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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECIINICAL NOIE NO. 134k

CRITICAL STRESS OF THIN-WALLED CYLINDERS IN TORSION

By S. B. Batdorf, Manuel Steih, and Murry Schildcrout
SUMMARY

A theoretical solution is given for the critical stress of
thin-wzclled cylinders loaded in torsion. The results are presented
in terms of & few simple formules end curves which are applicable
to a wide range of cylinder dimensions from very short cylinders of
large redius to long cylinders of small radius. Theoretical
results are found to be in somewhat better agreement with experi-—
mental results than previocus theoretical work for the same range
of cylinder dimsnsions.

%

INTRODUCTION

For most practical purposes the solution to the problem of
the buckling of cylindere in torsion was given by Donnell in an
impértant contribution to shell theory published in 1933 (reference 1).
The present paper, which gives a solution to the same prcblem,
has two main objectives: firet, to present a theoretical solution
of somewhet lmproved accuracy; second, to help complete a series
of papers treating the buckling strength of curved sheet from a
unified viewpoint based on a method of analysis ebsentially
equivalent to that of Donnell but considerably simpler. (See,
for exemple, references 2 and 3.)

Tre method of solution in the present paper is that developed
in reference 3. The steps in the theoreticael computetions of the
critical stress are contained in the eppendix. The results are
-given in the form of nondimensional curves &and simple approximate
formulas which follow these curves closely in the usual rangs of
cylinder dimensions.



2 ' o NACA TN No. 13L4k

'SYMBOLS

J,m,n integers
P erbitrary constant .
r radius of cylinder
t V}thiékness of cylinder wali
u exial component of displacement; positive in i—direction
v circumferential component of displacement; positive in
y~direction '
w redial coﬁponent of displacement; pesitive outweard .
x axial éoordinate of cylinder
¥y circumferential coordinaete of cylinder. ) _
D flexurel stiffness of plate per unit length (}—-2&3—;—i)
. , . 12(1 - p2)
E Young's modulus
L length of ¢cylinder
Q 7 | 4mathemeticélioéerator'def;ned in appendix
z . . curv;tufe parameter (Eﬁgi/l - p2 or <L>2 # /If::?sj) '
. rt r/ t '
an, bp coefficlents of deflection functions :
kg critical shear-stress coefficlent appearing in

2
. formula Tgp = kg EED
’ ‘ ) LTt

My = X | (n2 + p2)2 4 -122%n®

Vh,Wh deflection functions defined in appendix

b
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=L
B »
A half wave length of buckles in circumaferentiel direction
ol Poisson’s ratio
Tor _ critical shear stress
\7‘1*—@1+ +2 o %ah
o a2y o
v inverse of ¢, dsfimed by V' P =¥
'RESULTS AND DISCUSSION .

The critical ghear stresses for cyhndefs ars o'btained from
the equation

; 12D
cr“b
Lt

The values of Iy for cylinders with either simply supported or
clamped odges are given in the form of logaritimic plota in
figure 1. The ordinate in this figure is the critical shear-
stress coefficient kg The ebsclsea is a curvature parameter Z
wvhich is glven directlv by the theory and involves the dimensions
of the cgyljnd.er end Poisson 8 ra’cio :

For very short cylinders the value of the shear-stregs coef-
ficlent approaches the values for flat plates, 5.34 when the edges
are simply supported and (.90 when the edges are clamped. As 2
- Increases kg also incroases and the curves which defined lig
are glven approxmately by straisht 1ines. I‘or S'.'melJ sup')orted
cylinders,

kg = 0.8 5z3/’*

For cylinders with clamped cdees,

ky = 0.93 23/t
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The range of validity of these formulas is approximately
100< Z < 10 &= '
12

For the case of long cylinders the curves of figure 1 split
into a series of curves depending uron the radius—thickness ratio.
These chrves, which correspond to buckling of the cylinder into
two circumferential waves (n = 2), depart from the straight lines

at approximately Z = 1022 or epproximsately % = 3‘/5 . Because
’ t

~ the critical shear stress of a long cylinder is almost
indépendent of end conditions, the curves for different values

of r/t apply both to cylinders with simply supported edges and

to cylinders with clamped edges. These curves are probably some—

what Inaccurate, however, because one of the requirements for the

validity of the simplified equation of equilibrium used is

that n2>> 1, A calculation for long cylinders made by Schwerin

and reported in reference 1 by Donnell suggests that all values

corresponding to the curves given in the present paper for n = 2

are slightly high.

In figure 2 the results of the presgent paper are compered with
those given by Donnell (reference 1) and Leggett (reference 4).
The present solution agrees quite closely with thet of Donnell .
except in the transition region between the horizontal pert and
the sloping straight-line part of the curves. In this region the
present results are appreciably less then those of Donnell
(meximum deviationabout 17 percent) but are in close agreement with
Leggett's results, which are limited to low values of Z.

-In figure 3 the present solution and that of Donnell for the
critical shear stress of simply supported cylinders are comparsd
on the basis of agreement with test results obtained by a number
of investigetors. (See referencesl, 5, 6, and 7.) The curves
giving the present solution are appreciably closer to the test
points. More than 80 percent of the test points are within 20 percent
of the valuses corresponding to the theoretical curve for simply
supported cylinders given in the present paper, and ell points
are within 35 percent of values corresponding to the curvs.

In figure 4 the present solution for criticel shear—stress’
coefficients of long cylinders which buckle into two half waves
is given more fully than in figure 1 and is compared with test -
resulte of references 1 and 8. :
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The computed values from which the theoreticéi curves presented
in this paper were drawn ere given in tables 1 and 2.

CONCLUDING REMARKS

A theoretical solution is given for the buckling stress of
thin-walled cylinders loaded in torsion. The resulte are applicable
to a wide range of cylinder dimensions from very short cylinders
of large radius to very long cylinders of small radius. The
theoretical results are found to be in somewhat better egreement with
experimental results than previous theoretical work for the same
range of cylinder dimensions. ' .

Langley Memorial Aeronautical Labofatbr&
Nationasl Advisory Committee Tor Aeronautics
Langley Field, Va., Merch 20, 1947
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APPEIDIX. -

THEORETICAL SOLUTION

The critical shear strees at which buckling occurs in a
cylindrical shell may be cbtained by solving the equation of
equilibrium. - - o

Fquation of equilibrium.— The equation of equilibrium for
2 slightly buckled cylindrical shell under shear is (reference 3)

by o 33
DVI*W + EEV 4 gﬁ + 2Tcpt a‘;_:;” 0 , (1)

where x 1s the axial direction and y the circumferential
direction. The following figure shows the coordinate system
uged in the analysis:

o b 5t ol

o

ol

e ————

e~

S
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Dividing through equation (1) by D gives

b, , 1222 -z,a’*w 21:1‘332"=o 0
v el A S 1% 3y | (2)

where the dimensionless parameters Z and kg are defined by

and

The equation of equilibrium may be represented‘by
Qw =0 : (3)

where Q 1s defined by

L3k 2
Q=94+ 1°ﬁ2 g-b 5}1 2kg 12 9%
¥ ,Bx _ LE ax ay

Method of solution.— The esquation of equilibrium may be solved

by using the Galerkin method as outlined in reference 9. In
applying this method, equation (3) is solved by expressing w in
terms of en arbitrary number of functions (Vg, V9, . . . V4, Wos
Wi, . . ., Wj) that need not satisfy the equation but do satisfy
the boundary conditions on w; thus let

| J | |
e S b 3

m=0 m=0
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’The coefficient ay and by are then determined by the equations

~

2a 1L |
4 e

-

4 (5)
21 L |
J WaQv dx dy =
olo ]

where :
n=0,1,2, . u,J

The solutions given in the present peper satisfy the following
conditions at the ends of the cylinder:

For cylmders of short and medium length with simply supported

edges w.= gig v=0 end u is unresirained. For cylinders of

short and medium length with clamped edges w = g—; =u=0 and v is
unreslrained. TFor long cylinders w = 0. (Sse references 2 and 3.)

Solution for Cylinders of Short and Medium Length

Simply supported edges.— A",defle'ction function for simply
supported edges may be taken as the infinite series

Do - .:_', R croo o A.m_' e R
v = sin LA am sin E—_EE + cos ?.;X ;— by sin ZFX (6)

'1\48

i
=
8
R

vhere A 18 the half weve length of the buckles In the cirme
cunferential direction. Equation (6) is equivalent to equation (4)
if . -
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Vp = sin &I gin RIX
n Y 1 1

? (7)
W. = cog XY gin BIX

n A L

5o o

Substitution of” expressions (6) and (7) into equations (5) end
integration over the . limits indicated give

7 i} g
o, | (524 g2)2 + 127204 _ 88\ _mn
ni o / m
L ﬂh(DE + BQ) B n ﬁzi n2 - me
l
. f (8)
r : 1 = :
byl (a2 422+ —222%00 (o EE) w0
] { w*(n2 + 2)2 | "L o n%-m?
. - m=1 |

where -
p=L
_ A
n=1, 2: 3:

end min is odd. Equations (8) have a sclution if the following
determinant venishes; - . :
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al 52 8.3 ah 5.5 36 vv; bl
=1l 0 ¢ 0 0 0 ... ©
kg . .
. T
n=2{ 0 i 9 ©o 0 0 ... -%
n= 0 O M, 0 0. 0 ... ©
3 ’ Es 3 . h
) &
n=k| 0 0 o0 ELSMA 0 0 ...
- , 1
n-5 0] 0 0] 0 k_sM5 0 ... O
n=6|.0 .0 0 0 o0 iM..-&
L kg 35
) = --2- -_,'L -.—6._ 1
n 0 -£ 0 -y 0 -z .. M
_ 2 ) 10
n2| £ o0 & o o ... o0
= 6 .12 2
n=3 1? 5 0 7 0 3 - 0
=y | 12 .20
n=4 15 0 i 0 5 0 ... O
= J—:Q .2_9 -3_0..
n=_ 60 1 0 ) 0 T " , 0
€| & 2 30
n=bl 3z 0 3 0 & 0 ... 0
where o _

J

by b

2 0

3 ¢

° 3

£

5

0 -i2

1

.10 0

21

2

0 -

3

0 0

L, 0
‘S 1

0 EEM

o] 0

0 0

0 0
lQZenh_

= . 48 v(ng + 32)2 +
E 88 |

a4 (n® + Be)ej
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=
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1
o B o fql

o o

bs b6 s
o £ ...
35
0 o ..

21
s ...
°© 3
20
9 O LN ]
o &2 ..,
11
0
ll 0 L BN}
c - 0 ..
o o L 2N 3
0 o ...
O o * e
1
ﬁs 0 L3 )
1l
O E-S‘M6 LI )

By rearranging rows and columns, the infinite determinant can be factored
into the product of two infinite subdeterminants which are equivalent
to each other, The critical stress may then be obtained from the

following equation:

(9)

w0 RN, e . . . -
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The first approximation, obtained from the second-order determinant,

is given by

(11)
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The second approximation, obtained from the third—order determinant,
is given by o _

(12)

- The third approximatlon, obtained from the fourth—order determinent,
is given by : '

. : , )
48 , B _ i3 (12F (8 3 2
k'l 5 + 25>2 ke 7 )‘MJ_]\«2 +{ 5>2Mth + 15>2M2M3 + (3)2M3MhJ
+ MyMol-My, = O | ' (13)

Each of these equations shows that for a selected value of the
curvature persmeter Z the eritical buckling stress of & cylinder
depends on the wave length. Since a structure buckles et the lowest
stress at which instability can occur, kg 1is minimized with respect
to the wave length by substituting velues of B into the equation
until the minimum value of kg cen be cbtained from a_plot of kg
egainst B, This procedure is permissible when B> %% » that is,

when the cylinder buckles into more than two circumferentisl waves.
Tor the limiting case of a cylinder buckling into two weaves,

goe the section of the present appendix entitled "Solution for

a Lopg Cylinder" which follows.

Figure 5(a) shows the convergence of the determinant for cylinders
with eimply supported edges. .

Clamped-edges.— A p;ocedure gimilar to that used for cylinders
with simply supported edges may be followed for cylinders with
clamped edges., The deflection function used is the following
scries: ,

oo — ’ -—
waginﬂx an cosw_—cosw
- A/ L : L
=0 - _
m—. i~ N .
+ cos 2L by, | cos ==X _ cos o+ 2)nx (1%)
*/ L L
m=0 .
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Each term tf this seriss satisfics the conddticn on w at the edges.
The functions Vn end W are now derined es follows:

N
- -
'Vn==sin-’§:Z cosﬂ;—i;-cos-(&l'e—)ﬂ

(15)

Wn

=cos’—;‘-z cosE—’I-r,E-cos@LL?—lﬁ

vhere

n=0, l’ 2, N

When the same orerations as those carried out for the case
of simply supported edges ere performed, the following sirmultaneous
equations result: :

For n =0,

!

o3 r 5 ( 2)2 |
' m .ot +
a (2M + Mg) -~ agMp + ks bm - + = 0
o\<tn M m=12,3,5 w2 L (m+2)2 -k
For n=1,

m2 me

a; (M + M3) - asM3 + kg Z bm[ -
’ m=0,2,4

m -1 mf-9

—--—ﬂ-f 2)_9 . (m +'2)2 -
. C @+22-1 (@+2)2-9
Fer n=2, 3,4 ...,

b

an(Mn + Mny2) - en-oMn — an+oMne2 + kg

m=

I

2
pin
bm[me-;é-

_ m2 e (m+2)2 (m+ 2)2
n° ~ {n + 2)2 (m + 2)° = 2 (m + 2)2 ~ (n + 2)2

O

=0
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wvhere mt n is odd,. P

For n =0,

: : & - 2 (m + 2)2
m o +
b(EM +M)-'bM2-k Z - + =0
oleMp+ Mo 2 8 °n 2 e
m- - 4 m+ 2)e -4
r=1,3,5 - ( ) -
For n=1, -
N e o (m + 2)2
.m=0:2:l$ l - 1 " 9 (m * 2) l
+ - (m + 2) 1':: 0
(m+2)2 ~9_ |
For n=2, 3, 4, . . .,
b (Mg + Mgyp) = byogly = PrugMne2 — ks ) A | - o
; +2 nmem e xf_:o' 2 ~n2 2 - (n+2)?2
- (ms )2 . (m + 2)2 =0 (16)
(m+22-m2 (m+2)?-(n+2)?

-l

vhere m*n is odd =and

(02 + p2)2

S —

| 1072k
Mn‘gg(n2+ﬁ2)2+ Z ‘,

The infinite determinant formed by these equations can be reerrenged
80 88 to factor into the product of two determinants which are
equivalent to eech other. The vanishing of cne of these determinantis
leads to the following equation (limited for convenience to the
8ixth order): , '
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B.o bl ae b3 ah bs

_ _a 64 32
n=0| =(2Mp+Mp) f% EEMQ 105 0 - 35
- 32 1 _3¥2 _a 32

n=l 5 E (MM 105 a3 35 ©
2| 2w, - 22 1 1472 1 _ 1376
= Kg 105 EE(MQ y) 315 kg~ 1155
- o4 1 12 1 _heo _

n=3 105 K 35 Eglsths) 693 Kl
4] o 2Ly, 6 1o 0 gl
" 35 kg 4 69 ( *g) 1287
= - 32 - 1376 43 okbo 1

i 315 1155 kgD 1287 KgootMD)

The first approximation, obtained from the second—order

determinant, 1s given by

\2
2 =<%g (M + Mp) (My + M3)

15

=0 (17)

(18)

The aecond approximstion, obtained from the third-order determinant,

is given by

k2 = (M1 + M3) L(?MQ + Mp) (M + M) — M22‘J
g

32¥ 64 35

15) (Mp + My) = 75 iéM 105

352>2 (2M0 + Mp)

(19)

The third aspproximation, obtained from the fourth—order determinant,

1s given by .
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Solution for e Long Cylinder

A long slender cylinder ( zZ >10 2-2-) will buckle into two

r

wvaveg 1n the circumferential direction, JIf, 1in the previous

cases of cyligders with simply supported or clamped edges, the
“half wave length in the circumferential direction A 1is taken

as ﬂr/2, it ie¢ possible to find the critical stress of a long
slender cylinder with the ccrresponding edge conditions. This
method of solution is laborious, however, bocause determinants of
high order must be employed to obtain solutions of reascnable
accuracy. The lator is greatly reduced by the use of the following
deflection function:

W= 8y < co8 (P—%]E + -21-_1>- cc>slr-(-P—+fg)—’g + g%‘, (21)

where p + 1 1s the phease difference of the circumferentlal waves
at the two ende of the cylinder measured in quartez\-revolutions.
This equation satisfies the single boundary ccndition w = O.

With this deflection function, the fupctions V and W all
vanish except

V1 = cos (%z . 21)- cos Lmig)“—x . 23] (22)
r

Use of equations (5), (21), and (22) and the relation 2\ = nr
results in the following equation:

T —pg L L/L ]2 107204
) 8k(p+ 1) | L "2 r) n‘*[p"’ —4—(
- | 4
C+ e+ 2)f s ,':%(%)2}2 222(p +.2) (23)

=ol
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This equation may be written

.

k l=,r 2-% l"].12< p2+ l" zt 2+' 1222:9!4
a e - hnar— -
. 8(p +1) “e-rr !/1 - e ﬂu( 4 7t e

pe + p-}

L r/r-E

N . ' 2 . - 272(P +>2 h
L “ervl-—,ue [(p+2)2+.l"_..;_.z;'_t__ 2
} ) - _ r'/l—p.
- . (24)

Fof glven values of Z and - Vl - u s P is varied until a

minimum value of kg 18 obtained from a plot of p and corresponding
values of kg. The ‘critical stress of e long slender cylinder is

very insensitive to edge restraint; therefore, the solution applies
with sufficient accuracy to cylinders with either simply supported

or clemped edges. The sheer-stress coefficient for long slender
cylinders is plotted egainst the curvature paresmeter in figure 4,

and pertes of these curves also appear in figure 1.

)]
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TABLE 1

THECRETICAL SHEAR-STRESS COEFFICIENTS AND WAVE LENGTHS

OF BUCKLES FOR SHORT—- AND MEDIUM~LENGTH CYLINDERS

20

iiFFirst approximation

Second approximétion

Third approximation

kg B kg B kg B
Cylinders with simply supported edges
0 5.60 0.770 5.34 0.790 s
1 5.69 .805 5.42 .360 5.41 0.865
5 6.68 1.00 6.22 1.015 | == e e
10 8.36 1.24 7.55 1.265 7.545] l1l.27
30 14.93 1.82 12.69 1879 | e mde e
100 34.09 2.74 27.86 29l | mmmmrde -
300 76.80 3.86 62.47 4.18 61.47 k.32
1,000 | 189.5 5.40 153.0 5.95 et b
10,000 | 1072 10.0 871.2 |1l.2 851.9 | 11.8
100,000 | 6050 17.9 Lo2o 20.1 4800 23.0
Cylinders with clemped edges
0 9.55 1.175 9.31 1.205 9.09 1.205
1 9.57 1.18 G.32 1.2 | ecemm e e~
5 9.90 1.23 9.62 i A e
lo| 10.79 | 1.35 10.42 | 1.38 10.19 ; 1.38
30 16.13 1.89 14,99 1.97 | wemmrem - =
100 35.40 2.95 30.68 3.14 30.65 3.12
1,000 | 206.3 6.12 167.5 6.70 165.7 7.00
10,000 | 6860 20.85 s54b4o - 23.2 5310 24.8

NATTONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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TABLE 2

THEORETICAL SHEAR-STRESS COEFFICIENTS
FOR IONG CYLINDERS

-2 : -
%Vl M | z X,
4 x 103 428
3 x 104 2,450
20
107 7,780
1o6 7€,500
N .
™ 2.5 x 10% 1,680
10° 5,380
50 £ 6
10 47,900
_ 00 476,000
- ,
10° 4,800
100 § 106 35,200
107 334,500

NATIONAT, ADVISORY
COMMITTEE FOR AERONAUTICS

21-
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2.- Comparison of theoretical curves for critical stress of
thin-walled cylinders in torsion.
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(b) Clamped edges.
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Figure 5.- Successive approximations of critical shear-stress
coefficients for thin-walled cylinders in torsion.






