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‘NATIONALADVISORY COMMITTEE FOR

. .-:

AERONAUTICS

TECHNICAL NOTE NO. 1170
..

ON SUBSONIC COMPRESSIBLE FLOWS BY A ME!l?HODOF CORRESPONDENCE

I- METHODS FOR”OBTAINING SUBSONIC CIRCULATORY COMPRESSIBLE FLOWS

ABOUT TWO-DIMENSIONAIJBODIES

By Abe Gelbart

By meem of the general soluticme of the hodograph equations for
compressible fluids, certain solutions corresponding to solutions of the
hodograph equations of an incompressible fluid are used to find flow
patterns of compressible fluids. When the adiabatic equation of state

* Is used, only a general method 1s outlined.

The method appears to lead to the solution ~f the problem of SU>
. sonic flows with circulation around arbitrary bodies, as the methd of

Theodorsen does for incompressible fLuid8. A seco~-paper, part 11,
illustrates the method for some given bodies. For the linearized equa-
tion of state, the results obtained include some of the results of Von
K&&n and Tsien, as well as some of the recent results of Bers. The
method can be used for flows with circulation as.well as without circu-
lation.

IIVTRODUCTION

It is well lmown that the nonkear compressible-flow equations in
the physical plane can be reduced to linear equations which have the
form of generalized Cauchy-Riemann equations by the change of the inde-
pendent variables in the physical p- to the independent variables of
the hodograph plane. The successful technique applied to the solution
of the incompressible-flowproblems ar~und given bodies was achieved
only lecause the theory of analytic functions had been developed pre-
viously. It would, therefore, be suspected .thatsimilar results for the
theory of compressible flulds could be obt@ned if there were develop6d
a theory corresponding to the theory of analytic functions for the gekR
eralized Cauchy-Riemann equations representing the flow of a compressible
fluid in the hodograyh plsae,
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of such a theory has been partly achieved by the theory
functions (references1 and 2). This theory has not
perfection that the theory of analytic functimm has.

Howeverjthe Z&og~tic T@or series and the Z-moriogenic4La@ace
transforms may be partly able to overcome the weaknesses of this method.
Some,e#qrts iq this cl$rectionare being made @ t4is paper.

Even with the ccmplqte theory of Z-monogenic functions cme of the
chief drawbacks of the approach lies in the difficulty of transforming
the solutions from the hodogra~h p- to the physical plane.

The method of the theory of correspondence has been very briefly
outlined in reference 3. The procedure is to obtain the flow of an in-
compressible fluid aroud some given closed body, to transform the ccmk-
plex potential of the flow to the hodograph, and then to obtain the
particular &monogenic function of the infinite set of solutions which
possesseq the desired properties.

It &y seem, at f’irst,that this technique is too general to be of
practical use, but there alrea@y exist some i,nterestlngreeulte of the
application of this method. Furthemnore, this technique ie cert~iri$y
not new. It has been used with much success by ChaplyginJ Ton Karman,
Ts2en, Berggan, Bere, agd others. (See references 4 to 12.) However,
much is believed to be new in the specific use of this method when
employing Z-monogenic functions. When the method is applied directly
to that of a source anda sink of an incompressible fluid, the method
yielde,a soume,~da,s~ of a compressible fluid. .. ~

It itithe-aim of this paper to elaborate on the correspondence
method in a general way and to apply it in particular to the flow of a
compressible fluid under the linearized equation of state. It should
be mentioned that this method has already been applied, under the as-
sumption of the linearized equation of state, by others, notably by
Chaplygin, von K&man, Teien, enl Mrs..,

By dealing with the method in all its generality, a fozmula is o>
tained involving a arbitrary analytic function. By choosing particular
values of this arbitrary ft.uictiori,of whioh thederivative is regular in

the exterior of are@on hcliidtng the origin, the particular formulas
of Tsien (reference6) and Bers”(reference8) are obtained. Once the
arbitrary arialyticfunction is deteti”ned for a given flow, vel.ooities,
stagnatiotipoints,’and”so forth, c’anbe readily computed. In a second
paper by Bartnoff @ Gelbart (reference13), some flowe aiouxid given
bodies am calculated. --,.

This investigationwas carried out at Syracuse University under
the sponsorship and with the f@cial assistance of the National
Advisory Committee for Aeronautics. This report was submitted lnJuly

r

,
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&945. The author wishes to express his themke to Mr. Bartnoff for the
valuable assistance rendered in the preparation of this report and to
Syracuse University for technical assistance and cooperation.

SYMBOLS

constants

pressure

density

velocity

particular values of the quantities

subscriyt referring

horizontal velocity

vertical velocity

angle that velocity

to the state of the fluid at rest.

vector makes with horizontal

velocity of undisturbed stream

distorted velocity

velocity of sound

complex variable in

complex variable in

complex variable in

Mach n.umber (q/a)

potential.fu.ncticms

streem functions

distorted hodograph plane

hodograph plane

physical ylane

complex potential (q + iv)

complex variable in auxllkry plane

ratio of specific heats

—

.-

.—— ..-
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constant depending on velocity of undisturbed stresm

~= (, .JIT7L)
%

G(c) complex potential C& an incorupreseible

r circulation of an inccxzguwjsiblefluid

T an analytic function of the velocity q

~(n),ifi(n)
generalized complex powers

Q(n),Q*(n) generalized real puwer~

\

.

c
n)v

E

C,c+

B,B*

‘z

()

generalized differentiation

generalized multiplication

binomial coefficients

generalized

generalized

generalized

generalized

complex exponential functian

fluid in auxiliary plane

real cosine function

real sine function

Laplace trensform

complex conjugate of ( )

absolute value symbol

COMPREHIBLE FLOWS UNDER TEE

THE ADIABAT2C EQUATION

ASSUMPI’IONOF

OF STATE

*

.

The four basic relations for the potential flow of a steady tw~
dimensional fluid that will be assumed are:

Equation of date, 1?= kp~ (1)

where
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P pret38ure

P daneity

Y ratio of the specific heats

k constant

Bernoullits equation,

●

2JP

‘I!hecontinuity equation,

aivr)%=0
o

and the circulation equation (for irrotational
4

curl (~ = 0,

The velocity of sound is given by

fluids),

—

From equation (5) the Bernoulli equation cen be written in the form

5

(2)

(3)

(4)

——

(i

(6)

which often is more convenient. From these assumptions on the fluid,
the first two equations give rise to t~e ~elations fdr density, pressure,
the velocity of so~d, ~a so fofih, in te~ of the velocity only. The
third and fourth equations give rice to the g’quationsof motion of the
flow*

●

The subscript zero on the variables”
the particular value of the variable at a

* assumed throughout that

P} Pj ma a wi~ indicate
stagnation point. It will be
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P*

This is equivalent to introducing
and ci/ao*

=a o =1

the dlmenelonlea~ variables P/PO

(7) ‘

From equations (1) and (2), with the aid of equation (7), the fol-
lowing well.-&mwn relations are established:

a2 * ao2 - {(7 - 1)/2 ]@ (8)

(P=PO l-u+ 7-1 .
2 ao2)

(J

= ( lif -&
P. 1+~—

a2)

7 -1.—

2

1

)&=
2

a.

( 7 ‘1~ 7kL
)

-—
=Pol+—

2 ~2

~wM2=--—
p dq

= q2/(ao2-7~> q2)

(9)

(lo)

(U)

These quantities are all given in terms of the single variable q.

From the basic relations (3) and (4),and the fact that the flow 16
potential, there exist two functions q, the potential functim, and $,
the stream function, that satisfy the equations

(12)

#
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where the subscripts
variables indicated.

indicate partial
The independent

differentiationwith respect to the
variables x and y are the coor-

dinates in the physical plane of the position of the particle of the
fluid. System (12) represents the flow of a compressible fluid.

Let u and v be the horizontal and the vertical velocities, re-
spectively, of a particle of the fluid at a point (x,y). Then

u= q Cos e

v= q$ine
}

where q is the magnitude of the velocity ~, and
makes with the x-axis.

From the physical definitions of
stream function ~, it follows that

dq=udx

the potential

i-vdy

d~ = –pvdx+pudy

Since dcp, =cpxdx+cpydy and d~=~xdx+wy KY,
obtained directly by comparing these equations-with
(15).

From equations (14) and (15) it follows that

dq-ti~d~=uti+vdy+ i(–VdX+U@)
P

= (u-iv) (dx+idy)

= qe-i’ dz

where z = x + iy. Thus it f~llows that

ie

(dz=~dq+
q

(13)

0 the angle that T

function q and the

,,

(14)

(15)

system (12) can be

equations (14) and

(16)

●

In the hodograph, the coordinates are the -p@ar,coordi~tqs 1%6).
Equation (16) is in thenature of a transformation from the hodograph

. coordinates of the flow to the physica~ coordinates (%Y) ●
lt iS this

fact that makes equation (16) of fundamental importance for the approach
uses in this paper.



8

Upon eliminating first one and then the
functions, q and $, from equations (3.2),
differential.equations

(f%).+(%),=

MICA

other of the two
the second-order

o

(3’+- (*%),=o
are obtained

From equation (14) it is deduced that

80 that p is a function
are therefore nonlinear.
previous investigators to

t

TliNO. 1170

.

unknown
yartial

(17)

(m)

(19)

of the unlmown p. Zquatiorm (17) and (18)
It is ~recisely this condition that has led
trensform the fluw equations from the indepencl- ~

ant variables (x~y) In the physical plane to the Independent variables
(q,~) tithe more geometrically corq?licatedhodogaph plane. As will be
shown, these gecmmtric complications can be circumvented after the lln- ,

earlzed equations in the hodograph variables are used to advantage.

The flow equations in the hodograph variables have been derived
from equations (12) by many previous writers. For the cwdseof complete-
ness, however, an outline of a derivation will be presented here. (See
reference 10.)

Equation (16) is first differentiated with respect to 0:

and then with respect to q:

Equation (20) is differentiatedwith respect to q:

(20)

(21)

.

.

.
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and equation (21) is differentiated with respect to

+ ~ :i8 azq +
q (a6aq

Since the left-hand sides of equations (22) and (23)
lows that

e:

i
1 a=v.— ) (23)
paOaq

are equal, it fol-

(24)

The flow equations In the hodograph variables are obtained by equating
the real and the irmgi~parts of equation (24):

It follows that

d ~
()

ldpl=.— —.—
G pq p2q dq PQ2

(25)

.- —

=~M2-~= & (M2-1)
WL2 Pq2 Pq=

Equations (25) can now be written in a more suitable form:

?9 Jl--~2a* “
=-— —

aq Pq ae

(26)
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The fact that M and. p are functions
(26)linear. These equations can be handled

.
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.

of q only makee equations “
mathematically with much

&eater ease.than can-the nonlinear equations (12) in the physical plane.
The theory of X+uonogenic functions has been set up for just this PUN
pose. Though”the solutions of equations (26) that are obtained give the
cortrploxpotential of the flow in terms of the velocity of a particle of
the fluid rather than in terms o&the position ofithe particle, the @
&mental transformation, equation (16), enables these solutions to be
transformed back to the physical plae. The fact that the right-hand
side of equaticm (16) iS an exact differential facilitates greatly the
process of carrying out this transformation.

SOLUTIONS OF THE COMPIU%SIBIJIFLC%lEQUATIONS

OF THE HODOGRAPH VARIABIES

Equations (26)can be written in a more general
of mathematical.treatment:

A$I?UNCTIONS -

form for the purpose

(27) .

where
‘1

and T are yoeltive analytic functiong of q. The cOndition .
that Ta be posit?ve is equivalent to aesummg that the flow rcmaln~sub-
sonlc. Many of the mathematical reeults that will be preoentea here hold
also when T= becomes negative, so that flows involv~ supersonic ve-
locities can he treated. This has been carried out elsewhere for very
special flaws. (See reference 3.)

Consider the function

F(u) = @ (e,q) + i.y(e,q)
e,q
/3

represented by

e~q
\

the line integral

(
+de + —

T, h
(pdq) (28)

where eo, q. are fixed values of 6 and q and IS= e + iq. By
virtue of equations (27) a simple computation verifies that each of the
two i.ntegrqde iP the right-hand side of equation (28) is an exact differ-
en%lal.

.

.
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.
This establishes that F is a function of the point (~,q) and

has the same value when the integration is taken along any path, provided
prcwer regard is given to singularities.

The second important fact about F(@,q) is that its real part @
and its imaginary part ~ again satisfy the system of equations (=().
This affords ametbod of”generating particular solutions of system (27).

It is trivial that when cp= 1 and $
tion of equations (27). When this solution
tion (28)

= O, this pair is a solu-
is substituted Into equa-

=e+d-%1 (29)

If the real and the imaginary
tuted into equation (28),the

Jo ‘1 -

parts of equation (29) are again substi-
next solution gives

s

.

~

f

Q
W(2)

=e2.+2ie

f!

~dq-2! Ta
TI

~ dq2

“o
?.

“o “o

(30)

The superscript 2 inpare~theses indicates ths.tthe function has the
nature of a power, as Is observed when Tl =~z = 1. Here equation (30)
reduces to (e + iq)z s ~2.

The notation F(ao;u), a. = eo + iqc) indicates that 90 and q.

are the lower limits of titegration h equation (28).For example,

W(2)
(Uo;u) = (9 .-eo)2+ 2i (e

-’J[k@2![=J+dq2

and corresponds to the function (u - 0.)2. When a. = 0, F(cro;u) ii
usuaS1.ywritten F(a);

Let

~(o)= ~

.

and

.
\
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Q(n)(q) =

n

n

odd

even

If this operation i.srepeated n tlms the resulting solution 15

w(n) = (e+ iQ)(n)

V=o

.

(31)

(32)

where Cn,v is the vth binomial coefficient.

If another trivial eolution is taken as a first eolution, say,
Cp=o,lp=l, and substituted in equation (28), it follows that

F(a) = ioW(U)

= iii(u)

r= i(e + i Ta dq) (33)
~.

The symbolic notation i.W is ueed to represent a generalization of the
conoept ofmnltiplication. It will be seen that this notatim is rather
useful. When this process of substituticm Is repeated

(2) -(2)

i’qd
= iw(o)

. ife2+ 2i ,~.z dq-2!,~~~T, dq2)
-.

,

(34)

IA

and
.
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.

n odd

n sven

(35)

.-

Again, if this operation is repeated n times the resulting solution is

i.w(n)= ifi(n)
n

~
~,v ev in-v Q*

(n-v~(q)= i c (36)
.-

V=o

Finally, if the trivial solution q = a, ~ = @ is twenj ~ ~ ~
c being constants, n+-epetitions of the operaticm (28) yield the solution

. a=W(n) = d?
[1

(n)(n)(a) + p i@w

where a =a+i~.

(37)

Complex-valued functions of which the real and imaginary parts sat-

\
isfy the system 26) are said to be X-monogenic functions. Thus,

w(n) and I$w(n = ti(n) are Z-monogenic functions. These are more
specifically referred to as formal powers> s~ce when 71 = 72 = 1> they

reduce to # = (~

the two solutions

It should be noted
of the system (26)

+ iq)n and 1+ = L(6 + iq)n. The fo=l Pr~uct of

a and W(n) is a.W(n), which itself is a solution.

that the ordinary product aW(n) is not a solution

when a Is complex.

As Z-multiplication of a constant and a fomal power was intro-
duced, so my Z-integration he introduced. The Z-inteWation of the
X-monogenic function~ f(a) = CP+ i~, is defined as

F(u) =@ + Iv
eq eq

=
J

(Cpde
f(

-T2@dq) + i $de + * CPdq)
.
n

(38)=J ‘(u%=.
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The zrefers to the coefficient matrix of system (27),

II II
1T1yaLT (39)

2

.

And Z%l.ifferentlationof the Z-monogenic function, f(u) = P + i~,
is defined ae

d f(a)

‘(”) = *

=cpx+iljx (Ire) ‘-

From the relations of equat$ons (27)

(41)

Again, when Tl = T= = 1, x-lnte~ration and &differenti.atfon
reduce to ordinary co~lex integration and differentiation.

A more elaborate definition of Z-integration end differentiation
has been given in referenoe 2. It has been shown in reference 2 that

k.w . f(~)
azu

(42)

and

f
F’(rY)~ u = F(a) (43)

Thus, Z-integration =d Z-differentiation are inveree-proce~ses. Also,
the z-derivative of a Z-monogenic function is a &monogenic funotion.

From the preceding rleflnttionsit can be verified by direct compu-
tation that the Z-integration and the Z-differentiation of the formal
powers follow similar rules to those of ordinary integration and diffe~
entatlon of the powers of a complex variable; more precisely,

J a*W(n)
a,w(n+l)

dzq=
. n+l

(44)

.

4

.
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.

and

(45)

Since system (27) is linear, the sum of two solutions is a solution.
Hencej a formal polynomial of the nth degree,

f(a) ‘ao+al”W +...+ an*W
(n), an#O (46)

is a Z*onogenic function. The fozmal pwer sertes

(47)A.
n=o

represents a Z-monogenic function, provided the series converges uni-.
formly and absolutely in some neighborhood of ao.

. It has been shuwn (reference 2) that every complex solution of
system (27) can be represented uniquely by a formal power series of the
formof equation (47). (This statement is true only when T= 72>0,
that is, in the elJ.ipticcase or subsonic flow.) The coefficients are
given by the formula

n

(M)

Since every solution of system (27) can be represented, at least
in some neighborhood, as a formal power series and since every complex
potential in the hodograph variables of a compressiblefluid is a solu-
tion of system (27), it would appear that it remains only to choose that
particular solution wlich is the desired flow around a given body with
prescribed conditions. This approach, however, stilJ has some very
serious difficulties.

The formal powers ~resented previously are solutions of system (27)
in closed form and are valid throughout their regions of regularity.
The first powers W(u) and i*W(cs) an-known to represent a compress-
ible vortex, respectively. The higher powers a~pear not to represent
any flows of interest. Linear combination of the powers, that is,
formal polynomials, have not yet been studied.sufficiently to detezmine

. whether they represent flows of interest. The solutions represented by
formal power series are first, not in closed form and, second, not valid
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regions of regularity. Furthermore, since in aeroe
of solutions of interest are those that are regular

throughout the exterior of a closed.region, solutions correspmdln&I to
the analytic functions U- must be obtatied in either closed fozm or
in a series that can be extended throughout its region of regularity.
What is most desired is a theorem analogous to that of Laurent in ana-
lytic functions, for ,&monogenic functfons, Such a theorem, if it CEUI
be found, might quickly lead to the solutions of the major problems in
compressibility.

It Is hard4hoped that the complicated problem of compressibility
can be solved in any simple way. Any results in this direction, there-
fore, are of interest.

Some progress along these lines has been made by Bers and Gelbart-
(reference2) by extending to X-monogenic functions some of the results
on the L&place transfonu. These give, in cloeed fozm, solutdmns of
system (27) that are different from the fornml powers a*W(n), and in
haf pfinei correspond to the analytic functioni H.

.

Consider the function

where as before
For the cake of

This function
reasons,

A simple

and

n=o .

(49)

l.E(ao;a,u) = E(cfo;aja)

}

(~o)

E(O;a,o) = E(a,u)

ie termed the “%xponenttal function” for obvious
. .

c~utation shows that

E(a,u) = e~ Ec(%q) + ~s(%q)l

ioE(a,cr)= ieti [c*(a)q) + is-k(a,q)]

w)

.

where
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m

C(ct, q) = ~

r’
c“ (aJq)= ~

n=o

Cu

s (a,q) = )
-
n=o

m

‘sS*(%d = ,
L.

n=o

.“

.L[

JA.t.E2Q@)(q)
(2n) !

‘“ 1

(53a)

(-l)nCL= Q*(2n)(q)
(2n)!

1
(-1)5+’ $+1) (q)

(al+ l)!

(-l)n CP+’ Q* (’n+l)(q)

(12n+i)!

(53b)

From the definition of E(a,a) and that of Z-differentiation, it
is clear that

Further properties of functions c, s, c*, and S* are

S(a,o) = S’f(ct,o)= o

C(CL,O)= C*(CL,O)= 1
}

sad
3

8*t(CL,q) = a T=(q)c-c’((z,y)

}
c~(a, q)=-a T2(q)s(a,(J

(54)

(55)

(56)

c*~(ct,q) = -a S*(a,q)

‘1(g) J
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the diffezwntiation being with respect to q. These functiws MY be
regarded as generalizations of the trigononetrlc functions and have _
properties

*
ogous to those of the trigonometric functione. For

example, they- atisfy Sturn&Llouville differential equations and possess
such properties as

c(a,q)c*(cL,q)+ e(a#q)s*(%!l)= 1 (571

Now consider the function

f(u) = Lx [F(d)]

m

n
f

F (a) w E(-a,a)da (58)

“o

where F(a) = Fl(a) + iF2(a) 1S a comple~valued function of the real
variable a, Fl(a) and F2(@) being real functions. This is called
the X-Laplace transfozm of F(a), for when TL = 72 = 1 the ~te=~
fn equation (58)reduces to the ordimry hpke t~fo~ of the func-
tion- F(u).

.

Equation (58) may be rewritten in the more convenient form

f(9) =q(e,q) + iv (~,q)

J

m m

=
J

F1(@)E(-a,u)da + F2(a) [ioE(-a,a)]da

Ow

J

o

f

m
e-a$ e+lll

m c(%q)Fl(a)da - i s(ct,q)F1(@a

o “o ~

+i
r

;4

r

e-ail
c*(a,q)F2(a)du + s*(a,q)F2(a)du

‘o “o
Then

w m

$ (%d =
f

e-d?
c(a,q)F1(a)da +re-ds*(a)q)F2(a)ti

“o ‘o ,
and m co

1
$ (e,q) = - *+

f
s(u,q)F1(&iu +

e-d
c=(ct,q)F2(a)dm

“o “o

(59)

(@)

(61)

.

,

TWO facts maybe demonstrated about tbe function in equation (58):
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1. If P is the abscissa of convergence of the Laplace integral

f

cc. ,

- F(a)dae (62)

“o
then the generalized I&place integral

converges uniformly in the

.

(63)

m

f

F(a) ● E(m,u)da

“o
semi-infinite strip

e~eo>p

ql~q~qz --

2. Integral (63)represents a ~-monogenic function in the open
half pkeof convergence of integral (62).

●

Because of theorem 2, expression (63) represents a new ckse -of
solutions of system (27)in closed form. Hence, for every function
F(a) for which integral (63) converges (from theorem 1 this class is
hewn to be wide), expression (63) is the complex potential of a CO*
pressible flow in the hodo~ph coordinates.

For certain functions F(a) it is easy to show that the formal
series expansion of function

m

f(u) = rF(a)”E(-a,u)da

‘o
converges in a smaller region than does function
representation of a function may thus be regarded
uing analyticalJ$,a-function that is given in the
series.

Because Ca

1 re-au. —=a da

“o

f (a]. The X-Laplace
as a means of conti~
form of a fo=l power

(64)

in the right hati plane, it seems natural to define the negative Z-, power function by ---

(65)~b) = ~mE(-,u)da
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Since Z-differentiation under the integral sign Is permitted, rep-
resentations for the higher negative Z-powers can be obtained. By Z-
differentiating each side of equation (6s) n times and using equation
(34), it follows that

(66)

In view of equation (66) it seems convenient to define the negative
X-powered functions by

(67)

Generalizations of other special functions of a complGx.variable mmy be
obtained in a similar way.

In order that functions W (-n) as defined by equation (6’)} Pm
a similar role to that of the inver~e powers it wculd be necessary to
show that they possess a pole of the nth order at the origin and e

t)regular everywhere else, This has not yet been shown. In fact, W ‘n
is defined only for the right half plane> Rla> 0. It C= be defined
in the left half plane, Rla< 0, by

f

W(-n) = j(a,o) an-’

● (n-l)! ‘a
o

(6!3)

On the imaginary axis other t- at the origin it can be defined as the
limit of the function as u approaches a point on the im@nary axis.

It has not yet been proved that W
(-n)

, defined in the right and the
left half plane by equatione (67) and (68), respectively, is continuous
across the imaginary sxia. If its truth is assmned, some progress might
be made in the study of compressible flows,

In order to study the flows that arise from these solutions, it is
necessary to transform them
plane.

from the hodograph back to the physi&zl

Consider the solution

(p+ iqD=wbJ

=zir cn,r +-r ~(r)

n=o

.

.

.

,

(69)
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-----The real part is

Y

g’
,,, —,.. .. ..—

n-ar ~(2r) “
q)= (-l)r Cn,=r e . , , (70)

Z=o ..

and the Imaginary part is

[1%+

●

where the brackets in the upper limit of the summation
integer chosen is the mailer one nearer to the number
brackets.

, dz =

After substituting (70) and (71) into equation

and integrating, it follows that

indicate that
within the

(71)

the

(72)
7.

&r)
.

..

r-o
n-2r-2

7
n-2H--2

is
(n-2z-2)$ 6’
(n -2r-s- 1]a)!- (73)C
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Equation (73) together
parametric equations of the
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with equation (69) can be regarded as the
compressible flow of q + i$ in the physi-

cal plane.

Similarly,

- (n)q+i$=iw

for the solution

=i) ir e-w ~-r ~(r)

n-2z-~

Y
is-l (n -2r- 1)! en-=--=

(n-2r -s-l)! 1—
S=o .

[
al-w(-l)n+l

4 1
+L ‘T [

(-l)r(n - 2r --l)Q~rm+’) ~ ‘“-
Pq -

r=o

n-2h2

7

n-2r-s-2
is (n”- 2r-2)! 6

.(n-2r -s-2)!S=o

(74)

.

.
-.

J

By taking llnear combinations of the formal power soluti-, other
flows can be obtained in the physical plane In paz’ametrlcfomn.

If the generalized L@.ace integral solutions are taken, then
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.
m

C#+io= rF(u)●E(-a,a)du
“J. ~

=

f[ 1
e+ c(u,q)F1(cc)+ c*(a,q)F2(a) da

, ----

0
+i jv:4 1

- s(u,q)Fl(&) dccc*(a,q)Fz(a)da - e

and “o

(76)

* Fuz%her investigation is required to detetine precisely under what
conditions the flow is 1 around a closed body and uniform at infinity.
These investigations seem within reach by the method here indicated.

, This could yield mixed subsonic-supersonic flows with subsonic free- .
stream velocities under the assumption of the adiabatic equation of statre.

As an application of the method outlined in this paper, flutds of
which the flows are eve~here subsonic (more precisely, flows satisfy-
ing the linearized equation of state) are chosen. Precise conditions
are obtained for flows around closed bodies with prescribed velocities
at infinity. FIQWS under these hypotheses have been investigated with
much success by Chaplygin, von K&m&n, Tsien, Bers, and others. of par-
ticular Interest in this connection for flows around closed bodies Is
the work of Bers (reference 8). -.

In the sequel to the present report (reference 13) a detailed inves-
tigation of the flow around a circle is made (under the assumption of the
linearized equation of state). This is done primari~v because the flow
around a circle appears to be basic for the study of flows
bodies, as in the case of inconrpresslble fluids.

C~SIBLE FL~ UNDER THE ASSUMPTION OF T~ LINIMRIZED

around given

EQUATION OF STATE

,

Of the four basic
first, the equation of

●

relatims of the flow, equations (1) to (4), the
state, is reylaced by

P
-“’’(i’%)

(77) ~
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where PI
responding
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,

1s the density for a given velocity !Q, and PZ is the cop
prescure.

If pressure-volume curves are drawn of equations (1) and (77), it
is obserred that when k is suitably chosen equation (77) represents a
line tmgent,to tl~ecurve represented by equation (1) at the point pa,
l~pl. Von Karms6 and.Tsien used this fact yartly to Justify the use of
the linearized equ’ationof state for the study of subsonic flows.

Hence

aspa . -k

From equation (6)

J& a2‘2 dp = constant
. 93

and from equation (79)

J!$+a2p2 w = constant
. P3

Thus,

~2- a2 = Condmnt

It foil.ows.that

q=–a== q2/aE -1

l/a2

M-1=
-p2/k

= constant

or

1 - M2
— = Constsnt
P2

(78)

(79)

(8IJ

.

,

(80)

,

*
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*

By the nozzwalization, a. = P. = 1,

hand sides of equations (80) and (81) are
unity and unity, respectively. Thus,

2!3

the constants in the right-

readily detemined to be minus

a2 = 1 + q2 ‘-- (82)

and

P2=1-M2

~2
=1-—

l+q2

1
=—

l+q2

(83)

From equation (~)
*

P b
1 1

)-p==k ~-— (84)
1+Q2 pl

●

Again, from the definitions of stream function q and potential
function ~ of an incompressible fluid

also

,

Comparing systems (85) and (86), it follows that

●

(85)

(86)

(87)

.
These are the Cauchy-Riemamn equations. This.establishes the well–lnmwn
fact that the ccmplexpotential ~ = cp+ i~ of an incompressible flow @
an analytic function of the complex variable z = x + iy, the complex
coordinates in the physical plsne.

.
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When the second of equations (85) is multiplied by i and the two
equations added

~=(u- IV) (dx + i dy)

= qe-ie dz

or

By proceeding as WBB done In the derivation of equations (25), the
change of the variables (xjy) to the inde~endent variables (ejq) in
equations (87) leads to equations

The

is given

transformation that will symmetrize eystem

9@=Tl (q)*q

‘?q ‘T2 (d Va
}

by

l/-T=(q)t= —dq, e=e
. Tl(q)

System (~) is therefore symmetrized by the

q

f

dq
i“

q— = log —
Q qm..

transformticm

(w)

(89)

(90)
A

●

(91)

(92)

(93)

Qm

and reduces to the Cauchy-Riemann equations
*

(94-)
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Thus, the complex yotential of m,tincumpressible flow, g$ven in terms of
the independent v~iables of the e, &plane ie * analytic function of
the complex variable W = e.+ iq. .

Equations

can similarly be symmetrized by

%j=;*q

1- M2 1“~q=y$e
,,

the transformation

<= :J=Fdq
“.r fl
m

Equations (95) then become

,, .m*q— -
P

However, under the assumption

so that equations (g7) become

of the linearized

J- ~— =
P

(95)

-..

(96)

1
equation of state

the Cauchy-Riemann equations

Pe=%

~g = – +6 }

(97)

(*)
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Again,
of the
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the complex potential of a compressible flow under the assmuption
linearized equation of state is em analytic function of the com-

plex variable w = 0 + i~. The w-plane shah be referred to as the
distorted hodograph plane.

Any analytic function of w may be regarded as the complex poten-
tlal of either an incompressible flow in the physical plane or in the
hodograph plane, or a compressible flow in the distorted hodograph under
the assumption of this section, and vice versa; then, in general, to
every incompressible flow around a given body with a given free-stresm
velocity there corresponds a co~ressible flow (everywhere subsonic)
around the same body with the same free-stream velocity.

‘Thiscorrespondence can be expressed as follows: Given the complex
potential ~(w) of an incompressible flow, or of a compressible flow
in the distorted hodograyh, then there exists an analytic function
w= g(~) such that ~b(~~ Is the comylex potential in the distorted
hodograph ~-plane of a given compressible i’low.

i /“!.’J-=d,
q

q
n -d

‘; & + ~2
-.,

m

and

where

(99)

(100)

(101)

●

●

Hence

ei’ . Kq
(102)

li-Jli.q2 *



●

NACA TN No. 1170

*

and
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(103)

Also

Thus, equation (16) may be put into the more convenient form,

.Z=+[q$)+$(w)l

.. ‘%(;+:)~’:-(:-:)fi.
From equations (103) and (lO~L), equation (107) becomes

where w = e + i~. Thus,

1

f .-.

e-iw ~

z.

where n(w), the complex potential of a compressible fluid
torted hodograph plane, is an analytic function of w.

.

: (106)

> complex potential of a corqmessible fluid-under
tion, set

(105)

in the dis-

Since the complex -potentialof a compressible fluid remains the

(107)

qn anallic t ransfoima-

(208)
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or
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and

(109)

(ml)

where f(~) ma G(c) = n[w(~)] are emlytic, f(~) tei~ arbftr~y
and G(t) the complex potential of an incompressibleflow around a

d-

gi.venbody in

When W
written as

When equation
becomes

the physical

is considered

g Qleae .

a function of ~, equation (10”()may be

z= K
f reiw(~k’(~)dt -~ e-iw(~lG’(~)d~ (ML)

2,
:..

(108) is substituted into equation (111), equation (111)

(112)

It should.be emphasized that f(~) is an arbitrary analytic functim of
~, while G(t) is an incompressible flow in the -plane, [ bem
the phyeical coordinattis”ofthe flow, and [G(c) = f’j W( ~)] is the corre-
sponding compressible flow in the w-plane. The relatim,

= constant

represents streamlines of
of the compressible flow.
pressible flow, then w, ~

the Incompressible flow as wel.l~s streamlines
If ~ moves along a streamline of the incm
given by equation (108),traversee a etream-

.*

.

line of the cornpressibfiflow in the”hodograph pl&e and z, by the
transformation (108), traces out a streamline in the phy8ical plane of
the compressible flow.

It’is convenient to consider G(c) the incompressible flow around
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a circle of radius R, with circulation 17, and having a free–~tream
velocity ~ namely

Thus,

Since eiw= ~i(e+iti)
> it follows from equation

Jie e<.H?.LQ
2 f’(~)

—

ei

and recalling the relation (102),
●. ‘.U

2K eq
~=-. K2 - e23

(113)

(110) that

(114)

-,-=--

.—

If, then, f(~) is so determined that a prescribed.flow around a
given body is obtained, it follows that for a given value ~ ~qmtion
(112) detemines a point of the flow emd equation (13.5)determines the
velocity at that point.

At a stagnation point q = O. From equation ~ll!j), q = O when
Gt(~) = O. Thus, stagnfitionpoints of the flow occ~ wherever stagna-
tion points occur in the incompressible flow G(~) in the ~-plane. ““”

If as ~~~ z-~, and Gl(~) is bounded away from zero at
iafinity, then, from equation (11~), .ft(~) must be regular and unequal
to zero at infinity, if the flow is to have a velocity ~ # O at in-

>
finity. Thus, the most general form that f(~) can have ie
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(n’?)

where the values of b may be,complex constants.

It is known from incompressible-flowtheory that un~foz?aflows past
closed bodice must also have this form. Therefore, the seccmd term in
the right-hand side of squat-ion(112) takes the form

(118)

If the flow at infinity is to be horizontal and of nmgnitude ~,
then from equation (114) and the fact that ~m= O

lim KG’([) = ~
c

. ——
—>maft(~)

When G(z) ie given by equation (113))

(119)

(120)

where ~ ~~-mf’ (() = bo is the condition that the flow at Infinitybe
horizontal and q = qm,

In order to e mine the ehape of the body in the stream of the flow,
the circle Y~ = Re q i= mapped throuch myuation (1L2) into the z-plane-.
In order for the circle to map into a closed body, it follows from equa-
tions (u6) and (118) thnt

●

✎

.

.

.

*

I
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or

131-Fl=o

It is of interest to note that, when f(g) =
Tsien (reference 6) IS obtained; namely

The coefficient in the integral term is different
ferent normalization.

Again, when

.

. Berez formula Is obtained; namely

““ (121)

~ , the formula of

(122)

only because of a dif-

Here, too, the formulas differ only by a nomnalizing factor.

In Bersc formula n is arbitrary within limits. This freedmn
enables him to determine the conditions for the flow around,a closed
body. Since f(”~ in formula (112) is arbitrary and smalytic, there is
an infinite number of arbitrary coefficients. The first two coefficients
determine the flew at infinity and that the flow be around a closed body.
The other arbitrary coefficients mm be fixed to determine the flew
around a given body.

A similar technique to that developed by Theodorsen and Garrick
(references14 and 15) for determining the coefficients of f(~) might
be developed In order to obtain a prescribed body, Bers has employed
this approach by another method with some success. It should be noted
that when M = o

, formation used by
integral equation
Theodorsents when

. generalization of

the transformation (112) reduces to the initial trans-
!f!heodorsen(reference14). This implies that it’au
were set up from equation (112) it would reduce to
M=O, so that the integral equation would be a
Theodorsents transformation.
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In another paper

~ = Rei9 Sees into a
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Bartmoff determined f(~) such tlmt the circle

unit cj.rcle In the z-plane (accuracy to withJn
a few percent), thus giving the cauprossi.bleflow around a circle. Thie
has been done by others, notably by Bers.

‘Theright-hand side of the transformation (112) IS invariant under
an analytic transfomuation. For, le’t”-

be an
(124)

analytic function of
into equation (lJ.2),

r

Because the transformation (112) is invariant under a conforml
tranefonnation the subuonic flow of a co~rossiblo fluid around a circle
is of’ basic Importance.

Syracuse University,
Syracuse, New York, July 1, 1943.
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