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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1383

T THEORETICAL SlUDY OF AIR FORCES ON AN OSCIIlﬁTING CR .
STEADY THIN WING IN A SUPERSONIC MAIN STREAM

By I..E. Garrick and S. I. Rubinow
:SUMMARY

A tneoretical study, based ons the llnearized equations of motion
for small dleturbances, is made. of the air forces on wings of general
plan forms moving forward at a constant supersonic speed., The
boundary problem is sct up for both the harmonically oscillating and
the steady conditigns. Iwo types cof boundary.conditions are
distinquished, which are designated "purely supersonic" and "mixed
'supersonic" The pursly supersonic case. involves independence of

- .action.of the upper and lower surieces of the airfoil and the present

analysms is mainly concerned with this case. A discussion is first
given of the fundamental or elementary solution -corresponding to a
moving source. The solutione for the velocity potential are then
synthesized by means of integration of the. fundamental solution for
the moving source. The method is 1llustrated by applications to.a
~number of examples for both the steady and the ogeillating cases and
.. for various plan forms, including swept wings and.rectangular and
,}trlanrular plan forms. The special results-of a number cf authors
are shown to be included in the analyQis

INTRODUCTiQNA'A'

This paper constltutes a theoretical study of the aerodynamic
forces on an oscillating or steady wing of finite span moving forward
at a uniform supersonic speed. The treatment is based on the
linearlaed theory obtained by considering only small disturbances in_
an ideal fluid. The- wing is therefore considered to be a nearly flet
thin surface at a small angle of attack and the flow:is considered
nonviscous and free of strong shocks. The theory in this case is
equivalent tc finding certain solutions of the. wave equatlon in three
dimensions with respect to. o movm0 coordinate sysUem :

For the case of stcady motion there exist a.number of 1nterest1ng
solutions and methods. Among these may be mentioned the von Karman and
Moore. linearized treatment of slender bodies of revolution (reference 1),
. the Prandtl acceleration—potential method:employed by Schlicting
(referencee 2 and 3), the Busemann method of "linearized conical flows"
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(reference Ly, studies of Jones , Puckett, Stewa.rt Brown ‘and

- Gurevich (references 5 to 9); and a method of von Kérmsn employing
Fourier integral solutions of the two-dimensional wave equation and
described by him as "acoustic oscillator method (Wright Brothers
Memorial lecture, Dec. 17, 1946 )

The corresponding unsteady or nonstatlonary prcblem for two-
dimensional flow (infinite aspect ratio) may be considered to be
golved. In this connection there may be mentioned the work of Possio,
von Borbely, Temple and Jahn, and the present authors (reférences 10
to 13). Of -interest also are two wartime German papers by Schwarz:
and Hénl (references 1k and 1 )) The corresponding sieady plane
case to which the nonstationary problem may be reduced is that
trea’ted by Ackeret.

Resul'bs -for the'nonsta’cionery or oscillating case ere of great
interest in the investigation of aircraft instability. The two-
‘dimensional results have-been applied to a study of flutter at
supersonic speeds. in references 12 and 13. Of more direct interest
for this applicatiocn are the three-dimensional results especially
for wings of swept plan form. : ‘ '

The method - used in the. present study is. to build up solutions of
the equation satisfied by the velocity potential by superposition of
-the findamental wave-potential solution for a spherical source. These
solutions gre also made to satisfy certain requ:.red boundary condltions
on the e.irfoil surface. In the two-dimens;xonal ‘supersonic nonstationary
case, which appears herein as a-special limiting case, it can be - '

- proved that the. procedure leads  to a solution that is the unique
solution of the given: bound.ary problem. (For the problem of subsonic
flow past & thin wing reference may. be made to the gonieral treatment
and method of Kilssner ( reference J.6) vwhich also 1nvolves solutions of
the wave equation.) : : :

- Some qualltative featwes of the nature of the bounda.ry problem
may be mentioned here. . Further remerks may be :E‘ound in reference 17
and in von Karman's. erght Brothers Memoriel lecture. In the case of
- subgonic flow past an ajrfoil the whole field is influenced by the -
body. The concept of circulation has proved to be very useful and the
Kutta condition has been .used to specify the circulation by requiring
smooth flow leaving the traillng edge.” Thus, a deflected alleron in
subsonic flow influences the flow pattérn over the whole wing even
more importmtly than over the aileron 1tuelf.

In the case of supersonic flow the influence of ‘the body 1s -

limited to only certain parts of the field of flow and generally the = . =~

wake does’ not :Lnfluence the ups‘bream flow Theibound.ery problem for. :' v
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a three=~dimensicmal. surface moving et a sunersonic speed can be
classified into two typen referred to horein as "purely supersonic”
and 'mixed supersonic”. The definition of these terms ‘is given in,
the analysis according to the perts of the field influenced by the
airfoil, the purely-supersonic case involving independence -of action

" of the top and bottom swrfaces and no reflecting surfaces in the field.

Thus, in the purely supersonic cese, a deflection of the aileron
would produce only a local effect at the aileron; in the mixed
supersonic case, it may have a decided influence on -the part of the
wing adjacent to the alleron or on other parts of the wing. Foy a

. given ving both types of problems may be involved.l

The treatment used for the purely supersonic cases, involving
source and sink distributions to account- for the actlan of the body,
is believed to be exact within the framework of the linéarized theory.

. The upper and lower. surfeces of the airfoil are regarded as acting

independently, each surface being "wnaware " of the presence of the
other. The treatment is thus analogous to that of sound in a moving
medium generated by the motion.of pistons imbedded in an infinite
plane. This flow.picture -is obviously incomplete in.the mixed case

. and more complicated distridbuvtions (doublets) ere also required.

However, for some purposes, the simpler treatment may still be used
in conjan tion with appropriate correction factore. Also, for

- 8teady flow past a symmetrical eirfoil at zero 1ift, the simpler

treatment cim be employed for studs of .the wave drah.

The object of the present paper is tc develop the expression for -
the velocity potential in the purely supersonic case, based on the’
elementary solution for the sound source moving uniform,y et a

‘supersonic speed, and to indlcate its application by g number of

special examples.

ANALYSIS
Wave Equation and’ Source Solutions

+ In-the. linearizeéd theory ‘based on small dlsturbances the equation
satisfied by the velocity potential for the propagation of sound waves
of small amplitude 15 the wave equation '

2 2 2 4
1, 8¢ Py Py ¢
c atv.? 3)('2 ayle 3212

(1)
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Synbols are .d.gfiﬁéd in appendix A. The fluld medium is Gonsidered
at rest at infinity '

In the treat@ent of llnear partia‘ differentlaT equations the:
so-called elementary or ;undamental so;ut;on is of great 1mportance
since general soluticns cdi be built up by distributions of :
elementary solutions. From a physicsl p01nt of view the elemenuary
solution may correspond to & source. A discussion of the nature of - =
elementary soluticns for hynerbollc differential equatlons of a-
general type hes been given by Hadamard (reference 18) who maKes
the cardinal statement that 'every result of the theory can be and
has to. be deduced from the. consideration of the .elementary sclution
only .

A funaamental solution of eqqatlop (1) from which general
solutiona may ‘be formed is that of a source of sound fixed ;n the
medium h

A 2N\ RS _if: ” .' :
B T R B N

|

'

B o

where

-*‘/@“_,'_ y a')?“w,' - Wg + '<?_‘ ; §'>‘2';?.

In equation’ (2) the flxed source is located at the p01nt (&' 'y »ﬁ'),
the strength of the source is A(Z&', ', {')f(t'), and the minug . -
sign indicates that the spherical waves are dlversin& from the

center of the disturbance.

Another closely related soluuion of equation (1) is that of a
fixed point source for which the splierical waves are corverging onto
the souxrce

“¢$f;ié;ff<;|.%jg:),fﬁ‘ngf;f.  _1- ;A} (3)ﬂtq

rt

The wave potential in equetion (2) is often des1gnated "retarded”
and that in equetion (3) 'advanced"

It is intended to congider thln llftlng surfaces of small curva-
ture vhich are moving forward at a constant supersonic velocity v
and vhich may be performing small oscillatlions normal to the direction
of v. The direction of v will be that of the negative x-axis and
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the surface will be replaced by a dlstributlon of mov1ng sources
in the plane x, z (fig. 1).

Consider & source moving in the negatwve X dlrect*on with
wniform velocity v and a rectangular coordinate system attached
to the moving source. If the new coordinates are designated
by x, ¥, 2, t, vhere x=x'+vt', y=y', z=2', t=1t', the
equatlon satlsfied by the potential is

e 2 2 2
1 a>¢_a¢+a¢+a¢ (1)

—— o Ve
AWt X/ X ¥y f

or

C

i 4(‘2 - l)a’% P Py

@ dt° @ ddt

This equation is satisfied by the potential of sources of sound in
motion through the medium with wniform velocity v in 'the negative
© X direction. It is also the equation catisfied by the disturbance
velocity potential for a fixed body ‘creating small perturbations
from an oncoming main stream of velocity v in the x direction.:
A brief derivation from hydrodynamlcal pr1n01ples is given in
appendix B.

It is known from the classical study of the wave equation
(reference 16) and can be verified by direct substitution that &
solution of equation (1) is transformed to & solution of equation (4)
by means of the following substltutions corresponding to a comblnation
of the Lorentz transformation and a Galilean transformation:

(P S 3
y' =y
Z"—‘Z > (5)
t":"tm T .

' _ . VGT‘j]E?‘”Aﬂ, _J

vhere M, the Mach number of the main flow, is v/c.
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For the purpose of studying the superscnic case (M > 1),
is more convenient to employ modifications of transformation (5)
. obtained by multlplying the right hend side by the constent

1/ V1 - M,

\

X' = — '

1 -
g m e

1 - JURRE
. z > . (58)
z =~—::.::-:: .

h-w ‘
B = b4 e

o(1 - M°) ]

The particular solution of equat’lon' (4) that corresponds to a

moving source will be seen in the following discussion to be analogous

to a solution of equation (1) given by the sum of potentials in
equations (2) end (3), namely to

D] e

The desired solution of equation (4) corresponding to equation. (6)
is obtalned. w1th the aid of ‘the substitutions (5«1) as : o

where -

V( -9)° - ToF 1 [(y.,._- n)2 + (2 -cfj

(The term’..‘ Vi - IV? in equations ""(‘5&') causes no difficulty since
only the squares of the space coordinates are needed.)
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This solution for ~¢o‘ may be expressed in the form

; ¢, = %[f(‘o - .,2),+ f(t - Tl)] (78)

wvhere .
T MX-E;-'.I‘
2—.01\42"—1 c
M X% 4
T
l‘C'~M -1 c

end vhere r is defined as in equation (8). The constant A(Z, n, {)
could of course have been included in the functional symbol £ bdut has
been separated Tfor convenience. - It'may be considered to represent the
gspace variation of the source strength as distinguished from the time
variation of strength. For a moving scurce of constant strength the
time functlon may be considered equal to unity aud the potential
expressed as (reference 2)

oA
T

g =

It will be recognlzed that the solution, equation (7&) is valid in
& conical region, the so-called "Mach cone' 5 opening aft of the
‘moving source. Outside of this conical region,’ deflned by the
equation r =0, the flow is undisturbed. :

The result expressed by equaticn (7) may be considered physically
from two points of view. In one, as considered by Prandtl (reference 2),
‘a gsource of variable strength moving along a certain path is replaced
by a continuous succession of fixed source -pulses distributed along
its path acting consecutively one after the cther. Rach pulse,
considered fixed in an absolute coordinate system, emits a epherical
wvave traveling at sound speed and. the coordinates of the center of
the spherical surfuce are &+ vt, 1, {, The redius vector R of a
p01nt X, y, 2 with respect to thls center is

i/ "(§,+vt)J + y-n)2'+_‘(z-§)2
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The time at which the spherical wave passes the point x, y, z is

R
c

t =

Eliminating R between the preceding two relations results in

P2 - (xmg-vt) - (r P -z -0 =0

The roots of this quedratic equation in t . are precisely the

quantities T and T, defined in equation (7a). That is, the

field point (x, y, z) is influshced at time t by two waves which
originated at times 72 and T, earlier. It is of interest to

observe that, in the supersonic flow, both roots are real and positive
- and have physical significence; whereas, in the subsonic flow, only
one root is positive and of physicel significance. In the supersonic
case the field of -influence of a source is the particular Mach cone
with vertex at the source and, through each point in this region at
instant t, there pass two spherical surfaces representing the waves
originating at times Ty and T, earlier (fig. 2).

From the other point of view of the result (ecuation (7)), a
single diverging spherical wave-pulse is considered: Let this wave
originate at the point (& n, {) at & time T (fig. 3) end consider
its effect at a point (x, y, z) (within the Mach cone whose vertex is
at (&, n, {)) moving with a velocity greater than that of sound. -
Clearly at a later time (T + Ti) . the moving point penetrates the wave

front and et & still later time (T f.Té) it emerges from the wave front.

The potential at x, y, z changes only on entering and on leaving

_ the wave front and the :two teums in ‘edquation (1) correspond to these

two effects. The factor. 2 appearing in the potential for a constant

- gource moving at a supersonic 'gpeed also has its origin in this

physical fact, in contrast to that for a source moving at & subsonic
speed, where the field point penetrates the wave front but never

emerges and where the corresponding factor is unity. The two-
dimensional supersonic case involves cylindrical vaves and the potential
of the point .x, y is continuously changing from the time the point .
enters to the time it emerges from the wave (reference 13). Observe

the interesting geometrical property of r (equation (8)), namely 2r is
the difference of the radii of the spherical wave at time T, and at

time 7,, that is, T =-§— (T, © T,): (Observe also that the potential
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which formally appears in equetion- (6) as the sum of potentials,
half-advanced and half-retarded, transiorms in the moving
coordinates to a sum of retarded potentials in whick the original
retarded part 1s associated with the diverging spherical concave
wvave from which the point is emerging and .the original advanced.

part is associated with a diverging convex wave into which the ,
point is penetreting.) Recent papers of interest in comnection with
moving acoustical. sources are references 19 and 20.

Sﬁrface Distribution of Sources

Sources and.sinks of the type. ¢o will now be distributed to

represent the upper and lower surfaces of a thin airfoil. The
procedure to be Tollowed is that used in the two-dimensional case
(references 10 to 13) where the upper end lower surfaces are
consideréd separately. Also the total effect may be seperated into
an effect of the meen camber surface and an additive effect due to
thicknees alone. In most of the anplicatlond unleéds stated to’ the
contrary, the mean cambey surxace 1s congidered.-

Let & continuous distribution of.sources be given over the mean-

' camber surface. "The airfoil is considered so thin and flat that the

source distribution may be treated in the x, z plane (fig. 1). The
airfoil surface mey be considered moving at a constent speed - v in
the negative x direction (or fixed in a stream moving in the

x direction). The effect at a point x,'y, z at time t -of a
distribution of sources of pogition magnitude A(g, 0,t) is given by

“an appropriate 1ntegration over a reglon of the (,g plane of the

form
' n - o
¢_(X, I Z:" t)’= ‘[/ ¢o dc d’é : (9)
YA . . ,; . .

vhere ¢0 represénts the funct*on given in'eouation (7) with N = O

‘The total effect at the point (A, Y, z) 1§ the sum of the effects
of all disturbances having their origin within the Mach cone with
vertex at x, y,_z and opening in. the upstream direction. This

" ‘conical reglon need not extend into the undisturbed part of the flow,

that is, it need not extend beyond the most forwerd surface envelopaof
the Mach cones of influence of the body. There are essentialiy two
types of boundarvcondvtlons thaL need to be dlstlnguished, designated
by the térms 'purely supcrsonlc "and 'mixed superqonlc A point of
the boundary belongs t6 & purely supersonic case if the upstream.facing



10 NACA TN No. 1383

Mach cone contains, in the part of the x, z plane not considered-
occupied by the body, no difturbed fluid having a component normal

{0 this surface. Otherwise the voint belongs to the mixed supersonic
case. A sufficient (but not necessary) criterion for. .the purely
supersonic case is that the component of the main gtrean normal to
any edge oxr contour of the plan form in the z, z plane (contained
within the upsiream facing Mach conse of the gz 1veq point) shall be .
supersonic, There is no downwash ahead of the body, no holes are

.in the body, no spilling of fluld occurs around edges, and no
reflecting surfaces are in the flow field. In this case the upper .
and lower surfaces of the airfoil ere considsred to act independently
of each other; a disturbance created on one sids doesc not affect.the
opposite side. The flow can De ‘considered to arise from the
appropriate movement of emall pistons acting at the regulatlng or
generating surface.. This condition is in contrast to that of the -
mixed supersonic case, fér which. .the effect of the disturbance spills
over the edges or 81ﬂes and a disturbed fluid region (downwash)
mey-exist. aheed of the body Thus, points cf a triangular surface,
moving vertex foremost and combletely outside of the Mach cone
associated witn the ve”tex belong to the purely supersonic case.

If the triangular surface is inside the Mach cone agsociated with

the vertex, the points belong to the mixed superdonlc cage. Of course,
for a given surface both cases may be 1nvo]ved A few eXamples are
shown in figure h g : A :

In the purely supersohic case the circulation concept plays no
particuler rcle end the drag asgociated with 11ft or thickness may
properly be denoted as wave drag. In the mixed case the flow retains
subeonic features and the dreg associated with the 1lift is sometimes
denoted as induced drag. ‘

Although the treatment given for the purely supersonic case 18
believed exact within the limitations of the linearized theory, an
exact treatment of the mixed supersonic casge is not availeble. These
problems inveolve greater difficulties in the boundery conditions, for
the flow to a certain extent acqulre features of a subsonlc flow in
that the fluid field '"senses' the approech of the body. Thus, in
certain cases conditions at the leading edge, at the trailing edge,
and in the wake must be specially taken into account. Howcver,‘foru
gome purposes and in certain problems it may be useful to treat the
mixed supersonic ‘case in the Bame manner as the purely superson*c case
and to introduce apnronrlate correctlon factors. .

. The rpglon of intagratlon 1n eqvubion (9) is tne part of the .
body (in the - g,; plane) cut out by the upstream onening Mach cone )
with vertex at (x, ¥, z). This region in general depends on the plan a
form of the body 25 well as oh (x, ¥, z). With the understanding



NACA TN No. 1383 - : 11

that the leading point of the. body is at ‘& =0, the 1ntegration
may be written

3 | S ge' A
Bx, v, 2, t) = [ g, at az (10)
o 0 §1 -
wbere
(L = z - go’.
gé:é.z *lo o L
‘ .‘.(x fié)g - )
go e Mz -1 y2

x -y M -1

s

" The limits of integration 'gl and §2 in equation (10) may be

recognized as the distances from the { -axis to the near and far
gsides, respectively, of the hyperbola defined by the intersection
of the cone - r =0 and the plane n = 0. Thus, from equation (8),
with n =0, ﬁl' and §2 are recognized as the roots of the

equation

©o i s - 1)@2'-@) O

The limit ‘§l in equation (10) reépresents tﬁe '€ coordinate of the
vertex of the hyperbola and is defined by the condition - 'C = §
that is by Q = 0. The point (§i z) is the farthermost downstreanf

point whlch can affect the point (%, y. z).
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Boundary Condition

The strength of the distribution of singulerities in equation (10)

~.will now be determined by the boundary condition of tangential flow

along the airfoil surface. The boundery condition may be expressed as

(ég) -w(x, z, t)
oy V=0

v (12)

x O

vhere the airfoil shape is defined by y = g(x, z, t) and where the

two texrms represent the normal velocity induced by the airfecil shape

and by its own proper motion. It is shown in appendix C and can also
be made clear by physical reasoning thet as’ y approaches zero from

the positive side (y - + 0) ‘

%Z: 2 - 1) A(x, 0, 2) f(t).,

or, ﬁriefly, -

1

— w(x, z, t) (13)
2n(M® - 1)

Ax, z) £(t) = .

As y approaches éero in ‘the nééativb-half plane, an equal and
opposite result is obtained. Equal source distributions on the upper

-and lower surfaces therefore result in a discontinuous vertical

velocity distribution near the mlane y = O and may be used to
repregent symmetrical. thickness distributions. “The source distribution

‘yeprecenting a thin body with arbitrary thickness distribution is in

general uneqval on ““the :two surfaces. The effect of thickness is
discussed in a separate section. A representation of the mean-camber
surface alone may be obtained by placing equal and opposite sources on
the under surface in proximity to the sources on the upper surface.
The potential ¢ is to be understood in the subsequent analysis to

be prefixed by a + sign, plus for the upper surface and minus for the
lower surface. The vertical velccity will in general be measured
positive upward. ’
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C »Tt i ~¢onvénient to expres* the vertical ve1001ty in equatlon (13)
’iffln separated form ST s I S Sl

re

i, 2, ) ~(x, 2) w(t) : ffjf.(l“)

wvhere

w(::, z.).

2n(M* - 1) A(x, z)
‘}(tf s :

;x«r(;t)'\

Surface Potentlal

The totel potential for y =0 may now: be expresséd b) means of
- equations; (10) and (14) as g

fl

e s 0 - '/vx-,“2¢ a g
%, z, o
o ng. ¢ 98

SR
‘l'[ fg2 TN RESAREC Dt oz ()
e

[0

o, i(see equations ('{-a)< (10), and (11))

M(x - &) V(z gl)(ge - c.)
| MG - g) | |/( l)(C )
2 -t

z + io

& "f
Ve - 1

where, for y

il

=
i

U
n
i

™
1
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and where: it is understood that W(E, {) =0 at any point off tne
body or where the 1ntegrand. is not real. , .

Equa.tlon (15) may e put 1nts '@ simpler. form by eu’bsti’out* on
- of & new varisble 0 instead of {, which is cbtained from the
relation ( 0 appendix c) s

\

) s it

oxr ,

= ‘ . 6 + "-
L=lyoos btz
The surface potential (equation (15)) may 'bhei\_ be written as

B ["/ g, §(6)]L t—-,—l) +W(t-1-2>] -

d(x, z, t) = -—
R 21_[

v0
o (*5a)-
where _ l
. k=& g
ST, = ~— (M ~ sin 6)
. ) % cﬁg ’
T E x - T
T = e (M + sin 0)"
2 chp™ .
L Q-‘z- .
Y g idss B

X -E

. Equation (15) represents the central result of the analysis and
within the limitations already discussed may be applied to wings of
any plen form in steady motion or performing small cscillations. In
the stationary or steady case, ¢ does not depend on time and the
function w(t) is to be replaced by unity.. Then, in equation (15),
w(‘b - Ti) + w(t - TE) is to be repleced by 2. '
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- Pressure Relations

For the sake of reference, relations for the pressure and the
1ift and drag forces sre given here. .The disturbance pressure
(local static’ predsure minus the pressure in the wndistwrbed stream)
may be written as

dt . -
R ?ﬁ!.)
) °(atfvax (e

The ‘pressure difference (pogitive if a¢ting’d6wnyafd) at any féiﬁf
-=(X, z):may be expressed s - : '

=?U4P.r,,

vhere the subscripts U and L refer to the upper and lower surfaces
For the mean camber surface. Py, —~-nU and’

oo = ep(.? +v °¢> an

The total forces ‘on the airf011 in: the Y and ‘X directlons are A
given by ! e
L)
;/'/)pidx dz

AP

vherée the integrat:on is to be taken ‘over. the complete alrf01¢ surface.
Expressed as _ntegrations over the plan form

/f(pL M

Lo R e e '”(iB)

. X f{\j [PU (E;)U . (E)L J =

s

=
"

LifE

"

i

X = Drag
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It ts often convenient to seéparate the slope terms .as follows

() evey
=) U
\d‘AU

_¥>
ax/

where o 1s the conventional directw on of the main stream with
respect to a reference chord and GU and . oy, are the local slopes

[t
8]
+
Q

n
Q
+
Q

of the airfoil surfaces measured with respect to the reference chord
and positive in ’bhe same cense 88 Q.

' APPLICATIONS
,Wing of In;ffinii:e Span and Zero Sweep
, For the first eppllnatlon of equation (15) theresults for both
the oscillating and steady two-dimensional case will be derived. For
the hermonically ogcillating wing having identical motion in every

chordwise section, the vermcaj. ‘velocity can be written in the
complex form .

w(x, t) =W(x) o't

Then o '
, S st f ~1wT~  ~lwT
w(t - 'rl) +w'(t -72) =‘ewt@ Zare l)
S ’ To+T . '
271 :
e e S T =Ty
ST = ewtf(Ee Tl CO8 W T

Equation (158) becomes

| b jxo e M- -t
#(x, t) = - elé) j‘x W(E) e @ ‘?B:_ o fﬂ cos (x - % gin 9) ao &
e 0. ‘

:rB.

-where B.\=4 V—M-2 - l;-
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fhe intégration with respect to 6 may be readily performed
with the ald of the relation

E-J[ cos (M sin 8) d9 = J (M)

T o
Finally
Plx, 4) = -~ | wE) I, x)a& - (20) .
- . o L‘O | .
where ,
Ei M- ' . j
s fx tE e\ o
I(g x)se © P u0< 5 3;5) (21)

This result for the velocity potential is identical with equation (1)
of reference 13 and 1s used therein as a basis for calculation of the
nonstatlonary two-dimensional case.

In the steady case. w'=0 and I(é, x) = 1. The expression;for
the velocity potential is S I _ .
_ 1 X : :
g(x) = oy £ w(E) ag (22)
N [ Co

where W(&) = v-gg. This formule or the pressure relation

P:-pv% p_v..g;):
o ox ﬁ dx

applied to both the unper and 1ower surfaces of the alrf01l leads to
all the resu*ts of the Acke"et theory
' Wlng of Infinite Span with - Angle of Sweep
. Consider an 1nf1n1t° v1ng vith %ngle of oweop ,A (fig. 5) und.5

.assume that 81l ‘sections in the flignt direction are 1dentical in
shape and that the wing is undergoing harmonlc motion. In general
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the vertical velocity w -can be written in the complex form

L wix, z, t) = W(x, z) 10t

If each section normal to the leading edge is performing the same
motion the form of W(x, z) is W(x - z tan A). If the wing is
assumed to parform pure vertical motion alone, then W(x, z) is
a constantu. If the wing is assumed to rotete about an axis

X = constant then W(x, z)’ is of the form W(x).

The potential is of the form' (fig. 5)

X pw 4 {'91
(=, z, t) = f /1 F ae dg - j F 46 dg (23)
' L JE, O .de, WO o

LYY T U )

&

_wher_e'
' ' 1 ; CodmfteT
' F(EYTJ 8, t .=, - 5"' ﬁ,(@)) e ( 2>‘J
ahd-whgre
- % - 2f
§3 S
‘1L - Bcot A
A x + zB

The valueu of the limits r‘; and. &, are found by solving for &

et
'in the relations _’ &‘;cot A and Q = gcot A which: represent
" the intersections of the Mach lines +hrough x with the leading sdge.

The limit @ = 'Ol corres ponds to g £ cot A, the leading-edge line.
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When V(g, z) is a f‘onstant or a function of ¢& only, the
velocity pote: ‘tlal can be expressed as ’

¢(X} Z} t

it [ px | | g,
L f W) IE, x) & - [
B ole j

WE) L@, x, 2) 4F
&3 ’ (21)

where I(S, x) is as defined prev'ious 1y and

=& M e
1 iw‘""'ﬁ i x =&
I (g, %, 2) ==e - p - cos
. > b1 O . c

ol €

sin :9) a6 ..' (25) '_

Observe that the integral involved in equation (25) for Il reduces
to the Bessel functicn of zerc crder when 6; = n as in equation (18).

This interesting integral may. there*‘ore be called an "incomplete"
Bessel function of zero order. Sys teuwatic investigation of its
properties would appear to be deeirasble.

For the infinite swept wing in the steady cease the frequency w
mey be made equal to zero in equation (23). Consider as a simple
example the case of a'thin wing at a small constant angle of attack a,

d
that is, Exg = ~a. Let the angle of sweep be less than the complement
of the Mach @ngle, that is, P cot A >1 (otherwise t’qe case involves
the mixed-supersonic flow cord;tlcns) From equation (24) with w = 0,

6.
I(é; x) =1, and I.(&, x,2) = ;_1:.’

"vou VX 1 Sy DcotA z
¢(--, L) = .dg '-"1—; R COS>. *'g ag

AL T
83 g

Lis % cot Az
= v <

(26).

Va2 cot? A=
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The local pressure difference is given by

_ vaza' B cot A
B V% oot A-1

(27)

This equation reduces, for A= 0, to the Ackeret result

_ 2pv2a
Dy = B

Let the index n refer to gquentities measured normel to the leading

edge. Then
o, = a sec A
V.=V COS A
R o
M, = L. Mcos A
(& )

and o
' 20V, %

a result similar in form to the expression for p, and already
stated by Busémann (reference 17) in 1935. (See also reference 6.)

The haxrmonically oscillating case with  W(x; z) - assumed to be
of the form W(x - z ten A) 1leads in & similar manner to a result
analogous to equation (20).

ﬁectangular Wing of Finite:Spen (Zero' Sweep)

Consider a harmonically oscillating rectengular wing of finite
span as in figure 6. Region I is described as purely supersonic and
region II as mixed supersonic. The higher the aspect ratio and the
stream Mach number, the relatively smaller the region II becomes.
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The potential for region I for identical motion of each chord-
wise section is exactly that given for the infinite wing in :
equation (20). However, more general types of motion involving
spanwise variation may also be treated.  For example, let. the wing
perform harmonic oscilletions in vertical bending end in torsion
about a spanwise axis x = xo in certein prescribed spanwise

modes . Then with o and h wused to dascribe angle of attack
and vertical position (fig. 7) ‘

: o (2) ap(t)

g
u

(28)

=2
i

= 1y (2) hy(t)

where a.l(z) end 'hl(z) represent spamiise modes 'a.nd‘

ug(t) = ;x_oei.q)t
h, () = ﬁb‘ei‘“

end % and hO are consta.rit complex amplitudes. The vertical -

velocity (w measured positive upward, h positive downward) mey
be expressed as 4 ‘ ‘ '

w(x, z, t) = [va. +h+ (x - ) ] ’ (29)
Let the potentiel (equetion (15)) be separated into the form

Godorthrde ()

where the various ¢'s exe assocla'bed with the corresponding .
varisbles in equetion (29).
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With the use of’ eouations (l5a) these potenuials may be
" expressed as .

| . .Vdp_.' x ;iq . . q-. > - \
| - = . A L i) do as o
: ¢CL B ‘/; (5] £ C(l(g) COé_ (M s » g,

- }.‘ x '-.. R . ﬂ ‘ .
¢. = o f . f hy (§) cos (f: sin 6) a8 ag >(31)
h 0. o Y ’

7@

¢a=_:% f‘f qu (é, XO) a,,(g) cos( sine) d@d&‘),_‘,

where o
aM(x - &)

pes

= e —

‘:c(Mg - 1)
and, expressed as a function of 9

2 - i

‘al(z:'-i; Co covs‘ 6”)

—_

use

g
it

by (z-4 { cos g)

=t
L~
ETa
Nwa”
]

If the modal functions in equations '(31) are “a, < h, = 1, the

potential corresponds to that glven by equation (20) for the two-
dimensional case (see alsc equation (“l h) of reference 13). It is
of interest to consider modal functions for @ and hy of the

tytpe‘ (¢ /s vhere s 1is the semispan. For modal functions of

this form the. typical integral involved in equz,«ulons (%l) nay be

expressed as e , »

/

. ‘{,‘w ) )n X . : . |
F. = z + cos 6 cos [—esin 6} 46 ' 2
B¢ ( o | (M : >~ (3
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With the substitution of -gi- 6 for @, F, mey be written as

(110

v I o\ Q N o
F, = I (z + §, sin 9) cos (M cos 6) as
« - - .
2 11 (o]
+ z -{ sing) cos (-cos o) de
o M g
0 h o

The further reduction of Py, 1s made with the aid of the following
relation (reference 21)

@Yt

o6+ 5el) o

. B : 2k
I (M) = cos (M cos 6) sin O 49

For examplé, the case n =0 corresponds to constant modes and yields
for the potential the result already given by equation (20). The:
" case n =1 corresponds tc linear modes and the function: Fl becomes

a
= )

This relation utilized in the equation for the potential yields a
result that is the two-dimensiqnaL-case result mltiplied by the .
factor . z/s. The case n = 2 corresponds to parabolic modes and
the function F, - becomes™” SR

When F, is used in equations (31), the jo term yields an integral

of the type given by equation (20). With the use of the relation
Ji(\) = “Jo (M), the Jy term also yields an integral of the same

form. This type of reduction to the form of equation (20) may be
made in general for any integral index n by means of the recurrence
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Iormulas for Bessel functions, and thus use may.-be made of the

numerical procedures used for equation (JO) (See reference 13.)

It may be of interest to treat the potential for the mixed
supersonic region II (fig. 6) as though it were part of a purely
supersonic region.. The - ecuatlons corresponding to equations (31)
are - )

v MY [T .
¢a ~.;E~ A e q'lL' o (t) cos (ﬁ sin é) d6‘é§'

\

Vo, N . [62 o |
e f; e‘"lq | Ug_(C) 'cos (%_sine).de g (33)

vo

end similar equations for: ¢ .and g.. The limit g, is found es
the value of g for which"{',2 =8 Or B ' o
hd = - s - n
532 X . ( Z)P
The limit 6 = correspordo to ¢ = §2” end the limit. 6 =9

corresponds to.. g 8 or, from eouatlon (l5a)

The last term in equation (33) leads to integrals of the "incomplete"
Bessel function type as mentloned for the case of the 1nfinite wing
with angle of sweep. s

The Péregoing results for the oscillatlng rectangular wing Wlll
~ now be speciallzed to the steady case (w =0, g =0, ‘ay (). = 1,

a2(t) = a, the. constant angle of attack) - Then, from equations (gl),
the velocity potential for region I; is

4, = 5x (34)
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. -For region:II, from*ngaﬁiop.j33j;  L

-

¢a”ﬂ”‘ N (xféﬁ)dé - 39)

- The actual integration in gquaticn- (35) may be easily performsd s
but is non requlred for the purno e. o: nbtalning “the lOCul pressure

The local pressure d;fxerence is dlrectly obtalned for regions I
‘and ‘IT° from eduations (34) and (35), as

. -
- P

,; ch?m
o epviad. 1 g fe -y '
R Ll BER N " B)

' It mey be observed that p 1is constant along rays from the

® —% - Constent. Along the ray correopundlng to the Mach li.ne_'

from the tip ——5—5 B =1 .and 'p takes on the nonstan+ value D

tip

1
Along the ray corresponding to the tip 2z = s, half of this value

1s obtained. This edge condition is phfsicallv incorrect since the
agsumption of the 1ndependence of ‘the two surxaces of the airfoil is
not correct near the tip i

This particular problem has been treated by. Busemann (reference 4)
by his method of conical or perspeétive symmetry. 'he condition ‘
along the ray corresponding to the t;p is p=0 and Busemann's
result for region IT:is - :

vaeq,]_ o -1 - 2(s f"iZ') \
Py = » ~ = cos 1 .-—-;;——*‘B/

The total 1lift over regwon IT is ore-half of that ‘of an equal area
of region I. A comparisdon of this result and equetions (36) is

shovn in figure 8. This comparison gives an indication of the

errors involved in the assumption of independence of the two surfaces
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near the rectengular tip and conversely it gives an indication of the
appropriate correction factors reaquired to allow for the tip effect.
It appears that equations (36) overestimate the lift over all of

reglon II by & factor 1 - -i— or ‘_by approximately 36_ percent.

~ Thickness Distribution

It has already been remarked that the treatment employed in
the analysis mainly for the mean-camber surface can also be applied
to obtain the effect of thickness.' In equation (15) the vertical
velocity W(E, {) way be specified for both the ‘upper and the lower
surface. : : .

Ag an exanmle consider a plan form such as that shown in
figure 9 in steady supersonic flow. Let the airfoil section shape,
for convenience chosen symmetrical and independent of span, be
defined in the center section by y = g(x) (and in any other section

by y = g(x -z tan A)). Then, for the upper surface,
W(x z) = va + vg'
and, for the lower surface,
| W(x, z) = va - vg'

whére g' is fhe derivative of g with respect to. its a.rgﬁ,meht‘
- The veloc:Lty potentials in the varlous regions in figure 9 are

of the form

E v . S % }?el : -' - ' \
~¢I_‘= f/ -Fagc_lg'-f J F de dg.
: ' % e : ” 0 . N

E - o) ‘
i -4 o Tez ' : ”’§2 j |

=0r - Fdﬂd§+ ‘ F a6 > (37)
| I~ I :, "9; "‘éu ¥ dg
mr = 97 [ Faedg+ f Fas dgj.
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The limits in the foresoing integrals aré as follows: the
limits @ = el and @ = 9, correspend respectively to the-leading-

edge lines § =&cotd and { = X2 cotA; €=0 and 9 =7
correspond respectively to the Mach lines ¢{ = §2 end (= gl;

Q% and &g are obtalned, respectively, from the reiations

§l =z cot A end §l = ~Ecot A; 6 =6, correspends o t=og;
%, is obtained from the relation §, = s; g) is obtained from
§2 =& cot A; end % is the value of & for the leading edge
of the tip. Then ' '

:

A oot A-2 \
6, = cos ———————

1 x - &

-1(-&;cotA'z>
ehzcos = B

* - &

-l s *~2
6, = S :
5 T CO x--gﬁ )
. x - zf : X + ZB X - zZp
=3y -n ! §1;7'3.+A' ! ef’6"1'+A
§2=:x-(s~z‘)6;.§5=é!tan1\; A =B cot A

If, for example, the distribution function F is & constént X

x cot A -3

g = X -2
1 A -

A | .K §2 th .
= - — o z o ] 4

RIS e, 2d$+“-35 155

$ror =9 - = A (n-Gl)d§+ (n-eh)dg
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The corresponding local pressureé are
pvK A

P wﬁ;iv

" vk A l;yw{Ll+w
I - A e
- \

P =

[Il

AsC A-C

=Y

- oK A 3 1 l+AC 2 1=AC
Py < 5 = = {cos + €08
IRV

|
Ao

where

>
"
™
o)
0
&t
o

c=2p"
’ X

The constant K may be interpreted as va associated with
constant angle of attack, In this case region IT is to be regarded
as a mixed supersonic region and the result given is not the
appropriate solution for this region.. If the constant K is
interpreted as  g' = Constant, the results are applicable to a thin
symmetrical wedge of half vertex angle K and may be employed to
yield the wave drag according to the linéarized treatment. -

Jones (referencevS).treats symmetrical airfoils of various plan
forms at zero lift by use of pressure potential. ‘The use of velocity
potential leads to the same results as given in reference 6. Thus,
equations (13) end (14) of reference 5 for a wedge correspond to the
preceding results. The velocity potential in general is more useful
to treat pressure distributions for a given body whereas the pressure
potential may be more readily adapted to treat airfoil shapes and
plan forms associated with desired types of distributions 'of pressure.
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Triangular Plen Form

The trianguler wing (fig. 10) extending across the Mach lines
from the vertex may serve as a final examplé. For the steady case
of a venishingly thin surface at angle of attack «, the velocity
. potentials and pressure relations for regions.I and III are
equivalent to those just discussed in the preceding section. The
lift AL on a stmp Ax. of the triangle locatod at ebscissa X
from the vertex is given by

¥ cotdl
: Au N f Ap dz
J-x cot A
2 2 -
A - L L A 1
- upvaA\/'- + 9‘2’“A<1- . }ch
52 A+l B A4

where the two terms correspond tc ths 1n‘ce(,ratlon<s over regions I
and IIT, respectively. Then,

AL = 3OV @ a A
M® -1

- The area of the striv is 2x Ax cot A and hence the 1ift coefficient
" ies independent of ¥ and equal to '

Gurevich (reference 9) treats this case and hie relations can be
shown to be equivalent to the foregoing ones. The pressure
distribution is illustrated in figure 10, where Py the reference

pressure, is 2pV2a/ 8. Observe that the pressure area above the
unit ordinate cancels the erea of pressure deficiency below the unit
ordinate. Alsc shown in figure 10 is the distribution of pressure
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t

. P
[

es the half vertex ergle of the triangle-approaches the Mach
angle. I S o _

The triengular wing inside the Mach -cone from the vertex
requires & more elaborate ‘treatment (references 7, 8, and 9).

‘Langley Memorial Aeronautical Laboretory
Netional Advisory Committee for Aeronautics
Lengley Field, Va., June 4, 1047



NACA TN No. 1383

x', y', 2
X, ¥, 2

g, ', ¢
2 Mt
£, T, t'

v

c

M

r

Tl: T2

A

B = Me -1
g

go: él’ §21 gl

8-

" velocity of

APPENDIX A
SYMBOLS

disturbance=-velocity potential

potential function defined in equation (7)

rectangplér coordinates for fixed system

rectangular coordinates attached to source moving
in negative x direction; also represents field

point being influenced

rectangular coprdinatéé:used to represent space
coordinates in fixed system

rectangular cecrdinates used to represent space
location @t scurce distribution A(E, n, )
time

velocity of main stream

sound

Mach number (v/c)

distance defined by equation (8)

time function defined in equation (7a)

in applicetions, B cotl

function defining airfoil surface (y = g(x, z, t

limits defined in equation (10)

varieble used instead of { defined by relation
preceding equation (15a)

pressure

31

)
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reference pressure _
density

angle of attack

time derivative of a
angular frequency . -

relation defined in equation (31)

vertical velocity factored in equatibn (14) as a
space function W(x, z) and time function w(t)

angle of sweep'

vertical displacement -. .

_ time derivative of h -
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APPENDIX B
DIFFERENTIAL EQUATTON FOR THE .VELOCITY POTENTIAL

A derivation of equation () is given briefly here. The
condition for irrotational flow is
curl ¥ = 0 : (B1)

and this relation implies that a scalar velocity potential ;6
exists, such that

¥ =gred ¢ ' (B2)

The general equation of continuity

.ap" -
~——+ div pV = 0

ot

may be written as 4
1Dp o .
— +v = O. B
S5tV (B3)

where differentiation following the particle is denoted by

+ (¥ . grad)

oz'cv
o

D —
Dt

"~ end V2 = div grad is the laplacian operator.
From Euler's equations, or from the general Bernoulli relétion,

5 2 oL .
Pg-+1+/ 92:0 : (BY4)
3t 2 4 p S

where a space constant function of time has been included in ¢, and
vhere it has been assumed that p is a function of p only.
Vith the use of cquation (Bk) and the acoustic relation,

2 dp
dp
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where ¢ is the local variable speed of sound, it follows that

s (247)

.
YR A

c2- ad p
s grag o

1l

and -

e
o/ O/
o | &
a + o
ro[ﬁv .
4
il
]
D
¥y

With the aid of these two reletions the first term in equation (B3)
becomes

!

e N2 2\ -
1 Y
1o 1 (SF 7, o grad_t)

4

For smell perturbations from-the main stream of velocity v in the
x direction, c¢ may be considered equal to the ccnstant speed of

sound in the undistvrbed medium end,in comparison with v, vy = 0,
v, = 0, and vy = V. Then ) '
-2 32 SN~
y o
.}.P.E::-.JI_ Sj+2v___?__._+v2§_g,‘
P DL g2

37 ox St dx?

With this relation used in equation (B3) the equation for the
velocity potentiel may be put in the form given in equation (h)
of the analysis. - :
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. AFPENDIX C

" EVALUATION OF (B—j)
. g dy S

In order to determine the limit of -g@ as y—0, it is
| ¥

convenient to make use of the following substitution
el- (- t) s astnty (c1)

The expression for ¢ (egvation:(10)) may be wmtten w1th the aid
of the following relations (see eqvation (ll))

= - )t -9
= ; §2 2- §1 gin &
-—-%-QO sin 6 ‘ |
g.\. 514 T |
¢ =8 /o L (g 0, z +¢, cos 6)(£y + £p) @0 ag  (c2)
where  °. : ’. } .
o, ma gy gy en S
£, f(t Tl) £l cB?. + "
. . .M(x..-g)-gosins-

¢ f(t ] T";),_ U of? op
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By the rule for differentiaticn of & definite intesral

. 3 My

o R R &
€, 3 :
f ff1+f2 yd ez
Y

Meke une of the following relations: -

fa¥)

0/

. rl + f2> a8 ag (c3)

. S . P ;
A S C(z + &, oos 9)
% 3z + L, cos 9) 3
& of
= T— C0s §
3z Oy
- - CyF e - Y -
ey + 1) oy 2n - Ty % 3(x - 7o)
o i) 3 -1,)
3¢
p
= j} e (fl - f2) «—Q-Sin 8
ci 3i % Sy

Then, by intsgravion by parté,'the next to the lasb 1ntegral in.

eguation {(3) Tscomes (with ccs 5 a6 = dv, —

E s o an
/"’l A r"'f.’_ ' . :‘
_— -.--.f + £} sin @ a2

0 oz, oy 1 2) - Jdo

-y fo 1 Jf"[(fl + fg.). 'z-'gfsin?fé . c”lé :+(f'1 - £p) sin 6 cos s] as ar

9(;

l

o/

C z

\

where the first term vanishes because sin 8 =0 at 9 = 0 end 6 = x.
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\ o3¢ 3 ,
Similarly, (with sine.de =av, 2 22 (£ - £5) = )
OB By 9t
the last integral in equation (C3) becomes

3 N
T M D L e e

Y f == _-(fl‘ fz) 'sin 6 cos 6 -

| | O:. A ‘A:. -‘ . ‘ _ ’ ; -.' . ) :'-‘

-, - T ; 5} cos € d9 d?
j; at(l 2)

-whefé'tﬁe first term vaniches becavse f1 = f2 af 2] ~'O. and‘ 0 = 1.

Then, as ¥ approaches zero from the pos1t1ve sido N there
results 1n the. I 1m1’o a oontmbution only from the fn:'st 1ntr=gral in
equation (€3),: ‘ .

(a¢> = -en(M"-’*-‘}_) Alx, 0, 2). £ (%) | B (éu) |
3y =5 40 : : B

Since . -;——-l changes sian as y changes s:.gn it fblldws "chat
24
as y  -approaches zcro from tne negatlve olde an eoual and oppos1te
result-is obtained.
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	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46



