

HATIONAL ADVISORY COMMIINWE FOR AHEONAUTICS

TEGEMICAL NOTE NO. 1369
 EFFHCT OF GEOMEIRIC DIHFTRAL ON TETS ABRODYITAMIC
 CHARACTHRISTICS OF TWO ISOLATHD VBF-TAIL SURTACES

By Robert 0. Schade

SUMMARY

Force tests of two isolated vee-tall suriaces with various amounts of dihedral were made to provide en experizentel verification of a simplified vee-tail theory and the results are presented. which vere found to be in good agreoment with calculations of IHACA ACR No. 15A03. The tails had aspect ratios of 3.70 and 5.55 and wero tested with dihedral angles of 0° to 50° and 0° to 59°, rospectivels. Plots of the basic test data and sumaries of the data in the form of plots of the veriation of static-stability derivatives and controleffectiveness parameters with dihedral angle are included.

INTRODUCIION

In reference 1 a simplipled veo-tail theors was presented which included a correlation with experimental date for two feolatod tail surfaces havins various amounts of dihedral. These experingental data consiated of lift and lateral-force paranetors which wero based on slopes and increments obtained from plote or" lorce-test reaults. Because of the recently increased interest in vee tails, the complets force-test results includine monent data which were not previously given are presented herein. These results include plots of all the basic force-test data and sumaries of the data in the form of plots of the variation of different force and moment paremoters with dihedral angle. The experinental data are correlated with calculations based on the simplified vee-tall theory of reference I.

SYMBOLS

The relation of the ancles and force coefficients for the voe tail in pitch and sidesliv are shom in figure 1.
$\mathrm{C}_{\mathrm{I}} \quad$ lift coefficient ($\mathrm{Iff} \mathrm{t} / \mathrm{qS}$)
$C_{Y} \quad$ lateral-force coefficient (Y/qS)
C_{2} rolling-moment coefficient ($\mathrm{L} / \mathrm{qSb}$)
$C_{m} \quad$ pitching moment coefficient ($M / q S さ$)
$\mathrm{C}_{\mathrm{n}} \quad$ yawing-moment coefificient (N/qSb)
Y lateral force
I. rolling moment

M pitching moment
N yawing moment
q
actual area (not projected), aquare feet
mean geometric chord, feet
b
\checkmark airspeed, feet per second
ρ
mass density of afx, slugs per cubic foot
angle of attack of chord line at plane of eynmetry, degrees
ψ angle of yaw, degrees
β angle of sidesilp, degrees ($-\psi$)
$\delta_{e} \quad$ elevator deflection or eleruder deflection when elerudder surfeces are deflected upward or downward together, positive when both surfaces are down, degroes
rudder deflection or elerudder deflection when elerudior surfaces are deflected equal and opposite-amounts on the two sides, positive when right surface is up and left suriace la down, degrees
Γ dihedral angle of tail surface measured from XY-plane of voe tall to each tail panel, degrees
T. control-effectiveness parameter

$$
\left(\frac{\partial C_{I_{N}}}{\partial \delta} / \frac{\partial C_{I_{N}}}{\partial \alpha_{N}}\right)
$$

α_{N}. angle of attack measured in piane normel to chord plane of each tail panel, degrees
tail lift coefficient for uniform angle of attack on tail at $\beta=0^{\circ}$ (sum of lifts measured in planes normal to chord planes of each tail panel as shown in fig. I(c))
sum of changes in tail Ilft coefficient without regard to sign when tail is yawed at $\alpha=0^{\circ}$ (one-half of lift is measured in plane normal to each tail panel as shown in fig. I(d); equai and opposite span load distributions overlap so that $\mathrm{C}_{\mathrm{I}_{\mathrm{N}}}{ }^{\prime}=K_{\mathrm{I}_{\mathrm{NV}}}$)
ratio of sum of lifts obtained by equal and opposite changes in angle of attack of two semispans of tail. to IIft obtained by an equal change in angle of attack for complete tall
$C_{I_{C}}$ rate of change of Itft coefficient with angle of attack, per degree $\left(\frac{\partial C_{L}}{\partial \alpha}\right)$
$\mathrm{C}_{\mathrm{I}_{\delta_{\theta}}}$ rate of change of lift coefficient with elevator deflection, per degree $\left(\frac{\partial C_{I}}{\partial \delta_{\theta}}\right)$
$C_{Y_{\beta}}$ rate of change of lateral-force coefficient with angle of sidesilp, per degree $\left(\frac{\partial C_{Y}}{\partial \beta}\right)$
$\mathrm{C}_{\mathrm{Y}_{\delta_{r}}}$ rate of change of lateral-force coefficient with rudder deflection, per degree $\left(\frac{\partial C_{Y}}{\partial \delta_{r}}\right)$.
rate of change of pitching-moment coefficient with angle of attack, per degree $\left(\frac{\partial C_{m}}{\partial \alpha}\right)$
rate of change of pitching moment coefficient with elevator deflection, per degree $\left(\frac{\partial C_{m}}{\partial \delta_{\theta}}\right)$
${ }^{C_{2}} z_{\beta} \quad$ rate of chenge of rolling-monent coefificient with angle of sideslip, per degree $\left(\frac{\partial C_{l}}{\partial \beta}\right)$
$C_{n_{B}}$. rate of change of yawing-moment ccefficient with angle of sideslip, per_degre日 $\left(\frac{\partial c_{n}}{\partial \beta}\right)$:
slope of tail lift curve in pitch measured in plane normal to chord plane of each tail
$\mathrm{C}_{\mathrm{n}_{\delta_{r}}}$ rate of change of yawing-moment coefficient with rudder deflection, per degree $\left(\frac{\partial C_{n}}{\partial 8_{x}}\right)$
${ }^{C_{\delta_{\delta_{r}}}}$ rate of chance of rolling moment coefficient with rudder derlection, per degree $\left(\frac{\partial \dot{C}_{l}}{\partial \delta_{r}}\right)$

APPARATUS, MOIELS, AND TESTIS

The force tests of two isolated veo tails were made on the Lengley Pree-flight tunnel six-component belance described ir reference 2. The balance rotater with the model in yaw so that all forces and moments are meanured with respoct to the stability axes. A sketch of the atability axes showing the positive direction of moments and forces is given as figure 2.

The two isolated-tail-suriace modele are shown in figure 3. Tail A had an espect ratio of 5.55 and taper ratio of 0.39 and tail B had an aspect ratio of 3.70 and taper ratio of 0.56 . The taile were hinged at the root chord to permit variation of the dihedral angle, and streamline fairings were added to simulate the rear part of a fuselsge. The dihedral angles were set at $0^{\circ}, 19.5^{\circ}, 38.8^{\circ}, 51.5^{\circ}$, and 59.1° for tail A and wẹre set $0^{\circ}, 30.0^{\circ}, 39.8^{0^{\prime}}$, and 50.3° for tail B.

Force tests were made of the two tafils with various amounts of dihedral, with elevator deflections of $0^{\circ}, 10^{\circ}$, and -10°, and with ruder deflections of 0° and 10°. The tests were made at a dynamic
pressure of 4.1 pounds per square toot, which corresponds to an airspeed of about 40 miles per hour and to test Reynolds numbers of 199,000 for tail A and 256,000 for teil B besed on the mean geometric chords of the tails.

The coofilcients are based on true area, span, and mean geometric chord of the tail surfaces. The rolling and yawing moments are referred to ares intersecting at a point 25 percent of the root chord for each tail. The pitching moments are referred to the 25 -percent point of the mean geometric chord for each tail and for each dihedral angle to permit correlation of the experimental reauits with calculations based on simple trigonometric relations.

CAICULATIONS

Calculations were made of the variation of some of the stability and control parameters with dihedral angle. The formulas used for calculating $C_{I_{\alpha}}, C_{I_{\delta_{\theta}}}, \quad{ }^{C} Y_{\beta}$, and ${ }^{C} Y_{\delta_{\delta_{r}}}$ correspond to formulas (5),
(6), (7), and (8), respectively, of reference 1. In using these formulas $C_{L_{\alpha_{N}}}$ was assumed to be equal to $\left(C_{L_{\alpha}}\right)_{\Gamma=0^{\circ}}$ and $C_{L_{\alpha_{N}}}{ }^{\top}$ equal to $\left(\mathcal{I}_{I_{\delta}}\right)_{\Gamma=0^{\circ}}$. The constants K.of 0.7 for tail A and 0.67 for tail B were obtained from figure 2 of reference 1 .

The formulas for $C_{m_{\alpha}}$ and $C_{m_{\delta_{\theta}}}$ are based on the formules for. $C_{L_{\alpha}}$ and $C_{I_{\delta_{\theta}}}$, respectively. The variation of $C_{Z_{\beta}}$ with dihedral angle was estimated by the ompirical formule

$$
c_{\tau_{\beta}}=\sin \Gamma\left(\frac{{ }^{\tau_{\delta_{r}}}}{T}\right)_{\Gamma=0^{\circ}}
$$

The control-effectiveness parameter T was obtained from the ratio of ${ }^{C_{I_{\delta_{\theta}}}}$ to $\mathrm{C}_{\mathrm{I}_{\alpha}}$ for the 0° dihedral condition. No simple empirical relationship could be formulated for the variation of $C_{n_{\beta}}$ and $c_{n_{\delta_{r}}}$ with dihedral, therefore, no calculations were made for these parameters. It was assumed that ${ }^{C_{\delta_{8}}}$ would not vary with dihedrel engle except in cases of interference between the two sides of the tail.

RESULIS AND DISCUSSION

The basic force-test alata are presented in figures 4 to 6 for tail A and in Iigures 7 to 9 for tail B. Figures 10 and 11 show a comparison of calculated and measured values of stability and control parameters for both tails. The measured values of the stability parameters vere obtained from the slopes of the curves in figures 4 to 9 and the values of the control parameters were taken as the increments between the curve日 for different control deflections in these ifgures.

In general, the agreement between the calculated and experimental data of figuxes 10 and 11 is fatrly good except at the high dihedral angles where interference between the two panele of the vee tail occurs. A comparison of the data of $\mathrm{C}_{\mathrm{I}_{\alpha}}$ and $\mathrm{C}_{\mathrm{Y}_{\beta}}$ shows that at the high dihedral angles the vee tail is more effective in pitch and less effective in sideslip than the calculations indicate. The $C_{i_{\beta}}$ data also show lower measured effectiveness in aldesilp than the calculations indicate at the high dihedral angles. The values of $C_{n_{\beta}}$ and $C_{n_{\delta_{r}}}$ increase with increasing dihedrai angle but there is no consistent variation of ${ }^{C_{\delta_{\delta_{r}}}}$ with dihedral.

Langley Memorlal Aeronautical Leboratory
National Advisory Comittee for Aeronautice Lengley Field, Va., May 20, 1947

RERERERICESS

1. Purser, Pawl E., and Campbell, John P.: Experimontal Verification of a Simplified Vee-Tail Theory and Analyals of Available Data on Complete Models with Vee Tails. INACA ACR No. LJJAO3, 1945.
2. Shortel, Joseph A., and Draper, John W.: Free-Filight-fumnel Investigation of the Effect of the Fuselage length and the Aspect Ratio and Size of the Vertical Tail on Lateral Stability and Control. NACA ARR No. 3D17, 1943.

(a) Vee tail in pitch; $\beta=0$: If \propto is small, $\propto_{N}=\propto \cos \Gamma$.

(b) Vee tail in sideslip; $\alpha=0$: If β is small, $\alpha_{N}=\beta \sin \Gamma$.

NATIONAL ADVISORY COMMITTEE FOQ AERONAUTICS

Figure 1. - Relations of angles and force coefficients for Vee tall inpitch and sideslip.

Figure 2.- The stability system of axes. This system of axes is defined as an orthogonal system in which the Z-axis is in the plane of symmetry and perpendicula to the relative wind, the X - $a x i s$ is in the plane of symmetry and perpendicular to the Z axis, and the K-axis is perpendicular to the plane of synimetry, Arrows indicote positive directions o\% moments and forces.

Tall surface A Aspect ratio $=5.55$ Taper ratio= 0.39 Area $=1.48 \mathrm{sq} \mathrm{ft}$ Control-surtace area behind hinge line $=0.43$ se ft Alrtoll section. NACA OOIR Dihedral angles $=0,19,5,30,8^{\circ}$

Tall surface B Aspect ratio $=3.70$ Taper ratio: 056 Area $=1.78$ sq ft controlisurtace area behind hinge line $=0.50$ sq ft Airfoil section, Naca OOO9 Dihedral angles -0, 30.0 39.8, 50.3°

Figure 3.- Slated tall surfaces A and B used in force tests in langley tree-flight turned to checit ner-tall theory.

Fig. 4

Figure 4.-Lift and pitching-moment characteristics of tall A with varlou's dihedral angles.
$\delta_{e}=\delta_{r}=\Varangle=0^{\circ}$.

Fiuurc 6. Rolling-monient, yamm-nioment, and lateraf-force charocteristics of toll A with various (whe ifal ciffeles. $S_{6}=0$.

Fig. 7

Fiqure 7.- Lift and pitching-moment characteristics of' tall B with various diliedral angles. $\sigma_{C}=\sigma_{r}=\psi=0$:

Fiqure 9 - Rolling-mament yayung-moment, and lateral-force characteristics of tail B with
various ainedral angles. de $=\propto=0$.

Figure 10. - Variation of lift and pitchingmoment parameters with dihedral angle.
$\alpha=0$. $=0$.

