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NATIONAL ADVISORY COMMITIEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1346

CRITICAL SHEAR STRESS OF LONG PIATES WITH TRANSVERSE CURVATURE

By 8. B. Batdorf, Murry Schlldcrout, and Manuel Stein

A theoretical solution ig presented for the buckling stress
of long plates with transverss curvature loaded in sheaxr. The
results are given in the form of curves and formulas for plates
with simply supported or clemped edges for a wide range of plate
dimensions. Comparisons are made with theoretical solutions
obtained in previous investigations.

INTRODUCTION

The problem of determining ‘the buckling strees of long plates
with transverse curvature subjected to shear has received limited
treatment in .two previous- investigations. In a papsr published
in 1937 (reference 1), Leggett presented solutions for plates with
simply supporited edges and for plates with clamped edges. Numerical
results, however, could be given only for plates of small curvature.
In 1938 Kromm (reference 2} published a solution which covered the
complete curvature renge but considered only simple support. The
present paper treats plates with both simply supported and clamped -
edges over the complete curvature ra.nge The.boundary conditions on
medien-surfece displacement in Leggett's analysis differ from those
in Kromm's analysis and in- the present work. .

The various bowmdary conditicns treated are sumnarized in the
following tabls: _ :
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Boundary conditlons

Displacement

Anthors ' o N " Slope Moment
Axial Circun~ |Redial '
" ferential '
- Bdges simply supported
Leggett -0 o 0 [|Unrestrained 0
Kromm 0 Unrestrained " o. Unrestrained 0
Present . 0 - |Unvestrained] 0 |Unrostrained|’ 0
peper |. B K
Edges clemped
Leggett 0 0 0 0 Unrestrained
Present | [Unrestrainedl 0 | 0 0 Unrestrained
paper
0 | Unrestrained| 0 0 Unrestrained

These verious assumed boundary conditions lead to different

. values Por the critical stresses. The results found for the mets.

.of boundery conditions given in the preceding table are dlscussed
end compared. in- the followling section. .

RESULTS AND DISCUSSION

The criticel shear stress for a long plate with transverse
curvature ie given by the equation

e a2
T = _.P__B
cr be,o
wvhere
b width of plate measured along arc

t thiclkness of plate
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D flexural stiffness of plate per wnit lesgth (&J%%é——i§i>
. 12{1L -
, Fa

E Young's modulus of elasticity

ks criticel-shear-stress cocefficient
Top critical shear stress

H Poissoﬁ 's ratio _

The critical-shear-stress coefficlents ks found by the metbods

of the present paper (sse append;x) for plates with both simply
supported and clampsd edges ers gilven in tebles 1 and 2 and are
plotted in figure 1. The ordinate in this figure 1is the critical-
shear-stress coefficient, and the sbscissa is e curvature
paremeter 2 which depends on the dimensions c¢f the plate and

on Poisson's ratio as follows:

Z--Vl-u -(h A

where' r is the radius of curvabture of the pla£e~

" As the curvature paramoter Z beccmes small and approaches
zero, the value of the shear-sitress coefficlent k, for simply

supported edges approaches the knownt value for a flat plate of 5.34.
The two soluticns given for plates with clamped edges correspond

to different boundary conditions on median-surface displacement,

as indicated in figure 1. In the solution represented by the solid
curve the value of kg &pproaches the established value for a flat
plate (kg = 8.98) as Z approaches zero. In the solution
represented by the dashed curve the value of kg &3 I approaches
zero is ebout 7 percent higher because of poor convergence. The

solution lsading to the solid curve was so rapidly ccnvergent that
fourth-order determinents were found satisfactory. Tenth-crder
determinents were used to obtain the dashed curve, and the additional

lebor required to obtain an accuracy compareble to that of tne solid

curve was consldered prohlbitive.

Ag Z Iincreases ks also increases end the curves approach
the straight lines given by the following equations. Fer plates
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vith simply supported edges,. ' -
kg = 1.921/2

For pletes with clamped edges (v wnrestrained; u = 0 ai edges),

= 3.123'/2 (Result probebly scmewhat high
because of poor convergence)

kg

For plates with clamped edges (v = 0; u unrestrained at edges),
k= 3.4z3/2

These equatlons apply when 2 > 20.

In figure 2 the results of the preszent paper are compered with
those given by Leggett (reference 1). Leggett's resultz for the
critical stresses of plates with simply sumported edges are
conglderably higher then those of the present paper (which nresents
results identical with those of Kromm) because of the additional
restraint imposed upon the plate in Leggett's solution. TFor plates
with clamped edges all solutions give approximately the same resnlts
in the low curvature range to which Lesgeti's results are restricted.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
langley Field, Va., Mzxch 20, 1947
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m,n, ]

APPENDIX

~ Symbols
wldth of plate measured along arc
integers
radlus of curvature of plate

thickness of plate

displacement of point on median surface of plate in axial

(x-)} direction

displacement of point on median surface of plate in
circumferential (y-) direction

displacemsnt of point on median surface of plate in radilsl
direction, positive outward

axiel coordinate of plate
circumferential coordinate of plate

3
flexural stiffness of plate per wnit length £t
] 12(1 - p2)

Young's modulus of elasticity

mathenatical operater ) .o L
2 2 %5
curvature parameter (ég V& - 2 or %) % Vi - u%)

coefficlents of deflochion functions

critical-shear-stress coefficlent appearing in formula

- gD

T cr
bt

x| 2 h
(R s
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Vy W, ‘deflection functions = ¥ —
I)
B =<
A
A half wave length of buckles in axial direction
M Poisson's ratio - |
T . critical shear stress '
cr . , ' ,
L k
v‘,'l' _.B\ : + 2 . a +'.__ : S s Ll T e e _-:.:-; i: .

v o= inverse of Vh, defined 'by v +(V}“w) ZF('v'l"w) =W

[ T .

'I’heoretical Solut.ion
~ Bauetion of equilibrium.- "‘he critical shear stress at which
buckling of a long plate with transvérsa cirvature occurs mey be.
obtained by so'l.ving the following equa:bion of equilibrivm

(reference 3) o Ny o o
Dvuw+-—vl"ah';: crté%i—-so - (1)
0w wy
Division of“ec;uat{c'an (1) by D '-gi{r;‘e's the equation . .
T 4 - i.'”ahw+2ksﬁ-ﬂ— 0 @)

b’*, a“ 12 3 dy.

e . P el s

whore the dimensionless paremeters Z and 'k 5 axe Lefined by
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and.

Equation (2) can be represented by
Qw = 0 (3)

where Q 1s defined as the operator : N

Ty 2 ) '
vl"'-i-le.z V-h%+2ksni—a——
- p* 3x bS ax dy

'Method_of solution.- Eq_uaticn (3) may be solved 'by the .
Galerkin method, which 1ls outlined in reference k. In the application
of this method ’che displacement w 1s expressed in terms of &
sulteble series expension as follows:

iamV«mew | o

m=1

In equation (4) each of the functions Vl, Vo, <o+ V3, Wi,

Wo, = WJ must satlsfy the boundary sonditions on w but nsed not
gatisfy the equation -of squilibrium. The coefficients a.m and bm
are determined by the equations _ -

)‘2)\.

L e e - '1

.?.A,fb.
W dx dy = O
L D n |

vwhere n =1, 2, 3, -..

(5)

The boundery conditions considered In the prosent paper are
as follows: for plates with simply-supported edges,

*
We——s=u=0 end v is unrestrained; for plates with

3 _
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' ow
clamped edges, W =7—=v =0 eand u is unresirained (case I)
.oy

end W =5 v 0 end v 1s unrestrained (case II).
y

Solution for plates with simply supported edges.=- The following
infinite series expansion represents the displacemsnt w of curved

plates with simply supported edgss:

o . ®
nx ) Comny Tx oty
w=sin—-—_$_ _ sin——-—-t-cos—-——z by, sin —— (6)
hm:lam b Mp=1 b

where X\ 1s the half wave length of the buckles in thes axial
direction. Egquation (6) satisfies the conditions om w for

simple support end when introduced into equation (5) implies that the
axlal displacement wu is equal to O and the circumferential
displacement v 1s unrestralned at the edges (see reference 3)
Equation (6) is equivelent to equation (k) if

sin -—“f- gin nay

.vn -

(7

A an B
Wy, = cos Y s_:_ln 3

Whera n'—'l, 2, 3"-00

1

Su.'bst:jltution"of expressions (6) and (7). into equations (5) and
integration .'ge’cween the limits indicated give

(=]

8Pk, A
[(n +B)2 “(n +B2)2] ok meﬁ—m—aso
b l:(ne . Be)a- 12 gl 2] 8By Z o o

l‘(n +[32 m=1 2-m2 J

where n=1,2,3 ... and mtn 1s odd. .

> (8)
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Equations (8) have & solution in which the coefficients aj,
and the coefficients b, are not all zero (that is, the plate has
buckled) only if the following determinant vanishes:

e ' ap ag ay a5 &g ... By Dby Dby by by Dbg ...

1 2 b 6
l 0 0 0 s e - —— 0 S— eo ¥
B b ° ° 3 ° 5 35
=2{ 0 &M, o 0 o ... -2 o £ o X o ...
= kg © 3 5 21
| 1 .6 12 2
= 0 0 0 P —— 0 L 0 P
n=3 k‘j’% o} 0 0 5 = 5 -
ks * 15 7 9'
1 _10 _20 30
n=5 0 O 0 0 E;Ms 0 LI ] 0 21 0 9 o ll LI
=6{ 0 0 © 0 0 b 0 2 03X o ...
%EMG 35 3 11
=l 0 —"2' O —"2!.— 0 '—"'6"“ s eae l 0 o O 0 e o
a=l} 0 -3 15 3 o EL 0
o] 2 6 o _1o 1y o o |
n 2 3 X 0 5 o 2.]_ Q— .ooq 0 ‘E"BMQ O o o o 28 »
6 12 2 1
n= 0 2 0 —=z= 0O -= ... © 0 =M 0 0 o ...
3 5 T 3 kg 3
e 2 20 1
n—,'l' 15 O T 0 —9 o » . O 0 O 'i';bi)_l. 0 0 ate
0 20 30 1
n=5 0 = 0 5 0 33 e O e} o 0 M o ...
6] & 0 2 o0 X o0.,. 0 0 0 0 0 TM ..
35 3 11 kg
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vhore . 2 - 12Z2 y 1 ' | .
i gﬁl:(n " B) )"(n + BET-J

By a rearrangement of rows and columms the infinite determinant |
can be factored into two infinite subdeterminants which have the same
expansion and are therefors equivalent.

; gy by &3 Dy &g bg o0 Py By D3 gy 'b5 Be e
- 2" b 6
n=1 kle 3.0 5 0 35 o O | o 0 0 0 0 ...
n=2| & 1—1.12 & o 2L 6 ... 0 0 0 0 0 0 ...
3 "ks 5 21 . -
61, ' T, 2] - -
n= O - = Cag — O — s e e 0 O O O 0 o .
3 5 ksM3 7 3 :
nkib - o 1Ly 2 45 .. 6 o0 0 6 0 0 ...
| B T kg 9 3 =
: 210 i, 20 1., 30 '
n=54--0 =2 ip -2 2L .. 0 o 0o 0 6 0 ...
—5. 21 g kSM'j 11
b6l o 2 o X EM, ... 0O 0 0 0 O 0 ..
135 - 3 11 kg N
N B . R C S
. - LY 1] L ] * L) . . =_0 N
n=1|.0 0 0 0 0 0 ... l~-Ml 2 o b o -& ...
kg 3 R 5 35
n2l 0 6 0 © 0 0 ... -2 L, 6 o 2 4
3 ®s. 5 21
a=3{ 0 0 0 0 0 0 ... o & iy 2 o, 2 |
. : -5 ks 3 7 3 -
nhl 0 0 0 0 0 0 ...t o A2 o~ 2 o5 .. .
15 7 ¥ % 9
. RPN . 10 20 1, .30
= O 0 0 O O O e e O — O —— — ) *
: 21 9 ksM5 1
. 2 30 1
n= 0 O O 0 0 . O . - — O - I{I "o -
‘ 35 3 11 kg 6
. L] L . L ] L[] L] . * (lo)
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The expension of equa.tion (10) may be approximated by finite
subdeterminents. The first approvimate expansion of equation (10)
which will yield a value for kg is obtained from & second-order

determinant teken from olther factor. Thus,

- G (1)

The second approximation, o'btained from & third-order d.e'berminant
is given by .

My Mpls

"G n o

The third approximetion, obtained from & fbwcth -order determinant,
is given by . . .

nse 8% _olneV /68 BV

(12)

+(—3—>M3Mh + MMMl = O : L (13}_

Each of these equations shows that for a sslected value of the
curvature paremster Z the crltical strese of long curved plates
depends upon the wave length. Since a structure buckles at the

lowest stress at which instebility can occur, k; 1s minimized

with respect to the wave length by substituting velues of B into
equations {11), (12), or (13) until the minimum value of Xy

can be obtalned from & plot of kg egzinst f. Table 1 shows the
convergence of the various approximations for kgz. The results are
also showm graphically in figure 1.

Solution for plates with clamped edges (case I).- A procedure
similar to that for plates with simply supported edges ls followed for
plates with clamped edges. Solutions are given for two types of
clamped -edge support correspording to two sets of boundary conditions.
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“The deflection function for case I

m - . ) -
(m - (m+1
w = sin %% F— &y LQOB = _ LW, cos = )EX

. o

T (n = L)y (n + l):ry]

+ cos '——Z'b [cos ———— =~ go§ ————= | (1k)
A i mi- b b

satisfios the conditions on radial dlsplacement w and impliles

that at the edges the axial displacement "u I1s unrestrained a.nd. the

circumferential displacement v is zero (see reforence 3).
Comparison of equation (1) with equation (4) shows that

sin---j"‘E [cos _ﬁl_:__g];)__. - cos (R * 1 l_)_I]

V. =
i (15)
W, = cos Y [cos !E__'___)_’EI - cos (B.F l}nx]

When operations equivalent to those carried out for & plate
with slmply supported edges are pbrformed the following simmlteneouns
equations result: ) _



Thnw o = ) - . . - ™~
:l._u- i = a . . o l_ (m N 1)2 (m - l)E \
- D : - - =

al(mO+Mg).a3ME+kan§;-th(m+l)2-h (m-l)ej'h_ %

For n = 2 l. - . : . . o E

- | =12 _ @-12 | @m+1ff | @+ |
gty 1) a*‘M3+k E;hm[m_-l)e-l @-12-9 @+12-1 @+1)®-9 §
For n = 3,b, : | o %;\
ar,%ﬂ + Mnm\ - enoMyay < Aoy
P L e R e o e A R
mL(m-l)E-(n-l)E m-12-@+1)? @+ -@-12 (@+1P - (o+2)

vhere m +n Im Bad |

Tor n=1 ' - : o > (16
' i . . _ (m + 1) L _fm-1) -
bl(EMO + ME) b3Me “s g_}_ I-f-m N 1\2 k (m - 1)2 - h'...l. ) 0

For n=2 .

-7 ;I'ﬁ\_.”_ _'k |- (m-l)2 } (m 1) (m+1)2 . (m+l)2 ]
For n = 3,4,...
.b.n(M.-:-.-l * Mnd-l) - bn-QI_'ia-l - bn-!:ﬂl@x{-l : o _
x> “@-1? . @e1? @ cwr? ]
P me ml_(m -1 - (-1 @12 - (@+1)? sk 1)?:'- (@m-1% (a+1)° ~ (2+ 19
vhere m +2n Ii1s odd u

J
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and where

_alte, 2P, . el
el ]

The infinite determinant Pormed by equetions (16) can be
reaxrsnged so as to factor into two mubually equivalent infinite
svbdeterminents es in the solution for long curved plates with
simply supported edges. - The vanishing of the first of theze factors
is expressed by the followlng equation:

ay by 2y by, o5 g
=l ']l;;(%““a) _13-2- -%;MQ -% o -3—13—:-_
= e B R 4 ke 35
n= "i%‘ o %}E (i) j’%z"_ij o
a5 o IS:E;. "1J§;Ml+ -%‘% ,_%Q(MMM(S) .9.-12_)%
n=6 '-£ 0._ -i;’-—gg -%:;Ms z:gg %; M5+M7) BN
: \ : . : : I -(17)

~ The first approximation, obtained from the secbﬁd-order
determinant, is given by

L (%)2(21404 Me) (i f_'MB) (18)
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The second epproximation, obtained from the third-order determinant,
is given by

oo (o + ) [, ) o+ ) - ]
| )(%+Mu)-ae_)%%+ )2(2M+M2)

(29)

The third approximetion, chiained from the fourth-order determinant,
is glven by .

(D6 @E) e ne
+ (105) (2, + ) (M3 ) (lgg ) o+ ) (5 + 1)
; (E) (s + ) (3 + %) - (105) (1315> ( + )
oSNyt ) <) (Bt

( )(m) (e + ) + [(105)(% . ( 315 MEMs}

[21»:0(142 + Hh) + MEM;J E«tl(M AR M3M5] =0 - (20)

These equations were used for values of Z betwesn O and 30.
As Z incresses, the first term of the determinant becomes
unimportent, and for Z = 10° equations similar to equations (18)
to (20) end containing the by, a3, by, and ag terms were used.

For 72 = 103 end Z = 3.05 the second term of the determinant also
becomes unimportant, and equations similar to equations (18) to (20)
but including the &3, by, &g, end by terms were used. Each of

these equetions may be solved in the same menner as in the problem
of curved plates with simply supported edges - that is, by
substituting values of B into the equation for each va.lue of %
until the minimm value of kg, 1is obtalined from a plot of B

against the corresponding values of kg. Table 2 shows the convergence
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of the verious Approximaticne for ky. The results ave shown
graphically in figure 1.

_ Solution for plates with clamped e@ges (case II).~ Another
deflection functian for a plate with. clamped edges (case II) is

v

g ,.foo . )
N m + 2)x,
wegin X ) am{l oin B . L gy ) #]

.i-’ m=l m .b ) n + 2 e b ~
! 0 . ' )
, ux'zz: 1 nry 1 (m + 2)n?] '
+ cos — b |= sin —= = in 21
e A mim ° b m+ 2 8 b (21)

This series satisfies the corditiens on “w and in addition implies
that u is 0 and v 18 unrestrained at the edges (see refprence 3).
Comparison of equation (21) with equation (%) shows that in case II

ax |1 f, nony 1 (r.t + QLTI.YJ
V. gln =— | =siln — = -
n= "N a b n + 2 b
: . o ' (e2)

W, = eee = .
n Aln b . n+2

L —_ 4 2)
e B S N @_.b_m]

wvhere n = 1,2,3, ...

" When operations equivalént to those carried out for the case
of eimply supported edges are performed, the following simltaneous

equations result:



For n=1

9
For n=2

aaei ¥ 3.6) 16

For n=3,4...

1 1 1 l
a.l@l+£3) -.;ﬁma-ks ib - - + 2:[=

n=2 b iy - :I_--(m+2)2 9‘-'-1112 '_9,:-.(m_+2)

D S -l-"]=°

n=1,3 L4 - o u-(m+2)2 6 < m +2)°

E;Hne‘)_ﬁn-e T
2

2  (n+2)

2

ne (n + 2)2 D2

1 1 1 T I
-k b - - = 2 + 2 2
8 Ml o "2 2 _ 4 .02 ina2V® an® . (n+2)° -(n+2)
m=1 =) LY L Y s 1 I S |

where m +n 18 odd

For n=1
blle"'_"}
Tor n=2
Mo M\ _Pu
2, "% 5
For n=3,h

liﬂ-"'a \ -bn"e LV . 'bn-‘_a

n- < m o~ = (i +

+‘ %ar“l 1 " p —l;Q
I£E’n:L=2, ml_l-n? l-(m+2)2 9 m2 9-(m+2)2J

u s 1 Ym- r 1 - 1 ) - L -.l- | 3 _I =0

'I'.B.B YA = o

m=1,3 am!_ll- -me b - (m+ 2)2 16 -m2 16 ~ (m + 2)2]

Drkna (n + 2)

2 (@+2)P 2 Con T

RSN

m=]

wvhere m+n is odd

1 . 1 i l- i J 05-2
-(m+2)2 (o +2)2 - n@ (n+2)a_(m+2)2

\

> (23)

ghET *ON NI VOVN

LT
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and where

B e 107°p"
M, = -8% [(n2 + ;32) * ,tl%(na " ;32)2]

The infinite determinant formed by equations (23) .can bo
rcerrenged so &g to factor into two mutually equivalent infinite
subdeterminants. The vanishing of either of these factors leeds to
a relation between kg, 7B, 'end Z. TFrom this relation the value

© of kg is found for a given value of Z by minimizing ky with

" respect to B~ Because the solution is slowly convergent ‘tenth-
order determinents were used. These determinants were evaluated
by the Crout me’chod. (reference 5) Por asswmed valuss of k, and B.
. For given velues of ,. corresponding velues of kg which caused
the determinants to vanish were found. The critical value of kg
is the minimum value of 'ky found from & plot of kg againat the

corresponding velues of B. Table 2 presents the theoretical values
of kg obtalned by solving determinants of different order, The

results are shown graphlcally by the dashed curve In figure 1.
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TABIE 1
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THEORETICAL SHEAR-STRESS CCEFFICIENTS AND RATIO OF WIDIH OF
_'PIA‘]ETOHALFWAVE IENGTH OF BUCKIE FOR LONG PLATES WITH

TRANSVERSE CURVATURE WITH SIMPLY SUPPORTED EDGES

1Filrst approximation Secq_nd a.pprox_ima.ﬁion Third _a.pproximation
Z' Ky B kg B kg B

0] 5.60 0.77 5.3% | 0.80 | meeese | eeea-
1 565 .0 5,38 R
2 5.68 .78 5.42 80 | ewmee- ————
5| son.| | 596 |0 76 | eeeeee | eemen
10| 7.08 .58 1 6.2 .65 SR B
30| 11.16 .33 0.66 | i35 | eeemem | mmee-
100 20.02 17 15.20 A8 T} memeee | wemma
300f 34.3 110 33.0 098 | mmmme | cemen
1,000{ 62.60 054 60.15 055 60.02 0.055
10,000 198.5 017 190.0 .018 189.7 .018
100,000 626.0 .005 | 601.2 .006 e B

NATTONAL ADVISORY
COMMITIEE FOR AERONAUTICS
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TABLE 2

THEORETTCAL SHEAR-STRESS COEFFICIENTS AND RATIO OF WIDTH OF

PTATE TO HALF WAVE LENGTH OF BUCKIE FOR LONG PLATES

WITH TRANSVERSE CURVATURE WITH CLAMPED EDGES

;irst approximation|{Second approximation|Third approximation
i kg B ky B kg 8
Case I (u, um'estra;.ined; v =0 at edges)

0 9.55 1.18 9.31 1.21 9.09 1.21
1 . 9.59 | 1.19 9.3% | 1.23 | se=esess | eseee
2 9.70 1.19 9.43 1.23 | smmme=-- c-ee-
5 10.46 1.25 10.00 1.29 “ememae —eman
10 12.69 1.38 11.49 141 ] smeemee | eeee-

30| 28.23 1.8 8.4 | 1.62 18.10 1.66
00| Lbk.k2 .22 34.3 1.36 | =meeeee | ecee-
1,000 125.8 Ja 110.7 .56 110.7 .56
100,000 | 128 013 1112.8 017 1112.6 017
Fourth-order ‘Bighth-order Tenth-ordexr
determinant determinant determinant

: ks B L. B k, 8

Case II (u = 0; v, unrestrained at _edges)

0 10.4h 1.29 9.8 1.28 9.66 1.25
30| wmmmes ] wemee 16.99 | 1.31 semeve | meee-
100 33:53 1.28 30.43 1.08 rreies | ceme-
10,000 336.6 .126 308.2 ' .118 303.3 11k
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Figure 1.~ Critical-shear-stress coefficlents for long plates with

transverse curvature having simply supported or clamped edges.
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Figure 2.- Comparison of present solution with Leggett’s results,
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