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NATIC_AL ADVISORY COMMITTEE FOR AER(_AUTICS

TECHNICAL NOTE NO. 13_9

CRITICAL C0MBLNATIONS OF TORSI0_ AND DIRECT

AXIAL S__SS FOR THIN-WALLED CYLINDERS

By S. B. Batdorf, Manuel Stein, and Murry Schii&crout

SUMMARY

A theoretical solution is presented for the determination of
the combinations of direct axial stress and torsion which cause

thin-walled cylinders with either simply supported or clampsd edges

to buckle. This theoretical solution is used in conjunction with

a-_ailable test data to develop empirical curves and formulas for use

in design. Comparisons are made with theoretical and empirical
solutions obtained in other investigations.

_RODUCTI(N

The determination of the combinations of direct axial stress

and torsion which cause thin-walled cylinders to buckle is treated
in the present paper. Cylinders in toi'sion buckle at a stress

slightly less than the theoretical stress (reference I) and cylinders

in compression buckle at a stress considerably less than the

theoretical stress (reference 2). It therefore appears that the

theoretical solution would be in good agreement with, the experimental
results _,,henthe buckling is due mainly to torsion but would require

modifications when the buckling is to any appreciable extent due to
compression.

Empirical approaches to the problem have been made previously
(references 3 to 5) and interaction formulas have been proposed for

use in design. These formulas are somewhat limited as to the range

of applicability because of the 1Smited range of dimensions of the
test specimens.

In the present paper theoretical interaction curves are derive_

(appendix A), the test data of references 3 to 5 are re-examined,
and finally empirical interaction curves and formulas that are

rational modifications of the theory are developed. The present

results can therefore be used over a much wider range of cylinder

/
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dimensions than could previously available results. In the analysis

given herein the theoretical results are first described and then
modifications are introduced to bring tLe results into agreement with

available experimental data.
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radius of cylinder

thickness of cylinder _all

displacement of point on median surface of cylinder in

axial (x-) d_rectlon

displacement of point on melian surface of cylinder in

circumferential (y-) direction

disp.lacement Of point on median surface of cylinder in

radial direction; positive on.card

axial coordinate of cylinder

circumferential.coordinate of cylinder

fiexural stiffness of plate per unit length

Yoln_g's modulus of elasticity

length of cyiinder

operator defined in.a_endix A

curvature parameter (r_t_l -
_2 or

coefficients of terms in deflection ftmctlcms •

.... ke_2D

shear-stress coefficient appearing in equation • - L2t
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direct-axial-stress coefficient appearing in

kx_2D

equation _x - L2t

12z2  .n2 x]

empirical shear-stress ratio (ratio of shear stress present

to empirical critical shear stress in absence of other

stresses)

theoretical shear-stress ratio (ratio of shear stress

precent to theoretical critical shear stress in absence

of othgr stresses)

empirical direct-axial-stress ratio (ratio of direct

axial stress present to empirical critical direct

axl_l stress in absence of other stressss)

theoretical direct-axial-stress ratio (ratio of direct

axial stress present to theoretical critical direct

stress in absence of other stresses)

Vm, _ def!ectien functions defined in appendix A

k half wave lengt/_ of buckles in circtmLferential direction

Foisson' s ratio

_X direct axial stress in cylinder _mll

shear stress in cylinder wall

_-4= __nverse of V4, defined by V-4 _4v =
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RESULTS AND DIBCUSSI_

Theoretical Interactlan curves.- T_e combinations of shear and

axial s'tress which cause cylinclers to buckle may be ob'_ined from

the equatlc_s

ksg2D

_t

and

GX = L2t

when the stress coefficients ks and kx are known. The

theoretical combinations of shear-stress and a_a!-stress

coefficients for cylinders with s_nply supported or clamped edges

are given by interaction curves for _ number of values of the

curvature parameter Z in figures l(a) and l(b), respectively.

For small values of Z, which describe very short cylinders,
the _teraction curves have vertical parts which are discussed in
some detail in reference 6 and in _ppem_ix B of the present paper.

At sli@htly larger values of Z the curves have the general shape
of e parabola and at still lar_er values of Z the curves tend to

straighten out. Computations sho_ that curves plotted in stress-

ratio form for simply supported cylinders are substantially

independent of the value of Z from Z = 30 to at least Z = lOGO,
the largest value of Z that _ms checked. Such interaction curves

were not computed for cylinders with clamped edges at large vslues

of Z; however, at large values of Z, the critical stresses in
bo±h she_ alone and in compression alone are substantially

independent of the type of edge support. The interaction curve
therefore can. reasonably be assttmed to be almost independent of

the type of edge support. The interaction curves for cylinders
having values of Z greater than 30 wi_h either simply supported

or clamped edges may be approximated in the compression range .by a

C> 'straight llne from = I to Rs = i and early in the
th th

tension range by a straight line having a slope of -0.8 passing

through (_S)th = i (see fig. 2). The denominators of the stress

ratios _R_ and IRx_ are the critical stresses for torsion
th _-]th
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alone and for axial compression alone, ;_ich may be obtained from
the theoretical Curves of figures 3 and 4, taken from references l

and 2, respectively. The theoretical interaction data that have

been computed are given in table i.

Very cylindersintorsion(Z> aboutI0 )buckle with

two circumferential half waves and the curves of figure S no longer
apply (see reference i). The curves of figure _, which describe

the local instability of cylinders, do not apply to very Ion6
cylinders which fail as Euler columns (Euler buckling occurs for

Z > about 7, for slmplysupported cylindrical columns). The

present paper is solely concerned with short and moderately long

cylinders - say, Z< 7._.
t_

Empirical interaction curves.- As cylinders of moderate or

large curvature buckle in compression at a stress considerably less
than the theoretical stress, the curves in figures l(a) and l(b) and
the interaction data of table i must be modified to give results

applicable to actual cylinders. The requirement that for large
values of Z the empirical interaction curve should agree approxi-

mately with the theoretical curve near the ks-axis and yet cross

the kx-axis at only a fraction of the theoretical kx-intercept

suggests the use of a curve of the parabolic type in the compression
range. Available experimental data indicate that the analysis

required to determine the type of parabola most satisfactory from a
theoretical point of view for each particular cylinder is not

Justified for practical purposes because of the scatter of the test

points and that the use of the simple parabola s e

is satisfactory.

The simple parabolic interaction curve is completely determined

when the intercepts corresponding to pure torsion and pure cc_pression
_are lauo_n. These intercepts may be obtained from the empirical

curves of figures 3 and 4. The empirical curves for cylinders under

compression were obtained from reference 2, and the empirical curves

for cylinders under torsion were obtained by fairing a curve through

the test points given in reference 1.

References i and 2 indicate that theory and experiment are in

good agreemen t for either torsion or compression alone for very
short cylinders (Z _ 1 for simply supported edges and Z _ 5 for

clamped edges). In these ranges of Z, therefore, the theoretical
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interaction curves (figs. l(s) and l(b)) anl values fram table I

may be used. At larger values of Z pa_mbolic interacti_ curves
with intercepts obtained from the empirical cttrvee of figures 3

and 4 are recommended for use in the cc_pressi_ range.

In the tension range the theoretical interaction curves may be

expected to be in reasonable a_reement with experimental results
because axial _tension tends to minimize the effects of initial

eccentricities, which are generally Consldere& to be responsible for

the large discrepancies between the theoretical and the experimental

values of critical compressive stress. Therefore, under combined

torsion and moderate tension - that is, the tension range for which

computed results _are available - a conservative approximation to the

buckling stress which may be used for the design of cylinders of

_oderate or large curvature is a straight line. This straight line

has the same slope as the theoretical interaction curve in the

tension range and passes through the point corresponddng to buckling

of a cylinder in torsion alone as obtained from the empirica 1 curve

of figure 3.

_ _' IN TEP_CTIC_ FO!_S

On the basis of the preceding discussion of the interaction

curves, ÷_hecritical combinations of torsion and direct axial
stress for thin-walled cylinders of moderate or large curvature

may be expressed approximately in stress-ratio form by the following

simple formulas.

_eoretical interacti_ formulas.- Theoretical interaction

formulas for 30 K Z K 7.7._--_can be expressed by following
q

the

equations for shear _n_ coapression < _x _

/

(R)t h 8 (Rx)th -:" s + O. = I

..°

(Z)•

m
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The theoretical critical s_resses of cylinders in torsion alone and
cylinders in axial compression alone can be obtained by the _,ye of

f_gures 3 and 4, respectively. Figure 2 shows that equations (i)

and (2) are fairly good approximations to the theoretical results.

_piricsl interaction formulas.- En_irical interaction formulas

can be ergressed by the following eqw_tlons: for shear and

_Rs) 2 = 1 (3)exp + QRX)exp

(c) <o)and for shear an__ moderato tr:nsion -i _ Rx th '

-

_r _
Equation (3) is valid _en 1 < Z < 7.7_ for cylinders with simply

supported edges andwhen 5 < Z < 7.7¢ for cyl_nders _¢ith clamped

edges; equation (k) is valid when 30 < Z < 7.7_ for cylinders

with both simply supported and clamped edges.

The empirical critical stresses of cylinders in torsion alone

and cylinders in axial compression alone can be obtained by the use

of figures 3 and 4, respectively. At values of Z < 30 the

theoretical solution may be used for design purposes in the tension
r_nge.

CO__ARIZON OF EM2IRICAL IN_ACTICN 2Eo_OLTS WI2H TEST

: DATA FRCM OTHER _VESTiGATYOV.S

The acclzracyof the empirical results is checked by a comparison

with test data in figures 5 end 6. In figure 5 test data obtained
from reference 3 for celluloid cylinders are given for several
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selected values of Z. Each cylinder _as buckled several times
under different combinations of torsion and axial stress and the
results are presented directly in stress-ratio form. These stress
ratios are based upon the observed critical stresses of the
cylinder in torsion alone and in axial compression alone and
therefore the results serve as a check only on the shape of the
interaction curve and not on the actual stresses. In figure 9
the assumption of a parabolic Lnteraction curve is shownto be
slightly conservative. The parabolic interaction curve in
figure 5 cor_-espondsto the more conservative of two formulas
sugcested in reference 3 by Bruhn and is the sameas the formula
suggested by Ballerstedt and Wagner (reference 9) for the
compression range.

Test data for several values of Z obtained by Bridget in
reference 4 for the buckling of brass and steel cylinders under
combined torsion mud axial stress are plotted in stress-ratio form

in figure 6. Because a different cylinder _ used for each

combination of loads, the data sho_7 considerably more scatter
than those of reference 3. The reduction of the data from stresses

to stress ratios by the use of the empirical curves of figures 3

and h, hcf,ever, provides a check on the accuracy of the points
corresponding to shear alone and comp-'ession alone vhich is not

provided by the test data of reference 3. The empirical inter-

action curve, also sho_m in figure 6, l_-_ near the center of
the rather _ide scatter band.

Ballers+edt and Wagner (reference 5) tested a number of very

thin brass cylinders trader combined torsion and tension and

concluded _at for tho design of cylinders under such loading
conditions the following equation may be used:

(IR) o 1
s exp. _ XJexp

(9)

Results obtained by use of equation (5) appear to be in very

satisfactory agreement vith experimental results _hen the

equation is used in conjunction _ith the formulas given in
reference 5 for buckling in pure ccmpression and pure tension;

when equation (5) is used in conjunction _rlth the more accurate

values given in figures 3 and _, however, the equation is very

I{_l
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unconservative. The test data of reference 5 compare favorably

with the present recommended design curves when the stress ratios

are recompute_ by use of the empirical critical stresses given in

figures 3 _n_ 4.

9

Lsngley Memorial Aeronautical _aboratory

National Adviso_j Committee for Aeronautics

Laugley Field, Va., March 20_ 1947

I
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APPENDIX A

THEORETICAL SOLUTIC_

NACA _'_No, 1349

E__uation ofe___Epilibrium.- The combinations of shear and axial
strss_ which will cause a cylinder to buckle may be obtained by

solving the following equation of equilibrium (see reference 7):

Et _-4 _+2vt _---E-w+ _xt = 0 (Ai)

where x and y are the coordlrmtes indicated in the following

figure :

Division of equation (AI) by D gives the equation

12z_ v_4 _4w _2 _
_2 _2w

+ kx L2 _2 = o
(AZ)
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where the dimensionless parameters Z, ksj

II

and kx are defined by

m

2
ks = D_2

Equation (A2) can be represented by

Qw=0

where Q is defined by

(A3)

12z_ v"$ _4 _2 _2 .2

Method of solution.- Equation (A3) may be solved by using the
Galerkin method as given in reference 8. In the application of this

method, equation (A3) is solved by the use of a suitable series
expansion for w as follows:

J J

w =_ amYm + \-- bmWm (A4)

In equation (AS) the ftmctions VI, V_ ...Vj, WI, _2 ...Wj

individually satisfy the boundary conditions on w but need not

satisfy the equntion of equilibrium.
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The coefficients am and
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bm are then _etermined by the equations

Vn_ dx _v . 0 "

WnQW ix dy - 0

(Ag)

vhere n _ 1,2,3, .,.

The boundary conditions considered in the present paper are

as follo_s: For simply supported edges,

emd for clamped edges,

and u is unrestrained;

v-- _- u _ 0, and v is unrestrained.

Solution for cylinders __th simply suo_ortededEes.- The

following infinite series expansion can be used to represent exactly

the displacement v in the case of cylinders with simply supported

edges:

v = sin am sin "E- + cos bm sin

m=l m=l :--

. • • .},

rl_ I'
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where k is the half wave length of the buckles in the
circumferential direction. Expression (A6) is equivalent to

eqtmtlon (A4) if

13

Vn = Sin._y% sin n_x_L_

wn = cos sin Z-

(AT)

Substitution of expressions (A6) and (A7) into equaticms (A_) and

integration over the limits indicated give

+
86ks _--

z_z_n_ " n2k " --F-L_ _ n2m_%. o
_4(n2 + _2_ 2 m=l "

+
86ks _U-- mn

n% + -_-/__ _ n2_ =2
- m=l

=o

(AS)

where

L

n - 1,2,3, ...

Equations (A8) have a solutionin which the coefficients a n

the coefficients b n are not all zero only if the following

determinant vanishes:

and
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By a rearrangement of rows and columns, the luf_uite determinant
can be factored into the product of two mutually equivalent infinite

subdetermfmants. The critical stress may then be obtained from either

subde_ermln_t in the following equation:
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I
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The first approximati_, obtai_elfromthe seconl-orler

deter_!r_ant, is given by

(All)

The second approxd_matic_, obtained frQm the third-order

aeteradnant, is given by

" 6

p

The third approximation, .obtained from the .fourth-order

determinant, is given by

(A12)

+ MIM2MBM 4.= 0 (A13)

The shear-stress coefficient ks may be found in the various

approximations directly from equations (All), (AIR), and _%13) for

any given values of Z, kx, and 8. _ause a structure buckles

_" at the lo_st stress.at %_ichins_ii_j occurs, the value of ks

is fmmd for a series of values of B. The minimum value of ks

for the given values of Z and kx is then determined frcm a plot

of ks against B. Table i shows the cmsvergence of the various

approximations for ks .

Solution for c¥1_nders with clawede__.- A procelure
similar to that used for cylinders %_Ith simply sup.ported edges-may
be followe& for cylinders with clamped edges. The deflectlc_

functic_ use& is the followi_ series:
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_z__ Lc Cm- I)_=. Cosw = sin 7 e.m os L

m=l

that
Comparison of equation _%14) with equation (A4) shovs

.% , ]Vn : sin os _ cos _n + l)_x
_ L L

'- l
(AZg)

where n = 1,2,3, ...

When operations equivalent to those carried out for the case

of simply supported edges are performed, the following simultaneous
equati_s result:
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and

I_2 l_z_ =_k_1

J

The infinite determinant formed by these equations can again be

rean_nged so as to facto1" into the product of two mutually equivalent

infinite subdeterminsnts. The vanishing of one of these determinants
leads to the following equation:

_I b2 a3 b4 a5 b6 ...

n=l

n--2

n=3

n=4

n=5

n-6

k_.('_MO+M2) _. .I_ G:, .3215 -- °i0---5 0 315 "'"

_ )-= -_-_ _ o...32 _I+M3 i05 ks 3 3515 s -

-_ -_ _<_ ) _ _].05 _+H4 3].5 sH4 "1155 "'"

. 64 1 M _ p_s( M 4160 _aM .._o-_ "% 3 315 3%) "-_3 _s5 "

35 "17 " -g97 ksk"_ _1 z287 "'"S

---_ o . !IZ_. " M5 la8-V 5+ "315 1155 " "

• • • • • t

I o • • • I

=0.

(AFT)

The first approximation, obtained from the second-order determinant,
is given by

(AIS)
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The second approximstion, obtaine_ from the third-order
determinant, is given by

(AIg)

The third approximstion, obtained from the fourth-order

determinant, is given by

%4 !_iY)\ 3a5_'" \ao_JuosJ!

+ _I05.!

- + ÷
61_2

(A20)

÷

As in the solution for cylinders with simply supported edges,

the value of ks has to be minimized with respect to _ for given

values of Z and kx. Table I show.s the _ults of the various

spprox_mations for ks •

Comparison of _resent solution with previous theoretical

solutions .- In figure 7 the solution given by Ero_m (reference 9)

is compared with the present theoretical solution for cylinders
with simply supported edges. Although the values sho_n for Kro_'s
solution are obtained from small-scale curves and are therefore

approximate, good agreement is indicated between the results of
reference 9 and the present solution.

IllI_



In figures 8(a) and 8(b) the results of the present paper are

compare_ with those of Leggett (reference i0). The large

discrepancies seen in figures 8(a) and 8(b) are believed mainly
due to the erroneous assumption in reference I0 that the theoretical

interaction curves are parabolic and - in the case of figure 8(b) -
to the further erroneous assumption in reference I0 that the cross

sections of cylinders _ith clamped edges in axial compression
remain circular.

J

f
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__ P_ c_ ___ ___._ _

_'_ " i " ..- • _' "_'c%'Z_ ' "i- ._i_-_._'_ _

A_ iov_lues of th_ c_v_.t_e_ter Z __ho _e_Itical
interaction curves have vertical parts at a value Of kx

co_espondlr_ to buc_lin_ in axial c_npression alone .. (See

figs. l(a) an& l(b).) These vertical parts indicate that some

shear stress may be appl_ed to cylinders at low values of Z

without any reduction of the compr_essive stress necessary to
cause buckling.' The value of Z at which the vertical parts

of the interaction c_ves disappear is the upper limit of the

range of Z for which substitution of the value of kx for

pure cc_pression into the sxpression for ks leade to real
values other tlmn zero for ks.

Cy!i_ders _ith sim_v e_pported ej_s.- Equation (All)

represents the first approxim_tio_ of the critical combinations
of shear-stress and _-lal-stress coefficients for cylinders with

simply supported edges. When ks is equal to zero, the minimum

value of kx which satisfies the resulting equatia_ is found by

setting MI equal to zero and is given by

This equatio:1 is also obtalne_ as the exact solution for a simply
supported cylinder buckling in pure axial compression (reference 2).

The buckle pattern corresponding to th_ lowest buckling load at
low values of Z is that for _S_ich _ = 0. ._e substitution

of _ = 0 into equation (BI) results in

kx=l+

One critical c_mbination of stress coefficients at low values

of Z is therefore

(_)

II_Ii
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12Z2 I

. _ kx:-.. :l + 7 "

ks=0

Another approximate critical value of

12Z 2

kx=!+ 7

k s

(B3)

can be found for

by substitutin G this value of

letting

of kx is

kx into equation (All) and by

approach 0. The v_luo of ks for the foregoing value

ks2 • "-7-'Jr ,<4j (B4)

From equation (B4) it appears that, when kx has the value

indicated in equahions (B3), ks depends upon Z in the following

mariner" for values of Z < _2 ks = e Constantj for values

_2 _2

of Z : 7t'_', ks = 0; and for values of Z> _-_, ks is imaginary.

Com.parison of these 7alues with equations (B3) indicates that the

interaction curves have vertical parts for values of Z in the
r_nge

z< 2

Similer calculations with higher approximations for k give the
a

same range of Z for this vertical part so that expression (BS)
may be considored exact.
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Cylinders _ith clampz_...e_.- An ar_lysis for cylinders vlth
clamped edges similar to t'_t used f6r cyiinlers with simply

supported edges indicates ahat the first approximation for the

interaction curves gives _'_rtlcal part s for

z < (B6)

Expression (B6), unllks e'rpresslon (BS), is not exact. Because

the first approximation, :1owever, is very close to the exact
solution when a substantltl amount of compression and little shear

are present, expr@ssion (_) represents a good approximation to
the exmct result. _..

L " :.
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TABLE !

TH_0RETICAL COMB_{AT!0NS OF S.w[FAR-S__ESS-AND AXIAL-STRESS

C0_FICI_;TS _ND WAVE LENGTHS OF BUC_,_2S

Firs_ Second

approx_ma tlon approxlme tlon

ks ks

Third

approzlma tion

Cylinders with simply supported ed_-es

5

i0

-i

0

.7
1.12

1.12

-2

-i

I
2

2.5

3

3-33

-4
-2

2

4
5
6
6.66

2.65
O

8.9
7.84
5.40
4.00

3 .le
2 .ii

1.21

11.99
10.2

6.36
4.21

3.04
1.78
.88

0
O

• 1.15
z.o7 1
.89
.80

.75

.67

.62

1.4
Z.32
i .15
i .o6
1.0

.97

.Se

6.64
9.42
4 ._6

8.12
7.21
5 .ii

3.82

3 .o4
_-.o9
i .20

i0.57
9.1

9.83
3.95
2.9o
1.75
.86

0.94
.86
.6U

1.16

1.1

.921

.80

.79

.67

.62

1.42

1.35
1.16
1.06
1.02
.96
.93

5.41 0.865

8 .lO 1.2

lO.57 1.42

-- NATIONAL ADVISOBY
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TABLE 1 - Contlnued

T_EOI_flCAL COMB]I_ATIC_S OF SI_AR-STRESS AND AXIAL-S_
I

COEFFICl]_TS AND WA17_ LI_GT_S OF BUCI_uES - Col_tlnued

First

approxlmatlen

ks I

Cylinders with simply

z

3o

I0_

,m,

-iO 21.20

-5 18.12
5 ii .62
io 8,18
15 4.59
18 2.36
20 .84

-40 51.0
-20 42.5
20 25.2
40 !6.2
6o 6.8
65 4,9
66.6 3,5

-&oo 277 .o
-200 233.5
zoo 144.8
400 99 .o
5oo 75.6
600 51.1
65o 36.2
666 30.o

i .95
1.9

i .75
1.68
1.6
1.55
1,53

2.9
2,8
2.7
2.6
2.6
2.6
2,6

Second Third

approximation approximation

ks _ ks

supported edges

17.88 2.02
15.33 1.95
9.93 1.78
7.04 1.71
4.00 1.6
2.09 1.59
•77 1.53

41.7 3.!
3&.9 3.2
20,8 2.9
13.2 2,79
5.33 2,7
3.0 2.7
2.2 2.8

5.59 224.2 6.2
5.5 189.5 6.1
5.3 117.2 5.95
5.25 78.5 6.oo
5.25 58.2 6.oo
5.49 35.8 6 .I
5.6 23.2 6 .i
9.65 18.65 9.95

17.5 2.3
i5.31 2.0

_1.0 3.3
34.6 3 .I

220.66 6.5
186.4 6.35
114.56 6.4

15_9 7.o
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TABT/E I - Concluded

THEORETICAL COMBINATIONS OF SKEAR-8TRESS AND AXIAL-STRESS

COEFFICI_NTS AND _AVE L_TGTHS OF BUCELES - Concluded

z

1 -h .0

3.0
3.7

3.9
4.1

4.1

First approximation

ks

Second approximation

Cylinders _.th clamped edges

12.66

9.96

4.73
4.19

2.17
.719
.4Z9
.279

13.15 2.O

6.02 .7
4.79 .41
4.20 .26
3.36 o
0 0

ks

2

I0

3O

-4

3
3
4

4

3
4.2
4.8
k.8

-6
4
6
7.2

7.2

-2O
14

18
21.5

.0

.0

.7

.0

.2

27
6
3
0

13.18
6.zz
4.91
4.13
3.32
0

14.17
6.66
_,.86
3,01
0

6.96
4.47
I._
0

.54

.70

.60

2.03
.72

.255
0
0

2.2b,.
.95
.55

0
0

.69
6 .Ok
4._

13.59

6.%
_.82

2.6
1.2

.75
0

0

4.90
2 ._6
2 .i_
i .28

14.79
6.82
4.43

29.44
6.e5
3.34

2.19
.76

.47

.26

2.4
.97
.55

2.8

]..2_
.76

5 J,'.5
2.60
2.25

NA T'IC_AL ADVYSORY

COMMITTEE FOR AERCNAUTICS
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Figure I.- Theoretical combinations of shear-stress and axial-stress

coefficients for buckling of cylinders. _)C/
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NACA TN No. 1345 Fig. 3
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Fig. 4 NACA TN No. 1345
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Fig. 6 NACA TN No. 1345
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Fig. 8 NACA TN No. 1345
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(b) Clomped edges.

Comparison of Leggett's solutions with present solutions

for cylinders.
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