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NATIONAL ADVISORY COMMITTEE FOR AERONA urICS 

TECBNICAL NOTE NO. 1297 

BENDING STRESSES DUE TO TORSION 

IN A TAPERED BOX BEAM 

By Edwin T. Kruszewski 

SLJMMARY 

A methed is presented for the ce.lculation of bending stresses 

due to torsion i n a tapered box beam. A special taper was assumed 

in >.,hich all flange s , if ext~nded, would meet at a poInt . The general 

procedure of analysis given is similar to the procedure for a non­

tapered beam presented by Paul Kuhn in his paper fA Method of 

Calculating Bending stresses Due to Torsion, " NACA ARB Dec. 1942. 

RAcurrElUce formu.las developed for use in this calculation are 

included. A com}ari son was made of flange and sheet s tresses in 

boxes wi th va::.~ying taper, including a nontapered box. 

The re sults obta ined by this method I·rere compared with experi­

mental data obtained fr om tests performed on a tapered box beam. 

The box beam ,vas tes ted under two independent cono.i tiona of loading: 

first, a concentrated torque at the tip and later, a concentra ted 

torque at the quarter point of the span. The experimental results 

obtained from thcse tests showed good agreement 'Y-ri th the calculated 

results. Calculations for the test specimen for the two loading 

condi tions are also ShOlffi. 

INTRODUCTION 

The basic load-carryins structure of many aircraft wings is a 

box of approximately rectangular cross section consisting of the 

fr~nt and rear spars and the top and bottom skins of the wing. This 

box is s tressed by both bending and t orsional loads . Only the 

torsional loads are discussed in the :9resent paper. 

The determination of the stress distribution in a box under 

torsion is a relatively simple problem provided that the cross 

section of the box 1s not constrained i n any manner against warping. 
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In this ca.se the well-known Bredt formula. for t.hin-walled torsion 
tubes is applicable. If some restraint is offered to warping, 
how' ever , a set of secondary stresses is introduced in the box. 
Because the resuJtants of these secondary stresses are actually 
bending moments in t:':le planes of the \.,alls and are accompanied by 
the shear forces necessary to cause spanwise vari ation of the 
l)ending moments .. these stresses are usually referred to as bending 
stresses due to torsion. 

A method for the calculation of these bending stresses is 
presented in refe rence 1. In order to simplify the calculation, 
Kuhn utiHzes an assumption that the cross-sectional dimensions 
and the torques are constant within each bay of the box and gives 
the solution only for boxes in which the sides are parallel. 
Actual wings, however, are usually tapered both in depth and in 
width. The present work is intended to furnish a theoretical 
solution of the effects of taper on bending stresses due to torsion 
and also to :9resent experimental verification of the method of 
calculation. 

The body of this paper is divided into two parts . The first 
part deals entirely vTi th the theoretical development of ·the formulas 
for bending stresses due to torSion in a tapered box beam. The 
general procedure of analysis presented is similar to the procedures 
presented by Kllhn in reference · 1 and by . Ebner in . reference 2. In 
ord.er to simplify the ·mathematical .analysis a special taper is 
assumed; that is, the sides of the box are assumed to taper linearly 
in such a vay as to meet at a point . . 

The second. part of the pa.per· deals with the experimental 
verification of the theoretical formulas. A descrj.ption of the test 
specimen and the test setup is given. Comparisons are then made of 
the calculated and experimental results for tw'o independent conditions 
of loading. Complete numerical solutions for both loading condttions 
are given in the appendix . 

SYHBOLS 

A effective flange area, square inches 

AF area of flange angle, s~uare inches 

AS area of cover str inger, square inches 
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E YO'lmg's modulus of elasticity, psi 

F flange load at any point, pounds 

G shear modulus, psi 

taper constants 

L length of f1ru1ge in individual bay , inches 

R taper ratio 

T external torque , inch -pounds 

V volume of material, cubic inches 

X redundant flance force, pounds 

a distance betvreen bulkheads, inches 

b wid.t~l of cover, inches 

c depth of spar, inches 

f, j, p varping constants 

m deSignation for genera l term in series 

n deSignation for typical bay 

q shear flo,,!, pounds per inch 

r deSignation of root bay 

s distru1ce in each bay measured along axis in flange, inches 

t sheet thickness, inches 

w warping deformation) inches 

x distance in each bay from outboard bulkhead measured 
along aXis , inches 

angle between flrulge and center line of cover, radians 
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o'c angle betvreen flange and center line of spar, r adians 

a normal fJ.ange stress, psi 

T shear stress, psi 

T average value of shear stress, psi av 

Subscripts : 

b refers to covers 

c refers to spars 

i designates inboard end of bay 

o designates outboard end of bay 

Superscripts : 

T designates stree'"'es due to t orque 

U des ignates stresses d),l.e to dummy un:l.t loads 

X designates stresses due to X-forces 

The subscripts of the redtmdant flange force X and of 
dimensions b and c desi nate the stations at which they exist, 
'Whereas the subscripts for T, w, P, j, and f designate t he bay 
under consideration . 

The bulkheads or stations are denoted by 0, l, 2, • . . n -l, n, 
n+l, .. . r, starting from the tip or outboard end and proceeding to 
the root or inboard end . (See fig . 1 .) The bays are also numbered 
from the tip, the tip bay being designated as number one (see 
fig. 1). A bay therefor e carr ies the number of its inboerd bulkhead 
or station . 
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DEVELDPMENT OF TBEORETICAL FORMUT.J\S 

In actual ,.,ing design neither the spanwise variat:Lcn of the 
torque nor the cross -sectional dimensions can be represented by 
simple mathematical expressions. In order to simplify the 
mathematical calculations the box is divided at the bulkheads into 
a number of bays EUld the torque is assumed constant i-Ti thin each 
individual bay . 

A box beam under torsion is an indeterminate structure. In 
order to make the structure statically determinate, the box is cut 
at each bulkhead end redundant flange forces X are applied at 
all flanges . These X-forces a~e axial forces applied at each 
f lange, as shown in figure 2. Uno.er the actien of t.he torClue T 
and the flange f orces X the box is deformed as shmm by the 
dashed lines in figure 2. Tho amOQDt of deformation is calculated 
by the use of the pr:!.nciplo. of virtual w·ork, sometimes knO'Yffi as 
the dummy --wnit-load method . The X-forces ar e then found by the 
application of the principle of consistent deformation of adjacent 
bays. 

5 

Si~ cQ~D~i oll ' - External torques T are positive when acting 
cloclC\dse as vie,.,ed ... 1'01:1 the tip . Shear stresses Tare posi ti ve 
when acting in the direction of shear s tresses caused by positive 
torque. The X-forces are positive when acting in the directions 
shown in the sketch in figure 2 . Normal stressec (J are positive 
when caused by pOFlitive X-forces. The warping deformation i'T is 
posi ti ve in the di rection as shm·m bj' the dashed lines in figure 2. 

Gelli,?x.al ~1pt:i oll§... - The cros s section of th box is assumed to 
be r ectangular and doubly symmetrical . The shape of the cross section 
is maintained by the bulkheads., which arc;; assvmed to be rigid in 
their mID planes. In place of the actual structure, the equivalent 
structure shown in figure 2 i n used in which all the area" capable 
of carrying normal stresses is concentrated in the flan es. The 
walls of the equivalent structvxe are assumed to carry only shear 
stresse"s and the flmges, all the normal stresses. In crder to 
allow for the fact that the walls can actually carry normal stresses, 
each flange area is i ncreased by one -sixth of the area of both a 
cover and a spar 'veb. If the covers include stringers , an eff8cti ve 
stringer ar ea is added to each flange. This effective stringer area 
is that area which, when concentrated at the flange , gives the same 
section mod.ulus about the neutral axj.s of the cover as the actual 
stringers. In the case of equally spaced stringer s the effective 
stringer area is s imply one -s ixth of the total strinGer area . The 
taper of the box is such that the flanges meet at a point. The 
effecti ve flange area is assumed constant 'vi thin each bay. 
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Stresses in an Indivi dual Bay 

The formulas given herein are d.sri ved for a 
bounded by the bulkheads n-l and n , (fig . 2). 
on by three independent sets of 10llds: a torqne 
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typi cal bay n, 
The bay is act~d 
Tn on both ends 

of the ba~,-, a grouD of Xn -for ces on the inboard end, and a gr oup 

of X I-forces on the outboard end . Formu~a8 are dorived for the n-
stresses due to each of these independent loads . The final stres s 
distribution may be obtained by s uper posing the lndividual ,strB8ses. 

s t re sseR cnused by tor~lUe. - Tile shea.r stre~ses ce.used by the 
torque acting on a . bay are given by the well -knowll formula for 
shells in tOl's:Lon (Bred.t I S foriClu.la ) 

Tn 1 
T - ~---- I b 2bctb I 

I 
"-
./ , 

T =-~ i 
c 2bctc j 

(1) 

where b is thd .lidth of the cover and c t he depth of the apar 
at · some distance x from the outboa.rd end (fig, 3). In the cuse of 
pure torq~e no norme.l stresses are set up in the flange. 

Stress~s caused ~the X-forces .- vfuen a set of X-ferces is 
applied to t he end of the bay , both axial stresE'es in the flanges 
and shear stresses in the .;a11s are set up wi thin the bay . Unlike 
the shear s t res ses for the n ontapered box, the s hear str esses in tho 
tapered box are r.ot constant throughout the bay . 

I n or der to st.udy the distribution of the shear stresses 
withtn the individual walls, a se ction of a viall is isolated as 
shoWn in figure 3 (a). The free body shown in th1s figure is a part 
of a spar 'veb b ounded OJ' two pl nes cutUng the spur just inside 
the flanges and cy two pa::::allel planes, one Just in"'ide the n-). '\:\1.!lk­
head and another parallel to it and at a di stance x from it. The 
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loading on the body is also shown in the figure. - By summation of 
moments about the point of intersection of the flanGes, an expression 
is obtained for the ehesr flo 'r qc in the spar in terlns of the out­
board shear flow qc n -l 

( )

2 
cn-l 

q - -- Q 
C - c -cn-l (2a) 

and, similarly, ill the cover 

(2b) 

where the notation is the same as that sho.m in figvxe 3(a). 

The distribution of the shear f i m" 'lox is obtained from an 

infini tesimal section of a spar web isolated as shmffi in figure 3(b). 
The free body shmm in this figure i s a section of the spar web 
bounded by two parallel planes an infinitesimal distance dx apart 
and by two plrules cutting the spar just inside the flange. From 
a summaticn of moments, the fundamental shear-flow relation in the 
spar for a tapered box beam is obtained, 

and, similarly, in the cover 

(3b ) 

This equation shm"s that at every point along the box tho shear flow 
acting on the flange is equal to the shear flm-r in the .ralls at 
that point. 

In order to obtain a relationship between the shear forces in 
the cover and in the spars, a f ree body of a cross section of the 
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box is considered. Since the taper of the box is such that the 
ceuter lines of the fJanses meet at a paint, the flange loads 
contribute no tor Clue and the condition ZT = 0 gives the eCluation, 

or 

(4) 

Two expressions for the f lange loads are derived, one for the 
Xn-forces and another for the Xn -l -for ces . The free body of the 

flango in figure 3(c ) shows the l oading of the flange under X -forces n 
only . A sUi.DInation of forces along the flange shm·;n in figure 3 (c) 
gives an expression or the flange load F at an point along the 
bay: 

where 
ds 

F 

I\x 

ds ! 
dx ! 

uO 

ds 
1'1 dx+ -­
':1.c dx x 

dx = 0 

is a constant depending on the taper of the box . 

ccmbination of eCluations (2) to (5) gives 

ds 
Clc n-1 dx Ix 1 

- dx 
c2 

If the integration is performed vii th c given as a function 
of x by the equation 

The 

(6) 

- ---------
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e~uation (6) becomes 

cn-l x F = 2L q .. _-- - --
cn-l c a 

(8) 

where L is t he length of the flange and a is the distance between 
bullc....1-J.eads . 

1,Ti th the f or ces Xn -1 applied a t the outboard end of the bay, 
the f lange loads become 

In order to ob t ain q 
'n-l 

in terms of the X-forces, the value 

of F for both X - and X -forces n-l n 
is calculated for 

For the case of the Xn-for ces 

or 

For the case of the 

or 

X -forces 
n-l 

cn - l o ;::: X 1 + 2 q - - -- L 
n- cn - l cn 

Xn -1 ;::: -R ---
2L 

x ;::: a. 

(10 ) 

(11) 
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1-There R is the taper ratio = __ bn ~ . = 
bn -1 
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By substituting equation (10) in equations (2), (4), and (8) and 
equation (11) in equations (2), (4), and (9), a summary of tho stresses 
in the bay in terms· of the X -forces ·a t the end can oe made. For 
the X -forces 

n 

and for the . X 1 -forces 
n~_ 

o 0 X _ n n-l n 
~ - - ._--- --_. 

x 02 21. 

F en x 
a = - = 

A c a 

X 
. .2!.. 
A 

= _ cncn -1 ~n.-l 
c2 2L 

boX 
::: ~n-l 3-1 

02 2L 

where A 18 the effective are;;a of the flange. 

I · 

(12 ) 

1 
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Deformation of an Individual Bay 

Prin~iple of~~lcuJ.ation .- Under the action of t he torque 
and groups of X-forces the cross section of the box 'Harps out of 
its plane J as sho,:VIl in figure 2. The magni tude of this warping is 
cal culated by the method of virtual work. The follovTing three steps 
are neces"'ary to obta~.n the magnitude of the warping . First, t he 
stresses T and CJ due to the 1jPplied loads ar o obtained and 
second, the stres ses TU and CJ due to a system of dummy loads 
are calculated. 'rhese dummy loads are unit loads applied at the 
point .. There the deflections are desired and also in t he direction 
desired. The last step is to obtain the def ormation by use of the 
equation 

~w = fl.l a~U dV + J.JI T: dV 

where V is the volume of the stressed materia l. 
based on the principle that the external work done 
must equal the internal energy s tored by virtue of 
t.ho unit force . 

(14) 

Thi s equation is 
by the tmi t f orce 
the existence of 

Examination of figure 2 shows that t he war pins is doubly 
antisymmetrical and consequently the dummy loads eDl})J.oyed in the 
solution are also doubly antisymrnetr ical. This Cr oup of u-l1it loads 
is s imtlar to the group of X-forc es and ther efore the f or mulas for 
the X-forces can be used i n t he calculation of the stresses caused 
by dummy loads . 

"TaIpinA~used by :torguEi. ·- The str esses caused by the torque 
act:i.ng on the box are, from for mula (1 ) , 

0 
l 

cr :: 

I 
Tn I 

T .......... (15 ) :: ./" b 2bc\ 

J T :: ~-
C 2bctc 
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In order to obta.in the warping in the nth bay at bullmead n, the 
a.ntis;ynrrnetrlca1 group of unj.-t. loads is applied at the inboard end 
of the bay. The stresses caused ty these forces are calculated 
from formulas (12) by placing X = -1. The results are n . 

U 
T 

C 

U 
T = 
b 

cn x 1 
---. 
c a A 

1 

2Lt c 

.bnbn -1 _1_ 

b2 2L~ 

./ 
I 

(16) 

11he result'" for (J, Tb , end TC and for aU, Tb U, and T cU 

given in equatIons (15) and (16) are now substituted ln equation (14) 
to give 

which ;yields when integr ted 
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In order to obtain the warping due to torsion at bulkhead n-1, 
the groups of unit loads are applied at the outboard end of the bay. 
Now the stresses due to the ' dummy loads ,are calcula ted from 
formula (13) with Xn -1 = 1. The results are as follows: 

U 1 ( _ c," _ x) 
(j = A 1 ~.± 8. 

U 
T 

C 

r 
I 

) 

The stresseo due to the torque acting on the bay are those 

(18) 

shown in equation (15). An inspection of the stresses (equations (16) 
and (18)) caused by the unit loads gives 

T T = wn 
i 

= iYn 

Warping caused by X -forces . - The warping at the inboard end 
n 

of the bay caused by the Xn -forces is obta ined by the application 

of equation (14) in the form 

l
~ rJ u 

= 4 S!JL. Ad s + 2 
Jo E 

(20 ) 

Substitution of the values for the stresses due t o the uni t loads 
(equation (16 )) and the stresses due to the Xu-forces (equation (12)) 
in eq'ua tion (20) J causes the equation for i·rarpinG to become 

Xn 
'''n. = -p X J. n n (21) 
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where " , ,: 

and 

3R
2 . (R2 -1 _ 2 log R) 

(R - 1)3 R e 

The constant Kl is depend,ent entirely on the taper ratio for 
the individual bays. 

As the value of the taper ratio approaches unity, the 
expression for Kl in equation (23) be comes too sensitive for 
practical use. By expanding the logarithm into an infinite series 
of (R - 1), 

Kl = 1 + ~ (R .. 1) -..:!:. (R - 1)2 + l(R - 1)3 .... 
2 5 10 

m+l 
+ (-1) 

12 m 
-----'----- (R - 1) 
(m + l)(m + 2)(m + 3) 

(24 ) 

This expression can only be used for small values of R, since the , 
series converges only for values of R < 2. The rate of convergence 
is very slov', however, after R reaches a value of approximately 1 .5. 
For values of R < 1.5 only four terms of the series are needed to 
evaluate Kl within 1 percent . A graph of numerical values for Kl 
from R = 1.00 to R = 3.00 can be seen in ~igure 4. 

The vrarping at the outboard end of the bay caused by the 
Xn-forces can be written in the form 

=: -j X n n 
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",here the coeffiCient jn is obtained by the application of 
equation (14). By substi tutjng the values for unit stresses from '. 
equation (18) and the value for X -strosses from equation (12) into 
equation (14) and integrating thenresult, jn is found to be given by 

where 

For small values of 

~ = 1 

R, again 

-2R-(1+R)R 

. (R - 1)3 

the expanded series 

? 

-l 1)2 +-.1 (R - (R - 1).J 
10 10 

( )m+l + -1 
6(m - 1) 

(m + 1)(m+2)(m+ 

f or ~, 

(R - 1) 
m 

3) 

is more practical. As for K
l

, the rate of convergence of the 

(26) 

(28) 

series makes the expression practical only for the range from R = 1.00 
to R = 1·50. The numerical values for K2 are plotted in figure 4. 

Warping caused by Xn_l-forces.- The warping at the inboard 

end of the bay, caused by the Xn_l-forces, can be shown, by means 

of Maxwell's law of reciprocal deflection, to be equal to 

w 
n~ 

..L 

where jn is the expression given in equation (26). 
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The 'N8.!ping at the outboard end. of the bay is derived by 
substi tuting the values of the stresses for l.mi t loads ' f~om 
equation (18) and the values of the stresses for the X "-forces . 'n-l 
from equation (13) into equation (14). Upon integratlng the result 
the follOldng expression is obtained: : '. , ".; , 

Xn-l 
.Tn :: f X 1 o n n- (30) 

where 

(31) 

and, 

For small values of R, the expanded series f orm for K
3

, 

1 
~ 1) + .2 _ 1)2 1 - 1)3 . .. K = 1 - - (R (R -"5" (B 3 2 10 

m 6 m 
+( -1) - '-' -- (F - 1) 

(m + 2) (m + 3) 

should' be used. As was the case for the expressions for . Kl and K2, 
the rate of convergence of the series makes the expression for K3 

practical only within the limits of R = 1.00 and R = 1 .50. 

Comparison of tapered-box formv~as wIth uniform cross-sAction 
form~as.- A comparison of the formulas derived for the tapered 
box beams with those formulas der1 Ved for tho nonte.pered box· 
by Kuhn in reference 1 can easily be made by obtail1in '" the formulas 
for the special case of tap6r ,,,here the taper ratio is unity. 
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"Ti th this assumption, the following ' relations hold true 

a =8.. =a =L b , c . 

Equation. (17) no.r becomes 

which is identical with equation (21) .of reference 1. Equations (22) 
and (31) become 

.Thich is identlcal with equation (23) of reference 1. Equation (26) 
becomes 

which is identical with equations (27) of refer ence 1. 

This comparison s11mrs that all the tapered -box formulas f or the 
special case of R = 1.0 or tmif orm cross section are identical 
with those formulas developed in refe r ence 1. 

Deri va tion of a r ecurrence formula . - The total ivar ping at the 
ends of the bay n due to the combined eff octs of the three se?arate 
forces TJ Xn ) and Xn -l can now be obtained by a summation of all 

• the component parts. The equation for the warping at the inboard end of 
bay n is given by the sum of equations (19), (21)) and (29) 

(34) 
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The equatien for warping at the outboard end of bay n given by 
the summation of equations (19), (25), and (30 ) is 

The oquation for warping at the outboard end of bay ' n + 1 is 
obtained merely by increasing all subscripts of equation (35) by 
one 8,nd is 

, ' 

According to the principle of cons istent deforrr~tion, the 

(36) 

warping at the outboard end of one bay must be equal to the ,,,arping 
at the inboard end of the adjacent bay . A recurrence formula can 
therefore be obtained by 9quatinv, the warping formulas of two 
adjacent bays. By equating the expression for 1-ln. in equation (34) 

l 

and the expression for w(n+l)o in equation (36), the gener~l 

reCUl~rence formula becomes 

' T 
::: '''n+l 

By giving n successive values from n = 1 to n = r, a 
set of r equations is obtained~ each of which contains three of 
the redundant X-forces. These equations represent the continuity 
conditions at stations 1 to r. The tip of the bo:~ is, 'usually free 
from any restrain.t, thereby. making the force Xo at the tip of the 
box zero. Therefore, for a box divided into r , baY$, r redundant 
forces and r equations exist. 

, J3 oundarLf.2Ddi tion .. - vli th the tip, of the box free f:rom any 
restraints and the tip force X = 0, the first equation of the o 
system is 

(38) 
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~~en a beam is attached to a rigid fOlmdation, the foundation may 
be considered a bay r + 1 having infinite shear stiffness and 
infinite axial stiffnessj therefore, 

The l as t equation of the system no~ becomes 

19 

Q.Q:mpariso!L.Qf strelill..~S fQL .1?Ql~fLwith yaryin.c; t@.~r ratio and 
fla~~. - In order to shmv. the effec t of t aper on the bending' 
stresses due to torsion, calculations were made of the f lange and 
sheet stresses for boxes v;i th varyi ng taper ratio ani flange area. 
All -Doxes vTere 120 inches l ong and were divided into s ix bays of 
equal length. The root sections of the boxes were identical . The 
dimen sions for the boxes at the root and tip can be seen in table 1. 

In figure 5 (a ) , curves of the flange stresses are dra.m for 
the three boxes wi th constant f lange areas and als o or the 
moderately and hi ghly tapered boxes with a tapered flange area. 
In figure 5 (b), CUl~ve s of the sheet stresses are drawn only for the 
three boxes ivi t h the tapered flange area. 

Figure 5(a ) shows that the flange s t resses f or the case of the 
moder ately tapered box (curves C and D) are only slightly gr eater 
than those of the nontapered box (curve E). Exam.i.na tion of the root 
flange stresses for all cases shows that the increase in these 
stresRes for an i ncrease in taper is ver~T smallj the root flange 
stress for the highly tapered box is approxi mately 10 percent above 
that of the nontapered box . ~ince, as in the nonta.pered box, the 
flange str esses for the box with moc.era te t a:!?er decrease very r apJdly, 
the only appreciable f lange s tresses occur in the vicinity of the root. 
As the taper becomes greater .. however , the :flange s tresses along the 
total span increase. I nspecti on of curves A and B shows that 
the flange stresses at a point 20 inches from the tip are approxi ­
mately one-third of the maximum flange stresses at t.he root. 
Conseq,uently, for the box beaffi wi. th moderate taper t he bending stresses 
due to torsion in the outboard end are negligible as compared ,vi th 
the ·s tresses near t he root, 'vhereas in the highly tapered box the 
flange s tresses do become .appreciable. A similar conclus i on for the 
sheet stresses can be reached by the inspection of fi gure 5(b). 
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Comparis on of curves A and B and curves C and D in 
fisure 5(a ) shows the effect of a vaTj a t jon of flange area along 
the span on the flange str esses . The maximlm effect appears near 
the tip of the box "There the f l&nge stres s for the box wi th t apered­
flange areas is approximately 20 per cent higher than the flange 
stress in the box ,dth cons tant flan3e area . 

Two sets of calculatjons for the root stresses were made for 
a moderately t apered box under a distributed t or que loading . The 
d.istributiol1 of the t orque was such that the increment of torque 
in each bay was proport ional to the chord of the bay at the inboard 
end. The method presented her ein is used for the first calcula tion 
which was an exact solution of the r oot stTesses . The second 
cal culation was made on the assumption t hat the box consisted only of 
the r oot bay with the total torgue acting on the outboard end . The 
result of these calculations showed that the r oot stresses calculated 
by means of the exact method "Ter e 8.ppr oximately 10 per cent gr eat er 
than the root stresses calc~.1lated by the approximate method. Similar 
results ,.,ere observed for a calculation of the stresses in the highly 
tapered box un1er a similer distri ution of torque . -ylhen only the 
approxtmate value of the stresses at t he root is requir ed, a satis ­
factory answer can be obtained by assuming that the box consists only 
of the root bay and that the total torque is concentrated a t the 
outboard end of that bay . 

In both sets of calculations 1,ri th the distributed t or que , the 
flange stresses near ' the tip of all the boxes wer e apIJroximat ely of 
the same order of magnitude as those of the moder ately tapered box 
with t ip loading shmm in figure 5 (a ) . 

EXPERIMENTt.L VERIFICATION OF FOPJvf(JLAS 

Test specimens . - In order to obtaln experimental verification 
of the f ormulas derived herein , a lar ge tapered box beam was 
constructed and tested . The box was made symmetrical about the midspan 
and was supported. there by a rigid frame as shown in figure 6 . 
Becaus'3 of this set up , complete restraint agains t "rarping at the 
r oot, whi ch is the midsFan of the box, was assured . Equal torques 
were applied at the tips and. later a t the que-,r ter points of the span . 

'I'he material used f or t he box was 2tfS -T aluminum alloy and the 
general dimensions of t he sFecimen ar e shown in figure 7. The 
thicknesses of t he covers and the spar vrebs and the s izes of the 
flanges , stiffeners , and str ingers are also ShOvITl in fi gure 7· 
Genoral dimensions and stTinger spacing of both the root and 



NACA TN No. 1297 

ttp sections are shown in figure 8, along with the dimensions for 
the equivalent substitute sections. The dimensions of the box 
vary linearly from the tip to the root, whereas the thicknesses 
of the sheets and sizes of the flanges and stringers are constant 
for the whole box. Al though the flange area' of the simplified 
structure varies linearly from the tip to the root, due to the 
addition of one-sixth the area of the cover and spar web, an 
average flange area in each bay is used in the calculations. In 
order to assure that the bulkheads were rigid for all practical 

purposes, the bulkheads were made of formed ~'-inch steel plate. 

Test setill2.' - The general test setup 1s shmm in figure 6. 
The box beam ,.,as connected to the center to"ler by means of four 
steel flexure plates, one on each side of the box. In order to 
reduce the end effects as much as pOSSible, the box ,,,as connected 
to the flexure plates at the root by closely spaced t-inch bolts. 

21 

This type of connection permits the torque reaction to be distributed 
as a uniform shear flow around the peri meter of the box. Figure 6 
shows the loading arrangment at the tiPB of the box. The same 
method of loading was used when the tests ,,,ere run ui th loads at 
the quarter-span points. 

Test procedure.- Strain surveys were made for both loadings 
with 2-inch Tuckerman optical strain gages. Shear-strain measurements 
were taken around the perimeter of the box at sections near the 

cen ter line of each bay, ano. also at se ctions l~ inches on ei ther 

side of bUlkhead.s 4 and 5. The shear-strain measurements across 
any cross section consisted in measurements made bet,'reen the 
stringers and between the flange and adjacent stri nger on the covers 
and three equally spaced measurements in the spar ",eb. The shear 
stresses ,'lere obtained from strain readIngs at 450 and 1350 from the 
axis of the structure. The normal strains were measured along each 

flange at approximately 3-inch intervals starting at 4~ inches from 

the root. 

For each test run, strain-gage readings were taken at zero 
torque and after each of four equal increments of .75, 000 inch-pounds 
of torg.ue. The load .TaS then released and another zero reading was 
taken. If the two sets of zero readings did not agree within 100 psi, 
a new test run was made. The strain readings for each gage 'fere then 
plotted against torq,ue and the best straight line ",as drawn through 
the points. If the line did not intersect the origin, a parallel line 
was drawn through the origin. If, ho,,,ever, the ne,'; lino was displaced 
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from the original line by more than a strain equivalent to 200 pSi, 
a new set of read.ings was taken. The values of strain were then 
obtained from tIds new parallel line. 

Test.~ts.- In converting the results obtained from the 
streirl surveys to stresses, Young's modulus was taken as 10,600 . Itsi 
and the shear modulus as 4,000 ksi. 

The observed shear stress of a cover or a spar at any section 
is the average of the shear stresses obtained for the two opposite 
covers or spars at that section. Figure 9 shoHS t,hat the distribution 
of the shear stresses across the covers and spars is constant 
throughout the section, except for the part of the skin betvleen 
the flange and the adjacent 8tringer. These plots substantiate in 
part the original assumption of uniform shear stresses over the 
cross section . 

The obser~ed flange stress at any section is the average of 
the flange stres8es obtained for the four flanges at that section. 
In figure 10 a plot of the stringer stresses at a cross section 
in bays 5 and 6 is sho~~ . Strain readin3s were taken on each ' 
stringer on the leg adjacent to the cover. . 'llhe cross section ' in 
bays 5 and 6 were chosen because the normal stresses vTere the largest 
in those bays. Figure 10 show? that tbe chordwise distribution of 
the stringer stresses in the cover is e.PJ?l~oxilnate.lY linear; thereby 
the use of the theoretical equivalent-area coefficient of one -sixth 
appears to be justified. 

Comparison of test results vTi th theoretical curves. - A comparison 
of the observed and calcula.ted shear flow and normal flange stresses 
for both loading conditions can be seen in figures 11 to 14. The 
stresses "Tere calculated as shown in the appendix b.y raeans of the 
formulas presented in this paper. 

Examination of figures 11 and 12 shows very 'good agreement 
between the observed and calculated shear-stress values. The only 
point in the tip loading condition (fig. 11) that does not fall 
on the calculated curve within the accuracy of the Tuckerman gage 
readings is a point on the spar 7.5 .inches from the tip) which is 
approximately 5 percent greater then the corresponding calculated 
value. This deviation from the calculated curve 18 pr obably caused 
by the fact that the 'section at '."hich this measurement is taken j.s 
near the tip of the box where the ioad is being applied . 

Examination of fi gures 13 and .14 shows good aGreement between 
the experimental and calculated values of the axial loads in the 
flange due to torsion. For both loading conditions) the observed .[ 
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values in bays 5 and 6, .,hich include the most critical loads (the 
loads at the root of the box), agree within the accuracy of the 
Tuckerman gage reading. The observed. values in bays 3 and ~. compare 
favorably with the calculated v lues for the tip-loading condition. 
For the Cluarter -point loading condition, hm'lever, the observed 
values for the test points in the vicinity of bulldlead 3 are 
slightly greater than the calculated values for the seme points. 
This deviation from the calculated values can be explained by the 
uncertainty of the conditions at the point of loading. The extent 
to which the loading fixture restrains the flanges from warping 
and the fact that the tor Clue applied to the box through the spar 
.. rebs needs an appreciable distance to be distributed are only the 
obvious r easons for deviations to occur in the vicj.ni ty of the 
loading bulkheads. Also for these reas ons, no attempt was made 
to evaluate the stresses in the tip bay for the tJp loading condition. 

The values of the experimental stresses in figures 13 and 14, 
taken ,.,i thin 5 inches of bulkheads 1 and 2, are somel.hat greater 
than the calculated values. This deViation may be expla ined in 
part by local bending of the flange . The :flange acts as a 
continuous beam supported by an elastic foundation and loaded at 
each bulkhead. The bending moment in this berun i s the greatest 
at the bulkheads where the deviation of the obs erved values from the 
calculated values are the greatest. 

CONCLUDING REMARKS 

The agreement that \<I'as obtained between the experimental 
bending stresses due to torsion in a tapere~ box bee~ and the 
calculated values indicates that the method presen'ced can be used 
to obtain the bending-otress distribution in a ta~ered box beam 
under torsion. 

For boxes with very small taper the flange stresses in the 
outboard half of the box B.re very small . In these boxes a firot 
approximation of the bend:Lng stresses due to torsion can be made 
by using the properties of the tapered box at the root, by 
considering the box non tapered, and then using the method of 
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analysis described by Paul Kulm in his paper on bending stresses 
due to torsion (NACA ARB, Dec. 1942). For more accurate calculations 

- of the bending s tresses due to torsion in a tapered box, however, the 
method presented herein should be used. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committae for Aeronautics 

- Langley Field., Va., February 13, 194-7 
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API'ENDIX 

SOLillIOH OF STRESS DISTRIBUTION IN TAPERED BOX BEAM 

In order to give an illustration of the method, a complete 
solution of the shear and normal stress distribution in the 
tapered box used. aa a test spec1men is given. 

The actual over-all dimensiono of the specimen are given in 
figure. 7. The dimensions at the root and t i p cros s sections are 
given in fignre 8, tOGether with the dimensions for the equivalent 
structure. The effective flange area is obtained from the 
equation 

1 1 J 
A = A + =- E A + -6 btc + -' ct 

F 6 S 0 6 c 
(Al) 

where AF is the area of a flange angle and AS is the erea 

of a cover stringer. The eff.ecti ve flange areas are assumed to 
be concentrated at the pojnts of intersecti0n of the center lines 
of the cover sheets and spar webs. All properties of the equivalent 
box taper linear l y from tip to root . The box is divided into 
six bays. The geometrical properties for the inboard and outboard 
end of e'ach bay are listed in table 2 . . 

The values of E and G used in these calcula.tions are , 
respectively, 10 , 600 ksi and 4 , 000 ks i . For the first loading 
condition, a torque of 100, 000 inch -pounds is applied to the tip 
of the box and for the second loading cono.itj,on a torque of 
100,000 inch-pounds is applied to the middle bulkhead of the box. 

The "Tarping constants p, j, and f, calculated. by means 
of the equations (22) , (26), and (31) , a.Tld the warping due to 
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torsion wn
T, calculated by the use of equation (17), are tabulated 

in the following table. The tabulated w T values are for the load 
n 

at tip of box. 

i 
I Ivarping cons tan ts 
I 

Bay I 
I 

- -.-

I T 
Pn jn fn wn 

-6 -61 /' -6 - 0 
6439 x 1 1.610 x 10 0 .829 x 10 11 .564 x 10 10 

2 1.581 I ·574 11.511 5848 

3 1.647 . 681j. 11 .585 5274 

4 1·714 I ·794 11.660 1~803 

5 1.785 ·904 1·739 4410 

6 1. 857 1.011 1.817 4083 
-

For a box with six bays, the recurrence formula (equation (37)) 
and the equations for t he boundary conditions (equations (3 8) and (39)) 
give the fo11mring six equations . 

- (Pl + f2) Xl ~ j2X2 
T - iV1T l ::; w2 

\ T - '.T2T J2X1 - (P2 + f 3 ) X2 + J3X3 = IV3 

I 
j3X2 - (P3 + f4 )X3 + j4X4 = y,T4T - w T "- (A2) 3 r" 
J4X3 - (p4 + f5 )X4 + J5X

5 
_ w T T i - HI - 5 L{. 

I 

J5X4 - (P5 + f 6 ) x5 + J6X6 = 'iT /,T - "'5
T I 

0 I 
j6X5 - P6 X6 = -vT/,T J 

0 '" 
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From substitution of the values from the preceding table into the 
formulas of equation (A2) , the following set of simultaneous equations 
is obtained for the first tip loading condition; 

Xl I X2 x3 x4 x5 x6 wn+l - wn 
-

I · 
0·574 -3·121 I I 0.684 

-591 
·574 -3·166 -574 

.68!~ ,-3 ·307 0. 7941 -471 
·794 -3 ·453 0·904 -393 

·904 I -3·602 1.011 -327 
I 1.011 -1.857 .. 1~083 
I 

The solution of these equations gives 

Xl == 244 X4 == 437 

X2 =292 X5 = 965 

X3 == 307 X6 = 2724 

These values give the flange loads a t each bulkhead . In order to 
obtain the distribution of the flange loads betw'een -the bulkheads, 
the formula 

obtained from a summation of equations (12) and (13) is used. 

For calculation of the distribution of the shear flow along 
the span of the box, the formulas 

qc _ cncn-l 1 (X 
- Xn-l) 

T 

L +--- ---- -- n 2bc x c2 2L 

and 

c c 
2£ (Xn - Xn -l ) 

T 

J <lb - - .n n-1 + --
x 

c2 2bc 

(A3 ) 

(A4) 
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obtained from a summation of equations (1), (12), and (13) are used. 
A :tabulation of tho fl~nge loads and shea.r flows can be seen in 
table 3. 

]'or the quarter-point . loading condition the values for the 
,~arping constants p, J, and f a.re the same as those for the . 
tlp loading condition. Also the values for . wn

T are the same except 
in bays 1, 2, and 3 where wnT is zero. The formulas (A2) can still 

be used for this loading condition. By substituting the appropriate 
values in eCluation (A2) the following set of simu~taneous equations 
is obtained for the Cluarter-point loading condition: 

1 [X5 I 
---, 

Xl X2 X3 X4 X6 '''n+1 - wn 
I -~ --

-3·121 0·574 
I 

0 
·574 -3·166 0.684 0 

.684 -3 ·307 0.794 4803 
.794 -3·453 0·904 -393 

I 
·904 -3·602 1.011 -327 

1.011 -1. 857 .. 11.083 
I 

'Ihe solution of these equations gives 

Xl ::: -63 x4 ::: -21 

X2 :: -343 X5 == 829 

X :: -1528 X6 ::: 2650 
3 

Again, by the use of the equations (A3) and (A4) the distribution . 
of the flange loads and shear flows was obtained along the span . 
The tabulations of these flange loads and shear flows are shown 
in table 4. 
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Section 

Root 

Tip: 
Highly 
tapered 

Moderately 
tapered 

Nontapered 

TABLE 1 

ROOT AND TIP DIMENSIONS OF BOX BEAM3 

b c 
(in. ) (in. ) 

50.000 10.000 

20.000 4.000 

35·000 7·000 

50.000 10.000 

~ to A A 
(in. ) (in. ) (Constant) (Tapered) 

(sq in.) (eq in.) 

0.064 0~0'"{2 1.000 1.000 . 
.064 .072 1.000 .200 

.064 .0'"{2 1.000 .200 

.064 .0'"{2 1.000 .200 
~------ - - -------- --

NATIONAL ADVISORY 
CO~TrnE FOR AERONAUTICS 

~ o 
~ 

I-j 
~ 

~ . 
~ 
C\.? 
(() 
--.;:J 

~ 
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TABIE 2 

GEOMETRICAL PROPERTIES OF BAYS IN TAPERED BOX BEAM 

a ac ~ L cn-1 cn bn -1 bn 
Bay (in. ) (in. ) (in. ) (in. ) (in. ) (in. ) (in. ) (in. ) 

1 15.0 15·050 15·000 15~05b 5·869 6.416 26.132 28.602 

2 20.0 20.067 20.003 20.071 6.416 7·146 28.602 31. &;6 

3 20.0 20.067 20.003 20.071 7·146 7.875 31.&;6 35·190 

4 20.0 20-.067 20.003 20.071 7·875 8.605 35·190 38.484 

5 20.0 20.067 20.003 20.071 8.605 9-334 38.484 41.778 

6 20.0 20.067 20.003 20.071 9·334 10.064 41.778 45·072 

aAve~ of effective areas at inboard and outboard ends of bay. 

tc ~ 
(in. ) (in. ) 

0.0700 0.0629 

.0700 .0629 

.0700 .0629 

.0700 .0629 

.0700 .0629 

.0700 .0629 

A 
Ceq in.) R K1 ~ (a) 

E) .935 1.093 1.045 0.998 

~972 1.114 1.054 ·997 

1.015 1.102 1.050 .998 

1.059 1.093 1.045 .998 

1.101 1.085 1.040 .998 

1..145 1.078 1.037 ·999 

lIA'l'IONAL ADVISORY 
OOl>lUTTEE FOR AEROIiAUUCS 
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0·955 

·946 
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·955 
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·960 
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·963 
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N 
<:D 
~ 



NACA TN No. 1297 

Distance 
Bay from tip 

(in. ) 

0 

1 10 

15 

15 

2 25 

35 

35 

3 45 

55 

55 

4 65 

75 

75 

5 &.5 

95 

95 

6 105 

115 

TABIE 3 

CALCULATED NORMAL AND SHEAR STRESSES IN 

TAPERED BOX BEAM FOR LOAD AT TIP 

[T = 100,000 in.-lb] 

F a 
qc 1: 

(lb) (psi) (lb/in. ) (psi) 

0 0 334·9 47Cb 

167 178 296·7 4240 

244 257 279·9 4000 

244 257 273. 8 3910 

269 277 245·0 3500 

292 294 220.4 3150 

292 294 219.7 3140 

300 296 198.9 2840 

307 296 1Cb·7 25eo 

307 296 183.9 2630 

375 354 167·9 2400 

437 405 154.0 2200 

437 405 165·3 2360 

712 647 152 .0 2170 

965 859 140·3 2000 

965 859 175·3 2500 

1878 1640 162·3 2320 

2724 2336 150. 8 2150 

qb 
(lb/in. ) 

3'17·1 

2Cb·9 

265·1 

271.2 

242.6 

218.2 

218·9 

198.1 

leo.l 

176·9 

161·5 

148.0 

136·7 

125. 8 

116.1 

81.1 

75·1 

69·6 

NATIONAL ADVISORY 
COl+1ITTEE FOR AERONAUTICS 

32 

'tb 
(psi) 

5040 

4470 

4210 

4310 

3860 

3470 

34Cb 

3150 

2860 

2810 

2570 

2350 

2170 

2000 

1850 

1290 

1190 

1110 
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Bay 

1 

2 

3 

4 

5 

6 
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TABLE 4 

CALCULATED NORMAL AND SHEAR STRESSES IN TAPERED BOX 

Distance 
from tip 

(in. ) 

0 

10 

15 

15 

25 

35 

35 

45 

55 

55 

65 

75 

75 

85 

95 

95 

105 

115 

BEAM FOB LOAD AT QUARTER POINT OF SPAN 

F 
(lb) 

0 

-43 

-63 

-63 

-211 

-343 

-343 

-965 

-1528 

-1528 

-740 

-21 

-21 

421 

829 

829 

1774 

2650 

(1 qc l:'c qb 'rb 
(pei) (lb/in.) (1)s l ) (lb/in. ) (psi) 

T = 0 

0 -2·3 -30 2·3 40 

-46 -2.0 -30 2.0 30 

-66 -1.9 -30 1.9 30 

-66 -7. 8 -liO 7. 8 120 

-217 -6·9 -100 6·9 110 

-345 -6· 3 '"90 6.3 100 

-345 -32·5 -460 32·5 520 

-951 -29. 4 -420 29 ·4 470 

-1473 -26.8 -3&:1 26.8 430 

T = 100 ,000 tn.-lb 

-1473 221.5 

-699 202.1 

-19 185·4 

-19 174.0 

·3~ 160.0 

738 147. 8 

738 177·0 

1549 163·9 

2273 152·3 

3160 139·3 2210 

2&)0 127·3 2020 

2650 116.6 1850 

249J 128.0 20 30 

2290 117. 8 1870 

2110 108.6 1730 

2530 79·4 1260 

2340 73·5 1170 

21&:1 68.1 10&:1 

NATIONAL ADVISORY 
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(a) Free-body sketch of section of spar web. 
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Fig. 3 

(b) Infinitesimal section of spar web. (c) Free-hody skelch of flange. 

FICJurc 3.-rre e-borj j Sk(;IChcs 0f cnmponent pa rts of spar. 
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Figure 5- Comparison of stresses in boxes with varymg taper. 

T = 100,000 inch-pounds. 
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Figure 10.- Distribution of stringer stresses over cross section . T=IOO,OOO inch-pounds. 
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