NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE

No. 1433

INSTABIIITY OF OUTSTANDING FLANGES SIMPLY SUPPORTED AT ONE EDGE AND REINFORCED BY BULBS AT OTHER EDGE By Stanley Goodman and Evelyn Boyd

National Bureau of Standards

FOR REFERENCE

NOT TO BE TAKEN FHOM THIS ROOM

Washington
December 1947

LIBRARY COPY

NATIONAT ADVISORY COMMITYEEF FOR ABRONAUTICS

TEECHNICAL NOTE NO. 1433

INSTABILITY OF OUTSTANDING FLANGES•SIMPLY SUPPORITED AT

ONE EHDGE AITD REINFORCED BY BUIBS AT OTHER EIDGE
By Stanley Goodmen and Evelyn Boyd

SUMMARY

The compressive buckling stress of outstanding flanges reinforced by bulbs was determined by the torsion-bending theory for flanges having 54 shapes and a range of lengths. The edge of the flange opposite the bulb and the loaded ends were considered simply supported. The results were analyzed to determine the shape of flange that gave the greatest support to the structure to which it was attached. It was found that the flanges capable of giving the most support without torsional buckling had over-all flange widths from $1.9 \sqrt{A_{F}}$ to $2.6 \sqrt{A_{F}}$, where A_{F} is the cross-sectional area of the flange.

INIRODUCTION

Flanges reinforced with bulbs are widely used in aircraft structures to stiffen the stressed-akin cover. They are also generally used as the stiffening element of wing beams with an I-section (reference 1).

The outstanding flanges in such stmuctures have a tendency to fail under compressive load by twisting of the flange with respect to the rest of the structure. This twisting is accompanied by a translation and rotation of the reinforcing bulb. Such a failure is intermediate between torsional instability in which no cross-sectional distortion of the structure occurs (considered by Lundquist and Fligg in reference 2) and local instability in which the lines joining component plates in the structure remain atraight (considered by Lundquist, Stowell, and Schuette in reference 3).

A survey of atandard aluminum-alloj extrusion shows that the shape of most reinforcing bulbs is either rectangular with a rounded end and a fillet at the junction of the bulb and the flange or circular with a fillet at the junction of the bulb and the flange. In nearly all cases the bulb is found to be fastened to one side of the flange to leave the other side flat.

In the present paper solutions are given for 54 flange sections reinforced by rectangular and circular bulba. The buckling stress ia given in each case as a function of the flange length. The various flanges are compared with respect to their effectiveness in stabilizing the structure to which they are. attached.

This work was conducted at the National Bureau of Standards under the sponsorship and with the financial assistance of the National Advisory Committee for Aeronautics.

SYMBOLS

$A_{F} \quad$ cross-sectional area of flange
As oross-aectional area of sheet in sheet-stringer atructure
b flange width from base to bulb center
b_{1} width of rectangular-type bulb from free end to center Ine of $w \ominus b$

C torsion-bending constant-for twisting of flange about aimply supported edge, with warping displacement taken as zero at simply supported edge
E Young's modulus
$E^{\prime} \quad$ tangent modulus
$\mathrm{F}_{\mathrm{r}} \quad$ reduced Young ${ }^{\prime} \mathrm{s}$ modulus $\left(\frac{4 \mathrm{EF}{ }^{\prime}}{\left(\sqrt{E}+\sqrt{W^{\gamma}}\right)^{2}}\right)$
$G \quad$ shear modulus $\left(\frac{\mathrm{E}}{2(1+V)}\right)$
$v \quad$ Poisson's ratio
I moment of inertia of sheet-stringer atructure for bending in plane parallel to plane of flange
$I_{F} \quad$ moment of inertia of flange about its base
$I_{p} \quad$ polar moment of inertia of flange cross section about simply supported edge
$I_{T} \quad$ torsion constant of flange section

k	numerical factor in formula for plate-type failure
I	effective flange length
$P_{c r}$	critical Euler load of sheet-stringer structure
R	fillet radius of rectangular-type bulb, equal to t_{1}
R_{1}	fillet radius of circular-type bulb
R_{2}	bulb radius of circular-type bulb
t	flange thickess
t_{I}	thickness of rectangular-type bulb
$\sigma_{c r}$	critical stress for torsional instability
	SHAPE OF REINFORCED FIANGFSS

The shapes of the reinforced flanges are show in figure 1 . They include 27 reinforcing bulbs having essentially rectangular shape and 27 having essentially circular shape.

ANALYSIS

The buckling load of a flange in end compression depends on the edge condition along the line of attachment to the structure and on the type of instability. The type of inatability, in turn, depends on the edge conditions, dimensions, and compressive stress-strain curve of the flange.

Edge Conditions

The edge condition along the line of attachment to the structure was chosen as simple support. This edge condition was chosen as characteristic of a sheet-and-flange combination of optimum design, in which buckling in end compreasion of both sheet and flange occurs at the same load. For an explanation, reference is made to figure 2, in which A is the plange and B is the sheet.

The function of the flange in figure 2(a) is twofold. It should add enough flexural rigidity to the sheet to prevent displacement of the sheet normal to itia plane along the line of attachment C and it should carry its full share of the load. Sufficient fiexural rigidity can be obtained by increasing the width of the flange, but this may lead to buckling at low loads, as illustrated in figure 2(b). Collection of some of the flange material in a reinforcing bulb at the free edge of the flange will usually increase the buckiling load without loss in flexural rigidity. (See fig. 2(c).)

In the optimum sheet-flange combination the sheet will buckle with a nodal line along the line of attachment C, thus offering no restraining moment to rotation of the flange about C. It follows that the flange may be regarded as simply supported at-C for the buckling of such an optimum sheet-flange combination.

The edge condition along the two losded ends was assumed as simple support also. This involves no loss in generality since it is shown in references 4 and 5 that other conditions of-restraint at the loaded ends can be taken care of by using equivalent simply supported flange lengths In the eame way as equivalent aimply supported colum lengths are used in columananalysis.

Method of Determining Buckling Ioed.

A convenient approximate method of determining the flange buckling load when reinforcing bulbs are present-is that based on the torsionbending theory. This theory assumes that no cross-sectional diatortion takes place in the flange. In the appendix this assumption is checked for the special case of a flange of constant thickness with $\frac{a}{b}=2$ and $\frac{a}{b}=5$, for which an exact solution is available. Figure 3 shows the traneverse deflection according to the "exact" theory together with the straight line corresponding to no cross-sectional distortion. It is seen that for a flange length of five times the flange width almost no croassectionsl distortion occurs; whereas for a flange length of twice the flange width a slight amount of cross-sectional distortion occurs. The critical stresses were also computed for these flanges. The critical stress sccording to the torsion-bending theory differed less than 1.5 percent from that according to the exact theory. It will be asaumed. In the anelysia that reinforced flanges buckle like flanges of constant - - thickness, so that the torsion-bending theory is applicable as long as the flanges are not short compared with their width.

The critical stress for toraional instability in the elastic range is, from equation (I) of reference 2:

$$
\begin{equation*}
\sigma_{c r}=\frac{G I_{T}}{I_{p}}+\frac{G \pi^{2} H_{T}}{I_{\underline{p}} I^{2}} \tag{1}
\end{equation*}
$$

It is shown in reference 5 that equation (1) givea a good approximation for the buckling stress in the plastic range if Young'a modulus E is replaced by the reduced modulus

$$
\begin{equation*}
E_{r}=\frac{4 \mathbb{H P}}{\left(\sqrt{H}+\sqrt{\mathbb{H}^{T}}\right)^{2}} \tag{Ia}
\end{equation*}
$$

where \mathbb{F}^{\prime} Is the tangent modulus for stress at which reduced modulus is desired.

If the critical atress in equation (1) is divided by the reduced modulus and Poisson ${ }^{2}$ s ratio is taken as $\nu=0.3$, which is typical of aluminum alloy,

$$
\begin{equation*}
\frac{\sigma_{c r}}{\mathbb{E}_{r}}=\frac{I_{T}}{2.6 I_{p}}+\frac{\pi^{2} C}{A_{F} I_{p}} \frac{A_{F}}{I^{2}} \tag{2}
\end{equation*}
$$

The values of I_{T}, I_{p}, and C for the flanges shown in figure 1 were computed as outlined in equations (4) to (7) of reference 5. The values of I_{p} and C were computed with the aimply supported side of the flange as the axis of rotation. The results for an arbitrary flange thickness t are given in table 1 . The constents for any other flange thickness can be computed from the conditions of geometrical similarity by noting that I_{T} and I_{p} vary with t^{4} and that C varies with t^{6}. The cross-sectional area A_{F} and the moment of inertia I_{F} of the flange about its base are also given in table 1.

Equation (2) shows that the critical stress for long flanges is controlled by the ratio I_{T} / I_{p} and that for short flanges, by the ratio $C / A_{F} I_{p}$. Values of these ratios are given in table 1.

The largest value of I_{T} / I_{p} was obtained for flange 46 , whicin has a circular bulb and for which $\frac{b}{t}=5 ; \frac{R_{2}}{t}=2$, and $\frac{R_{1}}{R_{2}}=0.5$. The
largest value of $c / A_{F} I_{p}$ was obtained for flange 9 , which has a rectangular bulb and for which $\frac{b}{t}=15, \frac{b_{1}}{t_{1}}=6$, and $\frac{b}{b_{1}}=2$.

The flexural rigidity for bending in the plane of the flange may be measured by the ratio $I_{F} / A_{F} F^{2}$ given in the last column of table 1 . The largest value of $I_{F} / A_{F}{ }^{2}$ was obtained for flange 39, which has a circular bulb and for which $\frac{b}{t}=15, \frac{R_{2}}{t}=1.5$, and $\frac{R_{1}}{R_{2}}=0.5$.

The stress ratio $\sigma_{c r} /{ }^{(} \mathbf{r}$ for buckling by torsional instabifity according to equation (2) 1e plotted against the length ratio $L / \sqrt{A_{F}}$ In figures 4 to 9. Figures 4 and 5 give stress ratios for the relatively thick flanges $\left(\frac{b}{t}=5\right.$ and $\left.\frac{b}{t}=10\right)$ of type A (rectangular bulb) and figures 6 and 7 give those for the thinnest flanges $\left(\frac{b}{t}=15\right)$ of type A. Figure B gives stress ratios for 12 of the relatively thick flanges $\left(\frac{b}{t}=5\right.$ and $\left.\frac{b}{t}=10\right)$ of type B (circular bulb) and figure 9, those for the thimest flanges $\left(\frac{b}{t}=15\right)$ of type B. The results for six of the thickest flanges $\left(\frac{b}{t}=\frac{t}{5}\right)$ of type B could not be plotted in figure 8, aince they had values of stress ratio $\sigma_{\mathrm{cr}} / \mathrm{E}_{\mathrm{r}}$ greater than 0.016 for all values of $\mathrm{I} / \sqrt{A_{F}}$. The stress ratio of these flanges decreased in the sequence $46,49,52,37,40,43$. The ratio $\mathrm{L} / \sqrt{\mathrm{A}_{F}}$ was chosen as abscissa since it is constant for flanges of a given length and a given crose-sectional area. Comparison of ordinates for a given abscigsa will, tierefore, show the effect of changing the distribution of material in the flange. The buckling strengths of the flanges at first decrease rapidly with increasing flange length; they tend to approach a constant value as the flange length becomes very large.

The sequence of the flanges of type A, with the rectangular bulb, for increasing critical atress ratio $\sigma_{c r} / \mathrm{E}_{r}$ at a fixed value of $\mathrm{L} / \sqrt{\mathbb{A}_{F}}$ changes rapialy for values of $I / \sqrt{A_{F}}<25$. For values of $L / \sqrt{A_{F}}>25$ the critical stress ratio for the thick flanges $\left(\frac{b}{t}=5\right)$ is consistently above that for flanges with $\frac{b}{t}=10$ and $\frac{b}{t}=15$. At $I / \sqrt{A_{F}}=80, \sigma_{c r} / E_{r}$ varles from 0.0014 for finge 27 to 0.0127 for flange 25.

In the case of the flanges of type B, with the circuiar buib, the sequence for increasing values of $\sigma_{\mathrm{Cr}} / \mathrm{E}_{\mathrm{r}}$ at a fixed value of $\mathrm{L} / \sqrt{A_{F}}$ remains almost unchanged for values of $L / \sqrt{A_{F}}>20$. The critical stress
ratios for the thick flanges $\left(\frac{b}{t}=5\right)$ is consistentiy above that for the thinner flangès $\left(\frac{b}{t}=10\right.$ and $\left.\frac{b}{t}=15\right)$ for values of $I / \sqrt{A_{F}}>20$. The critical stress ratio increases rapidly with increasing bulb radius, other conditions being equal. The effect of the ifilet radius is relatively unimportant.

Plate Instability

The critical stress ratio for flange fallure due to local instability, in which the part of the flange between the base and the bulb fails as a plate, was computed from the formula

$$
\frac{\sigma_{c r}}{r_{r}}=\frac{k \pi^{2}}{12\left(1-v^{2}\right)} \frac{t^{2}}{b^{2}}
$$

The coofficient k was teken from table 31 on page 339 of reference 6, by assuming the flange to buckie as a plate of constent thickness, simply supported on four sides. This edge condition is approrimated when a large proportion of the flange material is concentrated in the bulb or when the ratio of flange thickness to flange width is relatively small. The computed critical stresses were found to be consistently higher than those for other types of instability. It was concluded that this type of failure would not occur in the range of flange lengths considered.

Fuler Instability of Sheet-Stringer Structure
. The effectiveness of the flanges in preventing instability by Fuler colum bucking parallel to the plane of the flange was computed as follows for a sheet-stringer structure in which the stringers consist of the flanges that are being studied. The neutral fiber of such a structure will be close to the line joining the flanges to the sheet. The buckling load of the structure is given by

$$
P_{o r}=\sigma_{\sigma r}\left(A_{F}+A_{G}\right)=\frac{\pi^{2} E_{r} I}{I^{2}}
$$

Rearranging termas gives

$$
\frac{A^{s}}{A_{F}}=\frac{\pi^{2} I}{A_{F}^{2}\left(\frac{\sigma_{C r}^{\prime}}{E_{r}}\right)\left(\frac{I}{\sqrt{A_{F}}}\right)^{2}}-1
$$

An approximation to I is obtained in many cases by neglecting the contribution of the sheet and taking I as I_{F}, the moment of inertia of the flange about its base. In this case,

$$
\begin{equation*}
\frac{A_{Q}}{A_{F}}=\frac{\pi^{2} I_{F}}{A_{F} 2\left(\frac{\sigma_{C r}}{E_{r}}\right)\left(\frac{I}{\sqrt{A_{F}}}\right)^{2}}-1 \tag{3}
\end{equation*}
$$

The values of I_{F} are given in table 1 .
The most efficient flange for a given stress ratio $\sigma_{c r} / \mathbb{E}_{r}$ and length ratio $I / \sqrt{A_{F}}$ will be that having the highest value of A_{g} / A_{F}. Equation (3) shows that this most efficient flange corresponds to one having the highest value of $I_{F} / A_{F}{ }^{2}$, that is, the largest radus of gyration relative to the base of the flange for a given cross-seotional area. It must be remembered that this conclusion assumes that no other instability occurs before column failure. It rules out the flanges with large values of $I_{F} / A_{F}{ }^{2}$ which fail by torsional instability at a relatively low stress.

Approximate vaiues of A_{g} / A_{F} for the most efficient flanges capable of resiating toraional buckling under given conditions of stress and leneth are given in table 2 for values of oritical stress ratio $\sigma_{\text {cr }} / E_{r}$ from 0.005 to 0.015 and values of length ratio $\mathrm{I} / \sqrt{A_{F}}$ from 20 to 80. The flanges are given in the table and are drawn to scale of equal area in figure 10. It was found that flanges 1 and 37 were the most efficient theoretically for high critical stress ratios and low length ratios; flange 28, for medium ratios; and flanges 3 and 47, for low stress ratios and high length ratios. The five flanges which gave the most support without torsional buckling had over-all plange widths from $1.9 \sqrt{A_{F}}$ to $2.6 \sqrt{A_{F}}$.

CONCLUSIONS

The buckling strengths of the flange shapes considered were evaluated in terms of a dimensionless parameter corresponding to high toraional bucking strength for long lengtha, another parameter correspondings to high torsional. buckling strengths for short lengthe, and a third pelrameter corresponding to high Euier colum buckling strength of the structure to which the flange is attached. In general, flanges having high values of one of these parameters have low values of the other two.

The most stable flanges were those that combined high strength in all respects. These flanges had over-all flange widths from $1.9 \sqrt{A_{F}}$ to $2.6 \sqrt{A_{F}}$, which correspond to a relatively compact cross section, where A_{F} is the cross-sectional area of the flange..

National Bureau of Stendards

'Weshington, D. C., August 27, 1946

APPENDIX

BUCKIING OF A UNIFORMLY COMPRESSED RECTANGULAR PLATE

An exact solution for the buckling of a uniformly compressed rectangular plate simply supported along the loaded edges and along one edge parallel to the load and free along the other edge parallel to the locid is given in reference 7. This solution states that the buckle deflection W is given by

$$
\begin{equation*}
W=A \sin \frac{w x}{a}(\sinh \alpha y+B \sin \beta y) \tag{A.}
\end{equation*}
$$

where
A ariftrary constant governing buckle amplitude
x cocrdinate. in direction of load with origin at one comer
y cocrdinate transverse to direction of load with origin at one corner
a length of plate
b width of plate
$\alpha=\sqrt{\frac{\pi^{2}}{a^{2}}+\sqrt{\frac{k}{a^{2}} \frac{\pi^{4}}{b^{2}}}}$
$\beta=\sqrt{-\frac{\pi^{2}}{a^{2}}+\sqrt{\frac{k}{a^{2}} \frac{\pi^{4}}{b^{2}}}}$
$k=\frac{\sigma b^{2} h}{\pi^{2} D}$; factor proportional to buckiing atress $\cdot \sigma$
$B=\frac{\left(a^{2} \alpha^{2}-v \pi^{2}\right) \sinh \alpha b}{\left(a^{2} \beta^{2}+v \pi^{2}\right) \sin \beta b^{1}}$
h thickness of plate
D flexural rigidity of plate
v Poisson's ratio (0.25)

The buokle shape was computed from equation (AI) for two plates with the following characteristios:

a / b	k	$a \alpha$	$a \beta$	$b \alpha$	$b \beta$	B
5	0.506	6.71	5.02	1.341	1.005 radians or 57.6°	3.232
2	.698	5.13	2.57	2.567	1.285 radians or 73.7°	17.7^{4}

The defleotion along the transverse center line is shown in figure 3 together with a dashed atraight line connecting end points for $\frac{a}{b}=2$. For $\frac{a}{b}=5$ the transverse center line remains substantially straight under load. A plate with $\frac{a}{b}=5$ has, therefore, practioally no oross-sectional distortion, whereas comparison with the straight line shows that a plate with $\frac{a}{b}=2$ has a slight amount of distortion.

1. Ramberes, Walter, McPherson, A. E., and Levy, Samuel: Strength of Wing Beams under Axial and Transverse Loads. INACA TN No. 988, 1945.
2. Iundquist, Eugene T., and Filigg, Claude M.: A Theory for Primary Failure of Straight Centrally Loaded Columa. NACA Rep. Ko. 582, 1937.
3. Lundquist, Eugene F., Stowell, Elbridge Z., and Schuette; Evan H.: Principles of Moment Distribution Applied to Stability of Structures Compcsed of Bars or Plates. NACA ARR No. 3K06, 1943.
4. Kappus, Robert: Iwisting Failure of Centraily Loaded Open-Section Columns in the Elastic Kange. NACA TM No. 851, 1938.
5. Remberg, Walter, and Levy, Samue1: Ingtability of Extmisions under Compressive Loads. Jour. Aero. Sci., vol. 12, no. 4, Oct: 1945, pp. 485-498.
6. Timoshenko, S: Theory of Elastic Stability. McGraw-Hill Book Co., Inc. (New York), 1936.
7. Timoshenko, S: Theory of Plates and Shelis. MoGraw-Hill Book Co., Inc. (Now York), 1940, pp. 314-317.

Reinforcing bulbs of rectangular shape												
Flange	$\begin{gathered} t \\ \text { (in.) } \end{gathered}$	$\frac{\mathrm{b}}{\mathrm{t}}$	$\frac{b_{1}}{t_{1}}$	$\frac{\mathrm{b}}{\mathrm{b}_{1}}$	$\begin{gathered} I_{T} \\ (\operatorname{in} .4) \end{gathered}$	$\begin{gathered} I_{p} \\ \left(\text { in. } .^{4}\right) \end{gathered}$	$\begin{gathered} 6 \\ \left(\ln . .^{6}\right) \end{gathered}$	$\begin{gathered} A_{T} \\ \left(\text { in. }{ }^{2}\right) \end{gathered}$	$\begin{gathered} I_{F} \\ (\operatorname{In} .4) \end{gathered}$	$\frac{I_{T}}{I_{\underline{p}}}$	$\frac{C}{I_{p} A_{F}}$	$\frac{I_{F}}{A_{F}{ }^{2}}$
1	0.2	5	2	2	0.006381	0.207639	0.009181	0.331706	0.197699	0.03076	0.1334	1.7968
2	. 1	10	2	2	. 002787	. 171985	. 008987	- 231706	. 162803	. 01620	. 2255	3.0324
3	. 12	15	2	2	. 023884	1.682248	. 304966	. 642728	1.586931	.01419	.2821	3.8415
4	.40	5	4	2	. 050185	2.186560	. 322563	1.056706	2:097994	:02295	.1396	1.8789
5	. 16	10	4	2	. 004733	. 670553	. 081296	. 420292	. 638325	. 00706	. 2883	3.6136
6	. 08	15	4	2	. 000904	. 188719	. 01.14412	. 188414	. 178660	. 00479	. 4052	5.0327
7	. 24	5	6	2	. 005734	. 234849	. 010501	.349073	. 226593	. 02441	. 1282	1.8596
8	. 12	10	6	2	.000947	. 164131	. 009921	. 205073	. 157113	. 00577	. 2948	3.7359
9	. 08	15	6	2	. 000433	. 140842	. 009862	. 157073	. 133952	;00308	. 4458	5.4293
10	.24	5	2	3	. 007495	. 265232	. 005935	. 372292	. 259951	. 02826	. 0601	1.8755
11	. 12	10	2	3	. 001913	. 193323	. 005354	.228292	. 189391	. 00989	. 1214	3.6339
12	. 08	15	2	3	. 001209	.169649	. 005296	. 180292	. 1.65871	. 00713	. 1732	5.1029
13	. 24	5	4	3	.005667	. 201175	. 003504	. 329073	. 197776	. 02817	. 0529	1,8264
14	. 12	10	4	3	. 000880	. 130457	. 002923	. 185073	. 128296	. 00674	. 1210	3.7456
15	. 08	15	4	3	. 000367	. 107168	. 002865	. 137073	. 105136	. 00342	. 1949	5.5956
16	. 36	5	6	3	. 027570	. 912754	. 029686	. 709073	. 898838	. 03020	. 0459	1.7877
17	. 18	10	6	3	. 003756	.555839	. 023072	- 385073	. 548108	. 00676	. 1077	3.6964
18	. 12	15	6	3	. 001292	.438301	.022408	. 277073	. 4321198	. 00295	. 1844	5.6168
19	.24	5	2	4	. 006166	. 209672	. 0023330	. 335414	. 207017	. 02942	. 0332	1.8401
20	. 12	10	2	4	. 001173	. 138462	. 001749	. 191414	. 137086	. 00847	. 0660	3.7415
21	. 08	15	2	4	. 000566	. 115013	.001691	. 143414	. 113776	. 00492	. 1024	5.5318
22	. 48	5	4	4	. 087645	2.780794	. 099960	1.244413	2.748332	.03151	. 0289	1.7748
23	. 24	10	4	4	. 012033	1.652033	. 062801	. 668413	1.639172	. 00728	. 0569	3.6689
24	.16	15	4	4	. 004233	1.280315	. 059065	:476415	1.269452	.00331	. 0968	5.5930
25	. 24	5	6	4	. 005364	.1621.82	. 001278	. 303268	. 160364	. 03308	. 0260	1.7436
26 27	. 12	10	6	4	. 000704	. 091756	. 000697	. 159268	. 091154	:00767	. 0477	3.5935
27	. 08	15	6	4	.000222	. 068565	. 000639	. 111267	. 068083	. 00324	. 0838	5.4993

Reinforcing bulbe of circular shape												
Flange	$\begin{gathered} t \\ (\ln .) \end{gathered}$	$\frac{\mathrm{b}}{\mathrm{t}}$	$\frac{\mathrm{R}_{2}}{\mathrm{t}}$	$\frac{\mathrm{R}_{1}}{\frac{\mathrm{R}_{2}}{}}$	$\begin{gathered} I_{\mathrm{I}} \\ \left(\text { in. } .^{4}\right. \end{gathered}$	$\begin{gathered} I_{p} \\ \left(\ln . .^{4}\right) \end{gathered}$	$\begin{gathered} c \\ (\text { in. } 6 \end{gathered}$	$\begin{gathered} A_{F} \\ (\mathrm{in}, 2) \end{gathered}$	$\begin{gathered} I_{F} \\ (\text { in. } 4 \end{gathered}$	$\frac{I_{T}}{I_{p}}$	$\frac{C}{T_{p}{ }^{\text {a }} \mathrm{F}}$	$\frac{I_{F}}{A_{F}{ }^{2}}$
28	0.10	5	1.0	0.5	0.0003004	0.010690	0.00003557	0.073860	0.010495	0.02810	0.04505	1.9238
29	. 10	10	1.0	. 5	.0004671	. 058090	. 0001673	. 123860	. 057858	. 00804	. 02326	3.7714
30	. 10	15	1.0	. 5	. 0006337	-167430	. 0004170	. 173860	. 167150	. 00379	. 01433	5.5298
31	. 20	5	1.0	1.0	. 004807	. 172235	. 001427	. 297473	. 169101	. 02791	. 02785	1.9110
32	. 20	10	1.0	1.0	. 007473	. 935830	. 006496	. 497473	. 932030	. 00799	. 01395	3.7661
33	. 20	15	1.0	1.0	. 010140	2.694380	. 016556	. 697473	2.689905	. 00376	. 00881	5.5294
34	. 20	5	1.0	1.5	. 004807	. 173475	. 002180	. 299649	. 170301	. 02771	. 04194	1.8967
35	. 20	10	1.0	1.5	. 007473	. 942460	. 010652	. 499649	. 938630	. 00793	. 02262	3.7598
36	. 20	15	1.0	1.5	. 010140	2.710770	. 026860	. 699649	2.706258	. 00374	. 01416	5.5285
37	. 20	5	1.5	. 5	. 014796	. 343687	. 015668	. 446530	. 325397	. 04305	. 10209	1.6319
38	. 20	10	1.5	. 5	. 017462	1.556624	. 067334	. 646530	1.537663	. 01122	. 06691	3.6786
39	. 20	15	1.5	. 5	. 020129	4.062619	. 157173	. 846530	4.042998	. 00495	. 04570	5.6418
40	. 20	5	1.5	1.0	. 014796	. 347013	. 011470	. 454509	. 328508	. 04264	. 07272	1.5902
41	. 20	10	1.5	1.0	. 017462	1.577876	. 058254	. 654509	1.558705	. 01107	. 05641	3.6386
42	. 20	15	1.5	1.0	. 020129	4.117756	. 143669	. 854509	4.097920	. 00489	. 04083	5.6122
43	. 20	5	1.5	1.5	. 014796	. 350120	. 010742	. 462736	. 331342	. 04226	. 06630	1.5474
44	. 20	10	1.5	1.5	. 017463	1.598770	. 056817	. 662736	1.579334	. 01096	. 04831	3.5958
45	. 20	15	1.5	1.5	. 020129	4.172910	. 142266	. 862736	4.152804	. 00482	. 03952	5.5794
46	. 20	5	2.0	. 5	. 042115	. 622464	. 039032	. 665575	. 556331	. 06766	. 09421	1.2559
47	. 20	10	2.0	. 5	. 044788	2.489556	. 201076	. 665575	2.422756	. 01799	. 09331	3.2337
48	. 20	15	2.0	. 5	. 047449	6.087797	. 504703	1.065575	6.020331	. 00779	. 07780	5.3022
49	. 20	5	2.0	1.0	. 042115	. 627658	. 033592	. 68397	. 560860	. 06710	. 07828	1.1998
50	. 20	10	2.0	1.0	. 044782	2.530823	. 187101	. 883707	2.463341	. 01769	. 08366	3.1543
51	. 20	15	2.0	1.0	. 0474449	6.201383	. 476690	1.083707	6.133235	. 00765	. 07093	5.2223
52	. 20	5	2.0	1.5	. 042175	. 63217^{8}	. 034417	. 702006	. 5644469	. 06662	. 07755	1.1454
53	. 20	10	2.0	1.5	. 044782	2.569360	. 188689	. 902006	2.500986	. 01743	. 08142	3.0739
54	. 20	15	2.0	1.5	. 047444	6.310553	. 494622	1.102006	6.241514	. 00752	. 07113	5.1395

ع\&ET •ON NLL \forall OUVN

$$
\begin{aligned}
& \frac{b}{t}=5,10,15 \\
& \frac{R_{2}}{t}=1,1.5,2 \\
& \frac{R_{1}}{R_{2}}=0.5,1,1.5
\end{aligned}
$$

Figure 1.- Shapes of reinforced flanges.

Figure 2.- Sheet-flange configurations.

Figure 3.- Amplitude of transverse deflection for flange of constant thickness.

Figure 4.- Torsional buckling strength of flanges of type A.

Figure 5.- Torsional buckling strength of flanges of type A.

Figure 6.- Torsional buckling strength of flanges of type A.

Figure 7.- Torsional buckling strength of flanges of type A.

Figure 8.- Torsional buckling strength of flanges of type B.

Figure 9.- Torsional buckling strength of flanges of type B.

Figure 10.- Most stable flanges drawn to scale of equal area.

