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" NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS -

TECENICAL NOTE NO, 1437

IMPACT THEORY FOR SEAPIANE LANDINGS

_ By Stanley U. Benscoter
SUMMARY

A step landing of a seaplans on smooth water is analyzed by
solving Newton's differential squation of motion. Various limiting
assumptions are made for convenience in the analysis when they
appear reasonable. Formulas are developed for the maximm accelera~
tion, the maximum draft, and the draft at the instant of maximum
acceloration. The solution is dependsnt upon the definition of
the apparent water mass and indicates the need for further basic
research in resard to thls vater mass. Graphical representations
of approximate solutions for design use are presented. Comparigons
of theory with experimental values obtained in the Mational Advisory
Comittee for Aeronaubics impact basin are also illustrated..

INTRODUCTION

In the analysis to be presented it will be assumed that the
peaplane is landing on smooth waber. If the reader has ever
"skipped." a flat rock off the surfece of a smooth lake or pond,
he has witnessed a physical action which is similar to that of a
seaplane landinge If the rock is thrown horizontally, close to
the water surface, it will "skip, " or rsbound, from the water
surface several times befors final submerginge Similarly, in a
seaplane landing, if the trim were held congtant, several rebounds,
or impact periods would occur before the seaplane finally settled
onto the water. During each of these impact periods the reaction
force exerted by the water on the hull increases from zero to a
maximun and then decrsases again to zero. In each consecubive
impact pericd the meximum value of the reaction which is developed
is less than in the previous periods Thus ‘the maximum value of~
the reaction force will occwr during the first impact period.
Consequently a mathematical analysis may be limited to a sbudy
of the motion and associated forces dwring bthe first impact.
During this period the lift force on the wing is anproximately
equal to the weight of the seaplane. As a matter. of convenience,
1%t wlll be ageumed throughout the analysis that the wing 11ft and
geaplane weisht remaln equal through the impact period.
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space coordinate pa.mll‘el ‘to the X-axis

- § space coordﬁnate 'narallel to the Z-gxls

. o' .

Su‘bscrin’cs.' o -

BT 7 horizontal component

¢

v vertical component S
"_m. I.  value of quantity at 'izist._ant of meximm acéta-le'z;t;:i';-ﬁ.oﬁ '
‘n value of quentity at instant of meximum dveft

o velue of qﬁantity at instent of- entry ' (t = d)

Prime! A prime is used to indicate ﬂiﬁ‘erentﬁa.tion with respsct
to & aspace variabls,

Dot A dot over a letter is used to indicate differentiation
: with respect to time.

Bar: A Yar over a letter is used to ;S.nd.ica.te that the quantity
is of two -—dimensiona.l na.ture.

DISCUSSION OF MOTION. -

At the instant of entry of the seaplane into the water there
are certain initisl conditions of the motion. These are illustrated
in figure 1(e). The trim angle T, made by the keel with the water
surface, is assumed to.remein constant during the impact. Thig
" assumption is approximstely true in & etep landing. The initial
velocity is V, -at the instant of entry and the direction of V
is given by 'bhe initia)l flight-path angls 75. The enlarged view
of figure 1(b) shows the seamplane entering the water &t point O
‘on the water surface. The point O 1is to be chosen as the origin
of a fixed reference coordinate system. The point A on the
‘ seaplane is defined as the intersection of the keel and the step.
At the instant of entry (t = 0) the point A of the seaplane
enters the water at point O. The motion of .poin’c A may be
regarded as the motion of the eea,plane..

In figure 2(a) ’che shape of the path of motion .of point A
ie indicated. The motion of point A along this path will be
referred to as the motion of the seaplane throughout the enalysis.
The seaplane enters the water at point © &nd emerges at point P.
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At some intermediaté position the draft pesses through a maximum.
If the differentlal equation of motion of the seaplane can be
properly developed and solved, the relationships between time,
displacements, velocitles, and accelerations during the impact’
can be determined. The bottom reaction will also vary during the
motion somewhat as 1llustrated in figure 2(b). This reaction is
proportional to the vertical acceleration of the seaplane when its
wing lift 18 equal Yo ite weight. It is found, both from theory
and experiment, that the meximum value of the upw&rd acceleration
(maximum decelera.tion) occurs befere the instant of maximum drafst.
In experimental research work on floet models it 1s possible to
meagure the meximum draft and the draft at the instant of maximum
acceleration, as well as the maximum acceleration. A correct
theory should predict all three of these quantities in agrsement
with ‘experiment.-

©» . 'The motion will not only be affected by the initial condi-
tions but also by certein physical properties of the seaplans.

The properties which are of primsry importance are the mass of the
seaplarie end the 'shape of the hull bottom. The elasticity of the
seaplene structure 1s of secondary imiporiance in most cases and
will be neglected in this analysis. In the special case of a
large flylng boet, with engines in the wing, the elesticity of
the wing may have an apprecisble effect upon the motion. The
bottom of the hull 1s of wedge shape with some curvature, or
flare, of the bottom. As a matier of convenience it 1s assumed
in the analysis that the bottom is & flat=sided wedge without
flare. The bottom shape 1s then defined by the dead-rime angle.
The two physical properties of the seaplane whick affect the motion
.are, then, the mass M and the dead.-rise eangle B.

"Ina 1anding with of without power the initial conditions of
the motlon may vairy over a range of valueg depending upon the
pilot's skill end landing technique. Consideration of reasonable
landings for design purposes would requlre a congidereble amount of
atatistical evidence regarding the initial conditions of motion
as obtalned in actual flight operatiomns. Buch evidence is not
. avellable &t present. Flight research in this field 1s seriocusly
. needed. : ’ -

. If ‘the friction of the water on the hull bottom is neglected,
the component of velocity of the sedplane parallel to the kesl

will remein constent during the impact period. In experimental

research work on model floats the float is launched from a heavy

carrlage which rolls on a horizontal track, usually overhead.

This method of launching the model allows it %o have freedom of

vertical motion but forces it to maintein almost a constant

- horizontal velocity because of the  large inertis of the ocarriage to
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which it remains attached. In the present analysis it will be
essumed that the horizontal component of wvelocity remalins constant
during the impact in order that the resulting formulas cen be
compared directly with experimentel evidence, Since the trim angle
in a step-landing must be small, ‘the maximm reaction given by a
solution involving constant horizonta.l velocity will differ only
slightly from a solution for constant velocity along the keel and,
hence, should be satisfactory for design purposes.

 DISCUSSTON OF REACTION DISTRIBUTION

When & hull is immersed & small emount at & particular instant
during the impact, the loaded area ip of approximately triangular
shape. The “Dase of the triangle 1s at the step. Due to the effect
of "piled-up" water the triangulsar loaded area is larger than

would be determined from the geomotridal intersection of the hull
with the plane of the original water surface. For deslgn purposes
1t le necessary to knmow the transverse distribution of pressure ot
this area end the longitudinal, or fore-and-aft, distribution.
The longitudinal distribution must be rounded ofi’ in some mANNEY
at the step as indicated in figure 3{e). This three-dimensional
effect can only be brought into the amalyesis, at present, by meens
of an aspect-ratlie factor a.pplied to the pressure at e.ll points
of the loaded ares.

In Pigurs 3(b) a unit transverse strip of the loaded area is
shown with the load acting on this strip. The reaction force on a
unit strip at a particular station is dependent upon the draft
of the keel &t this gtetion as well as the components of wvelocity
and acceleration of the seaplane normal to the keel. The component
of velocity parallel to the keel does not affect the force on fhe
unit strip. In order to determins the totel reaction, the reaction
per vnit of length must be determined and then an integration
performed in the fore-and-aft direction .over the loaded aree. The
reactlon force on & unlt strip can be determined by considering
the two-dimensional case. For this reason the two-dimensional
case will be analyzed first. This esnalysis will be carried out
more corpletely than ig necessary for the purposes of this peper
in order to provide formulas which may be useful for comparison
with results from future experimental research studles. The
transverse pressure distribution on & unit strip will be somevhat
as ghown in figure 3(c). WNo attempt will be made in this pa.per
to d.etex'mine this distribution.
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WODMIOMGASE

In this cese a- wedge shaped. ‘float is assumed to enter the
vwaterivertically as shown in figure 4. . The wedge 1s assumed to
Be of infinite length and infihite wid.th. The action of & unit
gliée of the wedge and a unit slice of the fluid is considered in
the snalysis. It is assumed that the momen‘éum of the fluid is
equal to the product of en "sdditional mass"” M and the
instantaneous veloelty %2 of the float. The displacements,
velocitles, and accelerations are corigidered positive downwards
The additionel mass 1e & half cylinder of water ag shown In
figure 4. This elementary concept of the additional mass and its
-use in the ca.lculation of the reaction on the float were first
given by Th. von Kelrmdn (referencs 1) . The assumed. additional
- mags is in agreement with the ‘additional mess which is known - _
(reference 2) to bw associated with a flat plate moving through
‘an ideal f£lnid of infinite extont noml t0 the ‘plane of the

plate.

Due to the effect of piled-up waltqr vhich would actually
occur and the fact thet the float has a wedge botiom rather than
a flat bottom, It 1s necessary to multiply the additional water
mass a8 -shown in figure 4 by correction factors: Such Pactors’
wore first introduced by H. Wagner (reference 3). In any case,
hovever, the water mass M must be proportional to the square of
the displacement and may be written as

A=l | (D

The bar over a quantity is used to indicate that the quentity 1s
of two-dimensional nature. The derivatives of m with respect
to displacement apd time are required in the apalysis a.nd. nay be
written in. tha following forms:

& - 2E
-ﬁ=m'=2€z=-—z—- (2)
dm A - B2 —e,

I =B = 2z = _21212_5_ = m"z‘. - | (3)

The reaction force is due.to the rate of change of momentum
of the fluid. The change of momentum is due both to the change of
velocity of the float and the change of size of the addltional
mass caused by a change of the loaded width. All effecte of
viscogity and buoyancy are omitted from the analysis. The force
may be expressed in the following form:
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a . - -,
=3 (mz) = mz + me
Using equa.tion (3) 'hhis mwy be written,

et ’_ lf.mz_!_m,zz

) T

This force a.cts upwarﬁ. a.nd thus i% must be preceded, ‘by B

nega.tive sign in-writing Newton's law of motion for the. floe:L. -

Newton s law, when a.pplied to 'bhe float, is expressed by,

Mis-f

(6)

The solutlon of this equation will be that which was originally

given by von Kdrmdn. Substitution of -equation (5) gives,

M + % + m'2° =0

" or-

v . . '
- [ T ¢

R

(M +_1_n_i. + @38 s0

("

It becomes convenlient in the anslysis to Inbtroduce the
quantity T es the vatio of 'bhe water mass to the float mass.

Equation (8) becomes,
(L+WZ+p'22 =0
From equations (3) and (9) 1t is seen that,
-,

u=uz_

Hence equa.'bion (10) my 'be written,

P

d' .
(1 + m E{- + Z at = ¢]
or .
| (L+@D &z +2ap=0
.or .'I‘ e L n “ .

4z . dn e
—— o — ()
2 lep

{9)

(10)
(11
(1)
(13)

)
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re Ly

Integration gives, e SR =

Jog & + log (14D =20g 0, . G . .

The constent of integration ls determined from the initial con-
dltions. ‘When + = O the dlgplacement 2z is zero. Hence the
mess m is zero end slgo the ratio . The initial velocit;y a.t
the instant of entry mey be indicated a8 ﬁo. Then - C = %, .
and eguatlon (15) "becomes, Co

.
.

) log z + log (1 + D = log %, (16)
or . . . . Lo i . e
o -z = zO- . ; L. -. (17)4

(1 + ) )

-

This equation was first given by von Kdrmdn (reference 1). This
differential equation may be regarded as a formmla for the velocity
in terms of the dlsplacement. Correspondingly, equation (1) may
be regarded as & formula for the acceleration in terms of the
displacement and velocity. Solving equation (10) For the accelera-
tlon glves, . ' . o .

£ . _“ . _EI'ZQ »

ey (9

From equations (2) end (9) it is seen thet,

=2 B (19)
Equation (18) becomes,
. = TLAE -
z = z(1 + iv) . (20)

Equation (17) mey be substituted to obtain the acceleration as a
function of the displacement

t

= 2
§ = — 0 (21)

z(1 + )3

This formula was alsc given by wvon Karmen (reference 1). By
aagsuning varlous values of 2z the velocities and accelerations
can be computed from equations (17) and (21).
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In order to illuatra.'bie the varletion of veloclty end accelera-
tion with displacemsnt & simple numsricel exampls has besn calculated
for the Ffollowing physicel constents.

€ = 0.05 slug per cubic inch

M = 1 slug per inch ' ' —
z,.= 6 foet per second .

A plot of z and % againat z is shown in figure 5. It is
sean that the acceleration passes through e maximm at & displace-
ment of 2 inches. The accelerations are plotted in terms of the
acceleration g due to gravity and the ordinates to this curve
may be multiplied by the welght of the float to obtain the reaction
force. It may be noted that the velocliy remainsg positive
indefinitely. This meane tlint the float moves continiously down-
ward without reversing its direction of motion. Thie is due to the
omission of the buoyancy force from the equetion of motlon. At the
displacement for meximum acceleration the dbuoyency force is very
small and, hence, it appsars reasonable to omit 'bhe 'buoya.nay force
in d.etemining mximmu acceleration.

For purposes of ‘structural design it is not riecessary to
Imow the velue of the acesleration at various Ingtants but only
the maximum value. This msy be obtained by differentieting the
formuls for the acceleration. Differentiating squation (21) with

respect to z gives,
. : N
“.t(i. G)
’d-.-i Z ( - 1 «+ E (22)

Setting the quantlty within the brace equal to zero and solving
for u gives,

;m=% _ (23)_

The subscript m 1is used to indicate the value of a gquantity
when the acceleration is _B maximim. A unlversal constent valus
of 1/5 is obteined for iy which holds true for all values of

and B. This conabant wa.s :E‘irst published by J. Sydow
(reference L4).

From equations (1) and (9) it is seen that the displacement
at maximum acceleration is.glven by,
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—
_" | . € - T : K _ B
or — _ _
& .
SN 2
Zpy ¢§ o (25)

Substitution of equation (23) into equation (21) glves the formula
for maximum acceleration.

a2
*wa_iﬁyﬁg. S
% (108 T : (26)

Equatioﬁs (25) and (26) give the, meximm acceleration. in terms of
the physlical properties o_f the floga,t_ and. the initlal sinking spped.

In order to plan proper ingtrumentation in experimental -
research work it is desiredble to know the time which elapses from -
the instant of entry to the instant of mAximmm acceleration. The
relationshlp of displacement, veloclty, and acceleration to time
mey be determined by integrating equation (17).

(1+Di =, (e
or -
€z :
(1 +'-'::-) dz = %, 4t (28)
i
Direct integration glves,
——.3 ,
z + -%3%—- = &t (29)
or ' |
sk (20) (30)

The constant of integration is zero, The time Ffor maximum accelera-
tion is obtained by substituting equation (23) .

tm-'%-?-(;f) @ :
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Equation (30) ism a cublc equation in z which could be solved

for z in terms of 't. Howeve¥, 4t 1s mors convenlent for calcula-
tlon purposes to assume various values of . z and compute the
agsociated: values of.. 4. The associated values of £ and £

can also be computed. Displacement, velocity, and seceleration

cen then be plotted agelinst time., Graphs of this nature have

been -calculated for the numerica.l emmple previously consldersd

a.nd. are shown in Tigure. =6 S . o , g

- 'I‘he two-dimensional cape haa 'been given considera.‘ola attention
becensge the steps which have been taken suggest similayr steps
vhich can be teken in the three-dimensional cass.

THREE -DIMENSIONAT, CASE
The “three-dimendlonal ernalysis will be mede for an ideal’
priematic float of seml-infinite lemgth and infinite width with
a flat-glded wedge bottom. The float Beglins at the step and
extends indefinitely forward. - It is sgsimed to have no aefterbody.

The float is assumed to mainta.in & constant trim angle throughout
+the impact period.

In figure 7 an:ideal f£loat is sho_wn immerged In the water.
after having travelled along e path of motion indlcated by the
dotbed line. The origin of coordinates is chosen as the point
on the water surface where the point. A - of the Float enters the
water. The X-axls is chosen to be parallsl to the keel and the
Z-axis is normal to the keel. The posltive directions of the
axes are asg shown. In the position of the float as shown the
flight-path angle has: .decreased from the initial value 7, . to .-
the instentaneous value 7.

The fluld beneath the floa'b is shown divided into unlt
gllces by planss which are perpendicular. to .the keel. -Dus to -
the lack of a satisfactory three-dimensional hydrodynemic theory.
it is necessary to assume that the reaction on the float is due
to the motlon in these slices of fluid which have & combined
wldth equal to the wetted keel length. It 1s necegsary.to assume
that the motion of the fluid in each slice ig independent of the
motion in adjacent slices end that the dlsplacements, velocities,
and eccelerations Iin ea.ch slice are in & pla;ne normal to the keel.

A perticular unist slice has been indiceted ‘b;y' cross hatohing
in figure 7. At the center line of this sglice tho keel iz &t &
distance ,{ from the water :surface.  Corresponding to the two~ .~
.dimensional theory previously ‘developed there mey be asaociated
with a particular slice of fluld the ad.ditional water mess m
given by
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Es U € )
It ‘ia understood that.the coefficlent T, now contains a red.uction B
facter for aspect- ratio effect. o A _ o "
The «;:enter line of’ the croas-hatched_slice 1n figure T'ig gt *
a distance & .-from the leading edge oF the londed area. The
quentities § and { are instentancous velmes. The fluid in

the cross-hatched alice exer'bs, on the float 2 force :t‘ given 'by
the following formula.°

fe g; (B = B + @t 2 (33)

In ordexr to obtain the total force on the entlre bottom
of the float, the above fomla ma.y 'be 1ntegra,ted. over the wetted
keel length L. . . :

. L . I. \1'; . . | C oo
F oo f £ df:=. j C@mlemt® ag . (3b)
o . . 0. o -

Substitution of equation (32) and ite derivative gives,
| ”L » . - L 2 ’ ° ’ )
F=f -ec2£a§+‘£ setffaz. o - (3)

o - A

The distences { and & are related through. the trim angle.
(=& tanT B (36)

Substituting this formule inte equation (35) and bringing the
congtant terms outeid.s of the integrels glves;

F?Hwﬁf§5@4ﬁﬁwnléﬁ- 'ch
. - do | . e " S
=€t tang-r'(%)' + 2etP tanT(-L-z_) I (38)

~artf

Tt may be geen from the definitions of { and =z that, although |
thelr magnitudes ave different, their first and seconé. d.erivatives_
with respect tq time a.re equal.

1)

bas, tei o (39)
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Su'bs’oi'bution "in equa:bion { 38) gives,
F = (iIﬁ_';_&.n__‘r_) Z + (E-La te.nT) 22 (4Q)

If & 18 the value of { dt the step, it will be.related to the
1ength L 'bhrough ’che trim a.ngle.

's=I.'han’r | | (Ltl)

Thus equat:[on (ho) ney: 'be written, '

[T o T
T = (—%—) ¥ + ('t-."z.e)z2 ' (42)

The quantity which is within the first parenthesis may be recognized
as the mass of ‘e half cone of water. This three~dimensional addi-
tional watsr mass is illuetrated in figure 8. This mass may be
written as,

m o= S87 = € g3 = eg3 (43)
e 03 3 tan7T) - o _
The derivative of m w:lth respect to ] my "be writ'ben,
. - 2 . _-‘ - . . - .
d.m _ €8s = _ e
=0 = 3es : o (k)

tan T
The quantity which is con'ba.ined 1n the second parenthesie of
squation (42) may be recognized as-equal to the above derivative.

Hence eguation (42) may bs written,
F=m + n's® - _(13)

Thisg formula was originally developed in a.;pproxjmtely the sams
form by W. L. Mayo (reference 5) ¢ _ _

In the above equation it is of pa.rticula.r importence to
note that the derivative m' 1s taken with respect to s rather
than 2z as in the two-dimensional case. The importance of this
distinction arises from certain new features of the three-
dimensional case. Although the reactlon of a particular unit
slice on the float i not affected by the component of velocity
parallel to the keel, the number of unit slices and. the rate of
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change of this number are affected by thls component of velocity.
Or, from enother -viewpoint, the additional weter mass is determined
by the step distance. s which varies due to % eas well as z.
This matter has besn given rather extenslve discussion by Mayo
(reference 5).

The analysis will be based on the assumption that the hori-
zontal veloclty 7V, remains constant. This means that the
resultant acceleretion 1 verticel. Hence the equation of motlion
must be wrltten for forces In the vertical dlrection. The
rosultant value of the acceleration, which is vertical, 1s given
by %/cos T. The vertical component of reaction force is given
by F coe T. Thle smssumes tha.t the resultant resction force 1s
normal to the keel. Newton's equation of motion mey be .written,

o t Fcosa 7 =0 (46)

Substitution of equation (45) gives,

%

w .2
. e 4+ MZ COB T ' og T = i
. Sos * o8 T + n'z° cos 0 (%7)

'An equation of this type, showing comsiderable veristion, however,
was originally published by Mayo (reference 6). A single integra-
tion of his equation was performed by Mayo after which rela.tions
between displacement, velocity, acceleration, and time were
obteined by numerical methods..

It is convenient to introduce the dlmensionless constant | as,
m cos°T

Equation (47) mesy 'bé"m_'itter; as

(1+wE+ 2 E =0 (50)
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This equatlon mey be yritten In the form,

-

. ‘_2. SR e
, (L + )2 +(-Z-g) %‘f;w : (51)

\‘;: --'.. : .- .- . . “ ‘_

Tt 18 new necessary to dovelop expressions for % sand & in
terma of the constant veloclty Vi and & convenient variable.
* The following geometric relations are appa.rent from Pigure 8.

£=Vain (7 +7T) (52)
=V ain ¥ cos T =|-:V.c_os 7 8inT Lo ‘_’-(53)
= Vy cos T+ Ty sin 7T " (5h)

i (2)2 =(Vy cos T + Vy sin '1').2 o ' (55)
V., cosT 2
(vh e 1) V2 sin *r‘ (56)

The ratio Vy/V, 1s the tangent of the flight-path engle. Tt i’
convenient to introduce the dimensionless variable r given by
the ratlo of tan 7y to: tan T.

r='g—t$—-% L (57)

The flight-path engle may be regard.ed; as a dynamic trim angle and
“tHe ratio - r is the ratio of the dyna.mic 'bo the s'ta'bic trim angle,
Eq_uation (56) 'becomes,

()2 = (r+ 12 VG sine'r " (58)

The depth of the point & on the float below the water surface
at any instent is equal to .8 ces' T. The vertical veloclity of A
may be obtalned by differentiating this quantity wilth respect to
time. Hence, . :

< - e &

Vv = §com T o T (59)
. Vv V cos T\ 'Vh sinT
= P ()
ces T ¥y sin 1’/ 0052T- L
rV, sinv ' -

t

[

.Yy

3
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Tt 1s desirable to deteimine the derivetive of r with respect

to tims. _
dr ,' 2 .
d.t tan T, d’o C’h) Vh tan 'r) (oos 'r) (62)

(63)

Vh s_in T

Substituting equations (58), (61), and (63). into equation (51)
gives, ,

2 .
dr §r+1! D du
(l+u)VhsinTE+ = Ty sin T cos®T z& = 0 (64)

oY

r

’ . L. o .
(1 + p) dr + (z+ 17 cos®T dp = O (65)

Separating the varlables and Integrating gives,

log (1 + 1) + I—-%—;: + cog®T log (L +u) =¢C (66)

The congtant of integration C must be determined from the initial
conditions. At t = Oy the distance s 18 zsro, the water mass m
is zerc and, hence, i = 0., The value of r at +t =0 may be
indicated as r This value will be determined by the initiasl
f1ight-path angle ¥

l't&,n-‘)'o-..'z

o = ten T (67

Substituting the initial conditions in equation (66) gives the
value of C. )

C = log. (l " ro) + T-TT (68)

e -

Equation (66) becomes,

. - 1
log (l + I‘) + 1-%-? + GOSQT log (l + {J)~- = log (1 + ro) + m-—
©
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This equatlién expresses a relation between instentaneous values
of ¢ and »r for a particular trim sngle and e given initial
flight-path angle. By assuming various values of r from r,
to zerc the assoclated values of u can readily be compubed.
This provides a direct relationship between the vertlcal velocity
and the dreft of the float.

At this point in the analysis it is necessary to return to
the original differential equatlon of motion, Jjust as in the
two-dimensional cage, and to regard.this equation as a formuls
Por the acceleration in terms of the displacement and wyslocity.

Solving equation (50) for £ gives,

52
z-_ du
- TLgpas - (70)

From equations (44) end (48) it is seen’ that,

S R - (1)

ds .8

Substitution of equations .(58) and (71) into equation (70) gives,

2= - -i'—(—j}-l'-—) (1 + 1) Vh2 sin®T (72)

1+

A relationship between i .and - which holds true at the instant
of meximtm accelera.tion can be obtained by differentiating thke
formula for % with respect to s and equating the result to
zero. In order to carry out this differentiation it is necessgaxry
to establish the derivative of r with respect to e. Dividing
equation (63) bys. gives, ; :

dré.'b E
nenme  wmepwe 322

- - (73)
dt ds 8V, sinT
Substituting equation (61) on the right-hand side gives
&, = (7H)

dr 7 ( cos® T 4

ds Vi sinT |\ 2V sin T/ | 3V, 2 ten®r
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Differentiating equation (72), and uaing the ebove formule, results
in the following equetion,

9.2::..2'_2"“.. b (L+x cosar ' (75)
ds sl+u._;l.+u r

The guantity within the brece may be equated to zero to obtain a
relation between ¢ and r which must hold true at the ingtant
of maximm acceleration. These perticular values may be lndicated
as tp end 1 :

m*

?-P-m__'_"ﬁpm 1+ 1y caserno (76)
1+ 1*‘”‘111_‘ Ty .

This equation may be solved for w, or ry, to obtain the formulas.

By = o (17)
rm(l + 6 cos?T) + 6 cos®T ‘
T cos® T i T
2, —— | (78)

B "2 (1+ 6 cosT) T

By integrating the origlnal differential equation of motion
a8 relation between ¢ end r was established as gliven by equa-
tion (A9). This relation must hold true at all instants of the
impact period. Eguation (76) glves a relation which muet hold
true at the instent of maximum acceleration. =Equations (69)
.and (T76) mry be solved simultaneously to obtein solutiona for
end vy Iin terms of the kmown Initlal quentlty r,. The resulting
values may then bhe substituted in'bo equation (72) to determine
the maximum acceleration, .

Since equation (69) is of a transcendental nature, no direct
analytical solution can be obtelned for the mexlimum acceleration.
If s, and Z; eare introduced to indicate the values of these
quentities when the acceleration is a meximum, equation (72) gives,

M

S A e
g .=' = (TTE—) (1 + rm)2 th ?inQT (79)
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_ From equetions (43) end (48) the distence &, is given by,

w3

*m \3 ¢ coseT (80)
It is .now apparent that, by using numericel and graphical methods
for determining  pp and 1wy, it would be posaible to calculate
the maximm acceleration if the paramseter ¢ were known. This
paremeter determines the apparent mass of the water. No attempt
will be made In this paper to dimcuss the varlous thoorsetlcel and
experimental studles whilch have been made to determine this
parameter. These developments have been discussed by Mayo (refer-
sence 5). A considerable amount of basic resesrch work in this
fleld is s%i1l .needed.

The maximum acceleratlion may be expressed in terms of various
components of the initial velocity. That component which seems
most rational to use is the component normel to the keel; which
is indicated as io‘ From equation (58) it is seen the.t

4 2
Vh2 singT =

m (81)

Substitution into equa'tion (79) gives,

- -1 + rm
Zm""—( ub@+r (82)

For deslgn purposes 1t i most convenient to oxpress the
acceleration in terms of the resultant initilal veloelty V..
Using the definition of r as given by equation (57) 1% 18
reedily shown tha:b . _ )

Vp = 5—3; . .- (&)
Substitution into equation (79) glves,
. 1 (3""m (1 + rm)2 VOE 8in°T
1

G M - e . e '
n By \L+ by (14 roz ten®T} %

(84}
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At’'ths instant of meximmm -dreft the flight-path engle 1s zero.
Substituting r 2 @ in equation (69) gives, .

R e s - -, - r
cos®r log (1 + ky) = log (1 + ro) - 2 (85)
1+,

.- The :subsgcript o 18 usell to indicate the value of functions at

' ‘the instent of maximum draft. For eny-given value of 'r,, the
correspinding valus of Uy can ‘be computed. The. maximum draft
-mhy then be determined from equation. (80) by changing the subscript
m to-n. L o e R '

[y

Y

APPROXIVMATE FORMULAS FQR DESIGN

. Since the--trim'ahgla is-a smallangle _.in nbma.l landings 1t

appears iheyduehis Lo agsume. cosg T = 1 wherever thie proves to
be converiont. Undar this assumption the approximate form of

squations (69) and (77) becomss,

log (1 + v) + -1-%-—1: + log (1 + 1) = log (1 + ro) + 7 +lr- (86)
o -
2r o ‘
= (87)

'J,m 5 e —— .
. T?m_-t- 6 -

A special case 1s worthy.of note for research purposes. In the
cage of & vertical drop, with guides ‘to maintain Vy, = 0, the
value of r will be infinite at all instents, Dividing
numerator end deénominator of equation (87) by 1wy and setting
Ty = o glves the universal congtent py = 2/7 for the three~
d%neneional cagse. This constant wae firsgt arrived at by

I. W. McCalg of Great Britaln.

Bquations (86) end (87) mst be solved gimultaneocusly for
verious values of r,« A graphical method bae been used for this
purpose. An illustration of a particular solution le given in
figure 9. Curve number .l 1s e graphical representation of
equation (86) for r. = 1. Curve number 2 1s a representation
of equation (87).- The intersection of the two curves glves the
values of gy and n, -for r, = 1. In order“to show the emall
error involved in 'neg’feo'biﬁs_tﬁe' effect of trim angle, the .
dotted curves bave been plotted in Flgure 9 from equetions (69)
end (77) for T = 89,
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Using the method illustrated in figure 9, the functiess upy
end r, were computed to give the graphs shown in figure 0.
These universal curves are independent of the physical properties
of the float or the coefficient which defines the additional weter
M2Ed, .

TPhe enly faotor remeining to be determined in the formula
for acceleration is the step draft sp. This quantity is effected
by the float properties and the water mess ccefficient. The
edditional water mass mey be written in the Ffollowing form:

n=epla (g ags)% (88)

The factor u.13 i1s introduced to account for the primary effects
of T and B wupon m. This fector is determined from the inter-
section of the float bottom with the original water surface. It
defines a half come of weter which is the three-dimensional analog
of the original t.wo-dimensiogal concept of von Kérmdn. Thus,

from the geometry of figure 8 it 1s seen thet,

3 e
%~ = (89)
1 6 tan T tan®p '
The fecter ap3 1is introduced into eguation (86) to aocount
for secondary effects of 7 a2pnd 8 upon m. Some of these effects
ars:

(1) Effect of piled-up water. |

(2) Dead-rise angle correction to flat-plate theory.

(3} Aspsct-ratioc effest,
There 1s e serious need. for both theoretical and experimentel
- research studies to estehlisk these factors accurately. Usimg

the best evidence availeble, Mayo (reference 5) has suggested the
following formulas

2 .
e = 0.82 ten®s (5% ) ) (1 ) etat:nTﬁ) G

For aoprp.ctical range of T Zfrom 3° to 12° and g from 20°
to 257, equaticem (90) gives a23 in the renge . 0.9 < m23 < 1,.3.
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-

' Enmorder to obtein dimensionless quantities for plotting '
purpdies, it is oonvenien'b to 1ntroduce the fundamental length .

parameter A. -
A= \’/:,—T T (92)

Dividing through equation (88) vy M, and ueing equation (91)
gives the dimensionless variable p a.s,

T tpoe (@1‘12 %)3 (92)
‘or . . . \ - R i i: .. . S —~
IR CAEP S
N . * . . - ‘
By using figure 10 for u the right-hand side of thig eguation
" has been computed for «c = 0.9, 1.1, and 1.3. These theoretical

curves are ghown in figure 1ll. .For & given float, landing at =

given trim angle and flight-path angle, the step dxaft e wmay be

-.detexmined to a practical degree of e.ccuracy from the solild line of _

figure 11.“" : S S . =
For plotting purposes, equation %8&) mey: 'be written in fhe

following form by using equation (93). )

.. zmx oo T (1'+ rm)‘2 s!:nET -
lo \m(i-l-ﬂm (1+r2tan ) (9h)

The right-hend side of this equation is a funetioh of r, which
may, be computed and glotted for various itrim engles. Using an
average value of = 1.1 this function 1s plotted in figure 12
for 7= 3° and in figure 13 for T = 12°, Frum such curves the
maximum ecceleration may be readlly determined for arny float.

The reactlon force is then obteined by multiplying the acceleration
by the mass of the flecat.

The longitudinal digtribution of the reesction mey be determined.
© The .ordinate to the load distribution d.iagram is given by f. -
Referring tQ equatien (33) 1t 1is seen that consists of two
parts. The first part is propertiomal to m “wiich, varide es £°,

.‘l’ '-- w
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Hence ths first part -bas a quadratic va.ria‘tion. The second part
hes & linear variation since .m' veries as - Integration of °

the first part of £ .glves the  first par‘b o the toté.l reaction F.
The magnitude of this first part of "F 'ig seen to be "m¥ or pMi..
Consequently the ‘econd part of ¥ imist Do given by (1 + u)Ms.
The two parts of the reaction and 'bheir d.istri’bu‘bion are inﬂica:bed.
by “the diagmms of ﬁgure lh. :

e e ’ -

GOMPARISONCFTEEORYWITHMERD&EWT |

Sems excellent experimental resulis have been recently
published by the Nationel Advisory Committee for Aeronautics for
landing impscts on smooth watexy. These tests were run with a
float welghing 1100 pounds apd having & dead-rise angle of 22.5°.
The floats were launched at various trim angles and various
flight-path angles. Experimental values will be taken from two
reports by 8. A, Batterson (references 7 and 8) for T =w 3° .
and. 7. = 12°, No attempt will be made to explain the discrepencies’
between theory and experiment. -Thege discrepancies may be due to
ahy of.a number of ceuses which'ars no‘b sufficien‘bly well umier- )
stood at. present.

In i’igure 11 e:&perinien'bal values of the ré«la.tive s‘ﬁép d_réﬂ' '
at maximm accslsration have been plotted. The scatbering of the’
points Indicates the neceasity for accurate displacement measure-
ments and the need for effective statistlcal metidods of interpreting
hydrodynamic test data. The experimental spread of the points is
greater then the theoretlical spread predicted by the Mayo formula
for ap. The general trend of the pointe for T = 3° is higher"
then that for T = 12°., This is in direct opposition to theoretical
prediction and there is no apparsnt explenation of the contradiction.

In figures 12 end 13 experimental values of relative accelera-
tion have been plotted. The agreement between theory and experiment
is very good. The curves are plotted. for an a.‘Verage value of ap.

The value of i, &t the instant of maximm draft may be
computed from the following approximete form of equation ( 85)

. B -108 (l+‘l~ln)‘= 108-(l+i‘o) -r:—;; o (95) -
The right-hand- sid.e of. equation (93) ha.s beern compu'bed for three
values of do - to give the curves shown in figure 15 E:x.'perimental
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values of the.relative dreft:are also shown.- In generdl, the _ -
theory predicts larger draft values.than ere found from experi- '

ment. The same contradiction between -theary and experiment is

found for- the maximm draft velues'of figure 15 as was poted’ :ln .
onnec'bion with the d;raft va.lues shown in f:l.gure 11. o A

. Correepona.ing to eque.tion (9&) other dimensionlesc a.ccelera-

tion formmlas mey be derived from eguations (79) end (82),

[ T U Y B LI L

me faes -ld’e.-- 3". N
2
oz,lvgs:!n'rp-?/tu 1+u>(1+rm) . (96)

m S ' .t

S 37.\' - - "_'.r‘ - K
'---a----n -” (9T .
or.lé . 14 " l+r o .

y v

It mey be noticed. that the right hanrl sid.e of each of these equa.t:lons

is afféctéd 'by variations in T .apd B - only through the miner
variations of ‘ths second.ary factor ap. Using an avertge value

of ap, & theoretical curve has been computed for each of ‘these
squations and compared with experimental values in figures 16

and 17. The general trend of the experimenth} pointe for' T = 3°

is ‘higher than thet for 7 =-12°. This is in agreemsnt with

theoretical prediction. E‘ither of these ourves may be used for S
d.esign purposes. . ' '

For research purposes equa.tione (79) and (%) By Ye written
in the follow:lng formas

.. B 8

Ip.l 1 + p'n)Q > I‘) (9 )

| \Vé = ‘--"V 2 2 ;" (l (1.+ rm)2 “ . (99
n el Huj,‘ L

In each case the first definition of W eontains quantities which
ney be messured experimentally. The second definition is & function
of r, only. The V¥ finctions are universal functions of r,
being in no way affeoted by varistions in T or B. These
functions have been plotted and compared with experiment in’

figures 18 and 19, . These functions are not dépemdent upon the
properties of the float or the definition of the additional water
mags.
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| coNCLUSIONS

The landing impact of 2 seaplzne may be enalyzed by means of
Newton's law of motion end elskentary hydrodynamic theory, providing
& nunmber of restriotive apsumptions are mede, Some of these -
sasumptions are as follows: :

1. The water surface is smooth.
2. The seaplene is a rigid body.
- 3, The trim engle remains constant during the lmpact.
4, The wedge bottom of the hull is not flared.
5. The finite width of the hull hae no effect on the motion.
6. The wing 1lift equale the weight of the seaplane.
7. Buoyancy and viecosity forces may be neglected.

The three-dimensional apparent mesas of the wdter may be taken es

a direct analog of the two-dimensional concept of elementery hydro-
dynamics. On this besis a solution for maximum ecceleration mey

be obtained whicH shows good agreement with experimental results.
Agreement between theory and experiment in regard to displacements
i1s more difficult to obtein and cealle for further Improvements in
the analygls through theoreticel and experimental research. The
meximum acceleration is found to be proportional to the square of
the initial velocity and inversely proportional to the draft at

the instent of meximum acceleration. The comstant of proportionality
is given by the theoretical esnslysis and is found to be independent
of the float properties or the definition of the additlonal water
mass., :
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APPENDIX.

In the preparation of the graphical 1llustrations of the paper
a number of tables of functions were computed. Some of the tables
are lncluded in thils appendix in order to provide assistance in
further research studies and for design use of the graphg of = '
accelerations, The following function-is glven in ta‘ble I

1 S :
-
] 103 1+ 1) + o (100)
In teble IT are given the values of Ty and P, as obtelned by
simultaneous solution of equations(86) and (87), The velues of 1y
were read from the intersections of graphs and egnnot be considered
a8 accurate In the last significant figure. The values of p_ vwere
not read from the graphiocal intersections bubt were computed from
equation (87) using the values of Tpye

In teble IIT the values of u, are given ag obtsined by
solving equation (95). In table IV values of a3 are given as
defined ‘Dy squation (89). Table V gives values of the functions
V1 end Vp as defined by equations (98} and (99) .
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TABIE I

r ¢ r ¢
0 1.00000 2.1 1.45398
: ;1 1.00440 2.2 1.b7565
2 1.01565 2.3 1.49695
3 1.03159 2.4 1.51790
o 1.05076 2.5 1.53847
5 1.0721k 2.6 1.55871
.6 1.09500 2.7 1.57860
7 1.11887 2.8 1.59816
.8 1.1hk33k 2.9 1.61739
.9 1.16817 3.0 1.63629
1.0 1,19315 3.1 1.65489
1a 1.21813 3.2 1.67318
L. 1.24301 3.3 1.69118
1.3 1.26769 3.k 1.70887
1.k 1.2921k 3.5 1.72630
1.5 1.31629 3.6 1.74345
1.6 1.34013 37 1.76033
1.7 1.36362 3.8 1.77695
1.8 1.38676 3.9 1.79332
1.9 1.h0954 4.0 1.8094L

2.0 1.h3194

NATTONAL ADVISORY
COMMTTITEE FOR AERONAUTICS
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30
TABIE 1T
0 "0 0.
2 050 D157
A J1hg 0423
b 277 0698 .
.8 Jed ogh1
1.0 561 - 1130
1.2 I8 .129h
1.4 - Bae <1431
1.6 34012 1547
. 1.8 . 1.166 1647
2.0 - ~ 1.318 L1731
2,2 1.471 «1805
2.4 1.626 1871
2.6 1.782 10929
2.8 1.937 1981
3.0 2.090 - <2026
342 . 2.2k 2067
3.k 24400 2105
346 2,55k 2139
3.8 2.710 : 2171
5,0 2.865 2199

NATTONAL ADVISORY
COMMITTEE FOR AERORAUEFIOS
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TABTE TIT

T By
0.2 0.0158
e | -0521

6 .0997

8 541
1.0 2131
1.2 2751
1.h +3393
1.6 5051
1.8 7o
2.0 .
2,2 . 6091
2.4 6785
2.6 .Th8L
2.8 .8188:
340 8895
3.2 ¢ 19603
3.k 1.0317
3.6 1,1032
3.8 . 1.1748
4,0 1.2467

NATTONAL ADVISORY
COMMITTEE FOR ABRONAUTICS
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TABLE IV
. VALUES OF...m_i_ .. g
~ B —
(deg) j
o 20 22.5 o5
(dgg)
1 6.10 5.59 5.17
2 " By by 14,10
3 k.22 3.88 3.56 -
o 3.54 3.52 3.25
2 3456 3.27 3.02_
6 3435 3.07 2.8Y
7 3'18:; 2,92 2,70
8 3.04 2.79 2,58
o 2,92 2.68— 2.48
10 2.82° 2.59 2.39
11 2.73 2,50 2.31
12 2.65 243 2.25
13 2.58 2436 2.18
1k 2.51 2,30 2,13
15 2.5 - 2.25 2.08

NATTONAL ADVISORY
COMMTETEE FOR AERONAULTCS
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TABLE V
*o vy Y,
0 0 0

2 0355 051

& .0820 161
. 6 1247 .319

.8 .1608 521
1.0 1856 JTh2
1.2 L2077 1.007
1.k .2256 1.300
1.6 .2ho7 1.627
1.8 «2539 1.990
2.0 2643 2,38
2.2 +2735 2.80
2.k 2821 3.26
2.6 2897 3.76
2.8 +2963 L 28
3.0 «3016 4.83
3.2 .3066 5.41
3.4 +3115 6.03
3.6 .3155 6.68
3.8 «3197 Te37
4.0 »3231 8.08
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Water Surface

(a)

} J— - - - [ —_——

. Kee! ‘) -
L&
: -‘.t ///////////// ////;44/\ S+GE= WS-

&)

(b)

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure I.—Se#p\ane at Instant of Entry
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Point of Point of

\% A

_[_>3
Max. Draft (@) Path of
Motion
R (b) Instantaneous
Reaction

Max. Reaction

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure 2~ Displacements and Reaction
During Impact Period
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Loaded Area

W/\ Longi-i-udinal Reaction
Distribution

Unit Strip
of Loaded Areag
-«% _7- - —— ~
Load on K Spray
Unit Strip Root
(b)
- - — - Sphas
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