NACA-TN-1344

TECHNICAL NOTE

No. 1344

CRITICAL STRESS OF THIN-WALLED CYLINDERS IN TORSION
By S. B. Batdorf, Manuel Stein, and Murry Schildcrout
Langley Memorial Aeronautical Laboratory Langley Field, 'Has

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

CRITICAL STRESS OF THIN-WALIED CYLINDERS IN TORSION
By S. B. Batdorf, Manuel Stein, and Murry Schildcrout

SUMAARY

A theoretical solution is given for the critical stress of thin-walled cylinders loaded in torsion. The results are presented in terms of a few simple formulas and curves which are applicable to a wide range of cylinder dimensions from very short cylinders of large radius to long cylinders of small radius. Theoretical results are found to be in somewhat better aereement with experimental results than previous theoretical work for the same range of cylinder dimensions.

INTRODUCTION

For most practical purposes the solution to the problem of the buckling of cylinders in torsion was given by Donnell in en important contribution to shell theory published in 1933 (reference 1). The present paper, which gives a solution to the same problem, has two main objectives: first, to present a theoretical solution of somewhat improved accuracy; second, to help complete a series of papers treating the buckling strength of curved sheet from a unified viewpoint based on a method of analyais essentially equivalent to that of Donnell but considerably simpler. (See, for example, references 2 and 3.)

The method of solution in the present paper. is that developed in reference 3. The steps in the theoretical computations of the critical stress are contained in the appendix. The results are given in the form of nondimensional curves and simple approximate formulas which follow these curves closely in the usual range of cylinder dimensions.

SYMROLS

$\mathrm{j}, \mathrm{m}, \mathrm{n}$ Integers
p arbitrary constant
r radius of cylinder
t thickness of cylinder wall
$u \quad a x i a l$ component of displacement; positive in x-direction
v circumferential component of displacement; positive in y -direction
radial component of displacement; positive outward.
x axial coordinate or cylinder
y circumferential coordinate of cylindey
D flexural stiffness of plate per unit length $\left(\frac{\mathrm{Et}^{3}}{12\left(1-\mu^{2}\right)}\right)$
E. Young's modulus

I length of cylinder
Q mathemetical operator defined in appendix
Z. curvature parameter $\left(\frac{L^{2}}{r t} \sqrt{1-\mu^{2}}\right.$ or $\left.\binom{L}{r}_{t}^{2} \underset{t}{1-\mu^{2}}\right)$
$a_{n} ; b_{n}$ coefficients of deflection functions
$\mathrm{k}_{\mathrm{s}} \quad$ critical shear-stress coefficient appearing in formule $T_{c r}=k_{s} \frac{\pi^{2} D}{L^{2} t}$
$M_{n}=\frac{\pi}{8 \beta}\left[\left(n^{2}+\beta^{2}\right)^{2}+\frac{12 z^{2} n^{4}}{\pi^{4}\left(n^{2}+\beta^{2}\right)^{2}}\right]$
V_{m}, W_{m} deflection functions defined In appendix

NACA TN NO 1344
$\beta=\frac{L}{\lambda}$
$\lambda \quad$ half wave length of buches in circumerential direction
$\mu \quad$ Poisson's ratio
$\tau_{\text {cr }}$ critical shear stress
$\nabla^{4}=\frac{\partial^{4}}{\partial x^{4}}+2 \frac{\partial^{4}}{\partial x^{2}-\partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}}$
∇^{-4} inverse of ∇^{4}, defined by $\nabla^{-4} \lambda^{t} w=\dot{w}$

RESULTS AMD DISCUSSION

The critical shear stresses for cylinders aro obtained from the equation

$$
\tau_{c r}=k_{s} \frac{r^{2} D}{L^{2} t}
$$

The values of k_{g} for cylinders with either simply supported or clamped edges are given in the form of logarithmic plots in figure 1. The ordinate in this figure is the critical shearstress coofficient k_{s} The abscisea is a curvature parameter Z which is given directiy by the theory and involves the dimensions of the cylinder and Poisson's ratio.

For very short cylinders the value of the shoar-stress coefficfent approaches the values for flat plates, 5.34 when the edges are simply supported and 0.93 when the edges are clamped. As Z increases k_{s} also increases and the curves which defined k_{s} are given approximately by straight lines. For siriply supportod cylinders,

$$
k_{3}=0.85 z^{3 / 4}
$$

For cylinders with clamped odeso,

$$
k_{s}=0.93 z^{3 / 4}
$$

The range of validity of these formulas is approximately $100<z<10 \frac{r^{2}}{t^{2}}$.

For the case of long cylinders the curves of figure 1 split into a serles of curves depending uron the radius-thickness ratio. These curves, which correspond to buckiling of the cylinder into two circumferential waves $(n=2)$, depart from the straight lines at approximately $Z=10 \frac{r^{2}}{t^{2}}$ or approximately $\frac{L}{r}=3 \sqrt{\frac{r}{t}}$. Because
the critical shear stress of a long cylinder is almost independent of end conditions, the curves for different values of r / t apply both to cylinders with almply supported edges and to cylinders with clamped edges. These curves are probably somewhat inaccurate, however, because one of the requirements for the validity of the simplified equation of equilibrium used is that $n^{2} \gg 1$. A calculation for long cylinders made by Schwerin and reported in reference 1 by Donnell suggeste that all values corresponding to the curves given in the present paper for $n=2$ are slightly high.

In figure 2 the results of the present paper are compered with those given by Donnell (reference 1) and Leggett (reference 4). The present solution agrees quite closely with that of Donnell except in the transition region between the horizontal part and the sloping straight-line part of the curves. In this region the present results are appreciably less than those of Donnell (meximum deviationabout 17 percent) but are in close agreement with Leggett's results, which are ilmited to low values of Z.

In figure 3 the present solution and that of Donnell for the critical shear stress of simply supported cylinders are compared on the basis of agreement with test results obtained by a number of investigetors. (See references 1, 5, 6, and 7.) The curves giving the present solution are appreciably closer to the test points. More than 80 percent of the test points are within 20 percent of the values corresponding to the theoretical curve for simply supported cylinders given in the present paper, and all points are within 35 percent of values corresponding to the curve.

In figure 4 the present solution for critical shear-atress coofficients of long cylinders which buckle into two half waves is given more fully than in figure 1 and is compared with test results of references 1 and 8 .

The computed values from which the theoretical curves presented in this paper were drawn are given in tables 1 and 2.

CONCLUDING REMARKS

A theoretical solution is given for the buckling stress of thin-walled cylinders loaded in torsion. The results are applicable to a wide range of cylinder dimensions from very short cylinders of large radius to very lone cylinders of small radius. The theoretical results are found to be in somewhat better egreement with experimental results than previous theoretical work for the same range of cylinder dimensions.

Langley Memorial Aeronautical Laborationy National Advisory Comittee ior Asronautics Langley Field, Va., Merch 20, 1947

APPEMDIX

THEORETICAL SOLIJITON

The critical shear strees at which buckling occurs in a cylindrical shell may be obtained by solving the equation of equilibrium.

Equation of equilibrium. The equation of oquilibrium for a slightly buckled cylindrical shell under shear is (reference 3)

$$
\begin{equation*}
D \nabla^{4} w+\frac{E t}{r^{2}} \nabla^{-4} \frac{\partial^{4} w}{\partial x^{4}}+2 \tau_{c r} t \frac{\partial^{2} w}{\partial x \partial y}=0 \tag{1}
\end{equation*}
$$

where x is the axial direction and y the circumferential direction. The following figure shows the coordinate system used in the analysis:

Dividing through equation (1) by D gives

$$
\begin{equation*}
\nabla^{4} w+\frac{12 z^{2}}{L^{4}} \nabla^{-4} \frac{\partial \partial^{4}}{\partial x^{4}}+2 k_{g} \frac{\pi^{2}}{L^{2}} \frac{\partial Z_{W}}{\partial x \partial y}=0 \tag{2}
\end{equation*}
$$

where the dimensionless parameters Z and k_{g} are defined by

$$
Z=\frac{L^{2}}{r t} \cdot \sqrt{1-\mu^{2}}
$$

and

$$
k_{s}=\frac{T_{c r t L^{2}}^{\pi^{2} D}}{\text { 2 }}
$$

The equation of equilibrium may be represented by

$$
\begin{equation*}
Q w=0 \tag{3}
\end{equation*}
$$

where Q is defined by

$$
Q=\nabla^{4}+\frac{12 Z^{2}}{I^{4}} \nabla^{-4} \frac{\partial^{4}}{\partial x^{4}}+2 k_{s} \frac{\pi^{2}}{L^{2}} \frac{\partial^{2}}{\partial x} \partial y
$$

Method of solution.- The equation of equilibrium may be solved by using the Gelerkin method as outlined in reference 9. In applying this method, equation (3) is solved by expressing w in terms of an arbitrary number of functions ($V_{0}, V_{1}, \ldots . V_{j}$, Wo, W_{1}, . . ., Wj) that need not satisfy the equation but do satisfy the boundary conditions on w; thus let

$$
\begin{equation*}
w=\sum_{m=0}^{g} a_{m} v_{m}+\sum_{m=0}^{g} b_{m} w_{m} \tag{4}
\end{equation*}
$$

The coofficient a_{m} and b_{m} are then determined by the equatians

$$
\left.\begin{array}{l}
\int_{0}^{2 \lambda} \int_{0}^{L} v_{n} Q w d x d y=0 \\
\int_{0}^{2 \lambda} \int_{0}^{L} W_{n} Q w d x d y=0 \tag{5}
\end{array}\right\}
$$

where

$$
n=0,1,2, \ldots . ., j
$$

The solutions given in the present paper satisfy the following conditions at the ends of the cylinder:

For cylinders of short and medium length with aimply supported edges $w .=\frac{\partial^{2} w}{\partial x^{2}}=v=0$ and u is unrestrained. For cylinders of short and medium length with clamped edges $w=\frac{\partial w}{\partial x}=u=0$ and v is unrestrained. For lons cylinders $w=0$. (Sse references 2 and 3.)

Solution for Cylinders of Short and Medium Length
Simply supported edges.- A deflection function for simply supported edges may be taken as the infinite series

$$
\begin{equation*}
w=\sin \frac{\pi y}{\lambda} \sum_{m=1}^{\infty} a_{m} \sin \frac{m \pi x}{L}+\cos \frac{\pi y}{\lambda} \sum_{m=1}^{\infty} b_{m} \sin \frac{m \pi x}{L} \tag{6}
\end{equation*}
$$

where λ is the half wave length of the buckles in the cir cumferential direction. Equation (6) is equivalent to equation (4) if

$$
\left.\begin{array}{c}
V_{n}=\sin \frac{\pi y}{\lambda} \sin \frac{n \pi x}{L} \\
W_{n}=\cos \frac{\pi y}{\lambda} \sin \frac{n \pi x}{L} \tag{7}
\end{array}\right\}
$$

Substitution or expressions (6) and (7) into equations (5) and integration over the limits indicated give

$$
\left.\begin{array}{l}
a_{n}\left[\left(n^{2}+\beta^{2}\right)^{2}+\frac{12 z^{2} n^{4}}{\pi^{4}\left(n^{2}+\beta^{2}\right)^{2}}\right]-\frac{8 k_{g} \beta}{\pi} \sum_{m=1}^{\infty} b_{m} \frac{m n}{n^{2}-m^{2}}=0 \\
b_{n}\left[\left(n^{2}+\beta^{2}\right)^{2}+\frac{12 z^{2} n^{4}}{\pi^{4}\left(n^{2}+\beta^{2}\right)^{2}}\right]+\frac{8 k_{g} \beta}{\pi} \sum_{m=1}^{\infty} a_{m} \frac{m n}{n^{2}-m^{2}}=0 \tag{8}
\end{array}\right\}
$$

where

$$
\begin{gathered}
\beta=\frac{I}{\lambda} \\
n=1,2,3, \ldots .
\end{gathered}
$$

and $m \pm n$ is odd. Equations (8) have a eclution if the following determinant venishes:

where

$$
M_{n}=\frac{\pi}{8 \beta}\left[\left(n 2+\beta^{2}\right)^{2}+\frac{12 z^{2} n^{4}}{\pi^{4}\left(n^{2}+\beta^{2}\right)^{2}}\right]
$$

By rearrangins rows and columns, the infinite determinant can be factored into the product of two infinite subdeterminants which are equivalent to each other. The critical stress may then be obtained from the following equation:

The first approximation, obtained from the second-order determinant, is given by

$$
\begin{equation*}
k_{B}^{2}=\left(\frac{3}{2}\right)^{2} M_{1} M_{2} \tag{11}
\end{equation*}
$$

The second approzimation, obtained from the third-order determinant, is given by.

$$
\begin{equation*}
k_{8}^{2}=\frac{M_{1} M_{2} M_{3}}{\left(\frac{6}{5}\right)^{V_{1}} M_{1}+\left(\frac{2}{3}\right)^{2} M_{3}} \tag{12}
\end{equation*}
$$

The third approximation, obtained from the fourth-order determinant, is given by

$$
\begin{gather*}
k_{B} 4\left(\frac{8}{7}+\frac{8}{25}\right)^{2}-k_{B}\left[\left(\frac{12}{7}\right)^{2} N_{M_{1} M_{2}}+\left(\frac{6}{5}\right) Q_{M_{1} M_{4}}+\left(\frac{4}{15}\right)^{2} M_{2} M_{3}+\left(\frac{2}{3}\right)^{2} M_{3} M_{4}\right] \\
+M_{2} M_{2} M_{3} M_{4}=0 \tag{13}
\end{gather*}
$$

Each of these equations ohows that for a selected value of the curvature parameter Z the critical bucking stress of a cylinder depends on the wave length. Since a structure buckles at the lowest stress at which instability can occur, k_{B} is minimized with respect to the wave length by substituting velues of β into the equation until the minimum value of k_{s} can be obtained from a plot of k_{g} against β. This procedure is permiseible when $\beta>\frac{2 \pi}{\pi r}$, that is, when the cylinder buckles into more than two circumferential waves. For the limiting case of a cylinder buckling into two waves, see the section of the present appendix entitied "Sclution for a Long Cylinder" which follows.

Figure 5(a) shows the convergence of the determinant for cylinders with eimply supported edges.

Clamped edges. - A procedure aimilar to that used for cylinders with simily supported edges may be followed for cylinders with clamped edges. The deflection function used is the following series:

$$
\begin{align*}
w= & \left.\sin \frac{\pi y}{\lambda}\right\rangle_{m=0}^{\infty} a_{m}\left[\cos \frac{m \pi x}{L}-\cos \frac{(m+2) \pi x}{I}\right] \\
& +\cos \frac{\pi y}{\lambda} \sum_{m=0}^{\infty} b_{m}\left[\cos \frac{m \pi x}{L}-\cos \frac{(m+2) \pi x}{L}\right] \tag{14}
\end{align*}
$$

Sach term Cf this sertas astisfics the conistion on w at the edgee. The functions V_{n} and W_{n} are now derined ε follows:

$$
\begin{align*}
& V_{n}=\sin \frac{\pi V}{\lambda}\left[\cos \frac{n \pi x}{L}-\cos \frac{(n+2) \pi x}{L}\right] \\
& W_{n}=\cos \frac{\pi y}{\lambda}\left[\cos \frac{n \pi x}{L}-\cos \frac{(n+2) \pi x}{L}\right] \tag{15}
\end{align*}
$$

where

$$
n=0,1,2, \ldots
$$

When the same orerations as those carried out for the case of simply supported edges ore performed, the following simultaneous equations result:

For $n=0$,

$$
a_{0}\left(2 M_{n}+M_{2}\right)-a_{c} M_{2}+k_{s} \sum_{m=1,3,5}^{\infty} b_{m}\left[-\frac{m^{2}}{m^{2}-4}+\frac{(m+2)^{2}}{(m+2)^{2}-4}\right]=0
$$

For $n=1$,

$$
\begin{gathered}
a_{1}\left(M_{1}+M_{3}\right)-a_{3} M_{3}+k_{s} \sum_{m=0,2,4}^{\infty} b_{m}\left[\frac{m^{2}}{m^{2}-1}-\frac{m^{2}}{m^{2}-9}\right. \\
\left.-\frac{(m+2)^{2}}{(m+2)^{2}-1}+\frac{(m+2)^{2}}{(m+2)^{2}-9}\right]=0
\end{gathered}
$$

For $n=2,3,4 \ldots$,

$$
\begin{aligned}
& a_{n}\left(M_{n}+M_{n+2}\right)-a_{n-2} M_{n}-a_{n+2} M_{n+2}+k_{B} \sum_{m=0}^{\infty} b_{m}\left[\frac{m^{2}}{m^{2}-n^{2}}\right. \\
& \left.-\frac{m^{2}}{m^{2}-(n+2)^{2}}-\frac{(m+2)^{2}}{(m+2)^{2}-n^{2}}+\frac{(m+2)^{2}}{(m+2)^{2}-(n+2)^{2}}\right]=0
\end{aligned}
$$

where $m \pm n$ is odd. í
For $n=0$,
$b_{0}\left(2 M_{0}+M_{2}\right)-b_{2} M_{2}-k_{B} \sum_{m=1,3,5}^{\infty} a_{m}\left[-\frac{m^{2}}{m^{2}-4}+\frac{(m+2)^{2}}{(m+2)^{2}-4}\right]=0$

For $n=1$,

$$
\begin{gathered}
b_{1}\left(M_{1}+M_{3}\right)-b_{3} M_{3}-k_{b} \sum_{m=0,2,4}^{\infty}\left[\frac{m^{2}}{m^{2}-1}-\frac{m^{2}}{m^{2}-9}-\frac{(m+2)^{2}}{(m+2)^{2}-1}\right. \\
\vdots \\
\left.+\frac{(m+2)^{2}}{(m+2)^{2}-9}\right]=0
\end{gathered}
$$

For $n=2,3,4, \ldots$,
$b_{n}\left(M_{n}+M_{n+2}\right)-b_{n-c^{2}} M_{n}-b_{n+2} M_{n+2}-k_{B} \sum_{n=0}^{\infty} a_{m}\left[\frac{m^{2}}{m^{2}-n^{2}}-\frac{m^{2}}{m^{2}-(n+2)^{2}}\right.$

$$
\begin{equation*}
\left.=\frac{(m+2)^{2}}{(m+2)^{2}-n^{2}}+\frac{(m+2)^{2}}{(m+2)^{2}-(n+2)^{2}}\right]=0 \tag{16}
\end{equation*}
$$

where $m \pm n$ is odd and

$$
M_{n}=\frac{\pi}{8 \beta}\left[\left(n^{2}+\beta^{2}\right)^{2}+\frac{12 z^{2} n^{4}}{\pi^{4}\left(n^{2}+\beta^{2}\right)^{2}}\right]
$$

The infinite determinant formed by these equations can be rearranged sofe to factor into the product of two determinants which are equivalent to each other. The vanishing of one of these determinanta leads to the following equation (limited for convenience to the sixth order):

	${ }^{a_{0}}$	b_{1}	a_{2}	b_{3}	a_{4}	b_{5}	
$\mathrm{n}=0$	$\frac{1}{k_{5}}\left(2 M_{0}+M_{2}\right)$	$\frac{32}{15}$	$-\frac{1}{k_{g}} M_{2}$	$-\frac{64}{105}$	0	$-\frac{32}{315}$	
$\mathrm{n}=1$	$\frac{32}{15}$	$\frac{1}{k_{B}}\left(M_{1}+M_{3}\right)$	$-\frac{352}{105}$	$-\frac{1}{E_{B}} M_{3}$	$\frac{32}{35}$	0	
$\mathrm{n}=2$	$-\frac{1}{k_{s}} M_{2}$	$-\frac{352}{105}$	$\frac{1}{k_{8}}\left(M_{2}+M_{4}\right)$	$\frac{1472}{315}$	$-\frac{1}{\mathrm{E}_{8}} \mathrm{M}_{4}$	$-\frac{1376}{1155}$	
$\mathrm{n}=3$	$-\frac{64}{105}$	$-\frac{1}{k_{8}} M_{3}$	$\frac{1472}{315}$	$\frac{I}{k_{3}}\left(M_{3}+M_{5}\right)$	$-\frac{4160}{693}$	$-\frac{1}{k_{8}} \mathrm{M}_{5}$	$=0(17)$
$\mathrm{n}=4$	0	$\frac{32}{35}$	$-\frac{1}{k_{S}} \mathrm{M}_{4}$	$-\frac{4160}{693}$	$\frac{1}{k_{8}}\left(M_{4}+M_{6}\right)$	$\frac{9440}{1287}$	
$n=5$	$-\frac{32}{315}$	0	$-\frac{1376}{1155}$	$-\frac{1}{k_{8}} M_{5}$	$\frac{2440}{1287}$	$\frac{1}{k_{8}}\left(M_{5}+M_{7}\right)$	

The first approximation, obtained from the second-order determinant, is given by

$$
\begin{equation*}
k_{s}^{2}=\left(\frac{15}{32}\right)^{2}\left(2 M_{0}+M_{2}\right)\left(M_{1}+M_{3}\right) \tag{18}
\end{equation*}
$$

The aecond approximation, obtained from the third-order determinant, is given by

$$
\begin{equation*}
{k_{s}}^{2}=\frac{\left(M_{1}+M_{3}\right)\left[\left(2 M_{0}+M_{2}\right)\left(M_{2}+M_{4}\right)-M_{2}^{2}\right]}{\left(\frac{32}{15}\right)^{2}\left(M_{2}+M_{4}\right)-\frac{64}{15} \frac{352}{105} M_{2}+\left(\frac{352}{105}\right)^{2}\left(2 M_{0}+M_{2}\right)} \tag{19}
\end{equation*}
$$

The third approximation, obtained from the fourth-order determinant, is given by
$k_{8}^{4}\left(\frac{32}{15} \frac{1472}{315}-\frac{352}{105} \frac{6_{4}}{105}\right)^{2}-k_{g}{ }^{2}\left[\left(\frac{1472}{315}\right)^{2}\left(2 M_{0}+M_{2}\right)\left(M_{1}+M_{3}\right)+\left(\frac{352}{105}\right)^{2}\left(2 M_{0}+M_{2}\right)\left(M_{3}+M_{5}\right)\right.$
\because
$+\left(\frac{64}{105}\right)^{2}\left(M_{1}+M_{3}\right)\left(M_{2}+M_{4}\right)+\left(\frac{32}{15}\right)^{2}\left(M_{2}+M_{4}\right)\left(M_{3}+M_{5}\right)-\frac{128}{105} \frac{1472}{315} M_{2}\left(M_{1}+M_{3}\right)$
\vdots
\because

$-\frac{64}{15} \frac{352}{105} M_{2}\left(M_{3}+M_{5}\right)-\frac{704}{105} \frac{1472}{315} M_{3}\left(2 M_{6}+M_{2}\right)-\frac{64}{15} \frac{64}{105} M_{3}\left(M_{2}+M_{4}\right)$

$\left.+2\left(\frac{64}{105} \frac{352}{105}+\frac{32}{15} \frac{1472}{315}\right) M_{2} M_{3}\right]+\left[2 M_{0}\left(M_{2}+M_{4}\right)+M_{2} M_{4}\right]\left[M_{1}\left(M_{3}+M_{5}\right)+M_{3} M_{5}\right]=0$ - \vdots

A long slender cylinder $\left(z>10 \frac{r^{2}}{t^{2}}\right)$ will buckie into two waves in the circumferential direction. If, in the previous cases of cyliadere with simply supported or clamped edsee, the half wave length in the circumferential direction λ is taken as $\pi r / 2$, it is possible to find the critical stress of a long slender cylinder with the corresponding edge conditions. This method of solution is laborious, however, because determinants of high order must be employed to obtain solutions of reasonable accuracy. The lator is ereatly reduced by the use of the following deflection function:

$$
\begin{equation*}
w=a_{1}\left\{\cos \left(\frac{p \pi x}{L}+\frac{2 y}{r}\right)-\cos \left[\frac{(p+2) \pi x}{L}+\frac{2 y}{r}\right]\right\} \tag{21}
\end{equation*}
$$

where $p+1$ is the phese difference of the circumferentlal waves at the two ends of the cylinder measured in quarter-revolutions. This equation atisfies the oingle boundary condition $w=0$. With this deflection function, the functions V and W all vanish except

$$
\begin{equation*}
V_{1}=\cos \left(\frac{p \pi x}{L}+\frac{2 y}{r}\right)-\cos \left[\frac{(p+2) \pi x}{L}+\frac{2 y}{r}\right] \tag{22}
\end{equation*}
$$

Use of equations (5), (21), and (22) and the relation $2 \lambda=\pi r$ results in the following equation:

$$
\begin{align*}
k_{s}= & \frac{\pi}{B_{\mathbf{r}}^{L}(p+1)}\left\{\left[p^{2}+\frac{4}{\pi^{2}}\left(\frac{L}{r}\right)^{2}\right]^{2}+\frac{122^{2} p^{4}}{\pi^{4}\left[p^{2}+\frac{4}{\pi^{2}}\left(\frac{L}{r}\right)^{2}\right]^{2}}\right. \\
& \left.+\left[(p+2)^{2}+\frac{4}{\pi^{2}}\left(\frac{L}{r}\right)^{2}\right]^{2}+\frac{12 z^{2}(p+2)^{4}}{\pi^{4}\left[(p+2)^{2}+\frac{4}{\pi^{2}}\left(\frac{L}{r}\right)^{2}\right]^{2}}\right\} \tag{23}
\end{align*}
$$

This equation may be written

$$
\begin{align*}
k_{B}= & \frac{\pi \sqrt{\frac{r}{2 t} \sqrt{1-\mu^{2}}}}{8(p+1)}\left\{\left(p^{2}+\frac{4}{\pi^{2}} \frac{z t}{r \sqrt{1-\mu^{2}}}\right)^{2}+\frac{12 z^{2} p^{4}}{\pi^{4}\left(p^{2}+\frac{4}{\pi^{2}} \frac{2 t}{r \sqrt{1-\mu^{2}}}\right)^{2}}\right. \\
& \left.+\left[(p+2)^{2}+\frac{4}{\pi^{2}} \frac{z t}{r \sqrt{1-\mu^{2}}}\right]^{2}+\frac{12 z^{2}(p+2)^{4}}{\pi^{4}\left[(p+2)^{2}+\frac{4}{\pi^{2}} \frac{Z t}{r \sqrt{1-\mu^{2}}}\right]^{2}}\right] \tag{24}
\end{align*}
$$

: For given values of Z and $\frac{r}{t-\mu^{2}}, p$ is varied until a minimm value of k_{g} is obtained from a plot of p and corresponding values of k_{s}. The critical stress of a long slender cylinder is very insensitive to edge restraint; therefore, the solution applies with sufficient accuracy to cylinders with either simply supported or clamped eiges. The sheer-stress coefficient for long slender cylinders is plotted against the curvature parameter in figure 4, and parte of these curvee also appear in figure 1.

REFERENCES

1. Donnell, L. H.: Stability of Thin-Walled Tubes under Torsion. NACA Rep. No. 479, 1933.
2. Batdorf, S. B.: A Simplified Method of Elastic-Stability Analysis for Thin Cylindrical Shells. I - Donneli's Equation. NACA TN No. 1341, 1947.
3. Batdorf, S. B.: A Simplified Method of Elastic-Stability Analysis for Thin Cylindrical Shells. II - Modified Equilibrium Equation. NACA I'N No. 13! $12,1947$.
4. Leggett, D. M. A.: The Initial Buckling of Slightly Curved Panels under Combined Shear and Compression. R. \& M. No. 1972, British A.R.C., 1943.
5. Lundquist, Eugene E.: Strength Tests on Thin-Walled Duralumin Cylinders in Torsion. NACA IN No. 427, 1932.
6. Moore, R. L., and Wescoat, C.: Torsion Tests of Stiffened Circular Cylinders. NACA ARR No. $4 \mathrm{E} 31,1944$.
7. Bridget, F. J., Jerome, C. C., and Vosseller, A. B.: Some Now Experiments on Buckling of Thin-Wall Construction. Trans. A.S.M.E., APM-56-6, vol. 56, no. 8, Aug. 1934, pp. 569-578.
8. Moore, R. L., and Paul, D. A.: Torsional Stability of Aluminum Alloy Seamless Tubing. NACA TN No. 696, 1939.
9. Duncan, W. J.: The Principles of the Galerkin Method. R. \& M. No. 1848, British A.R.C., 1938.

11

TABTE 1

THEORETICAL SHEAR-STRESS COEFFICIENIS AND WAVE LENGIHS OF BUCKIES FOR SHORT- AND MEDIUM-LENGTH CYLINDERS

Z	First ap	raimation	Second approrimation		Third approximation	
	k_{s}	β	k_{8}	B	k_{8}	β
Cylinders with simply supported edges						
0	5.60	0.770	5.34	0.790	- -	-
1	5.69	. 805	5.42	. 360	5.41	0.865
5	6.68	1.00	6.22	1.015	- - - -	- - - - -
10	8.36	1.24	7.55	1.245	7.545	1.27
30	14.93	1.82	12.69	1.875	- - - - -	----
100	34.09	2.74	27.86	2.91	---	-
300	76.80	3.86	62.47	4.18	61.47	4.32
1,000	189.5	5.40	153.0	5.95		
10,000 100,000	1072 6050	10.0 17.9	871.2 4920	11.2 20.1	851.9 4800	11.8 23.0
	6050	17.9	4920	20.1	4800	23.0
Cylinders with clamped edges						
0	9.55	1.175	9.31	1.205	9.09	1.205
1	9.57	1.18	9.32	1.21	-----	-----
5	9.90 10.79	1.23 1.35	9.62 10.42	1.27 1.38	10.19	1.38
30	16.13	1.89	14.99	1.97		1.38
- 100	35.40	2.95	30.68	3.14	30.65	3.12
1,000	206.3	6.12	167.5	6.70	165.7	7.00
10,000	6860	20.85	5449	23.2	5310	24.8

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

[^0]TABIE 2

THEORETICAL SHRAR-SITESS COEFFICIENIS
FOR IONG CYITIDERS

$\underset{\mathrm{r}}{\mathrm{r}} \sqrt{1-\mu^{2}}$	z	k_{B}
20	$\int 4 \times 10^{3}$	428
	, 3×10^{4}	2,450
	, 105	7,780
	106	76,500
50	[2.5×10^{4}	1,680
	$\int 10^{5}$	5,380
	$\left\{10^{6}\right.$	47,900
	[107	476,000
100	$\int 105$	4,800
	$\left\{10^{6}\right.$	35,200
	${ }_{10}{ }^{7}$	334,500

NATIONAL ADVISCRY
COMMITTEE FOR AERONAUTICS

[^1]
Figure 1.- Critical shear-stress coefficients for thin-walled cylinders in torsion.

Fig. 2
NACA TN NO. 1344

(d) Simply supported edges.

(b) Clamped edges.

23
Figure 2.- Comparison of theoretical curves for critical stress of thin-walled cylindors in torsion.

NACA TN No. 1344
Fig. 5

(a) Simply supported edges.

(b) Clamped edges.

Figure 5.- Successive approximations of critical shear-stress coefficients for thin-walled cylinders in torsion.
11

[^0]: 111

[^1]: 11

