-.1{

‘6/07/01/"(/ & @ https://ntrs.nasa.gov/search.jsp?R=19930081991 2020-06-17T21:14:31+00:00Z
) - /

dam iy T AMNE

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE

No. 1184

THEORY OF GROUND VIBRATIONS OF A TWO-BLADE HELICOPTER
ROTOR ON ANISOTROPIC FLEXIBLE SUPPORTS &
By Robert P. Coleman and Arnold M. Feingold

Langley Memorial Aeronautical Laboratory
Langley Field, V.

-- LIBRARY COPY

£ i

i
| LANGLEY RESEARCH CENTER
LIBRARY NASA
Tﬁl!/x [ HAMPION, VIRGINIA
Washington
January 1947




UL

76 01433 9106

HATIONAL :&BVISORY "OM-’IITT.'EE Tor AE"?OWJTICS

TECEITICAL NOTE NO. 1184

TEBORY OF GROUND VIBRATIONS OF A TWO-BLATE HELICOPTER
ROTCOR ON ANIBCTROFPIC FLEXIBIE SUPPORTS S ——

By Robert P. Colemsn and frmold M. Feingold
SUMMARY

An extonsion of previous work on the theory of self-excited
mechanical oscillations of hinged robtor bledes has been mals.
Previously published papera cover the ceass of three or more robor
blades on elestic supports (such as landing gear) having either equal
or unequal support stiffnese in diffeorent directions end the case of
one or two blade rotora on supporits having equal stiffnese in all
horizontel dirsctions. Tho missing case of one or two bladed on’
unequal supporits hae been treated.

The muthemstbtleal treaizient of this cess iz considerably more
complicated than tie other cases because of the vccurronce of differ-
entisl equations with pericdic coefficients. The cheracteristic
freguencies ere obtalned from en infinite-order determinent.
Recurrence relatlons and convergence factors axre used In :t‘ind.ing the
roots of theo iInfinite dcterminant.

The results show the exlstencs of ranges of rotationsl speed at
which inetability occurs (changed comswhat in position and sxtont)
gimiler to those possessed by the two-blade rotor on equal supports.
In addition, the existence of an infinite number of instzbility
rangss whlch occurred at low rotor spseds and which did not cccur
iIn the cases previously treated is shown. .

Simplifications cccur in the ansalysis for the special cases of
infinite and zexro stiffness in one of the axes. The cess of infinite
stiffness in omse axis is also of speclial interest becsuse it is
mathematically equivalent to a counterrotating rotor system. A design
chert for finding the position of the principal self-excited insta-
bility »ange for the case of infinite support stiffunéss in one direction
is included for the cconvenlence of designers. It 18 expocted that |
designers will be able to cobtain sufficiently accurate information by
consldering only the cases of infinite and zero support stiffnsss along
one direction togsther witk the cases treated proviously.
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TNTRODUCTTON i

It is known that rotating-wing alrcraft mey experience violent
vibrations while the rotcr is turning =snd the aircraft ie on the
ground. It has been found that these vibrations can be expluinod
without consldering asrodynemic effects and that they are dus to
mechanical coupling betwsen horizontal hub dlsplacemonts and blade
cscillations In the plane of rotation. A theoretical anslysis of
this vibrabion problem is glven in references 1 and 2. Referenco 1
deals with robors having three or more equal blades on general
supports and reference 2 deals with two-blade rotors on supports
having the sameo stiffness in all dlirections.

Although in actual two-blade rotary-wing alrcraft, the stiffnoss
of the supvorts along the longltudinel dirsction is certainly
difforsnt from the latersl stiffness; the equallty of the stiffnesses
was assumed in reference 2 becsuse 1t permitted the mathemmtical )
simplification of deallng with differential equations having constent -
coofficlents end it was belisved that & theory employing such an
agsumption would be sufficient to indlicate the nature of the most
viclent types of ground Instebllitby.

The present paper givee & theoretical Investigation of the
general case of a two-blade rotor mounted upon supports of wmegqual
stiffness along the two stationary principel axes. It thus
generalizes the problem of reference 2, and rounds out lhe studles
of ground resanance begun in reference l. A8 was shown in referonce 2,
a two-blade rotor posmsesses different dynamic properties along and
normal to the line of the blados. Equations of motion with constent
coefficients for the prodblem trested in reference 2 could be ocbtained
by using a coordinate system rotating with the rotor. This procedureo
succesded bocause the surports wore assumed isotropic (equal
stiffness in all directions). When the supports are enisotropic,
however, it is impossible to avold the appearance ofperiodlc cousf=
ficients in the equationas of motion.

Tre present mothod of solving the differenitial equations of
notion follows closely the procoss employed In referenco 3 for a
vibration problem in two degrees of ficedcmn. The form of solution
le oxpressed by an exponential factor timeos a complex Fourier serios.
Substlitution of the formal solution into the equations of motion
yielde an infinito set of aslpcbraic ogquatlions and en Infinite-order
determinant for the detorminstion of the Fourlor coefficlents and tho
charactoriatic froquencies. The subsequont snalysis 1s concerned with
mothods of finding the roots of the infinito doborminant.
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Because the methods hereln employed mey slso be useful in
other rotoi problems, particularly in those involving foward.-i‘light
sffects, the mathemabical enalysis is presented in some detail.

It 1s expechod that designers will be sble to obtein sufficiently
accurate intformation by considering only the cases of infinifte ov zero
support ‘stiffness along one direction together with the cases of
references 1 and 2. In ordexr ito avoid the neceselity for oxtensive
celculations, & dosign-chert is included giving the location of the
prinecipal self-excitod-instability vange for the case of infinite
support stiffness in one direction.

TERIVATION OF THE EQUATIONS OF MOTTON

The syubols used herein are defined in eppendiz A.

The equations of motion are obtuined from Legrange's equations
and from the expressions for kinetic and potential onergy. Four
degrees of freedom of the rotor system are considered: components of
deflection of the rotor hub in the plane of rotation, 'and hinge
deflections of the two rotor blasdes about their vertlcal aninges. All
motions are thus assumed to occur in the plane of tne rotér. Ths
rotor is assumed to rotate et a constent angular velocity w. The
analysis can be applied to rotors witnout hinges by asauming en
effective spring stiffness and hinge position to repreaenu tne elastic
deflection of theo blaede. £

'I'né pertinen'b paysical parametors ars:

a redial position qi‘,vertical,hi_ng_e’ . L

b distunce Irom vortical lunge.lto center of mass o'f.bl_aqé - . _
Iy, masslof rotor blade

m effective mass of rotor supports _

T radius of gyration of blade sbout cénter of mass

Ky» ‘.5, spring constentes of the rotor supportes along tho
X- and Y-directions, respoctively

I".B spring constent of hinge self-contering spring
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Let the origin of the X,Y¥-coordinate system be placed et the
undisturbed position of the rotor hub. At time + equal to O, the
line through the blade hinges end rotor hub 18 assumed parallel to
the X-axis. After s time interval %, let—the rotor hud deflection
be z and hinge deflections be B3 and Bo, respectively, where
ls the complex position coordinate measured in a coordinate system
rotating with the rotor. (See fig. 1.} Then the positions of theo
centers of masg of the two blades, as measured In Tized cocordinates,
will be, respectively,

zy = (z + 8 + beiBl)_ eiw?

(1)

Vi

Ip = \%2 -~ & - baiE'Q) ot

Tae kinetic energy of the rotor system T csn be writiten as

%
.ol
T = gmy <ty + dplp +r2[(w+é]>2 +<&+B2)fjj

=

A

l'\)ll-—'r_._.

m(z + twz)(E - i0Z) ' - {2)

The first term in equetion (2) ropresents the kinetic energy of the
rotor blades, including the enorgy due to rotation, and the second
term 13 the contribution uf the roteor hub.

Upon expanding equation (1) into power series in By and fp
(only small deflections from equilibrium being coneidered.) and
substituting into equetion (2), there is cbtained

T n-QJM(é + 10z)(2 ~ iw3)

+~%mb —(Bl - Bg)(id)ebz - 10PbE + abz + wbi)

5 (81 - Po)(bid + abz + abd - i)

=+ (b2 4+ ra)(é]_2 + B0) - amaf (B2 + 822>-l (3)

where only the terms thatbt ars quadratic in the variables have heen
raotained, end M represents the total mess of the otor sysioem.

Z
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The potential energy of the system V is given by

L B2 2) E _
——2—- ﬂl +B2 +"§'-ZZ

DK /o it , - -2imf\
-T(ze LT 4 z< ‘3) (&)

where K 1is the aversge stiffness end AK is = measure of the
difference of the two principal stiffnesses; that is,

K:.&_ﬂ_
2

M=§2-Kx . Co.
2

As in references 1 snd 2, simplificatione in the ansalysis are
introduced by replacing the hings variables 87 and Bs by the
new variables 6g end 63

In terms of these new variables the expressioms (3) and (L)
becars, respectively,

. r
_b{ . o — . = 2
T ——é—(z + iz} (% - 10Z) + ™, L(z - icm.)(iel - c.uG])

- {z + i(DZ)(iél +c091> + G +-£§->(é02 + éle)
' b

- (6,2 + ele):i (5)
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k .. B g2 2\ 2K (2 oint |, =2_-2int
Vu:-é-f_,+b2 @0 +Gl)-E—(ze + 27e ) (6)

By use of the Lagrangian form of the equations of motion

= ory_ 3T v _
5(8)-B-E-0

the following equations of motion for the rotor system are
finally obtained:

By + (03 +A2) 9g = O

(D + i0)2z + 1a(D + 10)20; += 2 - LK 5210t . g
17 N
(D - )22 - 1u(D - iw)%, +.I,;1§.z 3 _@AME 20210t _ o

(7)

(8}

(9)

. -
(D + 1)%z - (D - 10)%2 + 211 +-=->@2 + A o? +4,)8, =0 (10)
O 2 1 L

vwheyre the notation

has been usoed, asnd the following combinations of the origlnal
parameter3d have been Introduced:

Al“ 2
b{l +£.2.)
B2
X H
'A'f:‘

L e
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Equation (7) can be solved independently of the others since
it is an equation In 6y alone. The equivalent equation appeared
also in references 1 and 2, and its solution represents in-phase motion
of the blades with no resultant reaction (except torsion) at the rotor
hub. This motion will not be further considered herein.

The problem is thua resolved into the solution of the three
simultensous equations (8) to (10). It will be noted that the terms
with A{z_oriodic coeificients in equations (8) and (9) disappear

if 54 =0, that is, if Ky = K;. Equatioms (8) and (9) are thus

roduced to the problem trewted in reference (2).
FORM OF SOLUTION OF EQUATIONS OF MOTION

The equztions of motion (equetions (8) to (10)) are similar in
mathemetical properties to Mathien's equation, which occurs in the
analysis of vibrating systems of one degree of Ireedom with variable
elasticity. (See reference 4.} A generalized form of Mathieuls
equation was solved anelyticslly by Hill. (See reference 5,
pp. 413-417.) An extension of Eill's method has been epplied in
reference 3 to a problem involving two dsgrees of freedom, eznd =
further development of the method of reference 3 is followed in the
present paper.

Equetions (8) to (10) comstitute 2 system of linear differentiel
equations with periodic coefficients. Three second-crder equetions
possess six linearly independent solutions that, according to the
Floquet theory (reference 5, p. 412), are of the form of an
exponential factor times a pesriodic function of time. Particulsy
golutione are of the form o .

=y

or%abp( ) . o~ 1Pat (1)

=
it

= 1% (1) + o 1%aTB(4)

ava

~
E
~r

t
!

01 = o2a%R(1) + o 1P8bR(1)

»

where W, 18 known as the characteristic exponent, and P(%), &(t),
end R(%) are periodic functions of period w/w.
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Since P(t), Q(t), and R(t) are periodic functions of 1,
they can be represented dy complox Fourier series, and equations (11)
bocoms - i

= }__ 8, o(2wee)it N o -(2koxba)it

OO ~ 00

‘;E=§ -Bz o(2lvkna )it | § i o-(2Wdalit > (14

- 0O

-2 )
o _:T‘ o e(EZMna)i‘b . 2 5 e-(zma)it
t A:EF' ’ 0 ' |

where A,;, B;, end CZ are complex constants.

Equations (11) and {12) show that, when the rotor system is
steble and w, is real, the motion not only is not simple harmonic

' as wag the case in referencos 1 and 2, but, in general, is not even

periocdic. The motion csn be sald to consist of a fundamental

froquency g plus “harmonics® of frequency w, + 2w wiere 1 18

any integer. From equations (12) it is soen that the valus of wg .
is not uniguely doterminete, since wg + 2Ww also satisfles
equations ?12). (The imaginary part of w, is definite, howovor.)
It can be shown furthermore, that, corresponding to each value

of wy, -wa 1is also a solution. Only those three values of Wg,

for which the real parts lie hetwoen 0 and ® need therefore be
considered. These values will be referrsd to hereinaftor as the thres
"principal"” values of .. Theso values of w, differing from the
principal value by 2w, or having opposite sign, will be reforved
to as "harmonics" of the corresponding principal vzlue.

Since 2z has boon defined as a position coordinate in a
rotating frame of referenco, the values of wy cen be interpreted

as the natural frequencies of the rotor system in rotating coordinatos.

SOLUTION OF EQUATIONS OF MOTION

Detorminantal Egquation

If the formal solution (equation (12); i combined with the
equations of motion (equations (8) to (10)), and the coefficients of __

H
i
144
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each exponentlial time fector is separately equated to zsro, an
infinite set of homogeneous ecustions 1s obtained. These equations
c=n be separzted intoc two Independent sets. Fach equation of ome

set is the conjugate of an equation of the other set, and only ome

set need be considered. Thus

l

|
L

r

jog + (22 + l)w}z} A, -%K—BZ_,_J_

X
M

nifo, + (22 + 1w]® ¢, =0 (13)

' i2 I
[@a + (21 - Lo} } By - i

T2
)

+

nifwg + (21 - 1) 2 ¢, =0 ' T

~[@g+(21 r1)al2 4 wy + (21 - 1)o}%B
¢ 1 1

2
+ Qié + fé-)E(wa + 27.0.3)2 +A1u>2 +A2]CZ =0 (15)

whers 1 <takes on all iIntegrsl velues from - 1o o.

In order that the values of A;, Bz, snd C; not equal
zoro, the determinant of the coofficlents of A3, By, and C3

nust be zero. This de‘cerrainantal squation 1is -



10 NACA TN No. 1184 T
sy, 8,3 O 0 0 0 0 0 o ...
. 3-3,_1'_ &._3,_3 a_3,~2 0 0 O O O 0 - .
0__ &.2,-3 3-_2,_‘_2 a‘-é,—l 0 o 0 0‘ o .. .
O 0 ay paj,.3 a0 O 0 o o ...
o-- 0 O 8,1 @, &, O 0 0 ..
0 0 Q 0 E.l’o a,l’l &1,2 O: 0 . e .___
0 0 0 o} o] &2,1 52,2 &2,3 0 « .
s} 0 0 0 ] o 0 alh3 a;_hh. .
= &(wy) = 0 (26) C
where ' v
C g Aw= + A
oy o= -la KM 80,0 = -1 +
=7 (wa e 303)2 ’ (.Da
- e + Y2
a"h’)‘3 - A3 e.(),...L = wa
2
= o - 3
-3,k (wa o 81,0 =43 _
Aa? + A S
8 = el 4 ...‘.:.L_._.._..__%__ a [P, K/M
"3."3 (wa - %)2 l)l ((Da + (1.))2
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< a - e - o o DE/M
-3,-2  \w, - 1,2 (wg +o)2

= Ay __AEM

a o a = =1 + __IELLL._ a2 = -1 + K/I'i _
e (0n - )2 »2 (wy + w)?
_ _AKM
a = =
"2l T (n, - ©)2 82,3 T 43
we + © N2
a. = —égm——— Y = | —
-1,-2 (“Da - @)2 - 73,2 \o, + o
e/ . Ay 02 + A
= e KA a, =1+t tle
’ (g - ) 3,3 (g + 20)
Wy + 3\ 2
a = = {2 =
- -l,O A3 aa,h‘ a)a A+ 203
- a _ g ~ i 2 A_
0,-1 Wy 4,3 3 -
By = -1+ i 3
’ (g + Zw)

The determinant has besn somewhat simplified by mmltiplying and
dividing the rows and columms by various guantities, =nd the

paramster A3 has been substituted for ita equivelent

Let this infinito determinant be A(w,). The problem consiets

- in solving the equation A(w,) = O for its roots w,. These roots

will be infinite in number, consisting of tiae three principal valuves
of ®,. plus ail their harmonics. The values of ag/y/ K/M, as a
function of w/ \/‘ @M, are seen to depend only on tue values of the

L
2(1 + r2/p2)’
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. A )
tiree nondimensional parameters Al ,-I;-/a—,-M-, and. A3, and the
stiffnees ratio paremester AOK/XK.

4 determinant of infinlte order has meaning only insofar as
it is defined =8 the limlt of s determinant of finite order.
Define &n(w,) as the cetexrminant of order 6ém -3  formwd from 2

square aerray of A(w,) centered on the term -1 + & w2 ;Ag )
. w,

This term, wiilch originelly wes associated with C, in gq‘ua,tion (13},
will be referred to Lereinafter a8 the "origin" of the infinite
determinant A{w,). The choico of tuis term as center of AN ws) 1is
purely erbltrsry, and it was sslected solely for reasone of eymetry.

A

Tius —

ilwg) = 1im 2 (o) | S

n..} @ (17) .

The limiting velues of the roots of the e_qﬁé._tion _ VS
_ A () =0

as n becomes infinite will be theo values of the xroots of the o o

eguation . _ - =

Alwg) =0 -

The mothod of calculating the roots of Alwy,) = 0, by
successively calculating the roots of Ay{wg) =0 for larger -
values of n, is entirely too tedious. Instead, the method of '
reference 3 will be followed. This method involvsa tno calculation
of the walue of A{wn) for several specified valuos of Wy . The
roots of &lwg) = 0 can then be obtalned from a trigonometric
equation involving the roots snd the calculated values of Alwy).

Auxiliary Determinants and Recurirence Rolatlons . e

for Calculating Awg) _ B

Before the trigonometric equation is derived, it 1s convenient

to have a systematlic numericel procedure for determining the value
of Alwg). As n beccmes infinite, the terms of Ap{wg) oxtend to
infinity both above end below the origin. By expending A,(wa) in
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terms of the elements of the columm containing the origin, it cen
be expressed in terms of auxiliery determinants that extend to
infinity in only one direction. Recurrence relations cen then be
obtained that give the value of these suxlliary determinsnts.

The auxilisry determinants ars minors of %(ma_) and are
defined =as follows:

Chlew,)  determinent of orvder 3n -2 consisting of the terms
below and to- the right of the-origin; that is,
determinsnt having %;irst row and columm boeginning

M ?

with term -1 +
(g + @)2

Do{wg)  determinent of order 3n - 3 formed from Cp(ws) by
onitting last row end colunm -

E,(w,) determinent of order 3n - &k formed from D (w,) by '
omitting last row end colurm ' D

L(®,) determinant of oxder 3n - 3 formed from Cplws) by
omitting first row end column ' G

M (0g) determinent of order 3n - 4 formed from L. (w,) by
omitting last row and columm - : o

Np(wg)  determinent of order 3n - 5 formmed from My(w,) by

omitting last row and coluzm Lo -

The following three determinents will alsoc be needed:

Gplwy) determinent of order 3n -~ 4 formed from I, (wz) by
omitting first row and column :

Hn(wg)  determinent of order 3n -~ 5 formed from Go(w,} by
onitting last row and column '

I (wy) determinent of order 3u - 6 formed from E o) Dby
omitting last row ond columm

Determinante similer to the foregoing cen be formed in the
sems ranner from the upper helf of Ap(w,). Denote these detormi-
nants by the subscripnt -n - instovad of n. It is seen, howover, that
their valuss can be obtained from the vaelues of the determinants o
already defined from the lower half of A,(w,;), by merely

replacing W, with -w, (for ewsmple, C_pwy) = Cu(-wy)).



Expanding A (wg) in terms of the elemente of tie column containing the origin gives

Boon) = (:1 $ ) oo -1 o 8 e o +(ﬁf—")2 ol cna«a&jj

\ oy

a

{
L

g

(18)

The auxilisry determinsnts Cn(cna),‘ Dn(ma)l, and.. En(aSaJ satisfy the following.

recurrence relations (ob

-
Cnle,) = <'l§+
Balle) = 41+
Bylay) = <-1+

.

K/
Ena + (2n -~ l)wfle Dn(m&) -113
PSptwt S CORTE
oy -
Ena + (2n - 3)&)_""

e determinants Iolog)s My(en), end W (w,),
md In(ma.) satiely the same recurrence relstions as Cp(wg), Du(me), ond E (o),

respectively.

tedined by expending each in terms of the elements of 1ts last row):

-T2
wy + (20 - Lo

Bp(w,)
g (en - E)mm

- 12
wy + (20 ~ 3o

Coaled 2 (9)

wg + {2n - 2)w

(8K /)2
[Bn + (20 - 3] -1{Pe)

end also the system G.(a,), "E,lw,),

—
-

T

H9TT *oN NI VOVK.
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.The velues of these nine determinants cen be found from the
recurrence relations (ecuations (12)) and the following initial

values, obteined directly from equation (16):
- T

KM

(g + m)2

E/“"I - (AK/ )2
li: [43) =t - z - Il'[
.’:‘( a) 1+ > ‘

(0g + ®) (g, + cn)l’r

Cl(“’a) -1+

1 K/M

goo——
(w, + w)?

kN?.(f"“’a)

L (a0)

_ " - : A .
Mo(wa) = l~———L———KM l-——————-———-—-Alw *re -A [ + ®
2 (q)a+m)2 (a)a-l'gﬂé)e > a+2m
AR
By, ) = -1 42 tho - |
- (wa, + 20)2 e
i 2
GQ(U:’g_) = E_ —A—lu&_lia_ - K[M - A. wn + 2B
(wg + 20)2 (g + 30)2 .+ 20
-

By use of the initial conditions (equatioms (20)), the
recurrence relations (ecuations (19)), end ecuation (i8) the
value of An(a)a) can be calculated. The value of M wg) will

then be the limiting value of An(wa) 88 n becames infinite.

The Behavior of Ay(w,) for Lerge Values of n

So far it has been tacitly sssumed that the dsterminant A(ma) 3

as defined in equations (1) and (17), is convergent, and further,
that 1t remnins a function of o, in the limit es n becomes
infinites; that is, it is not identically equal to zero, indopendent
of the valve of ,. It will now be shown that the fwiction L\‘.L(wa)
does become zero in the limit, independent of «y, but that waen

A,(w,) is divided by an sppropriate function of n, & new function

Fu(w,) will be obtained whilck will be convergemt and remain sn
unambiguous function of w, in the limit. '



ne—

The derivation of the appropriate function by which to
divide Ap(w,) evidently depends upon the behavior of An(w,)

a8 n becomes very large. As n becomes infinite, the
recurrence relations (equa"cions (19)) become

¢y = Dy - AsEy - | (2_155
D, = -Fn -A3c; -1 : | (21b)
By = ~Cp1 _ (21c)

1=

with ilentical equations for I,, M,, and N,; and for Gy, B&Hn,

and TI,. Equations (21) are re=dily solvable since they comstitute
s system of difference equations with constant coeffliclents. They
are satisfied by sclutions of the form

Cy = co]’in _ (22a)

where C, 1s some arbltrary constent and Xk 18 a constant to be
determined. From equations (2lc) and (21b), respectively,

By = "Cokn_l (22v)
and . - e e e e i, - s
D = Gkt - Aot
= C (]_ Aj)kn-l . | (22(:)

Cambining equations (22&), (22b), and (22c) with equation {21e)
end dividing through by C kp-1 gives

k=203 -1 ' (23

Thus, by use of equaticn (18), it 1s seen that for large values of n,

AL u)e) varies as kZn. 8Since by definition A3 must have a value

between O and 1/2, k2 mmst lie botween O and 1. E[:tma, in the :L.miu

Mm o & (w,) =

na»®
independent of w,.

gt
ERCE S Y

Ea—,

LI
o
| B

Al

i

i
hhi

]



NACA TW No. 1184 17

Consider the function

The equation Fn(cna) = 0 will obviously have the same roots
for @, as does A (®y) =0. The function Fp(w,) has the _

adventage, however, as 1s seen fram the preceding discussion, of
remaining an wmambiguous function of @y in the imit as n -

becomes infinite. Define this limit as

it

lim Fplo)
n-> o

F(®a)

n-s © koo _ . -

The primeYry problem cen now be redefined as the problem of
determining the roots, infinite in number and consisting

of Wa s ®ag and. ‘”‘a3 end all thelr harmonics, of thc equation

Flog) =0 (25)

Evaluation of Roots of Eguation(29)

The following trigonametric expression for F(m&) will now
be derived: o -

g, )
Flo,) = lnm Ell(—na— . _
ns o k20 - _ o
. . - —_
__é lsine(;)a‘) - s:n2<_il : .



18

NACA TN No. 118k

The function F(wg) 1s seen from equation (24) and
equations (16) to be periodic of period 2, +to have roots

+(wa, # 280), (wa, * 2sw), end :l,-(wa3 + 2sw), where s 18 any

integer, to have sscond—order poles at wg = +2sw, and to have

fourth—order poles at Wy,

= +(28 + l)o. Liouville's function

theorsm states that a function of a complex variable (in this
that is analytlic everywhere in the complex plane,
including the region ot infinity, must be a constent, It will be
shown that F(w,) 18 finite at infinity (except if w, proceeds

to infinity along the real axis). If the poles along the real
axis could be eliminated by forming a suiteble function of F(wg),

without at the same time introducing new poles, then that function,
by Licuville's theorem, must be a constant.

case, wg)

Such a funotion of F(wg), which is snalytic everywhere in
the complex plane, is :

whers Wy,

The function

found by making w,

vhere F(o)

w2 )

.J(‘”a) 3

1]
J=1

) 2]

Dy 5 end mas are the three principal veluos of wg.

J(w,) 1is therofore a constant. The valus of J{wn )

spproach infinity along the imaginery axis is

I(w,) = Fle)

i8 the value of F(w,), =8 ,; bscomes infinite.

The value of F{wm)

The recurronce rolations defining C,(e) aro the semes &s cquations (e1).
Tho expressions I, and E, may be " olirdnatod from eqae.tion:s (21},

which pivos

cen be found by letting w,>o In An(ig)
end then letting n-> c. From the form of &y(e) 1t follows that

) = Npple) = - Gy ()

Cn

=

-(l - 2A3) n~1

1
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The initial conditions (equations (20)) reduce to Cl = -1, from
which 1t follows immedistely that

Bnlea) = - (1 - 2Bg)™
- 2n-1
from equation (23). Thersfors . o
Plo) = 1tm 22 L gy KL _L (28)
ek  noag ¥R K

Equations (27) end (28) immediately give equation (26).

After equation (26) has been cbiained, the problem of
determining gy, Way, @nd O, Day be considered theoretically
corplete, for eguetion (26) is ree.lly sn identlty in wg. Suppose
thut wy 1S assigned any spevific value in equation (26) and F(Jaa)

iz computed to a certain degree of accurascy. If these computations
are made for two more values of a,, all different, eguation (26)

will have ylelded three equations in tne three wnkncvns Wg s me?: o

and ‘Da3' These equations can then be solved for the principa.l

valucs of Wy. Any degres of accuracy may be achieved by carr;ying
out the camutotions for. Fwg) to a sufficiently large velue of n.

The foregoing procedure cen be systemotized by rewriting
equation (26) as ~ =L o

o8 el - el

z;é) (29)

= (o) sine(g%
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A convenient choice for the three arbitrary values of Wy
is wg =0, ®, and /2.

The explicit definitions of X(0), X(1), =and K(1/2) then becane

i A,
-sin?( (;i]) 8in? ,;;2 ) gin® (%3) |
| o | | \
E_:(l) = _J; - sm2(23—>;l IL:L - sine%e—-}J 1 - 8in® Tﬁéﬂ}(m)
B e o)
%"— sin (‘a%‘] I:_i‘:- gin’ ( ;?)“[ - ain (E;—i'—;l
— -2

The eouations for evaluating X(0), K(1), and R(1/2) exe
!

' ey
X(0) =ma _1_1;10 k:F(cb ) sin—(gf’) cos( H

E(1) = Iim | F(w,) s:.n( 2 cos2+ )] > (31)

- @
w&

(o)

||r i

K(1/2)

K(1/2) = 1im 5F(wg) 8in® ——-) cos”(yﬁg‘]

Wy ~—>> wf2|__

Carrying out the limiting operations indicated in equations (31),
and vsing tho euriliery detorminsnts C.(@,), sand ac forth,give




- -
x(g) = J w +A 2>0 20) - °J\3maLn(o)cn l |>
L

-llﬂ:"(l - El‘x—j}"” . J

- )
l"“ﬁ 75,2 (o)
E(1) = In a2 > (32)

n—-mu.bU - 21‘3) ]

] f [ P 21 E)J GG - & \ih(;“)cn(ﬂ) ¢ %(“’)%(EJ

(1 - 2lg)?Re 1

4
~
Nl
~
~

B

where the quantities in braclets are convenierntly repressnted by K{G)n, “{l)n’
end K(l/e)n, respsctively. The quantities X( ), are us
us approximations to the functions K( ).

&

in numericael computations

The formulas (32) for E(0), X(1), and ‘K(1/2)' converge slowly with inecreasing
n. The comvergence can be spoeded up g‘fﬁa‘ﬂy by meling use of the copcept of
convergence factors used in refevence 3. A convergence factor for ;{ ) 18 & function

of n approaching the Limit 1 a& n becomen infinite, which, when mltipLad by X( ),

HgTT " ON L VOVN

13
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gives an expression which converges rapidly with increasing values
of n to the valves of X( ). The detalls of the derivation of en
appropriete convergence factor for K(O)n will be foumd.in
appendix B. Convergence factors for K(1), and K(1/2)y eare

derived in a simlilar fashlon. The resultant expresgione are

‘ K(0) = lim i K0, et 1‘32@
' - n-1 2
B R
K1) = 12 i K(_‘L)n coseﬂg R
L n_:;“m_i;tli_ ] E—:-B'———;d)g F (33)
EE A -

e

- .
- | K(1/2), cos A
K(1/2) = Um L
n—>o| 2n-1 ( uey
TG~ (23 - 1)2
=2

vherse - - e e

—

2%(1 -A43) +h107 +hp 4 2A 302

Q

i

o?(1 - 2A3)

For a given value of n, +the quantities in breckets are found
to be hotter approximations to the reospeoctive values of X{ ) tren
E( ), &loms. :

The method of obtalning the values of w, may be summarized sa

follows: by use of tho initial conditione (oguations (20)) end ke
recurrence relations (oguations (1$)), the values of the determinenty
¢ (0), 1,(0), Gy (ew), Cplw/2), C (-0/2), In(e/2), end Ly(-a/7)
cen be computed for incresaing values of n. With the substitution
of thesme values into equatiecns (33), cnd with the use of equations (3
approximate valuea of X(0), X(1), end X(1/2) can be computed.

2},
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The process appears to be repidly comvergent with =n, es;pecia]_ly

for large values of ®/yX/M. The values of Wgy 5 oaae, end gy

can then be found from equations (31), the definitions of X(0),
R(1), =nd X(1/2).

Conditions for Stability

From equation (13) the condition for stability of the system

is seen to bz that all three values of Wy mist bo resal numbers.

If any ocne of them is camplex or puve Imaginary, then one of tue
terms in the solution (equations (11)) will increase indefinitoly
with the tims, the mot.Lon tharefore ve ng unstable. This condition

2 of 0.0
impllies that the expressitms gin K » sin *Q_w— 3
20

T, 4
and sinQ(——é'-g) 2ll are real positive numbers less then or sgqual
to 1. The conditions for etebillty can be e@ressod. dirsctly in
terms of X(0), F(1), and E(1/2) by meens of their definitioms

(equations (30)). The thrce cquatione (30) are formmlly equivalent
to & single cubic equation

7y
:c3+bx'—+cx+d.=

Ty
the roots xy, ¥p, and X3 of which eve BME% end so forth,

and the coefficients b, c, and & of which are functioms
of K(0), E(1), and X(1/2) whero

ob = 4%(0) + Lk(1) - 83(3?;) -3
oe = -6K(0) - 2K(1) + BK(-:EL-) +1

]

& = K(0)
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After some manipulations involving the Descartes rule of signs, the
necessgary and sufficlent conditions for stabllity ~re found to be

-K(d) <1

(7N

4]

o
U

K1) S 1
S 8K(1/2) <1
A = 15bcd ~ kb3 + 1262 - hed - 2733 2 0
The quantlity A is ﬁhe digeriminant of the cubic equatiorn.
SPECIAL CASES OF GENSDAL THEORY

Three special cesos of tne general theory aro of interest.
These cumsed are the cases for which one of tho principel stiffnesses

K, is respectivelv zero, equal, or Infinite in magnitude in comparison

with the second principal stiffness K.

Cage of Ky = Ky

The case of K, = Iy has beon tyreated in reference 2, If
Ky = By, the equations (8) to (10) reduce to the esuations of
ratference 2. In tuils spscisl cese, the motion of the rotor systenm
bocomes aimple hermonic, since all the coefficlemts R;, By,

and C; in equations (12) =are identically zera except Ay, Do,
and Cg. : _

Cage of KT =0

Thes special limiting case of Ky =0 18 of interest in

the case of a nylon of vhich the stiffness is negligible along
one princlpal directicn with interest centered on the fregquencies
involving the cther nrincipal stiffness. In the cass of

Ky = 0, - the function K(1) a8 given by eguetions (32) becomes
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identically zero. This result ls also evident from the original
definition of E(1) as given in equation (23), because ome of
tie values of oy s say Waq s is of necessity equal to *o. (It
will be recelled that @, is the frequency as measured in
rotating coordinates. In fixed coordinates it would be zero., )

It 18 nossible to give much simpler stablility criterions ior thism
cago beceuse there are only two K-functions, K(Q) and E(1/2),
and two values of ,, g, end Wgns to be determined. The rnew

K-functions may bo defined as follows:

T .
= sine& al) sin2<"&g> = -K(0)
b 20

' - 1
A0, e 1+ 28(0) - 8K{=
Y, = cos J) cos‘(«—a% = SK(E)
- N 20 20 2
_ A

In texrms of Kl and 122, the eriterioms for stebility bocame

——

ks
!

(35)

\/'

i

0 £y S 1 (36s)

0fw S (35b)

V& + &z S 1 (35)

Given the values of X; and E,, the values of Woq and
W can be determined from equetions (33). A gzph of the relation

in equation (35) is gilven in Tiguve £ by meuns of which the vesl
vzlues of Gy end @y, CED be read off directly oncs K and Kp

are known.

A graph chowing the variation of E; endl X, with m/—V‘Kx/M,
for the typicel paremeters Ay =0.1, &, =0, Ay =0.1, end
E, =0, is shown in figare 3. By use of figure 2 the values of tay
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and Wy, cen be cbtained. These vulues are shown in figure Ly L,
plotted against w//E,/M. Calculetions are carried down - L
GJ - . . - -
~===== (.5
N B/
discuesed in the sectlon ent?tled "Ceneral Behavior of Rotor
Syster. ae a Function of Rotor Speed."

The general behavior below this mpsed is

Case of Ky = _ C e

The formulas for the limiting case of Ky = o capnot bo
obtained convenlsntly from the general theory. Instead of cerrying .-
out ths Limiting process, it uppoars preferable to beyin by tveating
the problem as ane of only three degrecs of freedam (’cwo l'in,gr—
deflectlion coordinates and cne hub-pouition coordinate x ), end
by deoveloping the theory along lines similer to those used for ‘c.he
gonersl troatment. In this way & gystem of two simmltanscus equationse
with periodic coefficients is obhteined, with the varisbles 6

and x. These equationg ere solved in a mermor simllar to t.nat for
the general cese, the treatment heing eimpler, howsver, since the
solutlon has only two principal values of .

The dotells of the solution of the eguations of motion, toguther -
with the final formules for the K-functions, inclvding comvorgonce
factors, are given in appondix C. It is found that the sanc <]

and K occur as for Ky = 0. The oriterions for stabili ity 1o _ -!;__
oxactly the same ag those far Ky = 0, the conditiona of cquations {(36).
Figure 2 can also be used Ho detecrminc the veluos of w, from tho

valuag OF I‘l end K?. _ __t

A greph glving the veriation of Xy  and X, with '.40/4:{:;7-}? for :
the paremcters Al 0.1, A2=O, A3=O_, and Ky-—m is shown o

in figure 3. In figure 6 the values of %1/'\[151/}4 and ma,\/{;/h{
are shewn nlotted against o/ '\/—K;T 4.

DISCUSSION OF HESULTS
" Types of Imstability _ B L e me
Insta‘bility may occuit ag a result of tho viola.t,ion £ any one

of tho gtability criterions of equaticns (34). Violastion of w-mch R
condition ie asfdociated with a different typo of insteblliby, wiich
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would show up differently in the motion of the rotor system.
Experiencs with computations indicates,however, that t‘f:e cri tor_.onﬂ
of most practical importarnce for hellcopters are'___

w

AZ O
-£(0) 2 0
(1) 2 0

Simijerly, the Imyortent criterions in tho limiting caces of K, =
and K =c are
o

sy -

Ky 20
XK. 2 0 —

- i 'd
If tae condition 420 (or & +4E2 S£1) is viclated,

the other conditicns being satisfisd, then end will 'bé
Pey 04 Dep

complex conJursates, 2nd tiie rotor sysbenm will execute seif-excited
vibrations at frecusncics, In general, lncormensurate with the rotor
speed. (Higher harmonics will also be present.) This type of |

ns’sabﬂibv will be roferred to hevelnsfter as a "self-excited

vibration.® . -

If the stubility cendition -K(O) Z0 (or K; ?o) alone is
violated, then one of the valuss of w, Wwill be a pure imaginary
number. Physically, the rotor system will execute self ~axcited
vibrations having a basic frequency, a8 seen in rotating coordinates,
of zero. This behavior is similar to the ordinary critical-spsed
boshaTior of a shaft. Frequencies at higher harmonics Zrw will
alsc be present. This type of instability will be referred. 'Eo as a
"self-axcited whirling." -

The third stability condition K(1) = > cannot be vioclated since
K(1) as given by equation (32) cannot be negative Eowever, K(1)
cen be exactly squal to zero., (A similar statement applies to K> )



n
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At such & point, where the rotor system is on the bordor lins between
8tabllity and instability, ono of the valves of we Wwill be egual

to tw. In fixed coordinates this resvult means that the rotor systom

will have a natural frequency equal to zero. The rotor system will,
therefore, bo in resonsnce with a steady force - a force of zero
frequency. The amplitude of the zero-fraquency term for the hub
motion in such a situation can be shown to be zZero, but the blades
will oscillate. Also, higher hermonic terms, notably the term of
frequency 2o (in nonrotating coordinstes), will chow up in tie &b
motion. This type of vibraitlon, which is e resonance phecnomenon ond

not & self-excited vibration, will be called a "steedy-force resonsnce”

vibration.

YFackh of the vibrations describod ~ self-excited vibrations,
golf-cxclted whirling, snd a steady-force roaonance vibration -~
appeared in the discussion of the two-blado rotor on ecqual supports
(roforenco 2); however, thoro thw mobticrs wore simwle hermonic, no
higher harmonios being present.

—_ General Behavior of Rotor System =8 a

Functlon of Rotor Speed

Tae approximate location of the Instabllity regions can
vasily be found by oxamining the limiting caso of A—) = 0, that is,

thie cess of zoro coupling botween the blado and hub motions For
simplicity, the discussion is slso rcstricted to the cese of fruc
hinges (Ap =0) and Ky = . The K and K functioms becomo

sinz(-gm) COEQ@:\ \/;f—:a
p cosE’(g—\ AI) a1 9@ \!rix
“ e

Eliminating the rotor speced @ Fram oqustions (37) gives

"

}}!
fi

(37)

NS

|

=1

- K1 K,
o gin® ”\ ) cos (—2,..!\

— e

i

b

b

H
|
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Coneideied as an equation in the vsriables Kl end Ko this

equation represents a siraight-lins segment (one of the lines in
Tig. 2) terminatod by the X, and X, axes. The segment can bs

shown to be tangent to tae curve —J’fi' + &2 =1. As o decreases,

the represcntative point noves up ond down the line segment, per‘f’orming
an Infinite nwber of swca oscillations as @ appro=ches zero.
Whenover Ky = 0, the rpoint is av a self-exclted-whirling speed.

The corresponiing speed 4s

~- o —— _ - e

A E M
28 + 1

where & Yepresents any positive integer. Thus a self—-excited'-
vhirling will occcur when the rotor speed 1s approximately equal to 1,
1/3, 1/5, 1/7, and so forth of the natural frequency of the

nub ¥ K /M. Similarly it can be shown that there will be a steady-

force resocnance vibration whenever the rotor specd 13 approximately
equal to 1/2, 1/4, 1/6, and so forth of the hub natural

frequency A/ KX/M. Finally self—excitfoed vibrations will occur at
rotor speeds approximately equal to

Vg T Lo e
®EEeF L Ay

Figure 7 shows the general pabttern of ruspomse frequoncy
plotted agninst rotor spood Ffor a smell valuc of the mess-ratio
versmoter A-. Tho varisble ap/w ruthor then o \E /B has
been plotted es ordinate to avoid crowding of the linos. Along the
norizontal paris of the curves, blade motion rrodominates over rylon
motion. Pylon motion nredominates clong the slanting parts.

Although the faroegoing discusdion was agvolcped for the case
Ky = o, 1t is belioved to apply eguzlly woll to the case

of Ey =0 and clso to tho gonoral case of X, v Ky 12 the rotor T
hub is considered to have two natural frogquencies ﬂi‘l"z/lﬁ and AfEL /M,

euch frocucncy having associated with it en ixfinltec sst of insta;ai'li’w
ronge8 locatod at approximetely the speeds given. .. T e
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Comparison of Results for Different

Values of Ky/'Kx

Pigures & and 6 give the principal vclues of axJJE?M
plotted sgainst the rotor speed wA/Ky/M far Ey =0 ’
and K, = «, respectively, both calculated for the same sst
of parameters A,, Ap, =nd A 3+ The celculations have beer

=8 __ , X
carriod down to ‘@75&— = 0.4, The simtlarity botwsen the two curvese

is striking. So far es the calculations have beon carried, cach

system shows the presence of one sslf-excited-vibration instebillity

renge,;-cne self-sexcited-whirling instability renge, end one steedy-

force reeonence spsed A. If the celculations wsre carrled to lowor

valueg of o, further instability ranges and steady-force resonence

gpoeds. would appoar. o -
Yor comparison; the response frequencies of a two-blede rotar

on equal supports (Ky = Ey) foo the same set of paremoters is

ghown in figure 8. The fregyencies were celculated from the forrmla

in reference 2. Down to = 0.5, this chart is very aimilar to

vV E /M
figures 4 =nd 6. In addition it shows ane range of rotationzl speed
at which self-excited~vibration instability occurs, one rangs of . -

robztionsl speed at which self-exclted-whirling imstebility occurs,
and on® range of rotuticnal speed at wuich a steady-force resmeance
gspeed occurs. Figure 8§ diffexrs principelly from the figures for -
K.y # Ey 4n that it shows no further instability renges at low values
of . . : . - - : .o B e

In refercnces 1l and 2 charts ars presented glving the locotion
of the Belf-sxcited-vibration instebllity ronge for various values
of the naremeters A,, A, and A;. A sinilar chert for the case i
of a two-blade rotor wlih K..’, = o ia given in figure 9. In veing
the chart, & straight line is drawn regresenting the variction

2 | B '
of —Z— with the furction + - The intersections of this :
K../M Em ) ey
line with the eppropriato A? curvee give the bogimming :md end

points of the instability range. The dmeshed line in figure O
illustrates tho msthod for the peremoters of figure €.

Sciio observation® concerning ths relative locaticm and extent
of tho vaerious instebility renges in figures 4, 6, s#nd 8 appeexr to be

- . JE— - e e oo
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zpplicable to a wide range of values of ths prrareters Al, Ao,
end l\_—,‘. Thus the self-excitod-vibration inatsdbility renge in the
croe of K, = Ky (fig. &), is wicer (=aud hence . tho vibration
nrobzbly more severa) than thoe corresponding ranges in the coses
of Iy =0 and Ky =o. (See figs. b and 6.} Also, tuis inste-
biilty range occurs alb lower rouor gspeelds in the cage of K.y = @
then it does 1in the casen of v = Ky exd K‘y- . The salf-
excited-whirling inst&bility reage s consid.era‘b}y narrower

Tor Ky = o than it is for the Ky = K, cage, 2nd it is still
narro¥sr in the Iiy =0 co8e. -

In the generzl cese of Ky # Ky the location end extent of
the inatebility renges can bs fovnd falrly scourately by considioring
the problem es the supsrposition of two groblems, one of Fiading tho
significant rotor spceds =cferrsd toy K;?M 8 roference freguency
with K’.T cggumed inTinite and the other of finding the significent
rotor spoeds referred ta 1/1\:‘?}*‘, €8 »cforonco "requenC" with R
aggumed zero. Witah tia foregoing ‘discussion as s guide, sufTl ciently
sccurate desim indormmbticn cen be obteined withont extonslve '
crlenlations for escir velue of IC:,-/I‘.T:,i cncountercd in practlco.

-

BEffoct of Deamping —

Although tho offuct of damping has not hcen exemined mathe-
mstically, because complicationa would bo introduced in the analysis,
soveral infeorcncos irca tiie demping investlgations in refersnces 1
and 2 can prcobably be safely epplled to the rotor-system studlos In
the prosent papor. The nuwwrous instubility ranzos occurring at low
rotor speeds, which axe vory nervow end roprosent a mild type of -
instability, arc probzbiy cazpletoly eliminated by the presonce of a
glisht smont of dexmping in the rotor system. The primary self-
c—mcﬁ tod-vibration instebllity range con probably bo narroved and

Liminated by introducing sufficient damping into both tho rotor
sub,gorts and the blsds hinges. .

APEFLICATION TO DUAL ROTOES

It is sasily shown thet thie snsalysis for the ceso of. Kv
arnlles also to the case of a counterrote ting rotor system cons:Lsting
of two equal two-~blade rotors revolving =% equf,_l speod.s snd acting
eouslly upon tie s=me flexible werber. The rolore méy be on the same
shaft or on different siafis so long as the nonrotating flexible



NLCA TN No. 1184

32

member is the same for both rotors. The supports, nioreover; may huve
unequal stiffness in the X- and in the Y-directions, provided tiat L
the undeflected blade vpositions make equal angles with a principal . R
stiituesy axis, : T

The proci consists in showing that the energy oxpressions foir
the dual-rotating systom cen be sgparatod into two independent mets
of terms, each of which is of the same form as for a single rotor
with K‘YT =ow. The resulting equatians of motion will thus also ba

the sams.

The sepa.raﬁiqn is eccomplished by introducing new variables

él ='% (elpos —_ elr_:.eg) : : B

=i ==

& =2 fs -8 _ N

© =% (Popos ~ %oneg) | o

L emmr oo - - . i |

and T i Letz==

"L =% (Lyos * Olneg)

Mo ¥ %(90},05 + goneg) _ "__

where tho subscripte wpos and neg refer to the 6'a defined for
the rotor turning in the vositive dlrection and for the rotar turndng
in theopposite direction, rospectively. The encrgy oxrpre3sions
bucome : . '

i 7;’_-145:‘2 + L1y Ee;’c@l oin wt + wg cos cnf)

= R E ) 2t |

A \ -
+ %M.YQ + By LEY(T}J_ cos wi - Gn, ain uu) g (\33)

—— . - -

/ o N .~ f
Bt
2

- 2 2 : 2 o 1

~
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vhere M is the tobal mass of the system (M = m + bmy).

From equetions (38) 1t iz seen that & 418 coupled only
with x and n is coupled only with ¥. Equations (33) yield
equationg of mobion of the ssme form as eq_u,_«.t"ons (C;) an'i (Cj)

The stebility properties for the dusl-rotating case are thus
exrctly the sarme =as In the casc of Ey = o Tor the single-rotating
two-blade rotor. In particular, figures 9 can be used to find the
location of the primury seif-excited-vibration instebility rengs.
The value of A3 forr the dunl-rotating rotor is defined '

a8 A3

T+l ) (L + c2/p2) rathor then A 3 3 (m + oo ) (L + 22/p2)

as for the single-rotyting rotor. ALl other paramsters aro e sams
for both caees. ) e

The quentity &, win mt  can be Lnto:r'p eted physicelly =e

the x-commonent of the displacement of e comter of gravity of the
bladss due to hinge deflsctions. The qu sntity My cos wt is the

covresponding y-component. ‘The aspayation of ‘the varisbles meens 2
physically, that tho motion of tas syetem can be seperated into two
indejpenient wmodes, ench of waich ipvolves linsar motion of the
supports along one of the princinel stiffness axes.

Similarly, the sitahility of comuerrotating rotor systems of
Bix or more equal blades can be determined from the results of
roference L with Ky = o

CONCILITGIONS

The following conclusions are indicated by the results of en
investigation of the problem of vibretion of a tiro-blade helicopter
rotor on supports thet have different auiff‘nesses along the TWO
principal stiffness xes:

1. Many specd yznges ars found in which self-excitcd oscilla’bims
can occur. These ocscillstions are of two types - self- exclited
vibration and self-excited whirling. There are slso many speeds a.'l..
whilch gtesdy-force-resonance vibration may occur.

2. The self-excited vibration, self-sxcited vwhirling, and steady-

force resoncnce speeds of higliest rotor speed for sach support netural

frequency are recognized e3 corresponding to those of a two-blade rotor
o equal supports, but changed samewhat in position and ‘extent,
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3. Mild self-excited-whirling speed ranges exist at rotor spoeeds
approximstely 1/3, 1/5, 1/7 end so forth of each support natural .
Trequency. Steady-force resonance npeods exist at approxim=iely
1/2, /4, 1/6,2nd so forth of each support frequency. Self-excited
vibrations also occur at certain low rotor speeds. All these mild
instebility renges are probably eliminsted by the presence of
mcdsrate amounts of demping in the system.

4. A familiarity with typical results of limiting cases of thoe .
supporrb-spring copstents Ky oo, Ky = Kyy &nd Ky =0 showld
eneble s designer to avold extensive calculations of czses of unogual
support stiffness. In the general csse of unequal support gtiffness,
the location and extent of the Instability ranges cen be found fairly
accurately by considering the problem as the supsrposition of two
problems, one of finding sigmificant rotor speeds reforred to one
support frequency Kx7M ag roference freguoncy with Ky assunmod
infinite and the other of Iinding the significant rotor aspeeds
referred. to the other suppeort fraquency U@M a8 roferencs

freguency with K‘c cesumed zero.

. The enalysia cof & four-blade counterrotating robtor systom in
which the rotors crogs slong the principal stiffness axes of the
rotor supports leads to the seme oguations as thosc congidered for
the gpecial cese of =c, and the atability propertiss aro glven

by tho invosbtigaticn of that speclal case. :

Lengloy Momorial Asronsuticel Leboratory .
National Advisory Committee for Aorcnautics "
Lengley Fiold, Va., July 22, 1946 : L
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a

8ng2 8012 and 80 forth

A-L_q BZ’ Cz

22 By Cy

o

Cn(wa)l Dn(ﬂ)e_) » 2nd

s0 forth

D

Flog) = Mn  F (o)

In——s oo
Jsn, 8
J(w, )
k= EA'B -1
K(w, /w)

- E(0), B(1), E(1/2)

Ky, Bp

iz, Ky

35
APPENDIX A
SYMBOLS

radial positlon of vertical hinge

elemen’;:s of determinent dsfined in egquation
(16 ' :

Fourier coefficients in equation (12)

coxplex conjugotes of A3, By, and Cy,
respectively T

distance from vertical iiinge to center of
mass of hlade . -

minors of the detorminate A (w,)

time-derivative operator (;’t)

integers

function of F(w, ) defined by equetion (27)

function of ,/w defincd in equation (29)
functions defined by the relaticns (30)

functions defined by the relations (35)

soring canghbante of the xrotor supports along
"the X~ and Y-directions, respectively



M

P(4),6(t),R(%)
P(4),6(4) R(t)

vy

Zf
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average stiffness of rotor supports

- Epring constend of blede solf-

centering spring
offective mass of rotor suprpbrts

mags of rotor blade

totael mess of two-blade rotor Bystem

(m +-2my,)
poriodic functions defined in egquetion (11)

camplex conjugates of P(t),Q(L), and R{t),

*‘espective ¥ .
- congtent defined in equetions (33)

-~ radius of gyration of blede about center of

Eass

-time

Hnetic energy
potential energy

detflection of rotor hub measured in
X,Y-cooriinate systen .

Tixed rectangular coordinate sxes taken
parallel to the principal stifiness
directions of the rotar Lub

complex posltion coordinste of the rotor
kub in rectengular coordinate system
- rotating with sngular velocity (x. + 1yy)

- complex conjugaete of z (X, - 1¥,)

-complex positian vector im X,¥- (nonrotating)

coordinate system (x + J.y)

IM
1k

B

.
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By, Bo angular hinge deflections of rotor

blades, respectively
A discriminant of cubic eguation

3 +bxE rex +d =0

&(wg) determinant of infinite order defined
by equation (i6) ;

A {wg) determinsnt of order Gm - 3 formed
from A(wg)

00 = 2By + Ba)

b
al ="é(Bl - Ba)

A, =
- bil + .125)
'b2

hpe—B ) _
€9
\ b
Ay = =
3 ofL 4 22
b2
g 1 §,0, a1 Mo tlade variebles for counterrobtating rotor
3 mass rstio (E—I—?-
0 congtant angular velocity of rotor
W, characteristic exponent or natural frequency

of rotor syster as viewed in coordinates
rotating at engnlex velocity o

c"a-;_ 2 Oy ’-ba3 principal values of w,
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APPENDIX B o
IERIVATION OF TEE CONVERGENCE FACTOR FOR X(0)
% convergence factor for K(O} is found by finding e simpler
Tunction Gh that caanges with n I1in nesrly the sams way as Ix(O)n
Then, if G denotes 1lim G,, the expression ) o
D300 R .‘- TS
K(0), G L
o -
for a given value of n is a better approximetion to X(0) tian _ __
1s K(0), ealone. A suilteble form for G, 1s found fram a study
of the be.avior of K(O)n foxr large values of n. R
The behavior of K(O)n is strdied by firet observing the
behavior of Cn(O) end Ln(o) for large vzlues of n and then
inferring the behavior of . K(0), fTrom eguation (32). In the A
discussion of equations (22) it was shown that, as n becomes
infinite, the ratio C +l/Cn approaches the value k {equation (923)) ;
A clomer aspproximastion to tihe value of this ratic can be written as T
e PSLCON AR S (B1)

whore P and Q are constants to be determined.

|

1

1)
I'.:l i

0

N

b I il
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39
Bquations (19) become, for w, =0,
] e D
_ L kM _ + l)
cn+l(o) 1+ (oo s l)zuﬂnn(o) A3\ . £, (0)
A2 .A : 2 |

p_,.(0) = |-1 +-(l-2;)—%§2—_\ B (0) - iy 2"?;_ l) o, (0) > (B
E11+]_(0) = &+ Cgl_?&f)_e—c;g Cn(O)

where the second term in the equatiom for En(cn&) in eguations (19)

has been neglected as being of higher order in powers of 1/n than
the terms retained. Bliminating E(0) and D(0) from the
egquations (B2) results in

Cn2(0) _ Ly 4 E/M g AR +A 1+ EM |
'3;(05 E+'(2n+157252][1+22n)%2] E'(en-l) ]
~ 5 '

- &, %___;) e _EM |
N oo T (en+ 1)%R _
—
211+12 XK/M

.+<2n> ”l+(2n-1)_2m2

Upon expending this sxpression into powers of l/n snd retaining
terms up to and including those in 1/n?

RS- —
!

o) | o, . 2| FHIEE R zﬂﬁ(«»}é’z/}i 9‘ (23)
Cn(0) 37 (en)2 o2 N |

.
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Camparing equation (B3) with equation (BlL) resultg tn.
=0
~K ) '
Q= :_&-(l -.A. 33 +A.ld) +A2 + 2A3&)2 .
w(1 - 2.’13)
Similarly -
n+l( 0) {: e
= kil -
(o) (2n)2 N o
Therefore, Trom equations (32) .__
KO0y 1 - 8
Kence, en approximate valus of X(0) can be obtained from _
EEQ_}-E K0y O -K(O)nﬂ-_ . ' ) ) P
K(0)y K(O)p K(O)yy1 KlOdnyp '
s"n*- ("%E) . (BY4)
),_je
1 -
’+32
=l
The right -hand, sid.e of eguaticn (B4), which is seen to be of tie form e
G/ is a convergencs .factor. - This convergencs fe.ctor is the ome .
used in equetion (33). . -

— s -
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APPENDIX C

MATEEMATICAL ANALYSTS FOR TEE CASE OF K& =

Tn terms of the verizbles 6n, 85, and x the expressions
s

faor the kinetic and notential enser
5{ +mb< + "0)(0 + 8y 323602+61\
bhe b

-'-(é 5, 8in @t + a9 cos “’t)_]

It
n [

K 2 2
X 4—§§ éo + 6, )

2 b

The three squations of motion are

+ (o, +A 2)90 (c1)
2
3?:+E-x-k—u§'——9-, sin'm;) (c2)
M ate :
(c3)

- L B % gin ot + 9 + G@A +A2)9
(Il + g;‘i .
Bquations (C2)

Equation (Cl} is identical with egustion (7).
and (C3) constitute a system of two lines~ sacond-oidsy
differentlal equations with periodic coefracionis. :
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Equations (02) and (C3) are satisfied by solutioms of the form

=<3 ' -j
¥ = S Azei((’ﬂa"-kﬂ)t
1 =«
N (ch)
< if%+(2+l)u§[t—
8= Bpga® -
l & - -

whore 1 ‘tekes on all odd integral velues end A, and B, +1

ave ccmetants to, be determined 2long with the two princinsl
values of @, (wa and ay 2) ‘l’ae constants A, =md By,

in equaticns. (Cll-) are, of course, different from tiiose in (12).
Combining emw.tions (Ch) with equations (C2) and (C3) ana

setting the coefficients cn‘:‘ the various exponential time fuctors
equal to zero

<w +zw)J (“Z”Bm) -0

j - 2
s ! Fa&+(z-2)w oy + W
- < - A -2+ Az
211.;.:?_2. { ]_r_ca.;-(z - l)a v a, + (1 - Lo
b2 . ~ i - J

o f"‘ —~——

! arly +A g i

+ XK= 1L + = 5 By.y =0
| Lwa + (1 - 1)<nJ }

The determinentel equation is thnen equsal to

1
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. o C 6 0 0 0 ...
&.3,-3 %.3,-2  ©
» . s 85,380,080 1 0 Q 0 o ..
v s e 0 =& 1,-2 2.1,-1 .1,0 0 0 0 .+«
. . « o o = Mo =0
0 0 & ,1 20,0 %, O 0 (wg)

. . - O O O a-l,o al,l &1’2 O . 3 -

- . 0 O O Q a.e,l a2,2 &2,3 [ - -

« e = O ? o. ? (? a332 5.3:3 s e

where ]

K./M A 2 A o
a = -1 % ____.';_/_______ a = -1 + ;LLD + 2
“¥3 (o - 30)2 o g2
Az L [wa @ 2
-352 2 aoL o
\ 2 - -
Y A e _ A
-3-3 "\, - 10 772
= ofy +4p Bqq = -1 + /3 _
R ST = CHEE
n

8 A = g - B® < Bm = :’}_’.1
-3~-1 Wy - 20 12 2




My een e T R N ey T —
Ky/M o, A? .
(NS SRR - o= l e
R R (we, ~ w)2 72 ¥ (0 +- 2m)? | )
Y | Wg + 3
230 5 72 %23 7 (e + 2w)2

%

o : .- - Ex/M
Eay B =L 4 7T "IRT
. : : 33 T (a + W)F
2y .
€] Al +A,2 . . R i i e m
Tre term -1 + B %1l bc taken as the origin of the _ _ N
b3 ' . _ . i

detorminant.

Define %(wa) ag-the determinant of arder Im-1 formed
by teking a square array from A{w,) centered en the origin. Then

Mw,) = 1im An(w) .
n— o B . - ot

Define auxiliary determinants from z;n(ena) as follows:

Cn(cba) determinant of order 2n-l1 consisting of the terms to
the right of and below the origin torn

Dplw,) dqtemxinant of order 2n-2 obteined from Cpla,)
by omitiing lts last row and colum

Mn(caa) determinent of order on-2 obtained from Cn(coa)
by omitting lts first row snd column

N, (w, ) doterminant of order 2n-3 obtuined from Dn(“’e.)
by omitiing its first row end colurm )

A=

The determinents Cp{w,) end Dn(cna) satisly the follow’ng
recurronce relatians:

s
iy
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—

Cplwg) =J‘ -1+

|
-

Aq

Ky /M

"5

'\

lz—_na-i-(’ﬂn—l)(aJ

e e

W, + (en - l)w}‘

lu,

0’

e recurrence relstions (equations (C5) )

2 -tbf-i-(’;‘.‘l—a)ﬂ)!

—

>Dn(~0 )

)

Cn—l(mﬁ-

P (c5)
(3] .A.'\ + fig j‘ G __(‘ )
b+ (2n - 2002 | 7T “e
-1
+ (zn - 3oi® )
. (e,
1<%, + (on - ZEJ p

are algo satisiisd |

by M (w,) end INy(w,), with M end T replacing C end D,
rospectively. The initial values are
K/
Colmg) = -1 + ———
(wg + w)= _
— I ]’ . , 2
"JE/M ] U.\EA.l +.A.2 AS l.-'Ja + @
Dlag) = ‘ i v T S
(@g + ®)2 L (wg + 20)= 2 \@p, +

HQ(CD___,L) =
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Expending A,(®,) in terms of the elements of the
column conbaining the origin gives

ANfwg) = | -1 o Cn{ -0y )Cnlwy )
{J.)a .....

NG + a2 )
- %3_ (L) Cp g M () - (E......) C,( -wa)Mn(wajl
= CDa wa

As n beoames infinite, or a8 w, becomes infinite, the

recurrence relations (equations (05)) approach _ _
N ) - iLomTEE

A3
Cp = T 77 Cul
> (c6)
_ A3 |
Dy = ~Cp-1 =% Dpoa
2 B L
Benations (06) are satisried by & solution of the form .
o, = CxB g _ ] -
.’\.’3 (C-I') -
D, = --CQ: T B
. 2
vhere k satisfies the squatlon - “ __:
) g A 2 -
2 - (3 -4 3)k +:—I':1- =0 (c3)

Tae largsr root of equation (C3) will be dencted by k and the
smaller root by X;. Althouzh the complete solution of eguetion (c6)

is of the form B -
Cp = O + C'ie™

..
HE

for large values of n the term In k3 bocomes négligl;ble comparod
with the term in k.

TR
I'
q

»
Vool
gl



NACA TN No. 1184 b7

Viith the same values for k, M, and N, will have solutions

gimilar to those of equations (C7). Thus as n becomes infinite
An(a)a) will vary as the quentity xen,

Define the function

Flwg) = Iim Fplwe) = Uim é&(-t-u—a-‘-)—

n—s® n—> o
The function F(w,) is periodic in w, of period 2®, has

roots ‘.’:(cbali'asm) , i--fmaazt 25(1)), end second-order poles at (ma -_gem)

for all integral values of s. Furtihermore, F(a)a) approaches
the 1imit

+

E= lim Fo)=1LUn Fylo)

e n—>w
= 1linm =
n-—y o kﬁl klz - k2 .

as o  becomes infinibe in a directlom otheyr then along the rsal axls.

a

Form the function

e,

o

I(w,) = Flog) ~= . . —(09)
lsin EDE') - 8in? mj&—?}Eﬂn"(ﬁ% - singéi)a—@)‘{

L e L w/ N

The function J(w,) 1s an enalytic fumction of w®, everywhers.
Hence, by Liouville's theorem, J(cna) is a constant. By letting

®g—> + o along the imaginary axis, it is seen that J(w,) = -UE.
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1

L
. L Lo
I ] |i il.‘l,i
ii R HiN!

Svbstituting -¥E for J{w,) into equation (C9) results in v

rm Smloe) Flwy) __ S

n-—yo k2N I -
— !. N /m)eﬂ [ 70, o >d_2—T

B N “s‘m(;) ] smetz—"_ o ;°i> o Cm /|

siﬁg_f?')

LS

i

[

i

Introducing XK functions defined similarly to those used for
the case Ky =0 gives

!
Ey = sin2< ——-—)sin2< ?>
w :

w
sin? (—-32-) F(fua)
= lim =

wg—3 O - 4B

> (c10)

v

0
sin® 53{ Flwg)

= Llim
Wwg—> w

e,

Carrying out the limit procosses indicated iﬁ eguations (Cl0) gives
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I§_= lim
Ne—y 0

-

#2(02hy +Ap)en2(0) - A3nPuCn(0)Na(0)

= 1lim

—
. ﬂa-% mne(_w)‘i
= 1im

Finally, upon introducing appropriate convergence ;actors, _ e

the quentities needed in eguation (39) are

R— —

B, sme(-a)
Ki = 1im e B e
n-——3 ®! R
el ( ‘3§>
J=1

where : o _ R

§§-+ wﬁﬁl + A2 + w2(l + k- k)

W
o?(x - ¥p)

B2 =
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Figure 9.- Chart giving position of the main instability range for Ky = @,



