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WSTRIBTNON OF WAKE!DRAG AND LIFT IN THE VICINITY

OF W-i!!GTIPS AT SUPERSONIC SPEEDS

By John C. Evvard

The point-sourae-distributionmethod of calculating the
aercxhmamic coefficier:tsof thin wings e% superson-:cspeeti was
extended to include the effect of the region hetwegn the wing j
boundary and the foremcst Mach vave from the wi~ leading edge.
The effect of this reg:on on the surface vebcity @ential has
been determined by an aqulvaient function, which is evalnated
over a povtion of the wing suzzace. In thj.emanner, the effect

* of angles of attack and yaw ae well as the asynmetry of top and
bottom wing surfaces may be calculated. As examples of the method;
the pressure distribution on a thin plate wing of rectangular pl~”

* fozm as well es the lift and the drag coefficients as a function
O? -Machnm.nber,angle of attack, and aspect ratio are calculated.
The equattona for ‘thesufiace velocIty potential of several other
plan forms are a’lsoincludeds

8
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INTRODUCTION

The theoretical and experimental investigateone of aircraft
perfomanc e at supersonic speeds have been greatly stinnzlated hy
modern developnedm in high-speed fiight.- The theoretic~l aero-
dynamic performance of thin wings ~evertheless has not been com-
pletely solved, even through the approxtiation~ of the linearized
Prandtl-Glauert equation.

Puckett (reference 1), by means of a point source distribu-
tion, has fommzlated a method to derive the pressure distribution, ,,
the wave lift, and the wave drag for thin w- at angle of . ----

attack, provided that the leadlng edge or the ting tip, as the
case may be, is swept ahead of the Mach line. The method gener-
ally fails when the sweepback is greater than the Ma& line
because the flow over one surface of the wing can influence the
i’low on the other surfa~e.

,.
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Jones (reference 2) has been able to calculate the pressure
di~tributlons on a se~ies of’s,upereonicwings by means of lino
sources. The results are the.same as would be obtained by
Puckettts theory, however, and the method is subject to the same
l~mitations.

After transforming the Tz?an&tl-Glauert.equation-to curvi-
linear coordinates, Stewart (reference 3) picked the spec~al
solutions corresponding to conioal flows. In this manner, the
Prandtl-Glauert equation was reduced to the two-dimetilonal

—..-.

Laplace equation that permits the use of cohfomual mapping. As
a special case, Stewart obta:ned the lift distribution on a thin
delta wing at small ang].eaof attack. Brown (reference 4) h=
independently solved the same problem by use of a do~blet line
source distribution on the wing surface.

The present paper exteni!.sthe point-source-distribution
method (applied by Puckett to the wing sur?ace) to include the
effeot of the region between the wing boundtiy-and the foremost
Mach wave from the leading edge. By use of”a”souYce distribution
external to the wing} the interaction of the two wing surf’aces
may be isolated. In this manner the pressure distribution in tho
vicinity of the wing tip, as well as the effect of profile shape,
angles of attack and yaw, and aspect ratio; may %e calculated for
a series of finite wings. This work was performed during February
1.947at the NACA Cleveland laboratory.

.,
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.._ .—

ANALYSIS OF MI!1930D

Thin wings will be so used in the analysis that.the pm?nrba-
tlon veiocity components may be assumed to be small compared to
the free-stream velgciby. The lineazzizedpartial ,differential
equation for the velocity potential of a crxnprcssiblefluid may
then be a~plied.-.. The problem 5.sto find a perturbation velocity
potential that will: (a) satisfy the “line&ized partial differ-
ential equation of the flow, (b) vanish in the region ahead of
the foremost Mach wave, (c) give streamlines that are tmgent to
the airfoil surfaces, and (d) take into e.6countthe interaction .
between the top and bottoming surfaces as representedby the
pertwrb.edfield between the wing boundary and the foremost Mach
wave.

.
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(1)

where

M frse-strg&m Mach num”Der(undisturbed flow parallel
to X-axia)

●

v 2orturbazion velocfty potential

~For corrren’tencethe-s;~,bolsw.; &efined h appendix A. A basic
solution for ths pete’ntial oiia unit point eource disturbance at

(~, 7, U ~

where

.

(2)

Were q’ is th,Csource ‘stre~~d Tor unit volume. For the thin
KLng, the saw ej~and tae wing may lie in the x? y pqlaneand tbuf3
A’d~ may be rer~~aced by q, the ~~urce’strength per unit area.
Equation (3) th~e.~becomes
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c?=- JI.._._Q!LxL._.––
m“- ,’ (, - ,F-,’z’ 4

(4)

Puckebt (reference 1) has shown that.the boundary conditions for
thiu wtngs may be.satisfied as z + O by setting q = w/fi, where
w is the perturbat~,onvelocity cbmponent normal to the x, y plane,
The quantity w i~ proportional.to the 10cQ slope (the angle sub-
tended by the wing surfaco from the x, y plane in” v . constant
planes) of the ving in the free-stiwm direction at the point (~,!q).
If A represents this slope, .=

(5)

where U is the free-stream velocity. Equation (4) then becomes

(6)
-.

● ✎

The form
alteration of

and the derivation of equation (6) indicates that e
the local slope Al at point (El, VI) will not

change the perturbation velocity component w at some other

Point (g, 7). The velocity potential at any point (x, y) on
the surface of the wing may then be c@culated by integrating
equation (6) over the region in the x, y ‘planebounded by the
forward Mach cones. (See, for oxaMple, fig. l(b).) PuckQtt
restricted his integration to the wing surface, where A Is
assumed known. The solutions obtained in this manner are valid
if the wing ia swept less than the Mach engle or if the top and
bottom surfaces of the wing for any sweepback ang~e are uymmctrlcal
about the x, y plane.

If a proper distribution of source strmgth AU/YC is chos~n
for the regions between the foromost Mach wave and the leading
edge, equation (6) will give the velocity potential at any point
(x, y, O) regamiless of sw~epback a~gle and asymmetry of top and ,
bottomwhg surfaces.

—

—
.-

The strength of.the so~ce distribution between the Mach
cone and the lsadtng edge (or wing tip) must correspond to the
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local ~ei’turbationvelocity component w of the region. This
velocity is in turn influenced.l+Tthe slope offboth the top end .
the bottom surfacee & the wing.

A thin impermeable diapltragnis assumed to coincide with
a stream sheet in the x, y plane between the wing surface and
the fcmemnst Mach wave, The presence of the diaphragm will not
alter the flow over the R-ingfi’arface!The diaphragm may then
be regard6d as an etien4ion of the wing to eliminate the
external field between tilewing %o~dery and the foremost Mach
wave.

Because tilediapk~agm coincides with a stream sheet, it may
sustain no pressure difference at any point between its top and.
bovtom surfaces. I?urthermme, there can be no discontinuity in
the velocity components acroes the dlaphraggn. This situation

c requires that the su~fwe vqlocity potential at any point on the
top and bottom surfacee of the diaphragm are equal. Inasmuch
as the extended wing allows no interaction be~ieen its two sur-

#1 facef3,the velocity potential at any paint (x, y) may be
calculated from either the top or the bottom suyace of the
original wing and diaph~agm.

m
The local slopes of the wing on its top end bottom sur-

faces at the po+int (~, q) maY be represented bY GT ad CJB,

and X may represent the corresponding slope on the top sur-
face of’the diaphraggn. (For”convenience, the sign of CT is
oppositely deflmd on the two eurfaces. For example, CJT tid

aB are both positive on a wedge profile at an angle of attack

of O.) The areas of the wing and the diaphragm surfaces
included in the forward Mach cone f’rcma point on either the
wing or the diaplxr- are represented as El.,and ~, respec-

,

tively. Number subscripts 1, 2, “ ● ● represent sections of
each of these areas. Then by equation (6), the velocity
potential at (xD,yD) (fig. l(a)) is

●
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where

bottom

~,T and ~,B are th~ po’ceuttalson the Ma- calculatedi’rcmthe top and the

surfacee of tiheting ad the ahqhragu, respectlve~. Or

_--?4L~____

V’&- t)’ -i3%~-rl)2

This integral equationdefineethe function h. The velocitypotential at any poirit
on th~ top a@~ce of the wing is given from e~uatlon (6) as

Similarly, the .potenliialcm the botlxm surface is

J’i=iiG% -d’
. .

I

I

I
,,,: .

1- ,.
1 lm, * . .

,, 1’ ;,

(7)

(x, Y)

(8)

0)

.,,. . . . . .
(
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where the Integration 1s made over the region in the x,.
cone frm the point (x, y) over ail wing and diaphragm

y plane bounded

mmf~ es.

,

by the forward Mach

.

In special cas~a, the P te@lal in of ~mtlon (8) -be ‘obtained without explicitly

solving for A. This Hhnpllficaticn-i= =mt e~~c~qli~hed Iu an obllque u, v
—-—

coordinate system the axes of which lie parallel to the Mach waves. ti th~s system, for .

e~ple, the-value @ the coofi~te u -la the &lstancefrcncthe v-axis to the ~~t
measured parallelto the u-mis. The lmansformation e~uations are

m“ ●

.’

‘— (t - In)
‘=2f3

i%=&(T+u) V=;( V-U) (9)

InssmM h as the elemental exea In the u, v “coordinate systmn is = du !iV, equation (7) *

M’”

be written either se
.

or as

J

,-.

\ 1.

(7a)
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(7b)

where ~ end VD represent the coordinates of the point (XD, YD) h the U> v SySt@iL

The regions aP int~ation aud the coordinate systems of equetlon (7) are aKetchedfor a
wi~ plan view inflgwi l(a). The zero”of the coordinateEvstem is placed at the Pint of
tangency of the fOIWUKMt Mach wave and the leading edge. The wins mea ~ is bounded by the

two curves ~or two branches or the same curve) v = vi (u) Emd v = 72 {u) end the

h? u = uD ‘&x@y D). Applicationof e~uaticm1’(b)”%0 this case yield8

1.

I&much as the limits @ Integration of the —- integrals are he same for sll values’
~~~j

of uD S13d owing to the nature of the fUUGtiOUf3 , tihe two Lntegratlons with res$ect to v may

be equatgd along lines of constant VD that extend across the wing emd the diaphragm.

(n)

.

,. I
/ #

,, . .

.1
1

~,, ,
,}, ,1, ,, ,, ,,1,

F ,x
,,. ?
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The contribution to the velocity potential on the top’surface
the wing attributed to the diaphragm (fig. l(b)) is glvenby
equations (8) and (9) as

9

of

(12)

where ~ and Vw are the coordinates of pbint (x, y) on the

wing and the limit Ut is obtained by solving the equation

. ‘w = V2 (u’)

The integration limits with respect to v and the integrand of
equation (12) are.the seineas the left side of equation (11),
except that Vw replaces VD; but the value of VD along me

v=constant line passing through the point (~, VW} is Vw.

The second member of equation (11) may therefore Ye sub~tituted
into equation (12) to give

The contribution of the diaphragm to the potential on the
wing surface may thus be replaced by an equivalent integration
over a portion of the wing surface. The potential on the wing
surfaoe is then .

(13)

.

,
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or

2fHJ +

JJ

(~ + my) du dv
.— (14a)

fiM2
%@ a’~ - R(V + U)]2 ‘ P2[Y - ~(v - U)]2

.-

/

The derivatim of equation (13) includes the assumptionn of the
l~nearf.zedtheory and the assumption ti&t the leading edge i~ not
blunt (correspondingto the We of a thin ~~a@ra69@c A~ide ‘ra

.

these restrictions, the equation includes tho eff~t Of as~etrY ,=

botwecn the top and the bottom wing surfaces}” It may therefurebe u

applied to determine wave lift, drag, and ~ressure distribution in

. .

+
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the viciriit~ of wing tips of fairly general chordwise slope dis-
tributions. Because the only restriction on the functions ~1 (u)

and Vz (u) was that ~ be influenced only by t’hewing sec-

tion ~, the aerotiynszuicpro~erties of fairly gener&l plan forms

may be evaluated. (In cases of so-called subsonic trailing edges,
the solution for the velocity potential that is obtained vio-
lates the Kutta-Joukowskt condition in the vicintty of the trail-
ing edge. The solutions may not correspond to actual flows under
these conditl.oms.) The effect of yawing the wing may also be
determined simply by siraultarieouslyadjusting the functions ~1 (u)>

v2 (u))~B) and ~T by an amount corresponding to the angle of

yaw. The effectiveness of wing tips and hence the effect of aspect
ratio may likewise be detemined.

Thin flat plate wing with rectangular plan form and no sweep
back. - For the flat plate wing (fig. 2), oB = ‘UT = angle of

attack u and equation (14) beccxues

k

$Y-

1

i

.
I

‘J

7

Thus, the externa~ field ~ cancels the effect of

(15)

the region %,2

as far u the potential at point (x, y) is concerned.,

The pressure coefficient C!= in the region of the w= tip

may be cmnputed from the equation

The value &
in apgendix B

CP = ?-: x (16)

%
obtaimd from equations (15) and (16) is derived

for th~top suxface of the-wing to give
.

cp>T=-;:$ein‘1(y+1) (17)

● ✎

r—
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(Equ&nn:)
is, *
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is equation (Bl) in s,ppend~ B,) The coordinate y
negatIve. !?’hePressure is theme.fGreconstant alOnR

ra&ial lines &om-the origtn, ~as the free-strOam value alon~ the-
“tip,and has the Ackeret va~ue (refeigence5) along the Mach line
lying on the wing from the tip and leadingqdge intersection. If
the influence of the external tield SD has been neglocted~ the

pressw”e coefficient would be one-half the Ackeret value along the
wfl.ngtip instead of the correot value of O. The result presented
in equation (17) was first derived by Busemann (refeyence 6) and
has been cited in reference 7.

The pressures on the top and bottom s~aces of the region
influenced by the wing tip are integrated in a~pendix B to give
the lift and drag coefficients.
are one-half the values 03tained
ence 5). The wave lift and drag
are given in terms of the aspect

4a
cL=~

The lift and drag coefficients
by the Ackeret theory (rofer-
coefflclents for the whole wi.na
ratio A. (if A~$) as -

.

-w.—

J=

,.

.-

.

which is derived as equation (B4) in appendix B, This effect of
aspect ratio od the thin flat plate wing has been previously
reported in reference-8.

(18)

=(

Discontinuously swept wing of mall finite thickness oxcopt.—
on edges. - The leeilingedge may lie on lines v = - klu) and

v= k2U, where kl smd k2 are p0t3itiV0COnStantS. (See ffg. 3.)

For this case, equation (14a) becomes

(19)

.—
9

v

.—

.
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Similarly, the potential on the bottom of the wing is

(19a)

Equations (19) and (19a) apply for wings at angles of attack
even though the top and lottom surfaces are asymmetrical. For
sy.?mnetricalprofiles at an angle of attack of 0, they reduce to
the expressions obtained by puckett~s theory.

An interesting obsenation is that only the second of the two
integrals in equatiom (19) and (l,9a)includes the effect of angle
of attack; at an angle of attack a, a~ = GB’ + a, ~T = a~’ - a,

ad OB+OT=~B’ -t-aT’, where crB’ and ~T’ are the.local

wing slopes on the bottom and top surfaces at an ~le of attack
or o. The first integrals of equationa (19) and (19a) are iden-
tical, Therefore} only the second integral contributes to
w~

Both integrals must be considered when presstiredistributionF.
or drag coefficients are desired.

,

As an exanple of the we of equation (19), the velocity
potential for a wedge wing (fig. 4) of constant wedge angle 20
parallel to the free-stream direction has been calculated in
appendix C as equation (C2). This potential for the top surface
of the wing is
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(!’u~( (kl + kz) i=- BY) [(kz- 1) x - (’2+ 1)W]+—-
Tq3

.—— —

k22

(1 -I- ‘I) X + (1 - kl) By

d

—

+
kl [(’2 - 1) X - (Iq + 1) By]

A/F ‘m-’
(kl + k2) (x + PY)

\

The velocity potentid for the bottom
replacing a by -a. Only the second
ence~ the lift of the wing. Pressure

(20)’

surface may be obtained by
brace of equation (20) influ-
coef’fictent.smay be obtained

by su%atituting equation ~20;:into equation (16). -

Wing influenced by two independent perturbsd flow fields
external to wi~~au.rface. - An extcmnal flow fl=~d is c.onaldered

.—
—— .—.— .
to be indGnondent~%oes not include an.titernal flow field of
unknown at~ength in its forward Mach cone. (See fig. 5,) If

u

d=ki- 132(,-,)2
the velocity potential at point (x, y) will be

(21)

.

,

.

. .

m
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By application of eqyation (13)

l-s

dq (22)

dq (23)

Substitution of equations (22), (23), and (24) into (21) yielde
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Similar extensions may he made for other Independently perturbed
flow regions in the forward Mach cone. (The boundary of the
shaded region in figure 5 @ves the limit @ validity of equa-
tion (21a). The shaded region ik influenced by external.fields
that are no longer independent.)

Because equations (7) and (8) are linear with respect to the
local wing slope 0, equations (14), (19), and (21) may be
divided into two sets of integrals; the first set will depend on
the angle of attack a, but will be independent of the wing
slope O’ at an angle of attack of O; the other set will be
independent of angle of attack hut will depend on the slope o’.
For symmetrical profiles about the x, y plane (at an ~gle of
attack of 0), the second set consists of the velocity potential
for the given plan fomn at an angle of attaok of O. The first
set represents the velocity potential of the thin flat plate wing.
For symmetrical profiles at angle of attackl the aerodwmfc
coefficients for the wing may therefore be obtained %y super-
posing the solution at an angle of attack of O (calculatedby
the methods of Puckett (reference 1) or Jones (reference 2)) and
the solution at angle of attack of a thin flat plate wing of the
ssme plan form. mom the form of equations (7) and (8), this
superposition 3s apparently general. In thfs manner, for exmplej
solutions for the symmetrical delta wing and the related airfoils
of somewhat arbitrary chordwise thickness distribution may be
obtained from the results of Stewart (reference 3) or Brown
(reference 4).

DISCUSSION (IFMI!I!EOIJ

The general equations (7) and (8) will satisfy the boundary
conditions of thin wings at supersonic speeds. The less general
solution of equation (13) may be applied to calculate the

u

.

●✎

—
.—

.

.
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. contl*ibntionto the velocity potential on the wing of a single
yerturbed field between the wing bmndary and the foremost per-
turbed Mwh cone; es illustrated by equation (21a)J the method
may be extended to include the effects of a multiplicity of
independently pemtur%ed external flow fields. The basic
equation (8) f~om which the succeeding equations were derived
includes the effects of asymmetry about the x, y plane between
the to~ end lmttcm surface~, such as would occur at angles of
attack. The method may also be used to calculate the effects
of yawing the wing.

Flight Propulsion Research Laboratory~
National Advisory Committee for .$eronautics,

C1.evel&nd,Ohio, lMSY27, 1947. -

.
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The folloying

APPENDIX A

SYM801S

symbols are used in this report:

asFect ratio

drag coefficient

lift coefficient
. .

pressure coefficient

kl> k2 .constan.tsgreater than zero

M free-streem

!l disturbance

Q’ disturbance

Mach number

~ource strength

source strength

s plafi fom area

u“ free-stream velooity

per unit area

per unit volume

M (g-ml))u = —-
2B

-1- I

(
oblique coordinates whose me lie parallel to.

:,(t +Pv)
Mach lines

w v=—
/

w z component of perturbation velocity

x) Y) ~ Cartesian coordinates

xc wing chord

a angle of attack

J
.——

9 cotangent of free-etream Mach angle,
M2-~

t, V,C Cartesian coordinates -

b

—

.

—

.-—

.

.

1
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A

u

or

P

Subscripts:

B

T

D

w

1, 2, 3

Ekamples:

~T

%,D

SW,3

VI

Al

CP,T

19

slope of stream sheet near g, ~ plane
measured in q = constant plane~

slope of the wing surface with respect to the
~, 9 Pl~e mmsured in ~ = constant planes

slope of wing surface at zero angle of attack

perturbation velocity potential

bottom (wing or diaphragm surface)

top (wing or diaphragn surface)

diaphra~ (with exception of CD)

wing

refer either

slope on top

potential on
diaphra~

wing axea 3

to numbered =eas or curves

wing surface

top surface of wing due to

curve T = vl (u)

slope of diaphragm in plan area I.

pressure coefficient on top surface of wing
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LIFT DISTRIBUTION NEAR

OF RIZ2TANGUZAR

B

TII’OF T31N

PLAN FORM

The lhnitH of in%egra$ion of equation (15) are evident from

.——
i

,—. — _... --.$??yorq
‘1

following sketch,

.T=y+y

(x, ‘“y)

The potential at point (x, y) is then

t-

—

.- .

.,

x or
,

—

9

.

.

.

1

.—
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.

Gil
IT

.

. .
-

.

,
. .

.

.

Partial clifferentIation with reepect to x yields

Ua=—-.
2$ %sin-’(~+ ‘)

Therefore from equatioa (16)

(31)

— -—
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The average lift coefficient
for the flat plate wing as

P

1-

NACA TN 1{0.1382

for #he wing tip may be computed

‘fF-.\?<.?
2cpas

J(%s
Because Cp is constant along radial lines from

triangular infinitesimal area is convenient. In

the origin, a

terms of

— --

k“— ‘y ----+

the chord xc this area is

xc dy
&S..—_

2

‘c

.

—

—

.

.

——
1
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Therefore

and

CD=$

* I

(B3)

(B2)

On the average, the wing tip mea ia one-half aa effective ae the rest of the wing, although

the Uf%-drag mtio in tihe Trictlonlem caee ie the same. k term af the aapeot ratio A,
the wave lift and drag coefficients of the tiole wing are

)%=++*
432

cD=-p- ()%h
(B4)
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APPm?x c

CALCULATION

For the wing
tion (19) becomes

03’ VELOCITYPOTENTIAL OF A DIFXONTINUOTJSLY

SWEPT WEDGE WING

of wedge angle 20 shown in figure 4, eg.w-

‘*(mY)
(?11r*(MY) ~ et)dv.—

‘J?’Z(X+’’)’”J:‘u” ‘(c’)/(.+.]2 -,q+-u]’

1
k2u

du

-klu

au

●

�

✜

.

.—

.-

.
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.

du

J~(x+py)2Pk2

Each of these integrals may be integrated (reference 9,
integrals 111 and 113), although care should be taken in the
choice of signs for the square roots. The following scheme
was applied:



%+lbi)(-lb’1) = -1-

where b and b‘ are arbitrary numbers. In other womb, when two negative signs are multi-

plied under the radical, the negative” sign is transferred as a factor to the front of the

radiaal. The integrations field

r(x-’’)u=~u+~[(~kl)xlk
i&(x”F-~u=O@-+M[(k2-’

I

,.,. . ,

., 1 J
?!,, ,



, * , ,,
● ✌

Hence

f

[(l+!+ + (1-k,)m],m-, k,[(k@ X - (k2+l) I@

& d (kl+kz) (X+~y)

(’

d“
(kl+~) (x+@Y) [(k2-l)x - (kz+l) PY]

~22

.’

l,”
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Figure 2.- Integration regions for calculating velocity
potential on surface of thin flat plate wing at super-
sonic speeds.
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. Figure 3.- Regions of integration for calculating velocity
. potential on surface of finite thickness, discontinuously

swdpt wing at supersonic speeds.
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Pfgwe 4.- Dlscont5nuously swept wedge wing.
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Figure S.. Regloss of Integrationfor oalaulatlngveloclty
potential on surface of wing of finite thickness lnfluenoed
by two Independentperturbed flow flelde external to wing
surface.
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