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SUMMARY

The equation for steady—state temperature distribution caused by a
thermal source (or sink) in a flat plate surrounded on either side by
fluids of different temperature is developed and applications are pre—
sented in thres sections in this report. The applications are as follows:

(a) A thermal error which occurs when thermocouples are used for
the measurement of plate temperatures is described, and an
analytical prediction of this srror is obtainsd.

(b) A determination is made of the effect on heat—transfer rate
in pin-fin plates due to the thermal conductivity and thickness
of the plate metal.

(¢c) The temperature—~distribution equation is applied to the heat
meter and a correction factor is obtained which includes con—
sideration of the effect produced by the flow of heat "around"
the heat meter.

INTRODUCTION

This report describes techniques involved in making certain thermal
measurements which are necessary in the analysis of heating problems
in aircraft and contains the general sgolution for the determination
of the steady—state temperature distribution caused by thermal sources
(or sinks) in plates surrounded on either side by fluids of different
temperature. The terms "source" and "sink" are used to denote a means of
adding heat to or subtracting it, respectively, from a substance. As
is shown later, thermocouple leads and fins may be considered to be
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sources or sinks of heat. The first application of the solution is to
the calculation of the thermal error of thermocouple temperature
indicationsg when the thermocouple 1s employed to measure plate
temperatures.

Accurate measurements of surface temperatures are useful in determining
local heat—transfer rates, for instance, in an exhaust-—gas air heater or
along an airfoil surface and in evaluating thermal stresses and temperature
distributions which are criterions of the stability and life of a
heater unit.

The analytical approach to the determination of a thermal error
considers the junction of the thermocouple in the plate to be a thermal
gource (or sink depending on whether the thermocouple leads are exposed
to the hotter or colder fluid). The physical system can be visualized
best by focusing attention on the case for which the leads are exposed
to the hotter fluid. The thermocouple leads, in this case, are at a
higher temperature than the plate because they are not being cooled by
exposure to a cooler fluid as is the plate. Consequently, heat will
flow through the leads to the plate thus increasing the temperature of
the thermocouple Junction and the plate in the immediate vicinity of the
junction, which thus acts as a heat source. The thermal error of the
thermocouple is defined as the difference in the temperature of the
thermocouple Jjunction and that of the plate far away (or the equivalent,
the temperature at any point of the plate in the absence of the
thermocouple). This thermal error is not to be confused with electrical,
metallurgical, method of attachment, or other errors to which
thermocouples are subject.

The general solution is also applied, in this report, to the
calculation of the effect of plate thermal conductivity on heat—
transfer rates for pin—-in plates. Ordinarily the thermal conductivity
of a thin metallic plate is so large compared with the convective con—
ductances on either side that the thermal resistance of the plate can
be neglected in heat-rate calculations. When pin fins are present,
however, conditions may be obtained that promote heat flow radially in
the plate from the pin bases. Under thess conditions the thermal con—
ductivity of the plate can become an ilmportant factor in some cases.
The equations which allow calculation of heat rates in pin—fin plates
of finite resistance are developed and these are compared with the
usual equations for heast—transfer rates in pin—fin platss which
"postulate infinite thermal conductivity of the plate.

In a third application the solution is applied to the determina—
tion of a correction factor for a heat meter when the meter is used to
measure the heat rate through a plate. The correction factors presentsd
before (references 1 and 2) have postulated that all heat flows
through the plate and the meter in the direction normal to their surfaces.
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This condition does not result when the thermal conductivity of the plate
or the plate thickness is large and conditions are such that a part of
the heat flow occurs parallel to the plate surface into or out of the
metal directly under the meter. The equation for the correction factor
presented in this report takes cognizance of this latter condition.

‘Experimental verification of the conclusions reached. by means of the
analyses presented in this report are lacking. An experimental program is
being planned, however, which will allow verification of these conclusions.

This work was conducted at the University of California under the

gponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.

SYMBOLS

area of heat transfer, square feet

crogss—ssctional area of pin fin or thermocouple lead, square feet

C

unfinned area of pin—fin plate, square feet

a distance between in-line pins, feet

o'

thickness of plate, feet
Ci5 Co constants
f unit thermal convective conductance, Btu/(hr)(sq £t)(°F)

il equivalent unit thermal conductance for flow of fluid over
insulated thermocouples, Btu/(hr)(sq £t)(°F)

y unit thermal convective conductance over surface of heat mster,
Btu/(hr)(sq £t)(°F)

IO(X) modified Bessel function of the first kind, zero order
Iy (x) modified Bessel function of the first kind, first order
Ko(x) modified Bessel funttion of the second kind, zero order (for

a discussion of the rotation used for Bessel functions,
see appendix)

Kl(x) modified Bessel function of the second kind, first order
k thermal conductivity, Btu/(hr)(sa £t)(°F/ft)
k, equivalent thermal conductivity, Btu/(hr)(sq ££)(CF/ft)

L length of pin fin, feet
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P circumferential perimeter of pin fin or thermocouple wire, feet

a heat—transfer rate, Btu/(hr)

Q0 heat—transfer rate through plate in absence of heat meter,
Btu/(hr)

r radial distance from source center, feet

rg radius of source (or sink), feet

T radius of thermocouple lead, feet

Re thermal contact resistance (éefined by q = gé%), (ar) (°F) /Btu

T temperature of fluid, °OF

t temperature of plate, °F

ty, temperature in pin-fin plate at base of pin, oF

too temperature that plate would obtain in absence of source or at

infinits distance from source (defined by equation (8)),

o equivalent to thermal conductance (defined in equations (14)
and (15)), Btu/(hr)(OF\

B defined by equation (10), 1/(sq ft)
3] thickness of an insulating disk (heat meter) placed over the

source, feet; also thickness of insulation around thermocouple
leads, feet

Subscripts:

1, 2 two thermocouple leads

P15 Pp two opposite sides ol plate
8 source

m heat meter

ANATYSTS OF FLAT-PLATE TEMPERATURE DISTRIBUTION

The temperature distribution and heat transfer caused by a thermal
gource or sink on a thin flat plate surrounded on either side by fluids



NACA TN No. 1hs2 5

of different temperature can be approximated by an ideal system,whlch is
defined by the following postulates:

(1) That section of the plate occupied by the source (or sink) is
circular and of infinite thermal conductivity (that is, the section is at
uniform temperaturs)

(2) The plate has infinite thermal conductivity in the direction
normal to its surface (that is, there is no temperature gradient normal
to the plate surface at any point)

(3) The temperature of the fluid on each side of the plate is
uniform and constant (steady state)

(4) The unit thermal convective conductances of the fluids are
uniform over the plate surface

Because 1t can be shown that the form of the solution will be
independent of whether the temperature distribution is caused by a source
or a sink, the distribution will be considered, for convenience, as being
due to a source. Similarly, one specific side of the plate will be
congidered to be in contact with a hot fluld and the other side in
contact with a cold fluid, even though the analysis can be carried
through without knowledge of the direction of the heat flow.

The solution is obtained by making a heat—rate balance on a
differential annulus of radius r and width dr which is concentric

with the source center. (Refer to fig. 1.)

A heat balance on the differential annulus consists of the following
terms:

The heat flowing in ths olate radially from the source into the

annulus
dt at
= —kA [— = —2nrrbk 1

The heat flowing in the plate radially from the source leaving the
outer rim of the annulus

dt _ dat g dt
Qpagy = XA (dr> = —2rkb [r =" (r o) & (2)
r+dr '
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The heat flowing into the top of the annulus from the hot fluid

gy = :E'plA<Tl —-t) = £, 27 ar(r; - t) (3)

The heat flowing out of the bottom of the annulus into the cold fluid
= - = - N
do fpeA t Ts) £y, 2mr dr(t Ts) (%)

The steady—state condition hag been postulated so that it is possible

to equate the heat flowing into the annulus to the heat leaving the
annulus; thus

q.r + q.l = q_r+d_r + q.2 (5)

Substitution of equations (1) to (4) into equation (5) gives

a
2rkb = <r %) dr = 2mr dr [fpe@ -7,) - NG t] (6)

Rearrangement and simplificetion of equation (6) gives

o £ o4+ P fp T + fp Ts
r2dg+r%“—£lbk 22 (6 - % f2 =0 )
+
dr D S O
fplTi + fpng
The term ,  which will be denoted by 1w, repressnts
fpl + fP2

the temperature which the plate would attain in the absence of the source,

(that is, the temperature of the plate at an infinite distance from the source)

Thus t — t, 1s the rise in temperature of the plate gt any point due to
the nresence of the source. .

When a new variable is defined

fp]:rl + prTE
tg=t_ = =‘b-—tm ' (8)
fr +f

LT
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and it is noted that

2
at?  at Prr aTt
o T ar and > "2
or ar ar
the form of equation™(7) can be changed giving
2 a2t L LA T (9)
P ar
where
f + T
Lo I
B = —— (10)
JY

This differential equation (9) is a modified Bessel equation for
which the solution (reference 3) is

&4 = OyTo(/Br) + CoKo (/Br) (11)

In the determination of the constant Cj it can be observed that the
increase in plate temperature (t* =t -tw), due to the presence of
the source, must approach zero as r Iincreases. As a result, the
constant C; must be equal to zero because the function I, approaches
infinity as the argument approaches infinity. Thus the final solution is

7 = 0K (\/Er) (12)
or
t = te = oK (Jﬁr) | (13)

In the evaluation of the constant Co it is necessary to define
the source more completely than it is defined by the conditions given
in the postulates. The most commonly met source will be described by
the following conditions: (The simplifying assumptions regarding
direction of heat flow are retained)
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1. Heat flow into the source from the hot fluid can be expressed

by an equation of the form

%, = ap (T1 = tg) (a7 = Constant)

where tg 1is the temperature of the source

2. The heat flow out of the source into the colder fluid can be

expressed by an equatlion of the form

dgp = aé(ts - Tp) (ap = Constant)

Equations for the conductances . and an are presented in

table I for several physical systems.

(14)

(15)

The difference between the heat entering and leaving the surfaces of

the source digk is the heat conducted into the plate.

q‘sl — (?_SE = —kA (%)r ; = —Qﬂrsbk d%_: {:CQKO (\/BI‘)]
s

r=rg
This equality becomes

al<'rl - ts) — aQ(ts - 72) = enfsbkcg VB (Vﬁrs)

Substituting tg = te + t's and solving for C, gilves

o (my ~ t_m) + (T = ts)

= kO<V§rS>Q11 + a2> + Eﬂrsbk/EKl<JﬁrS>

Co

(16)

(17)

(18)

The following material presented will concsrn itself with' the three

principal applications of the solutions given here in the order given

below:
(a) Determination of thermocouple error

(b) Heat transfer in pin—fin plates

(c) Determination of correction factors for heat meters



NACA TN No. 1452 9
DETERMINATION OF THARMOCOUPLE ERROR

The determination of plate temperatures by means of thermocouples
presents a difficult problem whenever the thermocouple leads are
subjected to a temperature different from that of the plate. Because,
in general, the leads are at a temperature different from that of the
plate, it is important that some method be available to estimate the
resultant error in the temperature indicated by the thermocouple. The
golution given in this report is easily applied to this purpose for the
case in which the thermocouple leads are atbtached in the manner shown
in figure (2).

When it is recalled that

T T

b =

iy + fp

P 2

and the constant C, 1is written out, the solution (equation (13)) can
be written as follows:

o (71 = te) + ap(Tp — tw)
Kﬁ_({ﬁrs>
Ko<yﬁrs)

(19)

W+ A Enrsbkvg

2

The temperature +t. 1s the temperature of the thermocouple
junction (the source) and thus is the tempsrature ilndicated by the
thermocouple (emf measuremsnt usually by means of a potentiometer),
whereas bt can be congidered as the true temperature of the plate.
The difference in temperature (ﬁs - t«Q then represents the

thermocouple error. £
T -t 1%

Tl"'tm: f ?

Rewriting the equation slightly and noting that

gives
fp
-
by = b 1T %R E
= : 20)
T — %, , (
1 K ()

Xo !(\fSrE)

l._l

|

o+ dn + QnrskaE
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This equation, although an exact solution of the idealized
system, is cumbersome and can be simplified with small error by
introducing a few approximations.

When the convention is adopted that the thermocouple is on the
side of the plate for which the variables are denoted by the subscript 1
the following simplifications can be made in squation (20). In usual
practice the value of ap will be much less than a4 (table I,
gystems 4 and 5) and terms including a», wmay be eliminated without
introducing much error; therefore, ‘equation (20) can be written

- - L (21)
™ 2nrg Ky O@TS>
1+ — bkyp ———v
“ Ky @@rs>

Two further simplifications can be made. Reference 3 gives asymptotic
approximations of Kj(x) and Ko(x) as x—0.

K (x) = L x < 0.05 (22)
X

1l

Ko(x) ¥ - 1oge<’2—‘) - 0.577 x < 0.05 (23)

For the second simplification, o ~can be written as (see table I,
systems 4 and 5)

a1 = VEgPkyAxy + F PokohAx, - (2k)
For thermocouple leads of equal diameter thisg conductance reduces to
o = oy BEgy (Vip + Vi) (25)

If an equivalent thermal conductivity k, is defined as

k k
/f{;= E_;/_:é_ (26)
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the equation can be further simplified to

@y = 2nry (2F kory (27)

»21"~3 ,
I For the case of a bare thermocouple lead the

term fg 1s simply the average unit thermal con-—
ductance f for flow over a small wire. The
equivalent unit thermal conductance for radiation
should always be included in fj;. When the leads
are covered by insulation of thickness & and
thermal conductivity k and when a thermsal
resistance R, exists between the wire and the
insulation, the term f, 1is written to include
these items as

NN\

o
¥
NN\

Insulation =

[ NNNANNNNNANNN

Insulated thermocouple
lead,
1l 1 o}
f—e-—--f-;-£+E+RcA (28)

where A 1s the heat—transfer area over which the thermal resistance R,
applies., Combining the foregoing simplifications and noting that for
equal diameters of the thermocouple leads V2rp = ry results in the

following equation:

t, -t
S o 1
5 - (29)
17 %o pr
1+
— /Br
Trp VEfeKerT —loge-—g-—-— 0.577
tg — T, .
For semall values of ————; the term in the denominator is large compared
T =
with 1; therefore
t, — b B
8 rm Y2f kv
z L ; €L |- log, (/‘S:TT\, — 0.577 (30)
Tl - too k? 4
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. t -t

This equation can be used with small error for values of d

T~ %
1 -]
less than 0.10. For larger values the more exact equations (20) or (21)
should be used.

Curves of thermooouple error for four cembinations of thermocouple
lead size and the product of plate thermal conductivity and plate thickness
are glven in figures 3, 4, and 5. The curves were calculated using
equation (21).

These curves indicate that the unit thermal convective conductances

over the plate fpl and ‘fp have small effect on the thermocouple

error, whereas the error is sensitive to the equivalent unit thermal
conductance over the thermocouple leads. This fact brings out the great
importance of proper insulation of the thermocouple leads. It i equally
apparent that whenever possible, the equivalent thermal conductivity kg
of the thermocoupls leads and the diameter of the leads should be as small
as possible.

The following table gives values of k, for several common
thermocouple leads. These equivalent conductivities are only approximate
end are calculated for conductivities at room temperature. However, in
view of the difficulty of accurate determination of the convective
conductances, and so forth, use of these values of kg at high
temperatures should cause no hesitation.

ke
Thermocouple Btu -
(hr)(sq £t)(°F/ft)
Chromel—salumel . 16
Copper—constantan 90
Iron-constantan oL
Platinum—point rhodium 28

An estimate of the magnitude of the thermal error encountered when
an attempt is made to measure the temperature of the surface of an exhaust—
gas and alr heat exchanger may be gained by consideration of the
following example.

It is desired to determine the temperature of a 0.030-imch-thick
stainless—steel plate exposed on one side to gas at 1500° F flowing at
150 feet per second and on the other side to air at 100° F flowing at
100 feet per second. The thermocouple will be attached to the gas side
of the plate and will be made of No. 28 B. & S. gage insulated chromel-—
alumel wire.
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The unit thermal conductances of the fluids flowing over the plate,
obtained by using the equations in reference L gre

fPl

]

16.5 Btu/(hr)(sq £1)(°F)

£

b, 16.2 Btu/(hr)(sq £t)(°F)

It

, The unit thermal conductances of the fluids flowing over the thermocouple
leads are determined, however, from the eguation, or the graph, in refer—
ence 5 because, for the preceding case, the value of the Reynolds modulus
is beyond the range of validity of the equation given in reference L,

Use of the graph in reference 5 yields, for the unit thermal conductance
over the thermocouple leads:

£, = £, = 160 Btu/(br)(sq ££)(°F)

The temperature indicated by the thermocouple ordinarily would be
calculated from equations (20), (21), or (30), but the solution of
equation (21) for the particular system is presented in figure 3.
Therefore, calculating kgfe = 2190 Btu2/(hr)(°F)(ft3) and noting
that fpl + fp = 32.7 Btu/(hr)(sq £1)(°F), the ratio bty — tn/rl — te

]
is found to be 0.077 (fig. 3) from which the thermocoupls error (ﬁs - w)
is calculated to be

0.077(Ty = te)
0.077 x 692 = 53° F

tg = b

1l

1l

The estimated true temperature of the plate is thus

tw = tg —53° T

where ts ig the temperature indicated by the thermocouple.
When a thermocouple is attached to a plate and the leads are placed
in thermal (not electrical) conbact with the plate for several inchss
from the Junction, ths heat that flows in the isads to or from the
Junction, as the case wmay be, will be very small (due to the reduction
in temperature gradient along the leads) and consequently, the thermal
error should be expected to be small. However, the disturbance of flow
over the leads will cause a localized increase of the unit therual
convective conductance. This will make the junction hotter or colder
depending on whether the thermocouple is on the hot or cold side and
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thus introduce an error of unknown magnitude. This flow disturbance

may be reduced further by flattening or embedding the thermocouple wires.
If the thermocouple leads in conbact with the plate are placed parallel
to and away from the direction of fluid flow, the installation should
have a smaller thermal error than the case illustrated in figure 2.

Also, if the convective conductances along the thermocouple leads
are approximately equal on both sides of the plate (hot and cold sides),
the error is small providing the leads are attached to opposite sides of
the plate because the heat added to the surface by the lead on the
"hot—f1nid side" is just balanced by that carried away by the other lead
attached to the "cold—fluid side" of the plate. These solutions may be
used for two purposes:

(1) To estimate the true temperature which would exist if the
thermocouple were absent from a knowledge of the temperature at
the point of attachment +t5; and the other terms in the equation.
(If a thermocouple is present, the true temperature is given
by tw, the value far away from the point of attachment ).

(2) To predict the error ty — te involved for a proposed. experi-
ment when the surface temperature t, and the other terms are
egtimated.

Remarks

In comnection with the application of the equation for steady-—
state temperature distribution to the determination of the thermocouple
error, 1t may be remarked that in any installation of a thermocouple the
thermal error can be made small if the following precautions are
observed:

(1) The thermocouple leads should be brought out on the side of the
plate where the unit thermal convective conductance over the leads will
be a minimum.

(2) The thermocouple leads should be well insulated thermally down
to the point of contact with the plate.

(3) The thermocouple leads should be made of metals having low thermal
conductivities.

(4) The thermocouple leads should be of small-dismeter wire.

(5) The thermocouple leads should be embedded in the plate material
if possible.

Also, when a thermocouple is employed to measure plate temperatures
the thermal error will:

(6) Increase with decreasing thickness and decreasing thermal
conductivity of the plate metal.
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(7) Increase with decreasing unit thermal convective conductances
over the plate. '

(8) Increase with increasing unit thermal convective conductance
over the thermocouple leads. ’

STEADY-STATE HEAT TRANSFER IN PIN-FIN PLATES

The question as to the effect of the plate thermal conductivity on the
heat transferred by a pin—fin plate (fig. 6) arises frequently.
Ordinarily, for the case of heat transfer through thin metallic plates,
the resistance of the plate to heat flow can be safely neglected in
calculations, but for pin-fin plates ip which there exists a temperature
distribution along the surface of the plate due to the finite conductivity
of the plate, the plate thermal conductivity (or thickness) can be of
importance.

Steady—State Heat—Transfer Equations for Limiting Plate
Thermal Conductivities

Heat flow from the hot fluid at temperature T into the plate can
be thought of as following two parallel paths into %he plate; one
through the pin fins into the plate, and the other from the hot fluid
into the nonpinned portion of the plate.

In the plate two limiting conditions of plate thermsl conductivity
are possible which will affect the heat flow through the pin—fin plate.
If the plate thermal conductivity parallel to the surface is postulated
to be infinite, the temperature of the pin bases and of the nonpinned
section of the plate must be equal because no temperature gradients could
exist parallel to the surface. The other limiting condition is
encountered when the plate thermal conductivity parallel to the surface
is zero. In this case the pin base temperature, t;, in the sketch
accompanying equation (32), would be independent of and, in general,
different from the temperature, tn in the same gketch, of the non-

pinned section of the plate because no heat would be able to flow
from one section of the plate to another. For hoth limiting cases
the heat may be considered to leave the plate by two parallel paths
gimilar to those by which it entered.

The accompanying sketch presents the thermal circuit for a pin-fin
plate of infinite thermsl conductivity in the direction parallel to the
surface. The equation giving the heat rate through this plate
(equation (31)) can be obtained in the same mammer as the equation for
the current in an analogous electrical circuit can be obtained.
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1
1 1
Iy oy A :
p-Au
: Q= 2 (ry -7,) (31)
——%tplate 1 + 1
f f
noy + plAu noy + PgAu
1 1
iy K;
T2

Similarly the following sketch gives the thermal circuit for zero—
plate thermal conductivity parallel to the plate surface, and equation (32)
gives the heat rate for this condition.

1
1 1
o B as gt s (- ) ()
tm t, .fPlAu * fpgAu noy + nay
1 1
a3 o
i . ,

The statement that the thermal conductivity of the plate normal to
the plate surface is infinite, whereas that parallel to the surface is
zero, finite,or infinite,is a type of idealization that is often
necessary in obtalning mathematical solutions. Postulation of infinite
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thermal conductivity normal to the surface is an acceptable idealization
because the thermal convective resistances on either side of the plate

are large compared wlth the thermal resistance of the plate in the direction
normal to its surface. It will be seen later that the case of infinite
plate thermal conductivity usually approximates the heat rate through a
pin—fin plate closely enough to permit use of equation (31), whereas the
case of zero thermal conductivity parallel to the surface is an idealiza—
tion which is mever applicable to metallic plates.-

It is clear that calculation of the heat—transfer rates by equations (31)
and (32) will yield two limiting values of heat rate between which the
heat rate for a plate with finite conductivity must fall.

Finite Thermal Conductivity of Plate

In order to determine the effect of finite-plate thermal con—
ductivity or thickness on heat—transfer rates, an analysis of the heat
flow through a pin-fin plate with infinite thermal conductivity in
the direction normal to its surface but with a finite value in the
direction parallel to the plate surface will be made.

The analysis can be made in the following manner: Heat flow into
the pin base,

apin = @ (1~ ty) (33)

Heat flow Into the unpinned plate,

plate ~ fplAu<T1 - tq) (34)

Heat flow into the plate with n pins,
q = fplAu(Tl - ty) + nﬂl(Tl - tb) - 4y (35)

where qp 1is the decrease in heat flow from the hot fluid to the exposed
surface of the plate due to its rise in temperature attributable to the
presence of the pins.

The equations defining heat flow and temperature distribution in
the plate are linear homogeneous differential equations so the temperature
fields and the heat transfer due to each fin are additive. Thus the
heat~transfer decrease (q, from equation (35)) is the sum of the
effects of the individual pins.
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The effect of a single pin is

-]
94ecrease =f ?‘ﬂ'fp (t — ) dr (36)
. Ty 1
but
t — t, = CoK (\/Er)
therefore
r Kl (\/EI'S> .
G (37)
Q4ecrease = E“fpl ET 37

The effect of n pins is

onmr  f. - CoK- (/B
9 = nﬁrsl:/;EK( rs) | , (38)

Thus the heat transferred by the pin—fin plate is

EmrrsfplCEKl (VEI'S)
/B

q = fplAu('rl - tm) + n“l("l —_ ’cb) - (39)

The term Cp can be determined, as before, by making a heat
balance on the pin—fin base. When one pin in the plate is considered,
the following can be written:

Heet transferred into the pin base by the pin,

q = aq (1 = tp) (%0)

Heat transferred from the pin base by the opposite pin (or, for
an unpinned surface, the heat transferred by the flat plate directly
under the pin base),

a, = aolty = ™) )
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Heat transferred from the pin bage into the surrounding plate,

dt d
dplate = —XA (a;) = —k2srgb ar CEKQ(Vééﬂ (k2)
r=rgy r=rg
or
dplate = E“TSbKCQVEKl(VEfs) (43)

When a heat balance is made the following equation is obtained:

o (ry - tb) + ae(?g - tb)

Cp = (4h)
2ﬂrsbk/3K1<ﬂﬁ¥g
When 02 is substituted into equation (39), there is obtained
nfp, [%1(71 ~ ) + o7 - tb%J
- (¥5)
f, +f
P P,

[

Determination of the pin base temperature t, will allow calcula—
tion of . The temperature of the base of a pin fin can be considered
as the sum of the temperature that the base would have with no pins on
the plate te  plus the temperature increase due to the pin covering the
base and the effects of all other pins.

For in--line equidistant pins (shown in the following sketch)
utilization of the fact that the four quadrants surrounding any one
fin ere symmetrical gives '
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ty = t, + CoKo(fry) + 4y %O(al/ﬁ) + Ko (aB) + X, (326)
+ Ko(ba/B) + ... + Ko(VBRa) + Ko(2BBa) + Ko(3/ERa) + ...
P [Ko(@a) + Eoe59)« .. Eo(fT0a) + ... + Ko(/FFe)
+ Ko YTTP) + ]} (46)

The terms in the series
represent the temperature increase
of the pin base due to the
temperature increments of all
other pins. This series is for
equidistant in—line pins but
other series for any symmetrical
pin arrangements -can easily be

O O O O O
g@géfg/@
wﬁ@gy O

3a obtained. It should be noted
* (:) §Z§ that the number of pins in an
> actual pin-fin plate has no
ca éé? QCSQ; i bearing on the number of terms in
,*_<:> 42) the series but that the series
(& should, in any case, be calculated
a

for an infinite number of pins
<:> <:> <:>- (see the following discussion).
' Fortunately the series converges
F—a—4 rapidly and the number of terms
given in equation (46) will be
Pin—fin spacing. gsufficient for most applications.

>
OO O 0O OO

Inssrting the value of Cp, which contains the base temperature 1y,
and rearranging results in

G [Eﬂrs'bkc/EK (iBr) ]

a1Ty + UpTo — tb(ﬁl + ag)

= Ko (/Ers> + 4%0 (aﬂ??) + Ky (2& \/Ff)
+ KO(3al/§> + Ko<hallﬁ) Foee. + Kd(@a) + J (L7)

vhich may be solved for ty. Substitution of ty in equation (45) then
gives the heat rate for a pin—fin plate with a finite value of plate
conductivity.
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Discussion

When conditions exist in a pin—fin plate which promote heat flow in
the plate radially to or from the pin bases, the decrease in heat trans—
ferred due to the finite thermal conductivity of the plate metal may be
appreciable. Figure 7 shows the effect of plate thermal conductivity kp
for a pin—fin plate chosen to magnify the effect.

From this figure it can be seen that if the pin—fin plate were made
of Inconel (kp = 7 Btu/(hr)(sq £t)(°F/ft)) 0.025-inch thick, the heat
transferred would be about 20 percent less than that for a pin—fin plate
of infinite conductivity, whereas a pin—fin plate of copper 0.025-inch
thick would transfer about 2 percent less than the plate of infinite
conductivity.

Tt can be seen from equations (13) and (18) that the thermal con—
ductivity of the plate always appears in the product (bky,). For this
reason whatever is stated concerning the effect of change of thermal
conductivity on the heat flow through pin—fin plates also applies o
the effect of change of plate thickneass.

The mathematical analysis of the pin—fin plate has been written
for a finite area and number of pins even though at one point it was
necessary to consider the plate as infinite in extent. The Justifica—
" tion for this procedure can be found in the following reasoning.

If one imagines the accompanying
figure to be a section of an infinite
pin—fin plate, it can be stated that
no heat flows in the plate across the
midline AB because the tendency

for flow in the two directions is
equal. This is equivalent to stating
that the plate is cut at this line
and the cut edges are perfectly
insulated. The temperature dis—
tribution and the heat flow in both
sections would be unaltered by the
change. Similar reasoning for

other lines will produce an isolated
gection (with insulated edges) of
the infinite pin—fin plate in

which the temperature and heat transfer
are unchanged from that of a plate

B of infinite extent.

O O

O OO OO0
00 O
O
O OO OO
O OO OO
O OO OO0
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Remarks

The following remarks apply to the second application of the
equation for steady-state temperature distribution:

1. In most cases it is possible to calculate the heat~transfer rate of
pin—fin plates by assuming the plate thermal conductivity to be
infinite.

2. Thin pin—=fin plates of low thermal conductivity should be analyzed
by the method presented if it is to be established that they do not
appreciably decrease the heat—transfer rate below that which could
be obtained by a plate of infinite conductivity.

DETERMINATION OF STEADY—STATE CORRECTION FACTORS FOR HEAT METERS

The heat meter (references 1 and 2) allows the determination of heat
flow through the meter by measurement of the temperature drop through the

thermal resistance of the meter. Although the thermal resistance of the
meter is made as small as possible, it nevertheless adds resistance to
the thermal circuit to which it 1s applied, thus altering the heat rate
that this thermal circuit would have in the absence of the meter. TFor
this reason it is necessary to apply & correction factor to the heat
rate through the meter to obtain the heat rate the thermal circuit
would have in the absence of the meter. This correction factor is
defined as the ratio of the heat rate through the plate in the absence
of the meter to the actual heat rate through the meter (that is,
measured by the meter). When the notation given in the following
flgure is used, the correction factor is qO/Qm‘

Methods of correction have been presented in references 1 and 2.
These corrections, however, have postulated that the heat flows only in
the direction normal to the plate and meter surfaces (that is, that
there exists no heat flow "around" the meter). This postulate is
closely realized in the meter but, due to the high thermal conductivity

NN (L)

T,
PE P
Heat-flow lines in a heat meter. Heat meter shown with zero

thermal conductivity parallel to surface so that heat-flow
lines are parallel therein.
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of metals, is in error when applied to the metal plate covered by the

heat meter. If, for example, the meter is on the hot side of the

- plate, more heat will flow into the plate than into the meter due to its
insulating effect. Part of the heat which flowed into the exposed

plate will then flow in the plate parallel to its surface into the

section under the meter because of the lower temperature of this section

- produced by the insulating property of the meter. Conversely, if

the meter is on the cold side of the plate, heat will flow from the sectim
under the meter into the surrounding plate. It is clear then that a
correction to the measurement of heat rate by the meter which will include
the effect produced by the heat that flows through the surface and then
around the meter is desirable.

In order to obtain a solution it will be necessary to define the
system by the following postulates. :

(1) The heat meter is circular.

(2) The thermal conductivity of the heat meter is zero in the
direction parallel to its surface.

(3) Thermal conductivity of the metal plate is infinite in the
direction normal to its surface.

(4) Fluid temperatures and unit thermal conductances are uniform
over the plate and meter surfaces. (Unit thermal conductances
over the plate and meter may differ. )

Two solutions for the correction factor for the meter will be
obtained. The first solution will require an additional postulate that
the thermal conductivity of the plate metal under the meter is infinite
(that is, there are no temperature gradients in the plate under the
meter). The second solution, which will be more difficult to use but
will approach the actual system more closely, will be based only on
postulates (1) to (4), or, in other words, the temperature distribution
under the meter will be considered a variable in the second solution.

The analyses will consider the heat meter to be placed on the side
of the plate for which the variables are denoted by the subscript 1.
First Solution

The heat that flows through a flat plate subjected to fluids of
different temperature on either side is

90 = Tp tn(1 - te) (48)
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If a heat meter is now attached to the plate, the heat that flows
through the meter is given by equation (1k)

ap = (71 — %) (%9)

where tg is the temperature of the portion of the metal directly under—
neath the meter (which is considered uniform for this first solution
(see following figure)). Also

EL L S + R

L 0
o Tnfp ¥ Kmhy = C (50)

When

(1-ty) = (1 —tw) + (- to)

and it is obgerved that the system is the same as the one for which the
general solution (equation (13)) was obtained, the temperature distribu—
tion in the metal surrounding the meter can be represented by

w = b = CoKo(fBr)

o
|

ot
f

and at r = Ty,

ct

8
|
C'-
H

8 —02K6<yﬁré>

The value of C, is determined by means of a heat balance on the
portion of the plate directly under the meter which hag been previously
obtained in the derivation of equation (18)., The values of a; and Ol
are given in table I under systesm 3.

_______—_______~ligffierature distribution in the plate ™
// <}

|
)
, s T
b | f P i
f
! = i P1
2 ! | : S
1 e %k = »| fp2
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Thus the value of qp is

Im = (11<T1 — b)) — alcho(JBrs) - (51)

When the heat rate through the plate when the meter is absent

(qo from equation (48)) is divided by the heat rate through the meter
(g from equation (51)) the correction factor by which the heat—
transfer rate indicated by the heat meter must be multiplied is

fpfm@l ~ to) (52)

r001('“1 — tw) + 0Ty - t"")]KO (‘/Er9>

o F;
OL1(T1 ~ te) — £
Xo

recalling that

(Brg) (o + ap) + 2rrgbic/fEy (fBry)

This equation can be rewritten as

fplAm

or as

ai(al - fpl/Tpg> (53)
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1+ A + 1
)
g e (54)
G 11+ L, 1
Tp,fm  fplu

Enrsbky@ Kﬁ_Qﬂirs

5 (e
thermal resistances in specific portions of the thermal circult.

and the terms % and §§K; are the

where A\ =

Because most heat meters are square, it is necessary to determine
gsome equivalent source radius rg. This radius can be calculated by setting
the meter area equal to the area of an equivalent circle and defining rg -

as (see accompanying sketch)

= (55)

Ts =
Pl - ~ \\\
Ve ~N
7 N
/7 Ay
g /\\
4 .
/ Equivalent circls \
/
, 4f7 \
! — \
/ gn-uu)ru( g v '90 \
i Ny \
| i‘\ g
' ) & 2y \
< 6 3
| Vi ;| l
l ¢ 3/ 1
. =, ’
\ g k4
N /3 /
\ S Y - !
\ - /
\ /
/
\\ Thermopile section /
/
\\ Y,
N 7
AN
~ /
N
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Equation (54) can be used to show the effects of the two limiting
values of the plate thermal conductivity parallel to the surface (that
is, k=0 and k =),

For the use of zero thermsl conductivity parallel to the plate
surface, the value of A 1is zero, and equation (54) reduces to

1
= +Ach+r
Po

PT‘!U,

= +
a0 Tn

E-l- +
q =
Con Tp Am

(56)

-

+§1—
1 "oy

H

1

Thus, for this case the correction factor is the ratio of the

thermal resistance LL-+ . , which the heat overcomes when flowing

from the hot fluid through the meter and plate to the cold fluid, to

1 + 7 L which the heat overcomes when flowing
1Am o
from the hot fluid through the plate to the cold fluid without the meter

in place.

that resistance <
fP

This result is the same as that given by equation (10) of reference 1
in which case the flow around the meter was postulated to be zero (thet
is, k 1in the direction parallel to the surface is zero). A slight
difference, however, exlsts between equation (56) and equation (lO) of
reference 1 in that the thermal resistance of the plate perpendicular to
the surface 1s not Included in equation (56). The difference introduced
by this omission is negligible for metellic plates but equation (56) can
be made to include thls resistance by defining a new term fp ¥ which
can be calculated from 2

wio

1.1,
F Y~ F

and can be used in the equations in place of fp .
2

If the other limiting value of the plate thermal conductivity
parallel to the surface, k equals infinity, is used, then equation (54)
becomes .

(57)
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A 1
99 a1 ay
e |
Tpim  TpyPm
1 &
= + — + R Ay
fn o Kn C
= (58)
1
f
Py

The correction factor for this case can be interpreted as the ratio

of the resistance to heat flow éiy from the hot fluld through the meter

and then into the plate, to the thermal resistance from the

hot fluid directly into the plate without the meter in place.

Table IT presents values of q,/q, obtained from equations (54),

(56), and (58) for zero, finite, and infinite thermal conductivity of
the plate to which the heat meter is attached.

Second Solution

A solution more closely approximating the actual heat flow conditions
can be obtained by including the temperature distribution parallel to the
surface in the metal under the meter. Thus if the thermal conductivity
of the plate is postulated finite in the directlion parallel to the plate
surface, the following equations which give the temperature distribution
for the plate can be written.

Temperature distribution

Teo
)‘/'/ P

Equation (62)

Equation (64) ‘ Equation (6k4)
tmm/‘/ r
& v ‘ N n ' b
| i il , l Hot

} | Cold
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The temperature digbribution in the plate under the meter is
given by the following equation (see equation (11)) when O <r <rp

t = ooy = G115 (l/B}lx) + CKp (Jﬁl‘nr) (59)

and, similarly, for the temperature distribution in the plate not
covered by the meter when rp< r<ow

t — twp = 0T, (Vﬁ‘pr) + CptKy (l/%r) (60)
where
- fm + fp 1
iy 7 (sg Tt)

f + £

Pl Dy 1
B, = £
P bk (sq ft)
1 1 o] 1

= =— 4 = 4+ R,A

To o Fp, O Btu/(ar)(se £6)(°F)
A area over which contact resistance R, applies, square feet

B heat meter thickness, feet

t°°m temperature which section of plate under meter would attaln if
thermal conductivity of plate parallel to plate surface were zero,
or, the equivalent, temperature which plate would attain if meter
were infinite in extent. Defined as

fm'rl + ngTE

" £y +

O

t

3

Po

te  temperature which plate would attain if heat meter were absent;

fPlTl + fP2T2
t, = , °F
b fp + T
1 By
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At r = 0 it is necessary that the heat flow parallel to the plate
surface be zero, that is:

a(2) <o
dr:r*:O

or

@,

r=0
Differentiating equation (59),

dt

dr

It

FzorTy (Bax) — Cp Bk (=) (61)

for r = 0, g’% 0, and I, (/Emr) = 0, but KXj (ﬁi&;r) = o; therefore Cp

must be zero. Thus equation (59) becomes

t - tw_ = CTo (VD) (62)

At v = it is necessary that t, the temperature of the plate,
be equal to t, ; consequently, (%t — tmp) =0 at r=w, Thugs at r = w

equation (60) ggves

& =t = C1'Tg (Bor) + C2'Ky ({Fpr) =0 (63)

At r = w, Tg (‘/{%x) = w; therefore the constant Cp% must be zero. As a
result, equation (60) becomes

t = %o, = Op"Ko (fBpx) (64)
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Two remaining boundary conditions can be stated. First, the
temperatures given by equations (62) and (64) must be equal at r = ry.

AN
]

01 To (Bt + tw = Cp'Ko (VBprm) + oo (65)

Secondly, at r = ry equations (62) and (64) must give the same heat
flow parallel to the plate surface or, stated mathematically, the
derivatives of the equations with respect to length r must be equal.

Thus at r = T

Cq (BT, (@r@ = —Co* /B Ky (\/;'3; rm> | | (66)

The heat that flows through the thermopile section (radius rs) of
the heat meter is

]

Am

f " et (b - 1) v (67)
0

writing

il

t = o= (b= twy) + (te, = Ty) (68)

equation (67) becomes
2 Ts
Q= nrg fm<t@m - Tl) + 2rfyCq o rIO(WQg> dr

anmClrsIl(Jﬁﬁrs)
VB

(69)

2 -
ey ﬁm(twm Tl) +

Solving equations (65)and (66) for the constent €, and inserting
its value in equation (69), there results for Ay the equation



_ 2
4y = T fm<t9m - Tl) +

In the absence of the meter, the heat g

enfyrsIp Gﬁ;rs> i toop = oo,
'wEZ JE&:&.(MiﬁrmDKk)(VEErm)
IO Gﬁ;?hb VﬁiKa_(ﬂigrm) ]

(ares of plate covered by thermopile section of heat meter) is

The correction ratio is thus

2 -
qO = T[I' fp_'L(t o Tl>

that would flow through the same area mr 2

iy
2nfyrsly (Byry) i teo =t ]
ﬁl;l. mm rm
To (Frm) + ﬁll (\I‘/: Kl>(\/_(r 13 )

(70)

(71)

(72)

ct

2GHT °*ON NI VOVN
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Noting that
t =T £, + 1
- 1 ) Pl P2 ) EE
— £ +f B
tmp T Do m

do
a;v= - B - (73)

>
' \/érs & (‘Eﬂrﬂ) -

g

VPuIy (Jg_mrnb Ko (vfg l"m)
VB (Bpen)

IOQAgkﬁJ +

Table IT presents correction factors calculated by means of
equations (53), (56), (58), and (73) for the particular system pictured
in the table. The heat-meter correction factors presented in the first
three columng are for the case in which the meter is placed 'on one side
of the plate (the side with high f_), and the remaining three columns
present the results for the case when the meter is on the opposite side
of the plate (the side with low - fp).

Tt can be observed from the results presented in table IT that the
heat-meter correction factors are considerably larger when the meter is
placed on the side with the higher fp (that is, lowest thermal
resistance). The importence of the location of the meter is thus
apparent. A comperison of the results for the case in which the plate
thermal conductivity is 100 reveals that the two methods of solution
yield approximately the same value of qo/qm. This is especially so
when the correction ratio is less than 1.3. Of course the applicability
of the heat-mester is gquestionable when the ratio is larger than 1.3.

Tt should be noted that the example chosen here is one that will
magnify the range of correction factors obtained by the various equations
and that these factors are larger than those ordinarily encountered.

It will be noticed that the plate thermal conductivity and the
plate thickness always appear in the product b, Thug i1f it is said
that the correction factor increases with increasing plate conductivity,
it may also be said that it increases with the plate thickness in the
same proportion.
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-

The second solution (equation (73)) shows that the larger the value
of vy, the smaller will be the correction factor which will approach the
value given by equation (56) as a limit, as =r  1s increased. This
fact has led to the use of guard rings of the same thickness and
material around the heat meters.

In actual application the unit thermal conductance may vary along
the meter surface because the meter acts as a flat plate in an air
stream (see figure on page 15 of reference 2). The guard rings
mentioned are useful in minimizing this variation.

Remarks

The following remarks apply to the third application of the
equation for steady—state temperabure distribution:

1. Two equations ((53) and (73)) have been derived which are useful in
the estimation of heat-meter correction factors which include
consideration of heat flow around the meter.

2, The use of the second, more exact equation (73) is not warranted
except for the case of large correction factors (say, qo/qm_> 1.5).

3. Table IT indicates the importance of the location of the heat meter.
It is apparent that the meter should be located on the side of the
plats with the highest thermal resistance (lowest unit thermal
convective conductancs).

Lk, Tgble II also shows the effect of variation of the thermal con—
ductivity of the plate on this correction factor. Tor the case in
which the thermal resistance of the plate in the direction normal
to its surface is small (that is, metallic plates), these results also
show the effect of thickness of the plate on which the meter is
mounted.

5. Equations (53) and (73) indicate the advisebility of placing a guard
ring around the meter.

Department of Engineering
University of California
Berkeley, Calif., August 17, 194k
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APPENDIX

The notations used for Bessel®s functions by various authors differ
with the result that there is some confusion in their use. A table of.
equivalence of symbols for Bessell's functions is given in reference 3
(p. 64). The modified Bessel function of the second kind v order

(X%y(x)) wused in this report is equal to %ﬂiv+lﬂy(l)(ix) where H&(l)(ix)

is the Hankel function given in Jahnke and Emde (reference 6).

The equations presented in this report have been written where
possible so that the Bessel functions appear (or can appear) as the
K4 (x)

1

ratio
Kq(x)

. From the foregoing discussion it can be seen that,

nKl(x) ) ——Hl(l)(ix)
Ko(x) -

or in other words it is unnecessary to convert the Hankel functions to

) O K(x)
Begsel functions when the ratio KBTET is used.

The following spproximations (reference 3) will be useful for small
values of the argument x.
For 0 < x<0.05

Ko(x) ¥ -logg(}) — 0.577
and when O < x < 0.05
Kl(x) = ;li

( Ky (x)
Figure 8 gives the variation of KECET as a function of x.



36

NACA TN No. 1h52

REFERENCES

. Martinelli, R. C., Morrin, E. H., and Boelter, L. M. K,: An

Investigation of Aircraft Heaters. V — Theory and Use of Heat
Meters for the Measurement of Rates of Heat Transfer Which Are
Independent of Time. NACA ARR, Dec. 1942,

. Boelter, L. M. K., Poppendiek, H., and Gier, J. T.: An Investigation

of Aircraft Heaters. XVII — Experimental Inguiry into Steady
State Unidirectional Heat-Meter Corrections. NACA ARR No. 4HO9,
194%,

Von Ka’rmafn, Theodore, and Biot, Maurice A.: Mathematical Methods
in Engineering. McGraw-Hill Book Co., Inc., 1940, ch. IT.

Boelter, L. M. K., Martinelli, R. C., Romie, F. E., and Morrin, E. H.:
An Investigation of Aircraft Heaters. XVIII — A Design Manual for
Exhaust Gas and Air Heat Fxchangers. NACA ARR No. 5A06, 1945,

McAdams,-Williem H.: Heat Transmission. Second ed., McGraw-Hill
Book Co., Inc., 1942,

Jahnke, E., and ®mde, F.: Tables of Functions with Formulae and
Curves. Dover Publications, 1943, p. 236.

BIBLIOGRAPHY

Gray, A.,Mathews, G. B., and Macrobert, T. M.: Bessel Functions.
Macmillan and Co. (London), 1921.

Sherwood, T. K., and Reed, C. E.: Applied Mathematics in Chemical
Engineering. McGraw-H1l1l Book Co., Inc., 1931, ch. V.

Boelter, L. M. K., Cherry, V. H., and Johnson, H. A.: Heat
Transfer Notes., Third ed., Univ. of Calif. Press
(Berkeley), July 1942, ch II.



NACA TN No. 1452

VALUES OF a,

TABLE T

a.2,ANDrB

FOR VARIOUS SYSTEMS

37

RNo. System a Qn Tqy
Single pin fin
£.P
1 ¥ ory | (F1P1kAy X tanh |\=LdT, nrs2fp2 Shown
Iy . kyhAy
Double pin fin
> F Prigh, 1Py (EoPaiohy foPo
Insulating disk
(heat meter) o 1
nr
8 2
N Tiien) | s
b l £y h K
Bare thermocouple
2 2 2
I \F1Pi kg Ay + VEoP Koy S r® + 7,
21‘1 21'2
Insulated
thermocouple \/fePlklel + \lfePZkQAxg
5 1.1 ,8,34 :\'.rsafp2 \’rl2 + 12
2r C
21‘1
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TABLE II
COMPARISON OF VALUES OF q,/q,,
SyStem A System B
K qn " _ 3"
b=-= £ =20 6= =20 b= f, =206=2=
6, h__ 4 64 fpl 16 | Py | 64
g x % e b1 T N Ire
1
f =3 — "T—"f = 3
r =02121 Py fp=3 Py
ry = 0.0833 it ry, = 0.212 ft ry = 0.0833 ft-
k = 0.1 Btu/(hr)(sq it)(°F/ft) k= 0.1 Btu/(hr)(sq ft) (OF/ft)
K, 0 100 oo 0 100 oo
First
solutionl| 1.10 1.50 1.78 1.10 1.11 1.12
Second 1.40 1.11
solution -

1Values obtained from following equations:

For zero thermal conductivity, equation (56)

For finite thermal conductivity, equation (53)

For infinite thermal conductivity, equation (58)

2Values obtained from equation (73)-



NACA TN No. 1452 ' 39

Source radius rq

Differential annulus

Figure 1.- Source and differential annulus in flat plate.
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Figure 2.- Installation of thermocouple in section of plate.
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Figure 3.- Thermocouple error in a flat plate. bkp = 0.0375 Btu per hour

per OF; Oy << .

fp‘l + fpz, (Btu/(ur)(sq 1t)(°F)) L
02
d L //
|~ Tlg—1 L //
20 /
0I5 // /4% "1
80.
L]
01 st
/ o
005
0
0 000 2000 3000
kf,, Btu?/(hr)CF)(1t3)
(a) No. 28 B. & S. thermocouple leads.
o fpl + fp2, (Btu/(hr)(sq ft)(°F)) 1~
5l ;///
1 //Z/g/ ///
06 I M =
/
02
o 1T
0 1000 2000 3000

ket Btu?/(hr)CF)it3)

(b) No. 18 B. & S. thermocouple leads.
Figure 4.- Thermocouple error in a flat plate. bkp = 0.25 Btu per hour
per °F;
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Figure 5.- Summary of thermocouple error for f,  tipy =20 Btu/(hr)(sq ft)(°F).
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Figure 6.~ Section of pin-fin plate. Pins on one side only.
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Figure 7.- Variation of heat~transfer rate with thermal conductivity
of a pin-fin plate. Number of pins, 144; free unpinned area,
0.951 square feet; pin spacing, 1 inch; ay = 0.14 Btu per hour
per °F,
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Figure 8.~ Plot of ratio as a function of x.
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