear and normal stress distribution in the
tapered box used as a test specimen is given.

The actuel cver-all dimensione of the specimen are given in
figure 7. The dimensions at the root and tip cross sections are
given in figure 8, together with the dimensions for the equivalent
structure. The effective flange area is obtained from the
equation

-

s 14 i
” = 1 1 _
A AF pazrt by + Z bty + 7 ct, (A1)

g

where AF is the area of & flange angle and A 18 the area

of & cover stringer. The effective flange areas are agsumed to

be concentrated at the points of intersection of the center lines

of the cover sheets and spar webs. All properties of the equivalent
box taper linearly from tip to root. The box is divided into

six bays. The gecmctrical properties for the inboard and outboard
end of each bay are listed in table 2..

The velues of E and G used in these calculations are,
respectively, 10,600 ksi end 4,000 ksi. For the first loading
condition, a torqus of 100,000 inch-pounds 1s applied to the tip
of the box and for the second loeding conditicn & torque of
100,000 inch-pounds is applied toc the middle bulkhead of the box.

The werping constents p, J, end f, calculated by meens
of the equations (22), (26), and (31), end the warping due to
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in the following teable.
at tip of box.
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Warping constants
Bay -
Pn dn fn Yin
1 1.610 % 10 °|0.829 x 107811561 x 1078 6439 x 3§ 3
2 1.581 S5Th el 5848
3 1.647 684 1.585 527k
L 1.714 JTok 1.660 4803
5 1.785 .904 1.739 L4100
6 1.857 11.011 1.817 4083

T celculated by the use of equation (L7), are tebulated

The tabulated wn values are for the load

For a box with six bays, the recurrence formuls (equation (37))
end the equations for the boundary conditions (equations (38) and (39))
give the following six equations.

- (pl + fe)Xl % JoXs = WQT s
T (p2 * f3)X2 v I3¥3 = sl - vt
. (p3 + 1) )X3 + 3%, =T - vt
dy¥g (ph + £y )xu + kg = W5T - T
3Ky, - (p5 + f6)X5 + Jgkg = gt - ws"
T

de¥s = P6

Xg

= -y
Wo

VA

(42)
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From substitution of the values from the preceding table into the
formulas of equation (A2), the following set of simultaneous equations
is obtained for the first tip loading condition.:

l |

X Xo X3 Xy, X Xg ooy g
-3.121 | 0.574 =391
574 | =3.166 | 0.68k4 -57h
684 {-3.307 | C.794 ~L71
V9% | =3.453 1 0.90k4 *393
.90k | -3.602| 1.011| =327
1.011] -1.857| -4083

The solution of these equations gives

X, = 244 X) = 437
X, = 292 Xg = 965
X3 = 307 Xg = 2724

These values give the flange loads at each bulkhead.
obtain the distribution of the flange loads between
the formula

- it °n x
¥ olom® (Xn Xn-l) c a

obtained from a summation of equations (12) and (13)

In order to
‘the bulkheads,

(A3)

is used.

For calculation of the distribution of the shear flow along

the span of the box, the formulas

= .Eg.?g_i .__:_L. (X - X ) + ..._T.._
ch 02 o1, n n=l 2be

and

> (ab)
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obtained from a summation of equations (1), (12), end (13) are used.
A tebulation of the flange loads and shear flows can be seen in
teble 3.

For the quarter-point loading condition the values for the
varping constants p, J, and f are the same as those for the
tip loading condition. Also the values for th are the same except

in bays 1, 2, and 3 where th is zero. The formulas (A2) can still

be used for this loading condition. By substituting the appropriate
velues in equation (A2), the following set of simultaneous equations
is obtained for the quarter-point loading condition:

Xl X2 X3 Xh— XS XLS er_‘_l = Wn
-3.121| 0.574 0
574 | -3.166 | 0.68k4 0
684 | -3.307 | 0.794 4803
794 | -3.453 | 0.90k =393
.G0Lk |=3.602 | 1.011 -327
1.011 |-1.857| ~h083

The solution of these equaticns gives

Xy = =63 X), = =21

Xp = =343 Xy = 829

X = "l 28 x = 26 O
3 5 6 5

Again, by the use of the equations (A3) and (AL) the distribution
of the flange loads end shear flows was cbtained along the span.
The tabulations of these flange loads and shear flows are shown
in table L.
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TABLE 1

ROOT AND TIP DIMENSIONS OF BOX BEAMS

y

te

b c A A
Section (in.) | (4n.) | (in.) | (in.) | (Constent) | (Tapered)
(sq in.) (sq in.)
Root 50.000 | 10.000 | 0.064 | 0.072 1.000 1.000
Tip: :
Highly %
tapered 20.000 4.000 | .064 072 1.000 .200
Moderately
tapered 35.000 7.000 | .064 .0T2 1.000 .200
Nontapered | 50.000 | 10.000 | .06k 072 1.000 .200

NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS
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TABLE 2

GEOMETRICAL PROPERTIES OF BAYS IN TAPERED BOX BEAM

a Cc

Bay | (in.)| (in.)

1 | 15.0 |15.050
2 20.0 {20.067
3 | 20.0 |20.067
4 | 20.0 |20.067
5 20.0 |20.067

6 20.0 |20.067

e 5 1 ["n-l1 S f P | Pn | % % A
(in.) | (1n.) |(4n.) | (in.) | (4n.) | (4n.) [(in.) | (in.) (s%ain.) R Kl K, K3
15.000 | 15.050 |5.869 | 6.416 | 26.132 | 28.602|0.0700 0.0629 | 0.935 1.093(1.045 [0.998 [0.955
20.003 | 20.071(6.416 | 7.146 | 28.602 | 31.896| .0700 | .0629 972 1.11k4 1.05% | .997 | .946
20.003 | 20.071|7.146 | 7.875 | 31.896 | 35.190| .0700 | .0629 | 1.015 1.1021.050 | .998 | .950
20.003 | 20.071|7.875 | 8.605 | 35.190 | 38.484| .0700 | .0629 | 1.059 1.093/1.045 | .998 | .955
20.003 | 20.071/8.605 | 9.334 | 38.484 | k1.778| .0T00 .0629 | 1.101 1.085(1.0%0 | .998 | .960
20.003 | 20.071[9.334 [10.064 | 41.778 | 45.0T2 'OTOOi L0629 | 1.145 1.078{1.037 | .999 | .963

"Avera.go of effective areas at inboard and outboerd ends of bay.

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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TABLE 3
CALCULATED NORMAL AND SHEAR STRESSES IN

TAFPERED BOX BEAM FOR LOAD AT TIP

[T = 100,000 in.-1b]

32

Distance | F o % % %

Bay fr<(>x:111ni':§p (1b) (psi) (1b/in.) (psi) (1b/in.) (psi)
o 0 ] 33k.9 4780 3171 5040
1 10 167 178 296.7 42kho 280.9 Lh70
15 24 257 279.9 Looo 265.1 4210
15 24 257 273.8 3910 2712 4310
2 25 269 277 245.0 3500 242.6 3860
35 292 294 220.4 3150 218.2 3470
35 292 29k 219.7 3140 218.9 3480
3 5 300 296 198.9 2840 198.1 3150
55 307 296 1807 258 185.1 2860
55 307 296 183.9 2630 176.9 2810
L 65 375 354 167.9 2400 161.5 2570
5 437 Los 154.0 2200 148.0 2350
75 437 405 165.3 2360 136.7 2170
5 & 712 647 152.0 2170 125.8 2000
95 965 859 140.3 2000 136.1 1850
95 965 859 175.3 2500 81.1 1290
6 105 1878 1640 162.3 2320 75.1 1190
115 272k 2336 150.8 2150 69.6 1110

NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS
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TABLE L4

CALCULATED NORMAL AND SHEAR STRESSES IN TAFERED BOX

BEAM FOR LOAD AT QUARTER POINT OF SPAN

Bay ﬁzﬁ:; F g 9 Te ap Ty
(in.) (1p) (pei) (1v/4in) (psi) (1v/in.) (psi)
T=0

0 0 0 2.3 =30 2.3 40

1 10 =43 -46 2.0 -30 2.0 30
15 -63 -66 -1.9 =30 1.9 30

15 -63 -66 -7.8 -110 7.8 120

2 25 211 =217 -6.9 -100 6.9 110
3D =343 =345 6.3 =90 6.3 100

35 =343 | =345 -32.5 -L60 2.5 520

3 45 -965 -951 29.4 =420 29.4 470
55 -1528 | =1473 -26.8 -380 26.8 430

T = 100,000 in.-1b

55 -1528 | -1473 221.5 3160 139.3 2210

L 65 -740 -699 202.1 2890 12743 2020
75 21 -19 185.4 2650 116.6 1850

75 21 -19 17k.0 2Lho0 128.0 2030

5 8 k21 38 160.0 2290 117.8 1870
95 829 738 147.8 2110 108.6 1730

%5 829 738 177.0 2530 79 .4 1260

6 105 177k 1549 163.9 2340 73.5 1170
115 2650 2273 152.3 218 68.1 1080

NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS
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Fig. 2
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A —High taper, tapered flange area
B —High taper, constant flange area
2400 C— Moderate taper, tapered flange area /
D — Moderate taper, constant flange area /
E —No taper, constant flange area
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(a) Flange stresses.

Figure 5— Comparison of stresses in boxes with varying taper.
T=100,000 inch-pounds.
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(b) Equivalent root and tip cross sections.
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Figure 9—Distribution of shear stresses over cross section. T=100,000 inch-pounds.
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Figure 10— Distribution of stringer stresses over Cross section. T=100,000 inch-pounds.
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Figurc 11— Comparison of experimental and calculated shear flows for tip loading condition.
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Figure 13.— Comparison of experimental dnd calculated flange loads for tip loading condition.
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Figure 14.— Comparison of experimental and calculated flange loads for quarter- point

loading condition, T=100000 inch-pounds,




