NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE

No. 1254

ITERATIVE INTERFERENCE ME'THODS IN THE DESIGN
OF THIN CASCADE BLADES
By Leo Diesendruck
Langley Memorial Aeronautical.Laboratory Langley Field, Va.

Washington
May 1947
if ACA LIBRARY
LANGLEY MEMORIAL AERONAUTICAL

NATIONAL ADYISORY COAMITIRE FOR AERONAUTICS

ITECHICAL NOTE NO. 1254

IMERATIVE INTPEREBREIVCF METHODS ITN THH DESIGY
OF THIN CASCADE BIADES
By Leo Diesendruck

SUMMARY

The iterative interference method given in NACA TN No. 1252 is applied to the solution of the following three problems concerning the design of cascades:
(1) Determination of the shapo and setting of thin (zero thicimess) blades with a prescribed type of vortex distribution and total vortox strenget in a cascade of given solidity for a eiven direction of the mean flow.
(2) Determination of the shape and setting of thin blades with certein prescribed types of pressure distributions over one surface and prescribed total vortex strength in a cascade of given solidity for a given direction of the mean rlow.
(3) Determination of the blade setting for a cascade of given alrioil shape and solidity that, for a given direction of the incoming (upstream) flow, will provide the front stagnation point exactly at the leading edge.

A modification of the basic procedure of TN No. 1252 is also described, in which the direction of the incoming flow, rather than the direction of tie mean flow, is apecified.

INTRODUCTION

In reference 1 , an iterative interference method was described for calculating the potential flow on an airfoil in cascade. The method, which malres ues of charte originally employed by Betz in a simflar study (reference 2), evaluates the flow at each airfoil as the sum of two components - that due to the uniform mean, of "free stream" flow, and the interierence flow induced by the presence of
all the other airfoils of the cascede. As was indicated in reference l_{s} such an approach provides considerable flexibility and permits the solution, with reasonable facility, of certain cascade problems that would be very diffioult by the usual methods that seek directly the conformel transformation of the cascade to a circle. In the present paper the solutions of three such problems are deacribed and an example of each is given. Two of the problems ooncern the design of thin (zero thiokness) alrfoil cascades having presoribed types of vorticity distribution or pressure distribution along the blade. The other problem is the determination of the blade setting, for a cascade of given alrfoil shape and solidity, that, for a given direction of the incoming (upstream) flow, will provide the front stagnation point exac tiy at the leading edge. A modification of the basic procedure of reference i is also deacribed in whion the direction of the incoming flow, rather than the direction of the mean flow, is specifiled.

Besic concepts and techniques are given in reference 1 , and detailed discussions are accordingly given herein only for those parts of the procedure that are not contained in reference 1.

SYMBOIS

V flow velocity
u component of flow velocity parallel to stageer line
∇ component of mean flow velocity normal to stagger line
β blade angle, angle between chord and nomal to oascade axis
α angle between chord and velocity indicated by subscript
ψ stream function
$\Phi \quad$ velocity potential
Γ circulation required to provide stagnation point at trailing edge
Γ^{2} circulation required to provide stagnation point at leading edge
γ ofroulation per unft aro length
x, y coordinates of point on arc
θ angular position of point on aro
p radius of ciroular arc
r chord distance betreen points on arc
s arc length
$\mu \quad$ inorement of aro length
a,b points on aro
ω angle of chord between pointe on arc
n dispiacenent normal to aro
δ angle of deviation
R radius of traneformed circle
ε difference between circle and near oircle angles
$g=\frac{\Gamma_{t}}{\Gamma_{t}}$
$E^{t}=\frac{T_{j}^{1}}{F_{t}{ }^{2}}$
Subsoripts
0 mean flow
1 incoming flow
1 Interference on oentral biade due to presence of external blades
s gelf-induced flow
N - normal to cascade axis
P parallel to cascade axis
T total
n nose
t trailing edge
0,I,II,III zeroth, firet, second, and thiri approximations

u, i	upper and lower surfaces
a, b	points on are

RROBLEMS IN THE DESIGN OF THIN BLADES

Problem I

The problem most readily solved is the determination of the shape and setting of thin blades with a preacribed type of vorticity distribution and total vortex stiength in a cascade of given solidity lor a given direction of the mean flow. The procedure is as follows: a reasonable blade shape and setting are assumed for the zeroth epproximation of the iteration procese. The stream function and velocity poteutial on a particular blade of the casaade, which will be referred to as the central blade, are calculated as the aum of those due to the following thiee flowe:
(1) The given mean flow
(2) The oascade interference flow, due to the vorticity distribution on all the other blades
(3) The self-induced flow due to the vorticity distribution along the central blade itself

The assumed shape is then rotated and distorted to moke it approximate a streamline in this flow (that is, to make it coincide with a line alone which the stream function ia oonstant) and this now shape is used for the cascade blades of the next approximation. Through iteration or this procedure until distortions are too small to affect the flow, the deaired blade shape and setting are obtained.

Mean flow. - For convenience, the component of the mean flow velocity normal to the stegger line v wilí be considered as unity. The velocity V_{0} of the mean flow is then known from its direction. The stream function Ψ_{O} and velooity potential Φ_{0} at a point x, y on the central blede are then seen from figure 1 to be:

$$
\left.\begin{array}{l}
\psi_{0}(x, y)=-V_{0}\left(x \sin \alpha_{0}+y \cos \alpha_{0}\right) \tag{1}\\
\Phi_{0}(x, y)=-V_{0}\left(x \cos \alpha_{0}-y \sin \alpha_{0}\right)
\end{array}\right\}
$$

where α_{0} is the angle of attack of the mean flow with respect to the chord.

Cascade interferance fiow - The presaribed vorticity distribution on each blada of the cascade is replaced by a number of disorete vortices, and the inducod stream function Ψ_{1} and velocity potential Φ_{1} are found by using the charts and methods discussed. in reference 1.

Self-induced flow. The stream function induced at a point b of the central blade by the vorticity distribution on that blade is given by the integral along the blade of the inaginary part of the complex flow function of the distribution, namely

$$
\begin{equation*}
\Psi_{\mathrm{g}}\left(s_{b}\right)=-\frac{1}{2 \pi} \int_{\mathrm{E}_{\mathrm{I}}}^{\mathrm{t}} \gamma\left(s_{\mathrm{a}}\right) \log _{\mathrm{e}} r_{a b} d \varepsilon_{a} \tag{2}
\end{equation*}
$$

where γ is ofrculation per unit arc length, and $r_{a i}$ is the length of the chord between b and the variable point a.

As the variable point a approaches the point b, the integral becomes improper. If the segment from $s_{b}-\mu$. to s_{b} is made sufficiently small, that portion of the blade can be considered a straight ine and its vorticity unfform. Then $r_{a b}$ becomes $\left|s_{b}-s_{a}\right|$ and $\gamma(s)$ becomes a constant $\gamma\left(s_{b}\right)$. The stream function induced by that segment then is

$$
\begin{equation*}
-\frac{\gamma\left(e_{b}\right)}{2 \pi} \int_{s_{b}-\mu}^{s_{b}} \log _{\theta}\left|s_{b}-s_{a}\right| d s_{a}=-\frac{\gamma\left(\varepsilon_{b}\right)}{2 \pi}\left[\mu \log _{e} \mu-\mu\right] \tag{3}
\end{equation*}
$$

The total self-induced stream funotion at the point b is then
$\psi_{s}\left(s_{b}\right)=-\frac{1}{2 \pi} \int_{s_{n}}^{s_{b}-\mu_{1}} \gamma\left(s_{a}\right) \log _{e} x_{a b} d s_{a}$

$$
-\frac{1}{2 \pi} \int_{a_{b}+12}^{s_{t}} \gamma\left(\theta_{a}\right) \log _{e} r_{a b} d s_{a}
$$

$$
\begin{equation*}
-\frac{\gamma\left(s_{b}\right)}{2 \pi}\left[\mu_{1}-\mu_{1} \log _{8} \mu_{1}+\mu_{2}-\mu_{2} \log _{e} \mu_{2}\right] \tag{4}
\end{equation*}
$$

Since the function $\log _{\theta} r_{a b}$ is not known analytically for an arbitrarily shaped blade, the integrale of equation (4) are evaluated numerically.

The corresponding integration for the velocity potential requires special care, inesmuch as the contribution of each vortex element γ (a)ds is multivalued. For the present case iniqueness may be provided by using the seation of the blade that lies to the right of the vortex element as the branch cut, in which case the potentials contributed by a vortex element aituated at a point a are defined by the angles shown in figure 2. For a point b to the left of a, the angles defining the potentials on the upper and lower sides, b_{u} and b_{l}, ale the same. For a point b on the right aide of a, however, it is necessary to ditferentiate between b_{u} and b_{Z}; thus the angle representing the potential on the upper side is designated $\omega_{a b_{u}}$, and that representing the potential on the lower side is designated $\omega_{e b_{l}}$, where, from fighre 2, $\omega_{\mathrm{eb}}=2 \pi+\omega_{a b_{u}}$. The velocity potentials due to the entire blade at the upper and lower eides of a point b are then given by

$$
\begin{align*}
\Phi_{u}\left(s_{b}\right) & =\frac{I}{2 \pi} \int_{s_{n}}^{s_{b}} \gamma\left(s_{a}\right) \omega_{a_{b}} d s_{a}+\frac{1}{2 \pi} \int_{s_{b}}^{s_{t}} \gamma\left(s_{a}\right) a_{a b_{u}} d s_{a} \\
\Phi_{q}\left(s_{b}\right) & =\frac{1}{2 \pi} \int_{s_{n}}^{s_{b}} \gamma\left(s_{a}\right) \omega_{a_{b}} d s_{a}+\frac{1}{2 \pi} \int_{s_{b}}^{s_{t}} \gamma\left(s_{a}\right) s_{a b_{l}} d s_{a} \\
& =\frac{1}{2 \pi} \int_{s_{n}}^{s_{b}} \gamma\left(s_{a}\right) \omega_{a b_{u}} d s_{a}+\frac{1}{2 \pi} \int_{s_{b}}^{s_{t}} \gamma\left(s_{a}\right)\left(2 \pi+\alpha_{a b_{u}}\right) d s_{a} \tag{5}
\end{align*}
$$

The average self-induced velocity potential at the point b is then

$$
\begin{align*}
& \Phi_{\mathrm{s}}\left(s_{\mathrm{b}}\right)=\frac{\Phi_{\mathrm{u}}\left(s_{\mathrm{b}}\right)+\Phi_{2}\left(s_{\mathrm{b}}\right)}{2} \\
& =\frac{1}{2 \pi} \int_{s_{n}}^{\delta b} \gamma\left(s_{a}\right) \omega_{a b_{u}} d s_{a}+\frac{1}{2 \pi} \int_{s_{b}}^{\theta_{t}} \gamma\left(s_{a}\right) \omega_{a b_{u}} d s_{a} \\
& +\frac{1}{2} \int_{\mathrm{sb}^{1 s t}}^{1 \mathrm{~s}_{\mathrm{a}}} \gamma\left(\mathrm{~s}_{\mathrm{a}}\right) \mathrm{ds} \tag{6}
\end{align*}
$$

For convenience, a new angle ω_{ab} is now defined which is always measured from right to left, irrespective of the position of a with respect to b, and for which the following relations then hold:

$$
\left.\begin{array}{llll}
\omega_{a b_{u}}=\omega_{a b} & \text { for } & s_{b}>s_{a} \tag{7}\\
\omega_{a b_{u}}=\omega_{a b}-\pi & \text { for } & s_{b}<s_{a}
\end{array}\right\}
$$

The average self-induced velocity potential at a point b is therefore given by substituting relations (7) into equation (6), thus

$$
\begin{equation*}
\Phi_{s}\left(s_{b}\right)=\frac{1}{2 \pi} \int_{\mathrm{s}_{\mathrm{n}}}^{s_{t}} \gamma\left(\mathrm{~s}_{\mathrm{a}} k_{\mathrm{ab}} d s_{a}\right. \tag{8}
\end{equation*}
$$

Since the angle $\omega_{a b}$ is not known anslytically for an arbitrarily shaped blade, the integral of equation (8) is evaluated numerically.

The choice of a ofrcular arc shape for the initial approximation facilitates the caloulation of the self-induced flow, especially when uniform vorticity is specified. The self-induced velocity potential and stream function for constant rortioity on a circular arc are derlved in the appendix.

Rotation and distortion of the blade shape. - The sum of the stream functions $\psi_{T}=\psi_{0}+\psi_{s}+\psi_{1}$ on the assumed blade will in general not be the same at every point; that is, the blade will not be a streamine in the complete flow. The flow arosses the
blade at each point at an angle given by the ratio of the local normel velocity to the 200 al exareqestangertial veloofty. Thus

$$
\begin{equation*}
\delta(s)=\frac{\partial \phi_{T} / \partial n}{\partial \Phi_{T} / \partial s}=-\frac{\partial \psi_{T} / \partial s}{\partial \Phi_{T} / \partial s}=-\frac{\partial \psi_{T}(s)}{\partial \Phi_{T}(s)} \tag{9}
\end{equation*}
$$

where $8(s)$ is the deviation angle measured clockwise, and n is the coordinate normal to the aro at any point. In order to make the blade follow the streamine, the blade mat be distorted so that the direction of each element is ohanged by this deviation angle. For emall deviations, the distortion is effected by a normal displacement given by the integral or the deviation angle along the blade

$$
\begin{equation*}
I(s)=\int_{\theta_{n}}^{\frac{d}{\delta} \psi_{T}(s)} d s \tag{10}
\end{equation*}
$$

As an intermodiate step the given shape may be rotated by the average angle of deviation $\bar{\delta}$ before the blade shape is distorted. Now mean ilow and interference velocity potentials and stream functions are then fount. (the self-induced flow remains the same, howerer) and the distortions are calculated as just described. In order to minimize the distortions, displacemente are taken relative to the displacement at the woint where the calculated displacement is the average of the extreme displacements.

If a finite rorticity is required near the tips, infinite slopes appear at the tips (reference 3, p. 10). The finite slopes that are defined by the arbittary procedure of reference 3 oan, however, be adapted to the present problem. The blade shape at the tips given in zeference 3 for a similar vorticity distribution can be used, if the ordinates are multiplied by the lift coefflcient of the blade based on the average tangential velocity at the tip.

Example I.- As en example of the design prosedure outlined, a blade was designed for a cascade of solidity 1.5 such that, with a mean flow direction making an angle of $40^{\circ} 54^{2}$ with the normal to the stagger line, it would have uniform vorticity along the blade and a total vortex atrength of 1.7321 per blade (based on unit velocity noxmal to the stagger line and untt cascade spacing). These conditions correspond to a flow coming in at 60° to the normal and leaving normal to the stagger line.

A 60° circular aro (indicated by 0 in fig. 3) with a chord of 1.5 was chosen as the zeroth approximation. The blade angle was taken as 30° to the normal so that the tips were tangent to the Incoming and outgoing flow directions. The angle of attack of the mean filow is then $10^{\circ} 54^{\text {? }}$. Dy following the indicated procedure the average angle of deviation was found to be $7^{0} 31^{\prime}$. Rotating the circular aro through this angle and repeating the procedure described gave the shape deaignated as I in figure 3. The rotation angles for the second and third appresmations were $0^{\circ} 49^{\prime}$ and $0^{\circ} 9^{\prime}$, respectively. The shapes obtained are deaignated as II and III in figure 3. The angles of deviation ε found after rotation are plotted in figure 4. The finsl blade angle wes $36^{\circ} 35^{\text { }}$. The squares of the velocities on the upper and lower sides are plotted in figure 5.

Problem II

The prooedure of problem I can easily be adapted to the design of thin blades having certain prescribed types of velooity or pressure distributions instead of vorticity distribitions. In the second problem the solidity of the cascade, the mean flow direction, and the total vorticity per blade are given, and a uhin blade having the presoribed type of velocity diatribution over one side is sought. The procedure is somewhat similar to that of the first problem. A reasonable blade shape, blade angle, and vorticity distribution are assumed for the zeroth approximation. The average totel velocity potental Φ_{T} is found as in problem I and the average tangential velooity is found from the slope of the curve of Φ_{T} plotted ageinst the distance s along the blade. This average tangential velocity is now plotted against s and the prescribed type of velocity distribution on one surface is then plotted on the same graph so that the area between the two curves is equal to half the desired totsi vorticity. (The possibility of uniquely performing this last step determines whether the type of velooity distribution specified in the problem is one for which a solution can be found by this procedure). The velooity distribution on the other surface may now be y-otted such that the average-relooity curve falls midway between it and the ourve of the velocity on the flrst surface. The area between the velocity curves for the upper and lower surfaces then represente the total vorter strength, and the difference in ordinates at each value of s. represents the local vorticity on the blade.

The vortex distribution thus determined is used to find a first approximation to the shape and blade angle by carrying out one atep of the procedure of problem I. By assuming the vortex distribution to be unchanged, the total average velocity potential Φ_{T}

Is then found for this new blede and the average tangential velocity is determined. A new vorticity distribution is then found by the same procedure as before. The process is continued until further changes become inappreciable.

Example IT.- By following the procedure outlined, a cascade of solidity 1.5 was designed so that the total vortex strength per blade was l. 7321 in a mean flow making an angle of $40^{\circ} 54^{\prime}$ with the nomal to the stegger line, fust as in the finst example, but with the velocity on the upper surface uniform over the forward 60 percent of the arc and then decreasing linearly to the mean velocity at the trailing edge.

The blade shape, blade angle, and vortex diatribution obtained in example I were chosen for the zeroth approximation. The new vortex distribution was found by plotting the average tangential velociby, as in figure 6, and then finding an upper surface velooity diatribution of the presoribed type such that the area between the two curves was 0.866 . The vorticity alstribution was then twice the difference between the two ourves.

The average angle $0^{\prime \prime}$ deviation was found to be $-1^{\circ} 32^{\prime}$ and the shape after distortion was that designated as I in figure 7. The rotation angles of the aecond and third approximation ware -101' and $0^{\circ} 19^{\prime}$, respeotively, and the shapes obtained are designated as II and III in figure 7. The angles of deviation 8 fornd after rotation are plotted in figure 8. The final blade angle was $36^{\circ} 21^{\prime}$. The squares of the velooities on the upper and lower gides are plotted in figure 9.

PROBIFMS INVOLVING A SPECIFIED INCOMING-FIOW DIRECIION
Problem III

In reference I it was shown how, after a solution had been found for a glven cascade in a particular mean flow, the conformal transformation oi the cascade to a circle could be found; whence the solution for any other apecified mean flow, incoming flow, or outgoing flow can be obtained. The present seotion will discuss the procedure for getting the solution of a given cascade directly when the incoming flow direotion, rather than the mean flow direction, is spocified. This problem is considered of interest because in experimental cascade studies the incoming flow direction is normally used as a basio parameter rather than the mean flow direction; furthermore, the disouesion of this problem will provide a convenient basis for the discussion of the succeeding problem.

Mean flow and totel voriex strength.- In the first atep, as in reference 1 , the conformal transformation or the isolated biade to a circle is detomined by the methods of reference 4, The flow fieid at the isolated blace is now considered as being composed of three superimposed flow fields
(I) A uniform flow or unit velooity, normal to the stagger line (making an angle ay with the chord) plus vortices on the blade of total strength F_{N} which maintain tho blade a streamine in this flow.
(2) A unfform flow of velocity u_{0}. to be determined, parellel to the stagger line (making an anzle α_{p} with the chord) plus *ortices of strength Γ_{P} which maintain the blade a etreamine in this flow.
(3) The interference flow due to the vortices that represent all the other bladé of the cascaie, plus vortices of atrength Γ_{i} which maintain the blade a streaminne in this flow. The total vorticity on the blade will then be $\Gamma_{T}=\Gamma_{N}+\Gamma_{P}+\Gamma_{1}$

By equation (35) of reference 4

$$
\begin{equation*}
\Gamma_{P}=4 \pi R u_{0} \sin \left(\alpha_{P}+\epsilon_{t}\right) \tag{11}
\end{equation*}
$$

Where R is the radius of the transformed ofrcle and ϵ_{t} is the value of the dirference between the circie and near-circle anglea at the trailing edge. Sfmilerrly

$$
\begin{equation*}
I_{n}=4 \pi R \sin \left(\alpha_{N}+\epsilon_{t}\right)=-4 \pi R \cos \left(\alpha_{\mathrm{T}}+\epsilon_{t}\right) \tag{12}
\end{equation*}
$$

Where the relations between the angles. αp and. $\alpha_{\mathbb{N}}$ and the magnitudes of the normal and parellel velocity components are shown in figure 10.

For the third component a reasonable diatribution Ji vorticity alone the externel klades is chosen with a total vortex strength that has temporarily been mide unity; and the correaposifing change of vortex strengtin on the central blade B is found by the rethod of reference 1. The actual vortax atroneth induced by the external blades Γ_{i} is the product of. B and the totel vortex strengtil on each blade $\bar{\Gamma}$ T. The following equation then vielde the total vortex strength within each approxtmation:

$$
\begin{equation*}
\Gamma_{T}=\Gamma_{T} g+4 \pi R\left[u_{0} \sin \left(\alpha_{P}+\epsilon_{t}\right)-\cos \left(\alpha_{P}+\epsilon_{t}\right)\right] \tag{13}
\end{equation*}
$$

A second relation between Γ_{T} and u_{0} is given by elementary cascade theory

$$
\begin{equation*}
u_{0}=u_{1}-\frac{\Gamma_{T}}{2} \tag{14}
\end{equation*}
$$

Simultaneous solution of equations (13) and (14) then gives the zeroth approximation value of the total circulation and of the parellel component of the mean flow u_{0}
$\left.\begin{array}{l}\Gamma_{T}=\frac{4 \pi R\left[u_{1} \sin \left(\alpha_{R}+\epsilon_{t}\right)-00 \theta\left(\alpha_{p}+\epsilon_{t}\right)\right]}{1-8+2 \pi R \sin \left(\alpha_{P}+\epsilon_{t}\right)} \\ u_{0}=u_{1}-\frac{2 \pi R\left[u_{1} \sin \left(\alpha_{P}+\epsilon_{t}\right)-00 \theta\left(\alpha_{P}+\epsilon_{t}\right)\right]}{1-g+2 \pi R \sin \left(\alpha_{P}+\epsilon_{t}\right)}\end{array}\right\}$

Yortioity distribution.- When the mean flow has been found, the total velooity potential on the central blede and the vorticity diatribution are found as in reforence 1. With the use of the vorticity distribution to calculate g, the entire procesa is repeated to deternine a new I'T and vorticity distribution. The procedure is continued until further changes are inappreciable. The velocity distribution on the blade is then found by adding the velocity due to the interference to that due to the mean flow, as is done in reference 1, or it may be found directly by differentiating the potential with respect to the distance along the surface.

Example III.- The potential flow wes found for a cascade of solidity 1.5 (given shape and blade angle) with incoming flow at 45° to the stagger line. The blade shape was that derived in example I and the blade angle was $21^{\circ} 35^{\circ}$ whioh gives the seme angle of attack with respect to the incoming flow as in example I.

Uniform vortex distribution was assumed for the zeroth approximation. The total vortex strength Γ_{T} found for thet distribution was 1,2302 and the mean flow was at $21^{\circ} 3^{\prime}$. Suocessive approximations geve the following values:

Approximation	Vortex strength	Mean flow direction
0	1.2302	$21^{\circ} 3 \%$
I	1.2530	$19^{\circ} 40^{\circ}$
II	1.2457	$20^{\circ} 40^{\circ}$
III	1.2472	$20^{\circ} 38^{\prime}$

The squares of the velocities on the upper and lower surfaces are plotted in figure 11.

Problem IV
The procedure of problem III can be readily extended to determine the stagger angle, for given incoming flow direction, at which an airfoil in cascade is at the "ideal" angle of attaok.

Ideal engie of attack condition. - The ideal oondition for an airfoll is one for which there is a stagnation point at the nose, or for zero thickness, the condition for which eir enters tangentialiy at the leading edge. With regard to the flow in the plane of the oircle to which the airfoil transforms, it is the condition for whioh the same vortex cancels the velocity at both the leading-edge and trailing-odge points.

The strength of the vorter Γ 'ri at the center of the circie which cancels the velocity at the leading-edge point is, in analogy to equation (13),

$$
\begin{equation*}
\Gamma^{\prime} T=\Gamma{ }_{T} g^{2}+4 \pi R\left[-u_{0} \sin \left(\alpha_{P}+\epsilon_{n}\right)+\cos \left(\alpha_{P}+\epsilon_{n}\right)\right] \tag{16}
\end{equation*}
$$

The procedure of reference 1 , modified to oancel the induced velooity at the leading-edge point, is again used to find the factor for this vortex strength inauced by the external bledes g'.

The ideal angle of attack condition is then the condition at which $\Gamma_{T}=\Gamma_{T}^{\prime}$ or $\Gamma_{T}-\Gamma_{T}=0$, where the totel induced portex strengthe Γ_{T} and Γ_{T}^{\prime} are found by equations (13) and (16).

Determination of blade angle.- A blade angle \mathcal{F}_{I} is aesumed for the first atep and the procedure of the first approximation of example III is carried out to obtain I^{\prime} II and $\Gamma^{\prime \prime}$ IT and tho vorticity distribution corresponding to one of these two values of the total vortex strength is found. With this vorticity distribution assumed on the external airfoils, the calculation is repeated for a second blade angle $\beta_{I I}$, which is choson greater or less than β_{I} accordingly as $\Gamma_{\text {IT }}$ is greater or less than $\Gamma^{\prime \prime}$ IT" By interpolatine between or extrapolating from the results for those two values of β, a third value of β is found for which $\Gamma_{T}-\Gamma^{\prime} T$ ehould be very nearly zero. A celculation at this value of β either should verify that $\Gamma_{T}-\Gamma^{\prime} T$ is practically zero or should provide the data for a more accurate interpolation or oxtrapolation.

In the procedure as Just described, only one approximation is made for each blade angle; that is, for each β the vorticity distribution found for the preceding β (using either Γ_{T} or $\Gamma^{\prime}{ }_{T}$) is usod for the external airfoils. This method should, in general, suffice for satisfactory convergence; in any case, no more than two approximations for each angle should be required.

Example IV.- The blade angle was found for the blade derived in example J euch that it would be at the ideal angle of attack in a cascade of solidity 1.5, with incoming flow 45° to the stagger line. The initial blade angle and vortex distributions were those found in example III. Thue $\beta_{I}=21^{\circ} 35^{\text {! }}$ and $\Gamma_{I T}=1.2472$. By equation (16), $\Gamma_{I T}^{\prime}=1.3923$. Therefore $\Gamma_{I T}-\Gamma_{I T}=-0.1451$. A second calculation, with $\beta_{I I}=20^{\circ} 45^{\prime}$ gave $\Gamma_{I I T}-\Gamma^{\prime} I I T=0.0130$. Intexpolation between the two results indicated that $\Gamma_{T}-\Gamma^{1} T$ would be zero at $20^{\circ} 49^{\prime}$. A final calculation with $\beta_{\text {III }}=20^{\circ} 49^{\circ}$ verified thia fact and gave a vortex strength of 1.2491.

Lengley Memorial Aeronautical Iaboratory
National Advisory Committee for Aeronautice. Langley Field, Va., January 14, 1947

APPENDIX

SETF-INDUCED FLOW FOR A CIRCULAR ARC WITH
CONSTANT VORTICITY

The atream function induced at point b by an element ds at point a is (fig. 12)

$$
\begin{equation*}
\mathrm{d} \psi_{5}(\mathrm{Bb})=-\frac{\gamma d \mathrm{~s}_{\mathrm{a}}}{2 \pi} I_{0 \mathrm{~B}_{\theta} r_{a b}} \tag{AI}
\end{equation*}
$$

With the chord and the arc element expressed in terms of the angular position of the points, this equation becomes

$$
\begin{equation*}
d \psi_{s}\left(\theta_{b}\right)=-\frac{\gamma 0 d \theta_{a}}{2 \pi} \log _{\theta}\left|2 \rho \sin \left(\frac{\theta_{b}-\theta_{a}}{2}\right)\right| \tag{A2}
\end{equation*}
$$

where θ is the angular position of the points on tie arc, and ρ the radius of the arc. Or, with $\frac{\theta_{b}-\theta_{a}}{2}=\phi_{a}$

$$
\begin{equation*}
d \psi_{\mathrm{s}}\left(\theta_{\mathrm{b}}\right)=\frac{\gamma \rho d \phi_{\mathrm{a}}}{\pi} \log _{e}\left|2 \rho \sin \phi_{a}\right| \tag{A3}
\end{equation*}
$$

Equation (A3) is integrated witil reapect to ϕ_{a} from ϕ_{n} to ϕ_{t} and the first tiree terms of the series expansion of the integral are retained. The result of this integration, after all terms which do not contain θ_{b} have been onitted (since they add only constants to the stream function) is

$$
\begin{align*}
\Psi_{B}\left(\theta_{b}\right)=-\frac{p y}{\pi} & {\left[\left(\frac{\theta_{t}-\theta_{b}}{2}\right) \text { Ioge }\left(\theta_{t}-\theta_{b}\right)+\left(\frac{\theta_{b}-\theta_{n}}{2}\right) \log \cos _{\theta}\left(\theta_{b}-\theta_{n}\right)\right.} \\
& \left.+\frac{1}{48}\left[\theta_{b}^{2}\left(\theta_{n}-\theta_{t}\right)+\theta_{b}\left(\theta_{t}^{2}-\theta_{n}^{2}\right)\right]\right\} \tag{A+4a}
\end{align*}
$$

By adding constante necessary to complete the square in the last term, this equation may be put in the more convenient form

$$
\begin{align*}
\Psi_{a}\left(\theta_{b}\right)=-\frac{\rho r}{\pi} & {\left[\left(\frac{\theta_{t}-\theta_{b}}{2}\right) \operatorname{loge}\left(\theta_{t}-\theta_{b}\right)+\left(\frac{\theta_{n}-\theta_{n}}{2}\right) \operatorname{Lot}_{\theta}\left(\theta_{b}-\theta_{n}\right)\right.} \\
& \left.+\left(\frac{\theta_{n}-\theta_{t}}{48}\right)\left[\theta_{b}-\left(\frac{\theta_{n}+\sigma_{t}}{2}\right)\right] 2\right] \tag{A4~b}
\end{align*}
$$

In order to find the self-induced average velocity potential Φ_{s} for tihe circular arc, it is necessary to find the exprosgion for the angle wain previously defined. From figure 12 it is seen that

$$
\begin{equation*}
\omega_{\mathrm{ab}}=\frac{\pi}{2}+\left(\frac{\theta_{\mathrm{a}}+\theta_{\mathrm{a}}}{2}\right) \tag{A3}
\end{equation*}
$$

Substituting tils expression into equation (3) and dropping additivo constants gives the dosired velocity potential

$$
\Phi_{s}\left(\theta_{b}\right)=\frac{\gamma_{\rho}}{4 \pi}\left(\theta_{t} \therefore \theta_{n}\right) \partial_{b}
$$

RHHHPEMCES

1. Katzofi, S., Fim, Robert S., and Laurence, James C.: Interferonce Method for Obtaining the Potential Fluw Past an Arbitrary Cascade of Airioile. INACA TN NO. 1252, 1947.
2. Betz, Albert: Diagrams for Celculation of Alrfoll Iattices. MACA TM No. 1022, 1942.
3. Abbott, Ira H., von Doenhoff, Albert E., and Stivers, Louis S., Jr.: Summary of Airfoil Data. ILACA ACR NO. $55005,1945$.
4. Thedorsen, T., and Gerrick, I. 巴.: Gererel Potential Theory of Arbitrary Wing Sectiong. NLACA Rep. Mo. 452, 1933.

Figure 1.- Potential of the mean flow at a point on the blade.

(a) $s_{b}<s_{a}$ (point b to the left of point a).

(b) $s_{b}>s_{a}$ (point b to the right of point a).

Figure 2.- Angles defining self-induced potentials on upper and lower surfaces at point b due to vortex at point a.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Figure 3.- Shape and setting of blade used for zeroth approximation of example I, and of blades derived in the subsequent approximations.

Distance along blade surface, percent $\begin{array}{r}\text { NATIONAL ADVISORY } \\ \text { COMMITTEE FOR AERONAUTICS }\end{array}$

Figure 4.- Deviation angles between arc and streamline for the three approximations of example I, showing rate of convergence.

Figure 5.- Pressure distribution on airfoil derived in example I.

Distance along blade surface, percent NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Figure 6. - Average and top surface velocities for example II.

Figure 7.- Shape and setting of blade used for zeroth approximation of example II, and of blades derived in the subsequent approximations.

Distance along blade surface, percent

Figure 8.- Deviation angles between arc and streamline for the three approximations of example II, showing rate of convergence.

Figure 9.- Pressure distribution on airfoil derived in example II.

Figure 10.- Definitions of angles and velocities for example III.

Figure 11.- Pressure distribution on airfoil in example III.

INATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Figure 12.- Definitions of angles and distances for derivation of self-induced potential and stream function on circular arc.

