NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE
No． 1219

STRESS ANALYSIS BY RECURRENCE FORMULA OF REINFORCED CIRCULAR CYLINDERS UNDER LATERAL LOADS

By John E．Duberg and Joseph Kempner
Langley Memorial Aeronautical Laboratory Langley Field，Va．

NOT TO BE TREN FROM THIS ROOM

过んじA JIBFAKY

Washington

land：
March 1947

HARIONAL ADVESORY COMMTITEE FOR ABROTNUIICS

TECHNICAL NOTE:NO. 1219

SIRESS ANALYSIS BY RECUTRENCE FORMILA OF RETNFORCED

CIRCULAR CYIITNDERS UNDER LATERAL IOADS

By John E. Duberg and Joseph Kempner

SUMMARY

A recurrence formula is developed for the stress analysis of reinforced circular cyindors loaded in the planes of their rings. In contrast to the elementary engineering analysis, deformations of rings and sheet are considered. The recurrence formula in conjunction with appropriate boundary equations can be used to obtain sets of simultaneous lineax algebraic equations. The solutions of these equations enable the stress analyst to find the shear flows and direct stresses in the shoot, as well as the shear forces, axial forces, and bending moments in the rings.

In order to reduce the amount of computation involved in the stress analyais of relatively long reinfoiced cylindors, an epproximate method of analysis is presented. In this method the cylinder under consideration is assumod to be infinitely lonc, and the recurrence formula is treated as a fourth-order fintte-difference equation. It is recommendiod that the spproximate solution be utilized for the stress snalysis of cylinders loadod at rings located two or more bays from external restraints.

INIRODUCTION

Experimental data on stresses in reinforced circular cylinders indicate the inadequacy of the elementary theory of bending and torsion when applied to the relativoly flexible sholl structures used in airframe construction. Several investigators have presented methods for the stress anslysis of cylinders laterally loaded at the reinforcing rings (references 1 to 3). The theory of reference 1, developec only for the case of a one bey cylinder, involves the assumption that stringer strains can be entirely neglecited and, consequentily, leads to inaccurate results. The more precise theory of references 2 and 3, developed for cantileverod cylinders having identical bays, beccmes tedious and unwleldy when extended to nonuniform cylinders.

The present paper contains the development of a general recurrence formula suitable for the stress analysis of cylinders that may be nonuniform in construction, arbitrarily supported at the boundaries, and arbitrarily loaded in the planes of the reinforcing rings. The development is based upon tho maintenance of continuity of deformation between the ringes and sholi. In any particular problom the recurrence formala together with appropriate boundary equations are used to obtain sete of almultsnoous linear equations for the corrections to the streases given by the elementary theory. (For a cantilevered uniform cyinider the results obtained in this manner are identical with those obtained by tho mothod of reference 2 or 3.)

If a cylinder is composed of meny bays, as in convontional fuselago conetruction, the number of simultanopus equations requiring consideration may bo prohibitive. For a wufform cylindor, however, good approximations to the corroction strossos can be obtained if the cylinder is assumed to be infinitely long. The recurience formula for this case is solved as a hcmocenoous finito difference equation of the fourth order and yields a relatively simple solution. For practical purposes this solution can be applied to arbitrarily supportod cylindors providod the lokds are located a few bays from external restraints. When tho recurrence formula, together with tise boundary equations presented, is applied to a cantilevered uniform cylinder discussed in reference 3, good agreement is obtained among the recurrence-formula solution, differenceequation solution, and experimental stresses.

SYMBOIS
$A=\frac{R^{6} t^{\prime}}{I I^{3}}$
$B=\frac{E t^{\prime} R^{2}}{G t L^{2}}$
C function of ring loadine
$D_{n}=\frac{s\left(\beta_{n}-1\right)}{\gamma_{n}{ }^{2}}$
E Young's modulus
G shear modulus
H axial force in ring
I moment of inertia of crose section
I length of bay
M bending moment
$M_{c} \quad$ concentrated ring bending moment
P radial load
Q atatio moment about noutral axis of crose-sectional area lying between extreme fiber and plane under consideration
R radius of cyInder ana ring
T tangential load on ring
V Bhear force
$a, b \quad F o u r i e r$ coefficients in Fourier expansions of q
c distance from neutral axis
$1, k$ general numbers of bay or ring
m deaignation of root bay
n generel number of Fourier coefficient
q. ghear flow in skin
t thickness of akin
*. effective sheet thickness, that is, thickess of alI material carrying bending streases in cylinder if uniformiy distributed around perimeter
u, v, w axial, tengential, and radial displacements of points on cylinder
x, y, z axfal, tangential, and radial soordinatos of cylindor
a arbitrary constent of integration

$$
\beta_{n}=3+\frac{n^{2}+3 B}{3 A \gamma}
$$

$$
\gamma_{n}=-2+\frac{n^{2}-6 B}{12 A \gamma}
$$

$$
\gamma=\frac{1}{n^{2}\left(n^{2}-1\right)^{2}}
$$

λ, μ, v. constants dependent upon bay lengths
$\rho_{n}=\frac{1}{2} \cosh ^{-1}\left[\frac{\beta_{n}-1}{2}-\sqrt{\left(\frac{\beta_{n}+1}{2}\right)^{2}-\gamma_{n}^{2}}\right]$

$$
\sigma \quad \text { longitudinal direct stress in akin }
$$

$$
\varphi \quad \text { angular coordinate of point on cylinder }
$$

$$
\psi_{n}=\frac{1}{2} \cosh ^{-1}\left[\frac{\beta_{n}-1}{2}+\sqrt{\left(\frac{\beta_{n}+1}{2}\right)^{2}-\gamma_{n}^{2}}\right]
$$

$$
X_{n}=\frac{1}{2} \cos ^{-1}\left[\frac{\beta_{n}-1}{2} \cdot \sqrt{\left(\frac{\beta_{n}+1}{2}\right)^{2}-\gamma_{n}^{2}}\right]
$$

Subscripts:

R	rigid
m	moment
r	radial
t	tangential

SMRESS ANALYSIS OF REINFORCED CYLINDERS

Inadequacy of Elementary Theory

The elementery engineering theory for bending and torsion of reinforced cylinders loaded at the ring reinforcements yields tine woll-known formules Mc/I for direct bending atress, VQ/It for shear stress due to bending, and T/2At for shear stress due to torsion (where T and A are the torque on croes section and the area inclosed by perimeter of cross section, respectively). This simple theory is based upon the assumption that radial diaplacements of both ringe and sheat can be neglected. Since the dimensions of most ricnocorue structures are such that radial displacements of the structiral camponenta cannot be ignored without appreciable inaccuracies is the re日ults of anslysia, the elementary theory must be modified $\$ 0 \mathrm{~GB}$ not onfy to satisfy the laws of statics but also to msintain continuity between rings and sheet. The preaent development, cocsequently, is directed towards finding self-өquilibreting atrese diatributions that, when superimposed upon the elementary streas distributions, Jield results which, in addition to satiafying the laws of statics, preserve the continuity of the gtructure. These correction atreases are found from the recurrence formula that is developed herein.

Basic Assumptions of Present Theory

In the development of the recurrence formula that can be used to obtain the degired stress corrections, several simplifying assumptions are made. That part of the sheet area which is considered to resfat normal stresses is added to the atringer area and the combination is uniformly distributed about the periphery of the cylinier. Mhis resulting combination is an effective sheet thickness $t^{\prime \prime}$ that resists normal stresses. The actual sheet area is considened capable of supporting only shear stresses. It then follow that within a bay the shear stresses vary in the circumferential direction but are constant in the longituéinal direction. Inextensional deformition of ringe and sheet is also asaumed, and Poisson's ratio is considered to be zero.

Development of Recurrence Formula

Procedure. - For the skin of any bay 1 of the structure (see figs. I and 2), the corrections to the elementary sheer flow, direct stress, axial dieplacement, and radial displacement are
each expressed as Fourier series with undetermined Fourier coefficients. Through static, elastic, and geometric considorations of rings and sheet, a recurrence formula is obtained relating the Fourier coefficient of the shear flow of any bay it with the coefIfcients of the two bays on each side of bay i, that is, bays $1+1$ and $1+2$ and bays $1-1$ and $1-2$. From the recurrence formula, aimultaneous equations may bo obtained from which the values of the shear-flow coefficients are determined. With tiese values the loads and stressos in the rings and sheet can be found.

Sheot gtresseg and deformationg. - The system of coordinate axes to te used. is shown in figurios 1 and 2. Positive displacements in x^{-}, J^{-}, and z-directions are desienated u, v, and w, respectively. For convenience, the extermal loading on the reinforcing rings of a crilindon is considered to be either symetrical or antidermeticical about $\varphi=0^{\circ}$. (Soo figa. I and 2.) In accordance with the bustic esaumptions the corrections to the elementary shear flow, direct atreas, axial dtsplacement, and radial displacoment ai any point $\left(x_{i}, \varphi\right)$ in bay i can be expressed for symotrical loading as the Fourior expandions

$$
\begin{gather*}
q_{i}(\varphi)=\sum_{n=2}^{\infty} a_{\operatorname{in}} \sin n \varphi \tag{1a}\\
\sigma_{i}\left(x_{1}, \varphi\right)=\sum_{n=2}^{\infty} \sigma_{i n}\left(x_{i}\right) \cos n \varphi \tag{Ib}\\
u_{i}\left(x_{i}, \varphi\right)=\sum_{n=2}^{\infty} u_{\ln }\left(x_{i}\right) \cos n \varphi \tag{1c}\\
w_{i}\left(x_{i}, \varphi\right)=\sum_{n=2}^{\infty} w_{\ln \left(x_{1}\right) \cos n \varphi}^{\infty} \tag{1d}
\end{gather*}
$$

reapectirely, in which $a_{i n}, \sigma_{\operatorname{In}}\left(x_{1}\right), u_{i n}\left(x_{i}\right)$, ana $W_{\text {in }}\left(x_{1}\right)$, are Fourier coefficients. Inasmach as oniy corrections to the elementary strosses and displacements are desired, Fourier terms corresponding to $n=0$ and $n=1$ are omitied aince they comespond to tho elementary stress and displacemont distributions . ;

If antiaymmetrical loading is considered, t?e hamonic functions in equations (1) are replaced.by thoir cofinctions. It is then convenient to designate the Fourier coefficient of the shear flow by $b_{\text {in }}$.

Relationships amons sheet stresses and deformations.- Within any bay 1 the following rolationships axist (fig. 2): by the: equilibrim equation

$$
\begin{equation*}
\therefore \therefore \therefore \quad \therefore t^{*} \frac{\partial \sigma_{1}\left(x_{i}, \varphi\right)}{\partial x_{1}}+\frac{1}{R} \frac{\partial q_{1}(\varphi)}{\partial \varphi}=0 \tag{2a}
\end{equation*}
$$

by Hooke's law for direct strëss

$$
\sigma_{i}\left(x_{1}, \varphi\right)=E \frac{\partial u_{i}\left(x_{1}, Q\right)}{\partial x_{1}} \therefore \therefore \because \quad \therefore \cdots \because(2 b)
$$

'by Hooke's law for' ahear' stress.

$$
\frac{q_{1}(\varphi)}{G t_{i}}=\frac{1}{R} \frac{\partial u_{i}\left(x_{1}, \varphi\right)}{\partial \dot{ }}+\frac{\partial v_{1}\left(x_{1}, \varphi\right)}{\partial x_{i}} \quad \therefore \quad \therefore \quad \text { (2c) }
$$

and by the inextensional deformation equation (p. 208 of reference 4)

$$
\begin{equation*}
\therefore \frac{\partial r_{1}\left(x_{j} ; \varphi\right)}{\partial \varphi}-w_{i}\left(x_{i} ; \varphi\right)=0 \tag{2a}
\end{equation*}
$$

where

$t_{i} \quad$ actual skin thickness of bay \pm
t_{1} effective skin thickness of bay i
$R \quad$ radius of cylinder
F Young's modulus
G shear modulus
$\nabla_{i}\left(x_{1}, \varphi\right)$ circumferential displacement of any point in bay i
If equations (la) and (Ib) are substituted into equation (2a) and if coefficients of like cosine terms are equated, the following expression for the Fourier coefficient $\sigma_{\ln }\left(x_{i}\right)$ is obtained:

$$
\frac{\partial \sigma_{i n}\left(x_{1}\right)}{\partial x_{i}}=-\frac{n}{R t_{1}^{\prime}} a_{i n}
$$

Integration of this equation yields

$$
\begin{equation*}
\sigma_{1 n}\left(x_{1}\right)=-\frac{n x_{1}}{R t_{1}^{\prime}} a_{1 n}+\sigma_{1 n}(0) \tag{3}
\end{equation*}
$$

In which $\sigma_{1 n}(0)$ is the direct-stress Fourier coefficient at $x_{1}=0$.
Simflarly, elimination of $\sigma_{\text {in }}\left(x_{1}\right)$ from equations (Ib), (Ic), (2 b), and (3) and subsequent integration gives

$$
\begin{equation*}
u_{i n}\left(x_{1}\right)=-\frac{n x_{1}^{2}}{2 E R t_{i}^{\prime}} a_{i n}+\frac{x_{1}}{E} \sigma_{i n}(0)+u_{i n}(0) \tag{4}
\end{equation*}
$$

in which $u_{i n}(0)$ is the axial diaplacoment coefficient at $x_{1}=0$.

$$
\begin{aligned}
& \text { Slimination of } v_{i}\left(x_{1}, \varphi\right) \text { from equations (2c) and (2d) yielde } \\
& \qquad \frac{\partial W_{1}\left(x_{1}, \varphi\right)}{\partial x_{i}}=\frac{1}{G t_{i}} \frac{\partial q_{i}(\varphi)}{\partial \varphi}-\frac{1}{R} \frac{\partial^{2} u_{1}\left(x_{1}, \varphi\right)}{\partial \varphi^{2}}
\end{aligned}
$$

Substitution of equations (la), (1c), (1d), and (4) Into this relationship and integration yields the following expression for the radial displacement coefficient:
$w_{i n}\left(x_{1}\right)=\frac{n x_{1}}{G t_{i}} a_{i n}-\frac{n^{3} x_{1}^{3}}{6 E_{1}^{2} t_{i}^{\prime}} a_{i n}+\frac{n^{2} x_{1}{ }^{2}}{2 W_{i n}} \sigma_{i n}(0)+\frac{n^{2} x_{i}}{R} u_{i n}(0)+w_{i n}(0)$

In which $w_{\text {in }}(0)$ is the radial displacement coefficient of the sheot of bay i at $x_{i}=0$.

Appropriate changes of the subscripts i in equations (3) to (5) permit the application of the equations to each bay of the structure.

Ring deformations.- The radial displacement at any point φ of a gymotrically loaded circular ring can be expressed as the Fourier expansion (see pp. 208 and 209 of reference 4)

$$
\left[v_{1}(\varphi)\right]_{\text {ring }}=\sum_{n=2}^{\infty}\left(w_{i n}\right)_{r i n g} \cos n \varphi
$$

It can be shown by the method of virtual work (pp. 209 and 210 of reference 4) that for inextensional deformation the radial displacement coefficient $\left(W_{i n}\right)_{\text {ring }}$ for a ring of radius R and
constant moment of inertia I_{1}. that is loaded by the shear flows in bays 1 and 1-1 and by an arbitrary net of symmetrically applied external forces is (fig. 1)

$$
\begin{equation*}
\left(w_{i n}\right)_{\operatorname{lng}}=\frac{R^{4}}{E I_{i}} \frac{a_{1 n}-a_{1-1, n}}{n\left(n^{2} \cdots I\right)^{2}}+C_{\ln } \tag{6}
\end{equation*}
$$

In equation (6) the first expression on the rigint-hard aide represents the part of the radial diaplacement coefficient due to tho correction shears only, whereas the second expression represents the part of the displacement coefficient due to the extornal loading and the elemontary shears. Values of $C_{\text {in }}$ aro given later for partioular losdings. (Soe oquations (23).)

Continuity relationehips.- The following oxpressions can be obtained from continuity considerations of the rings and sheot of bays i-1., i, and $1+1$ (fig. 1):

$$
\begin{align*}
\sigma_{1-1, n}\left(I_{1-1}\right) & =\sigma_{1 n}(0) \\
\sigma_{1 n}\left(I_{1}\right) & =\sigma_{i+1, n}(0) \\
u_{i-1, n}\left(I_{1-1}\right) & =u_{1 n}(0) \tag{9}\\
u_{i n}\left(I_{i}\right) & =u_{i+1, n}(0) \tag{10}
\end{align*}
$$

$$
\left.\begin{array}{rl}
w_{i-1, n}(0) & =\left(w_{i-1, n}\right)_{\text {rins }} \\
w_{i-1, n}\left(I_{i-1}\right) & =\left(w_{i n}\right)_{\text {ring }} \\
w_{i n}(0) & =\left(w_{i n}\right)_{\text {ring }} \\
w_{i n}\left(I_{1}\right) & =\left(w_{i+1, n}\right)_{\text {rinB }} \\
w_{i+1, n}(0) & =\left(w_{i+1, n}\right)_{\text {rin } B} \tag{13}\\
\\
w_{i+1, n}\left(I_{i+1}\right) & =\left(w_{i+2, n}\right)_{\text {ring }}
\end{array}\right\}
$$

Equations (7) to (10) are conditions of continuity of σ and u across the boundaries between bays $1-1$ and i ard between baye 1 and 1+1. Equations (11) to (13) state that the radial deformations of the rings bounding bays $1-\mathrm{l}$, i, and $i+1$ are equal to the sheet deformations or these bays at the rings. Implicit in equations (11) to (13) is a statement of the continuity or W of the cylinder across the boundaries between bays.

Recurrence formula.- Substitution of the expreasions for $\sigma_{\text {in }}\left(x_{1}\right), u_{i n}\left(x_{i}\right), \quad w_{i n}\left(x_{1}\right)$, and $\left(v_{i n}\right)_{\text {rins }}$ (equations (3) to (6), respectively) in the continulty relationships (equations (7) to (13)) yields the followis seven aimultaneous equations in which $n=2,3,4, \ldots$

$$
\begin{align*}
& \sigma_{i n}(0)-\sigma_{i-1, n}(0)+\frac{n J_{i-1}}{R t_{i-1}} a_{i-1, n}=0 \\
& \sigma_{i+1, n}(0)-\sigma_{i n}(0)+\frac{n I_{i}}{R t_{i}^{\prime}} a_{i n}=0 \\
& u_{i n}(0)-u_{i-1, n}(0)+\frac{n \Psi_{i-1}^{2}}{2 E R t_{1-1}^{\prime}} a_{1-1, n}-\frac{I_{1-1}}{E} \sigma_{i-1, n}(0)=0 \\
& u_{i+1, n}(0)-u_{i n}(0)+\frac{n I_{i}^{2}}{2 I_{i n}^{\prime} a_{i n}}-\frac{I_{1}}{E} \alpha_{I n}(0)=0 \\
& \frac{R^{4}}{E I_{1}} \frac{a_{i n}-a_{1-1, n}}{n\left(n^{2}-1\right)^{2}}+c_{i n}=\frac{n L_{i-1}}{G t_{i-1}} a_{i-1, n}-\frac{n^{3} I_{1-1}{ }^{3}}{6 E R^{2} t_{1-1}{ }_{1-1, n}} \\
& +\frac{n^{2} L_{1-1}}{2 E R} \sigma_{1-1, n}(0)+\frac{n^{2} I_{i-1}}{R} u_{1-1, n}(0) \\
& +\frac{R^{4}}{E I_{1-1}} \frac{a_{i-1, n}-a_{i-2, n}}{n\left(n^{2}-1\right)^{2}}+c_{i-1, n} \tag{14}\\
& \frac{R^{4}}{E I_{1+1}} \frac{a_{1+1, n}-a_{1 n}}{n\left(n^{2}-1\right)^{2}}+c_{1+1, n}=\frac{n I_{1}}{G t_{1}} a_{i n}-\frac{n^{3} L_{1}^{3}}{6 R_{1}^{2} t_{1}^{\prime}} a_{i n} \\
& +\frac{n^{2} J_{1}{ }^{2}}{2 I R} \sigma_{1 n}(0)+\frac{n^{2} I_{1}}{R} u_{1 n}(0)+\frac{R^{4}}{E I_{1}} \frac{a_{i n}-a_{i-1, n}}{n\left(n^{2}-1\right)^{2}}+c_{i n} \\
& \frac{R^{4}}{E I_{1+2}} \frac{a_{i+2, n}-a_{1+1, n}}{n\left(n^{2}-1\right)^{2}}+c_{i+2, n}=\frac{n I_{1+1}}{G t_{i+1}} a_{i+1, n}-\frac{n^{3} L_{i+1}{ }^{3}}{6 E R^{2} t_{i+1}^{1}} a_{1+1, n} \\
& +\frac{n^{2} I_{1+1}}{2 X} a_{i+1, n}(0)+\frac{n^{2} I_{i+1}}{R} u_{1+1, n}(0) \\
& +\frac{R^{4}}{E I_{i+1}} \frac{a_{1+1, n}-a_{1 n}}{n\left(n^{2}-1\right)^{2}}+C_{1+1, n}
\end{align*}
$$

If the six quantities $\sigma_{i-1, n}(0), \sigma_{i n}(0), \sigma_{1+1, n}(0)$, $u_{i-1, n}(0), u_{i n}(0)$, and $u_{i+1, n}(0)$ are eliminated from the seven expressions of equations (14), the following recurrence formula relating the Fourier coofficients a of five successive bays is obteined:
$-a_{i-2, n}\left(\frac{v_{1}}{I_{I-1}}\right)+a_{i-1, n}\left[\frac{v_{1}}{I_{i-1}}\left(1+\frac{I_{1-1}}{I_{i}}+\frac{6 B_{1-1}-n^{2}}{6 A_{i-1} \gamma}\right)+\frac{v_{2}}{I_{1}}\right]$
$-a_{i n}\left[\frac{v_{1}}{I_{i}}+\frac{v_{2}}{I_{i}}\left(I+\frac{I_{i}}{I_{i+1}}+\frac{6_{i}-n^{2}}{6 A_{i} \gamma}\right)+\frac{v_{3}}{I_{i+1}}+\frac{v_{4} n^{2}}{2 I_{i} A_{1} \gamma}\right]$
$+a_{i+1, n}\left[\frac{v_{E}}{I_{i+1}}+\frac{v_{3}}{I_{i+1}}\left(1+\frac{I_{i+1}}{I_{i+2}}+\frac{U_{i+1}-n^{2}}{6 A_{i+1} \gamma}\right)\right]-a_{i+2, n}\left(\frac{v_{3}}{I_{i+c}}\right)$
$=-\left[v_{1} c_{i-1, n}-\left(v_{1}+v_{2}\right) c_{i n}+\left(v_{2}+v_{3}\right) c_{i+1, n}-v_{3} c_{i+2, n}\right]_{R^{4} n \gamma}$

In which

$$
\begin{aligned}
& v_{1}=\frac{I}{I_{i-1}}\left(\frac{I_{i-1}}{I_{i}}+\frac{I_{1-1}}{I_{1+1}}\right) \\
& v_{2}=\frac{1}{I_{i}^{2}}\left(\frac{I_{1}}{I_{1+1}}+\frac{I_{1-1}}{I_{i+1}}+1\right) \\
& v_{3}=\frac{1}{I_{1+1}}\left(\frac{L_{1-1}}{I_{i}}+1\right)
\end{aligned}
$$

$$
\begin{aligned}
& v_{4}=\frac{1}{I_{1}^{2}}\left(\frac{I_{1}}{I_{1+1}}+\frac{I_{1-1}}{I_{i+1}}+\frac{I_{1-I}}{I_{1}} \div 1\right) \\
& A_{1}=\frac{R^{C_{t}}{ }_{1}}{I_{1} I_{1}^{3}} \\
& B_{1}=\frac{E t_{1}{ }_{1} R^{2}}{G t_{1} I_{1}^{2}} \\
& \gamma=\frac{I}{n^{2}\left(n^{2}-I\right)^{2}}
\end{aligned}
$$

If the cylinder is of uniform construction, equation (15) can be considerably simplified and reduces to

$$
\begin{align*}
a_{1-2, n} & +2 \gamma_{n} a_{1-1, n}+\varepsilon \beta_{n} a_{i n}+2 \gamma_{n} a_{i+1, n}+a_{1+2, n} \\
& =\left(c_{1-1, n}-3 C_{i n}+3 C_{i+1, n}-C_{1+2, n}\right) \frac{R I}{R_{n} \gamma} \tag{16}
\end{align*}
$$

In which

$$
\begin{aligned}
& \gamma_{n}=-2+\frac{n^{2}-6 B}{12 A \gamma} \\
& \beta_{n}=3+\frac{n^{2}+3 B}{3 A \gamma}
\end{aligned}
$$

The recurrence formulas (15) and (16) relate the nth shearflow coefficient of bay 1 , with the corresponding coefficients of the two bays on each side of biy i. One equation similar to equation (15) or equation (16) can consequently be written for each bay of a cylinder, provided that at least two bays exist on each side of this bay. For antisymetrical loading, equations (15) and (16) can be applied if the Fourier coefficients a are replaced by the coefficients b.

Boundary Equations

Since the recurrence formula applies only to a bay having two bays on each side, incomplete or boundery equations must be found for each of the two bays at each boundary. Boundary equations, consequently, are presented for bays m and $m-1$ for a cylinder fixed. at the right of bay m and for bays 0 and 1 for a cylinder free at the loft end of bay 0. (Eee fig. 3.) By suitable combinations of the boumdary equations and by proper manipulation of the subscripts, these equations can be used for the analysis or cylinders fixed at both ends, uncestrainod at both ende, or urrestrained at one end and fixed at the other end.

Procedure for deriving boundary oquations; - The general recurrence formula was derived by combining the equations for $\sigma_{\text {in }}\left(x_{2}\right)$, $u_{i n}\left(x_{1}\right), w_{\text {in }}\left(x_{1}\right)$, and ($\left.w_{\text {in }}\right)_{\text {ring }}$ (equations (3) to (6)) with the general. continutty conditions (equations (7) to (13)) and then eliminating ali Fourior coefficients except the a's. In the derivation of the boundary equations; the defining equations (3) to (6) are combined in a similiar fashion with (I) all of the continuity conditions (equations (7) to (13)) that do not include quentities In nonexistant bays or rings and (2) the boundary conditions.

Thus, Ior clamped edges (see fig. 3) the boundary equation for bay m is obteined by combining equations (3) to (6) with the continuity conditions

$$
\begin{aligned}
\sigma_{m-1, n}\left(I_{m-1}\right) & =\sigma_{m}(0) \\
u_{m-I, n}\left(I_{m}-1\right) & =u_{m}(0) \\
w_{m-1, n}(0) & =\left(w_{m-1, n}\right)_{\text {ring }}
\end{aligned}
$$

$$
\begin{aligned}
w_{m-1, n}\left(I_{m-1}\right) & =\left(\tilde{w}_{m n}\right)_{r i n m} \\
w_{m n}(0) & =\left(w_{m n}\right)_{r+n g}
\end{aligned}
$$

and the boundary conditions

$$
\begin{aligned}
& w_{\operatorname{mn}}\left(I_{m}\right)=0 \\
& u_{\operatorname{mn}}\left(I_{m}\right)=0
\end{aligned}
$$

afd"then elfmating aij the fourier coefflcients expept the a's.
Boundary equations for fixed ond. - If the focedoing procedure is followed, the boundary equation for bay m (fig. 3) is found to be

$$
\therefore a_{m-2, n}\left(\frac{\mu_{1}}{I_{m-1}}\right)+a_{m-1, n}\left[\frac{\mu_{1}}{I_{m-1}}\left(I+\frac{I_{m-1}}{I_{m}}+\frac{6 B_{m-1}-n^{2}}{6 A_{m-1}}\right)+\frac{\mu_{2}}{I_{m}}\right]
$$

$$
\therefore-a_{m n}\left[\frac{\mu_{1}}{I_{m}}+\frac{\mu_{E}}{I_{m}}\left(1+\frac{6 B_{m}-n^{2}}{6 A_{m} \gamma}\right)+\frac{\mu_{3} n^{2}}{2 I_{m} A_{m} \gamma}\right]
$$

$$
\begin{equation*}
=-\left[\mu_{1} C_{m-1, n}-\left(\mu_{1}+\mu_{2}\right) c_{m n}\right]_{R} \frac{E}{4_{n \gamma}} \tag{17}
\end{equation*}
$$

in which

$$
\begin{aligned}
& \mu_{1}=\frac{I}{I_{m-1}{ }^{2}} \\
& \mu_{2}=\frac{1}{I_{m}^{2}}\left(\frac{2}{I_{m}} \frac{I_{m-1}}{}+1\right) \\
& \mu_{3}=\frac{I}{I_{m}^{2}}\left(\frac{I_{m}}{I_{m-1}}+1\right)
\end{aligned}
$$

and similarly for bay m-l
$-a_{m-3, n}\left(\frac{\mu_{4}}{I_{m-2}}\right)+a_{m-2, n}\left[\frac{\mu_{4}}{I_{m-2}}\left(I+\frac{I_{m-2}}{I_{m-1}}+\frac{6 B_{m-2}-n^{2}}{6 A_{m-2} \gamma}\right)+\frac{\mu_{5}}{I_{m-1}}\right]$
$\sim a_{m-1}\left[\frac{\mu_{4}}{I_{m-1}}+\frac{\mu_{5}}{I_{m-1}}\left(1+\frac{I_{m-1}}{I_{m}}+\frac{6 B_{m-1}-n^{2}}{6 A_{m-1} \gamma}\right)+\frac{\mu_{6}}{I_{m}}+\frac{\mu_{7} n^{2}}{2 I_{m-1} A_{m-1} \gamma}\right]$

$$
+a_{m}\left[\frac{\mu_{5}}{I_{m}}+\frac{\mu_{6}}{I_{m}}\left(1+\frac{6 B_{m}-n^{2}}{6 A_{m} \gamma}\right)\right]=-\left[\mu_{4} C_{m-2, n}-\left(\mu_{4}+\mu_{5}\right) C_{m-1, n}\right.
$$

$$
\begin{equation*}
\left.+\left(\mu_{5}+\mu_{6}\right)^{C_{m}}\right]_{R} \frac{E}{4_{n}} \tag{18}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu_{4}=\frac{1}{I_{m-2} 2}\left(\frac{I_{m-2}}{I_{m-1}}+\frac{I_{m-2}}{I_{m}}\right) \\
& \mu_{5}=\frac{1}{I_{m-1}}\left(\frac{I_{m-1}}{I_{m}}+\frac{I_{m-2}}{I_{m}}+1\right) \\
& \mu_{6}=\frac{1}{I_{m}^{2}}\left(\frac{I_{m-2}}{I_{m-1}}+1\right) \\
& \mu_{7}=\frac{I}{I_{m-1}}{ }^{2}\left(\frac{I_{m-1}}{I_{m}}+\frac{I_{m-2}}{I_{m}}+\frac{I_{m-2}}{I_{m n}}+1\right)
\end{aligned}
$$

For cylinders of uniform construction the fixed-end boundary equations (17) and (1.8) for bays m and $m-1$, respectively, reduce to

$$
\begin{gather*}
a_{m-2, n}+\left(2 \gamma_{n}-1\right) a_{m-1, n}+\left(2 \beta_{n}-2 \gamma_{n}-6\right) a_{m n} \\
=\left(c_{m-1, n}-4 C_{m m}\right) \frac{E I}{R_{n} n_{n}} \\
\therefore \tag{19}\\
a_{m-3, n}+2 \gamma_{n} a_{m-2, n}+2 \beta_{n} a_{m-1, n}+\left(2 \gamma_{n}+1\right) a_{m n} \\
=\left(c_{m-2, n}-3 C_{m-1, n}+3 C_{m n}\right) \frac{E I}{R_{n} n_{n}}
\end{gather*}
$$

For antisymetrical loading the Fourier coefficient e a in equations (17) to (19) are replaced by the corresponding coefficlients b.

In order to apply equations (17) to (19) to the left end of a cylinder, the signs of the shear-flow coefficients must be changed and the subscripts of the various terms altered. If the cylinder of figure 3 is fired at the left of bay 0 , subscripts $m, m-1$, . . are replaced by 0,1, . . ., respoctively, for those terms pertaining to the sheet of the bays and by $1,2, . .$. , respectively, for those terms pertaining to the rings.

Boundary equations for unrestrained end. - The boundary aquatons for the unrestrained end of the cylinder shown in figure 3 are also found by following the procedure outlined. The boundary condition at the free edge is

$$
\sigma_{0 \mathrm{O}}(0)=0
$$

The boundary equation for bay 0 is found to be

$$
\begin{align*}
& a_{0 n}\left[\frac{\lambda_{1}}{I_{0}}\left(I+\frac{I_{0}}{I_{1}}+\frac{6 B_{0}-n^{2}}{6_{A_{0}} \gamma}\right)+\frac{\lambda_{2}}{I_{I}}+\frac{\lambda_{3} n^{2}}{2 I_{0} A_{0} \gamma}\right] \\
& -a_{I n}\left[\frac{\lambda_{I}}{I_{1}}+\frac{\lambda_{2}}{I_{1}}\left(1+\frac{I_{1}}{I_{2}}+\frac{6 B_{I}-n^{2}}{6 A_{1} \gamma}\right)\right]+a_{I_{n}}\left(\frac{\lambda_{2}}{I_{2}}\right) \\
& \quad=-\left[\lambda_{I} C_{0 n}-\left(\lambda_{I}+\lambda_{2}\right) C_{I n}+\lambda_{C_{2} C_{E_{n}}}\right]_{R_{1} I_{n} \gamma}^{I} \tag{20}
\end{align*}
$$

加 which

$$
\begin{aligned}
& \lambda_{1}=\frac{I}{I_{0} I_{1}} \\
& \lambda_{E}=\frac{1}{I_{1}^{2}} \\
& \lambda_{3}=\frac{I}{I_{0}^{2}}\left(\frac{I_{0}}{I_{I}}+1\right)
\end{aligned}
$$

Similarly, the boundary equation for bay I is
$-a_{0 n}\left(\frac{\lambda_{2}}{I_{1}}-\frac{\lambda_{5} n^{2}}{\varepsilon I_{0} A_{0} \gamma}\right)+a_{1 n}\left[\frac{\lambda_{2}}{I_{1}}\left(1+\frac{\dot{I}_{1}}{I_{2}}+\frac{6 B_{1}-n^{2}}{6 A_{1} \gamma}\right)+\frac{\lambda_{4}}{I_{2}}+\frac{\lambda_{6} n^{2}}{\delta I_{1} A_{1} \gamma}\right]$
$-a_{2 n}\left[\frac{\lambda_{2}}{I_{2}}+\frac{\lambda_{4}}{I_{2}}\left(1+\frac{I_{2}}{I_{3}}+\frac{6 B_{2}-n^{2}}{6 A_{c} \gamma}\right)\right]+a_{3 n}\left(\frac{\lambda_{4}}{I_{y}}\right)$

$$
\begin{equation*}
=-\left[\lambda_{2} c_{l_{n}}-\left(\lambda_{2}+\lambda_{4}\right) c_{2 n}+\lambda_{4} c_{3 n}\right]_{R^{\prime!} n \gamma} \frac{\pi}{} \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda_{4}=\frac{I}{I_{1} I_{2}} \\
& \lambda_{5}=\frac{I}{I_{0}^{2}}\left(\frac{I_{2}}{I_{1}}+I\right) \\
& \lambda_{6}=\frac{I}{I_{1}^{2}}\left(\frac{I_{2}}{I_{1}}+1\right)
\end{aligned}
$$

For cylinders of uniform construction the unrestrained-end boundery equations (20) and (21) for bays 0 and I, reapectively, are

$$
\left.\begin{array}{l}
\left(2 \gamma_{n}+2 \beta_{n}+I\right) a_{0 n}+\left(2 \gamma_{n}+I\right) a_{2 n}+a_{2 n}=-\left(c_{0 n}-2 c_{2 n}+c_{2 n}\right) \frac{E I}{R_{n}}{ }^{4 n} \tag{22}\\
2 \gamma_{n} a_{0 n}+2 \beta_{n} a_{2 n}+2 \gamma_{n} a_{2 n}+a_{3 n}=\left(c_{0 n}-3 c_{I n}+3 c_{2 n}-c_{3 n}\right) \frac{E I}{R_{n \gamma}}
\end{array}\right\}
$$

For antisymetrical loading the coefficients a are replaced by b in equations (20) to (22). In order to apply equations (20) to (22) to the right end of a cylinder, the aigns of the shearflow coefficiente must be changed and the eubecripts of the various terms suitably altered.

Special boundary equations.- The boundary equations developed are auttable for cylinders having four or more bays. For the special case of the center bay of a three bay cylinder, the boundary equation, which depends upon the concitions at both boundaries, can also be found by means of the general procedure proviously outined. The boundery equations for cylinders of one or two bays can be bimilarly derived.

Application of Recurrence Formula and Boundary Equations

Specific loadings.- As mentioned previously, the stress analysis of a reinforced cylinder arbitrarily loaded in the planes of the rings can be carried out conveniently if the stresses caused by the as-metric and antigymotric componente of the extermal forces are suitably combined. Further simplification of the analysis is obtained if the loadings are resolved into concentrated radal forces, concentrated tangential forces, and concentrated bending moments. For each ring loaded at $\varphi=0^{\circ}$ (seo fig. 4) the load function $C_{\text {in }}$, obtained in the derivation of equation (6) for ($\left.\mathrm{w}_{\text {in }}\right)_{\text {ring' }}$ for a concentrated radial force, a concontrated tangential force, and a concentrated bending momont are, respectively,

$$
\begin{align*}
& C_{r_{i n}}=\frac{P_{i} n}{\pi R} \frac{R^{4} n \gamma}{E I_{i}} \\
& C_{t_{i n}}=\frac{T_{i}}{\pi R} \frac{R^{4} n \gamma}{E I_{i}} \tag{23}\\
& C_{m_{f n}}=-\frac{M_{c_{i}}\left(n^{2}-1\right)}{\pi R^{2}} \frac{R^{4} n \gamma}{R I_{i}}
\end{align*}
$$

where P, T, and M_{c} ere the symetrical radial load, the antisymmetrical tangential load, and the antisymetrical bending-moment load, respectively, acting on any ring 1 at $\varphi=0^{\circ}$.

Simultenoous equations.- A typical set of oquations applicable to a centilevered uniform cylinder with six bays (m=5 in fig. 3) if presented in teble 1 . The first two and last two rows wore obtained from the unrestrained-end and fixed-ond boudary rolationships of equations (2c) and (19), respectivoly, end tho intermediate rows were obtained from the recurronce formula of oquation (16). For a nonuniform cyllnder these exproegions are replaced by those of equations (20), (:II), (18), (I7), and (15). It is to be noted that the coofficiente of the unknown a's and b 's are indopendent of $c_{\text {in }}$ (load term of oquations (23));
consequently, numerical solution of the equations (reference 5) for various loadings is greatly facilitated. A sot of similtaneous linear equations similar to that of table l must be solved for each n-value chosen. The number of n-values required depends upon the desired accuracy. The Fourier coefficients obtained for a given load P, T, ox M_{c} at $\varphi=0^{\circ}$ can be used to determine
the coefficionta for aimilar loads at any other value of φ since the z-axis (Iig. 2) can be chosen to coincide with any radius.

Stressee and loade in cylinder.- After the coefficjents a and \bar{b} are computed, substitution in the formulas (AI) to (A4) - presented. In appendix A onables the atreas analyst to compute the shear flow in the actual sheet, tho direct stress in the fictitious sheet, and the moments, shoars, and axial forcos in the rings. The stresses due to loads acting at several ringa and at various values of ϕ can be superimposed to give the stressos caused by these loads acting simultanoously,

APRROXIMATE NEHIHOD OF ANALYSTS BY SOLUIION
 OF FINTIE DIEFFRENCE EQUATION

Difference-Equation Solution for Infinitely Long Cylinders

Equation (15) referred to previously as a génoral recurrence formula is also a fourth-order finfte difforence equation with variable coefficients. Since the variable coefficients prohibit the solution of this oquation in closed form, only the solution of the equation that pertains to a uniform cylinder is discussed herein. A general procedure for solving the fourth-order finite difference equation with constant coofificients (see equation (16)) is presented in reference 6. Whon the right-hand side of equation (16) is set equal to zero, the followine honogeneous equation is obtained:

$$
\begin{equation*}
a_{i-2, n}+\varepsilon \gamma_{n} a_{i-1, n}+2 \beta_{n} a_{i n}+\varepsilon \gamma_{n} a_{i+1, n}+a_{i+\varepsilon, n}=0 \tag{24}
\end{equation*}
$$

From reference 6, the general solution of this homogoneous equation consists of the followlig six indopenaent solutions: for
$D_{n}=2 \frac{\left(\beta_{n}-1\right)}{\gamma_{n}^{2}}>1$ and $\gamma_{n}<0$

$$
\begin{align*}
a_{i n}= & e^{-\psi_{n} k}\left(\alpha_{\ln } \cos k X_{n}+\alpha_{2 n} \sin k X_{n}\right) \\
& +\theta^{\psi_{n} k}\left(\alpha_{3 n} \cos k X_{n}+\alpha_{4 n} \sin k X_{n}\right) \tag{25a}
\end{align*}
$$

for $D_{n}>I$ and $\gamma_{n}>0$

$$
\begin{align*}
a_{1 n}= & (-1)^{k_{e}}{ }^{-\psi_{n}^{k}}\left(\alpha_{1 n} \cos k^{r} X_{n}+\alpha_{n_{n}} \sin k X_{n}\right) \\
& +(-1)^{k} e^{\psi_{n} k}\left(\alpha_{3 n} \cos k X_{n}+\alpha_{4_{n}} \sin k^{\prime} X_{n}\right) \tag{25b}
\end{align*}
$$

for $D_{n}<1$ and $\gamma_{n 1}<0$

$$
\begin{align*}
a_{i n}= & e^{-\sqrt[k]{n} k}\left(\alpha_{n n} \cosh k \rho_{n}+\alpha_{2 n} \sinh k \rho_{n}\right) \\
& +e^{\psi_{n} k}\left(\alpha_{3 n} \cosh k \rho_{n}+\alpha_{4 n} \sinh k \rho_{n}\right) \tag{25c}
\end{align*}
$$

for $D_{n}<I$ and $\gamma_{n}>0$

$$
\begin{align*}
a_{i n}= & (-1) k_{\theta}^{-4 n_{n}^{k}}\left(\alpha_{1 n} \cosh k \rho_{n}+\alpha_{n n} \sinh k \rho_{n}\right) \\
& +(-1)^{k_{\theta} \psi_{n}^{k}}\left(\alpha_{3 n} \cosh k \rho_{n}+\alpha_{4 n} \sinh k \rho_{n}\right) \tag{25a}
\end{align*}
$$

for $D_{n}=1$ and $\gamma_{n}<0$

$$
\begin{equation*}
a_{i n}=e^{-\psi_{n} k}\left(\alpha_{3 n}+\alpha_{2 n} k\right)+e^{\psi_{n} k}\left(\alpha_{3 n}+\alpha_{4 n} k\right) \tag{250}
\end{equation*}
$$

for $D_{n}=1$ and $\gamma_{n}>0$

$$
a_{i n}=(-1)^{k_{\theta}} \psi_{n}^{k}\left(\alpha_{1 n}+\alpha_{i n} k\right)+(-1)^{k_{\theta}} \psi_{n}^{k}\left(\alpha_{3 n}+\alpha_{4 n} k\right)
$$

in wich

$$
\begin{aligned}
& \Psi_{n}=\frac{1}{2} \cosh ^{-1}\left[\frac{\beta_{n}-1}{2}+\sqrt{\left.\left(\frac{\beta_{n}+1}{2}\right)^{2}-\gamma_{n}^{2}\right]}\right. \\
& x_{n}=\frac{1}{2} \cos ^{-1}\left[\frac{\beta_{n}-1}{2}-\sqrt{\left.\left(\frac{\beta_{n}+1}{2}\right)^{2}-\gamma_{n}^{2}\right]}\right. \\
& \rho_{n}=\frac{1}{2} \cosh ^{-1}\left[\frac{\beta_{n}-1}{2}-\sqrt{\left(\frac{\beta_{n}+1}{2}\right)^{2}-\gamma_{n}^{2}}\right] \\
& k=1=0,1,2 . .
\end{aligned}
$$

and $\alpha_{1 n}, \alpha_{2 n}, \alpha_{3 n}$, and $\alpha_{4 n}$ are arbiturary constants.
The analysis of a uniform cylinder that extends longitudinally to infinity in both directions from a loadod ring is readily carried out with the aid of equations (16), (2.4), and (cis). If the loaded ring is considered to be a boundary between tile two halves of the beam and if no load other than that at the boundary is assumed to act, the difference equation (16) with tho right-hand side set equal to zero applies equally well to uoth parte of the cylinder (seefig. 5); consequently, only one-bulf of the cylinder need be considered in the analysis, Since the difference equation applicable is the homogenoous equation (24), oquations (25) together with the appropriate bondarj conditions are solutions of the present problem.

The diatortions caused by the concentrated load have no effect on the stress distribution in the cylinder at $k=\infty$; therefore, $a_{c o n}=0$. The first term on the right-hand side of each of equations (25) satisfies this condition; howsver, the second term does not satiafy this requirement and, hence, must vanish. The solutions then that are compatible with the boundary condition at infinity are Irom equations (25): for $D_{n}>1$ and $\gamma_{n}<0$

$$
\begin{equation*}
a_{1 n}=e^{-\psi_{n} k}\left(\alpha_{1 n} \cos k \chi_{n}+\alpha_{2 n} \sin k \chi_{n}\right) \tag{26a}
\end{equation*}
$$

for $D_{n}>1$ and $\gamma_{n}>0$

$$
\begin{equation*}
a_{1 n}=(-1)^{k_{e}} \psi_{n} k\left(\alpha_{1 n} \cos k X_{n}+\alpha_{2 n} \sin k \chi_{n}\right) \tag{26b}
\end{equation*}
$$

for $D_{n}<1$ and $\gamma_{n}<0$

$$
\begin{equation*}
a_{1 n}=e^{-\psi_{n} k}\left(\alpha_{I n} \cosh k \rho_{n}+\alpha_{2 n} \sinh k \rho_{n}\right) \tag{c}
\end{equation*}
$$

for $D_{n}<1$ and $\gamma_{n}>0$

$$
a_{i n}=(-1) k^{-\psi_{n} k}\left(\alpha_{1 n} \cosh k \rho_{n}+\alpha_{n n} \sinh k \rho_{n}\right)
$$

for $D_{n}=1$ and $\gamma_{n}<0$

$$
\begin{equation*}
a_{i n}=\theta^{-\psi_{n} k}\left(\alpha_{1 n}+\alpha_{2 n} k\right) \tag{268}
\end{equation*}
$$

for $D_{n}=1$ and $\gamma_{n}>0$

$$
\begin{equation*}
a_{i n}=(-1)^{k_{\theta}-\psi_{n}^{k}}\left(\alpha_{1 n}+\alpha_{2 n} k\right) \tag{26f}
\end{equation*}
$$

From the conditions of symetry about the loaded ring, modification of equation (16) leads to the determination of two boundary equations applicable to the present problem. If the load function at the loaded ring is designated $C_{0 n}$ (see equations (23)) and equation (16) is written for bay 0 , the first boundary equation is

$$
\begin{equation*}
\left(2 \beta_{n}-2 \gamma_{n}\right) a_{0 n}+\left(\varepsilon \gamma_{n}-1\right) a_{1 n}+a_{2 n}=-3 c_{0 n} \frac{B I}{R_{n \gamma}} \tag{27}
\end{equation*}
$$

since $a_{0 n}=a_{-1 n}$ and $a_{\text {In }}=$-a_en . If equation (16) is written for bay 1 , the second boundary equation is seen to be

$$
\begin{equation*}
\left(2 \gamma_{n}-1\right) a_{0 n}+2 \beta_{n} a_{I n}+2 \gamma_{n} a_{2 n}+a_{3 n}=c_{0 n} \frac{m I}{R^{4} n \gamma} \tag{28}
\end{equation*}
$$

since $a_{0 n}={ }^{-a_{-1 n}}$.
The boundary equations (27) and (28) permit the determination of the arbitrary constents $\alpha_{1 n}$ and $\alpha_{2 n}$. For a giren value of n, substitution of the appropriate value for $a_{\text {in }}$ from equations (26) into equations (27) and (28) yields a sot of two simultaneous equations; for example $=$ if $D_{n}>1$ and $\gamma_{n}<0$

$$
\begin{aligned}
& \alpha_{1 n}\left[\left(2 \beta_{n}-2 \gamma_{n}\right)+\left(2 \gamma_{n}-1\right) e^{-\psi_{n}} \cos \chi_{n}+e^{-2 \psi_{n}} \cos 2 \chi_{n}\right] \\
& +\alpha_{2 n}\left[\left(2 \gamma_{n}-1\right) e^{-1 \psi_{n}} \sin \chi_{n}+e^{-2 \psi_{n}} \sin 2 \psi_{n}\right]=-3 c_{0 n} \frac{m I}{R_{n} \gamma_{n}}
\end{aligned}
$$

$$
\begin{equation*}
\alpha_{n n}\left[\left(2 \gamma_{n}-1\right)+2 \beta_{n} e^{-\psi_{n}} \cos X_{n}+2 \gamma_{n} e^{-2 \psi_{n}} \cos 2 X_{n}+e^{-3 \psi_{n}} \cos 3 \chi_{n}\right] \tag{29}
\end{equation*}
$$

$$
+\alpha_{E n}\left(2 \beta_{n} e^{-\psi_{n}} \sin X_{n}+\varepsilon \gamma_{n} e^{-2 \psi_{n}} \sin X_{n}+e^{-\sum \psi_{n}} \sin 3 X_{n}\right)=c_{0 n} \frac{m I}{R_{n} \psi_{n}}
$$

The constants $a_{\text {In }}$ and $\alpha_{n n}$ are obtainod from the solution of these equations. To each value or n there corrosponds one value each for $\alpha_{\text {In }}$ and $\alpha_{n n}$. Since D_{n} and γ_{n} are functions of n as well as the elastic properties of the cyilnder, for a particular cylinder more than one of equations (26) may po required for the determination of all the values of $\alpha_{1 n}$ anc $\sigma_{2 n}$. Wich the values of these constants determinod for each value of n, corresponding ralues of $a_{i n}$ for each bay are obtained from equátions (26).

As in the application of the recurrence formula, $a^{\prime} \mathrm{s}$ correaponding to several harmonics, that is, n varying from 2 to the value that yields the destrod accuracy, must be found. For antisymmetricel loading, a is replaced by b in equations (24) to (29). The values of the coefficients a and b obtainod are substituted in equations (Al), (AC), and (Aly) for tho desired load values. Since the expression for the direct stress in the sheot now involves an infinite sumation alons the cylinder of the shearflow coefficients, simplified formulas for the direct stresses at any ring k are presented in appendix B.

If equations (27) and (28) are replaced by the unrestrained-end boundary equations ($\left(\varepsilon_{\dot{c}}\right)$, with all values of $C_{\text {in }}$ except $C_{0 n}$ sot equal to zero, a tip loaded cyilinder extendin; to infinity in ono direction can be analyzed with a procedure similar to that developed herein.

Application to Finite Cylinders

Whereas a concentrated load causes distortion in the region in the immediate vicinity of the load, for most practical purposes the part of the cylinder a few bays away from the load can be assumed undisturbed. Consequently, if the load is located a sufficiont distance from external rostrainta, the distortions of the cylinder in the region of the load are independent of thase rostraints. If then a uniform cylinder of finite length is to bo analyzed and this cylinder is loaded in a manner such that the load is not in the proximity of an external restraint, the elementax'y stresses and loade are found as usual by considering the cylinder to bo finite, whereas the correctiona may be found by use of the difference-equation method by considering the cylinder to be infintto. Bocatise the effoct of the concentrated load dissipates quite rapidiy, values of a and b are usually of interest only for those bays in the vicinity of the load. The desired forces and moments in this ragion can thon be determined as before from the equations given in appondixes A and B.

Adequacy or Difference-Equation Solution

Although the solution in closed form of the problom of a uniform reinforced circular cylinder is oxsct only fer infinitoly long cylinders symetrical about a loadod ring, comperisons of the finite-difference-equation solution, the recurronco-formula solution, the standard solution (referonce 7), and exporimontal aata for cylinder 2 of reference 3 wore made for a cylinder rixed at one
 cylinder was loadea with a. concentrated radial force at a ring located: two bays" from each' end. \because (See f土e. 6.) Tn figures 7 and 8 curves are given for bending moments in the toaded ring and ajacent rings as yell.as itor the shear flows in the tivo bay adacent to the loaded ring.. Inasmuch as the eylinder contaiff relatively $f \theta$ bays; an axtreme case is representea that fe unikely to be met. in practice. The more bays a cylinder has the more closely it approximates an infinite cylinder for wich the finite-differenceequation solution is exact; consequentiy, the goo ageoment show in figures 7 and 8 amons the finite-difisorencequation solution, the recurrence-formula solution and experinental data indicates. that the: simplified solution ie quite adequate.

Advantages of Difference-Equation Solution
Since airplane fuselages approximatint circilar cylindera are composed of a relatively. large number of baya for mót practical cases, the eimplified solution should be a goca approximation to that obtained by the use of the recurrence formula. As mentioned previously, when the recurrence formula is applied, sets of simultaneous equations containing as many unkows as there are bays in the structure must be solved for each n-value required. For structures having many bays the amount of computations involved may be prohibitive; however, no such computations are involved when use is made of the infinite-cylinder solution. In addition, this solution is adaptable to the construction of design charts similar to Wise's charte of reference 7. The analysis of any long uniform cylinder is dependent only on the values of the structural parameters A and A / B. For various representative values of these parameters, charts can be constructed from which the analyst can determine desired stress coefficients. For extreme cases, such as a cylinder loaded only one to two bays away from a restraint, the recurrence-formula method is recomended for accurate solutions.

COMTCLUDIFG REMARKS

The recurrence formula developed in the present paper facilitates the stress analysis of circular cylinders loaded in the planes of the reinforcing rings. The cylinders can be composed of bays of different cross sections and lencths and cen be supported by rings having different moments of inertia. The boundary equations presented are applicable to cylinders fixed at both onds, unrestrained at both ends, or unrestrained at one end and fixed at the other end.

For the analysis of cylinders composed of relatively: fer bays, tt"is recommended that the recurrence formula be used to, obtailn sets of simultaneous Iinear algebraic equations. The solutions of these equation lead to an accurate determination of the stresses in the rings:and sheet of the cylinders. The anslysis of cyitinders:composed of many bays, es are semimonocoque fuselages, can more conveniently be acconplished by the solution of the recurrience formula 'as a finite difference equation. . Although the streesees obtainied with this solution are approximetions to the more: accurate stresses found wh the sinultaneatis equatione, for long cylinders the computations involved are conelderably shorter. In adaltion, eince for the three bastic loads the stresses determined by this methou are dependent only upon the stinucturral parameters of the cylinder, charte facilitating the rapid determination of the stresses in reinforced cylinders can be readily constructed.

Langley Memorial Aoronautical Waboratory
National Advisory Committee for Aeronautics Langley Fiold; Va., November 1æ, 2946

APPRIDIX A

FORMULAS FOR LOADS AND SITRESESS IN CIIINDERS

After the coefficients a and b are computed, the shear flow in the actual sheet, the direct stresses in the fictitious sheet, and the bending moments, shears, and axial forces in the rings can be found with the aid of the equations. siven in the appendix of reference 3. For the ake of completeness these equations, with some additions, are presented herein.

Shear Flow
The total shear flow $q_{i}(\varphi)$ in any bay i for any ring loading on a cylinder asn be expressed as

$$
\begin{equation*}
q_{1}(\varphi)=q_{R}+\sum_{n=2}^{\infty} a_{i n} \sin n \varphi+\sum_{n=2}^{\infty} b_{\text {in }} \cos n \varphi \tag{AI}
\end{equation*}
$$

in which q_{R} represente the elementary shear flow calculated on the basis of rigld rings. For a cantilevered cylinder, q_{R} is zero for those bays located between the tip and a loaded ring. For those bays between a loaded ring and the root, the values of. q_{R} for a radial load P, a tangential load T, and a concentrated ring bending moment M_{c}, each applied to ring i at $\varphi=0^{\circ}$, are given in table 2. Positive forces and bending moments are indicated in figure 4. If more than one ring is loaded or if the cyinder is not of cantilever construction, P_{i}, T_{i}, and $M_{C_{1}}$ are replaced by the resultant radial, tangential, and moment load, respectively, acting on a cross section of bay i.

Direct Stress in Skin

For a cantilevered cylinder such as that shown in fisure 3 , If the longitudinal skin stress at ring 0 is asarmed to be zoro, the direct stress at rine i is (see equations (Ib) and (3))
$\sigma_{i}(0, \varphi)=\sigma_{R}-\frac{1}{R} \sum_{n=2}^{\infty}\left(a_{0 n} \frac{I_{0}}{t_{0}^{\prime}}+a_{l n} \frac{I_{1}}{t_{i}^{\prime}}+\ldots+a_{i-1, n} \frac{I_{i-1}}{t_{1-1}^{\prime}}\right) n \cos n \varphi$

$$
+\frac{1}{R} \sum_{n=2}^{\infty}\left(b_{0 n} \frac{I_{0}}{t_{0}^{\prime}}+b_{1 n} \frac{I_{1}}{t_{1}^{\prime}}+\cdots+b_{i-1, n} \frac{I_{1-1}}{t_{i-1}^{\prime}}\right) n \sin n \varphi \quad \text { (AC) }
$$

in which σ_{R} is the atress given by the simple engineoring theory of bending. Since the shear stress is constant in the longitudinal direction within a bay, σ varles linearly between rings.

If the cylinder is rigidly fixed at ring 0 as well as at ring $m+1$, the initial boundary stress $\sum_{n=2}^{\infty} \sigma_{0 n}(0) \cos n \varphi$ (for symmetrical loads) must be added to the dreect stress obtained with equation (A2). The value of the Fourier coefficient $\sigma_{O_{n}}(0)$ is determined for a cylinder having at least three bays from the continuity condition

$$
w_{o n}\left(I_{0}\right)=\left(w_{1 n}\right)_{\text {ring }}
$$

and the boundary conditions

$$
\begin{aligned}
& u_{0 n}(0)=0 \\
& v_{0 n}(0)=0
\end{aligned}
$$

together with the defining equations (5) and (6). The relationship obtained is

$$
\begin{equation*}
\sigma_{O n}(0)=\frac{2 L_{0} A_{0}^{\prime} \gamma}{R t_{0}^{\prime}{ }_{0}}\left[-a_{0 n}\left(1+\frac{6 B_{0}-n^{2}}{6 A_{0}^{\prime} \gamma}\right)+a_{1 n}+\frac{E I_{1}}{R^{4} n \gamma} C_{I n}\right] \tag{A3}
\end{equation*}
$$

in winich

$$
A_{0}^{\prime}=\frac{R^{\sigma_{t}}{ }_{0}}{I_{1} I_{0}{ }^{3}}
$$

For antisymotrical loading, $a_{0 n}$ and $a_{\text {in }}$ are replaced by $b_{o n}$ and $b_{\text {ing }}$ respectively.

Bendina Moments and Forces in Ring
The bendine moments, shear forces, and. arial forces in the reinforcines rings of a cylinder aroitrarily supported at its ends are, respectively,

$$
\begin{equation*}
V_{1}=V_{R}-B \sum_{n=2}^{\infty} \frac{a_{1 n}-a_{i-1, n}}{\left(n^{2}-1\right)} \sin m p-R \sum_{n=2}^{\infty} \frac{b_{\text {in }}-b_{i-1, n}}{\left(n^{2}-1\right)} \cos \text { np } \tag{A4}
\end{equation*}
$$

in which M_{R}, V_{R}, and H_{R} are the bending moment, shear force, and axial force in the rings, respectively, determined on the basis of elementary shear flow in the skin. Positive values of the bending moments and loads in a cylinder are indicated in fifure 4. Formulas for M_{R}, V_{R}; and H_{R} corresponding to a radial load P, a tangential load T, and a concentrated rine bendinz moment M_{c}, each applied to a ring i at $\varphi=0^{\circ}$, are siven in table 2 . For rings not loaded externally, only the series expression in equations (A4) $a r e r e q u i r e d$.

APPENDIX B

DIRECT STRESSES IN INFINITELY LOTT: CYLINDERS

For the determination of the direct stress in the skin of a uniform infinitely long cylinder, equation (AC) can be replaced by

$$
\begin{equation*}
\sigma_{1}(0, \varphi)=\sigma_{R}+\frac{I_{1}}{R t^{\prime}} \sum_{n=2}^{\infty} \sum_{i=\infty}^{k} a_{1: 2} n \cos \operatorname{x\varphi } \tag{BI}
\end{equation*}
$$

or

$$
\sigma_{1}(0, \varphi)=\sigma_{R}+\frac{I}{R t} \sum_{n=c}^{\infty}\left(\sum_{i=0}^{\infty} a_{i n}-\sum_{i=0}^{k-1} a_{i n}\right) n \cos n \varphi
$$

in which only the coefficients $a_{\text {in }}$ axe considered. In these equations, $a_{1}(0, \varphi)$ is the direct stress at $=1 n \mathrm{f} 1=\mathrm{k}$. Curesponging to the six values of $a_{\text {in }}$ firm equations ($c 6$), six solutions for $\sigma_{i}(0, \varphi)$ can be determined is y sumption alone the cylinder. As an illustration of the procedure involved, equatron (cha) is used herein for the value of $a_{\text {sin }}$. Consequently, equation (BC) becomes

$$
\begin{align*}
\sigma_{i}(0, \varphi)= & \sigma_{R}+\frac{I}{R t} \sum_{n=2}^{\infty}\left[\sum_{i=0}^{\infty} e^{-\psi_{n} k}\left(\alpha_{n n} \text { eos } k X_{n}+a_{n n} \sin k \chi_{n}\right)\right. \\
& \left.-\sum_{i=0}^{k-1} e^{-\psi_{n} k}\left(\alpha_{n n} \cos k^{\prime} \chi_{n}+\alpha_{n n} \sin :=\chi_{n}\right)\right] n \cos n \varphi \tag{By}
\end{align*}
$$

The eumations from $i=0$ to $1=\infty$ and $i=0$ to $i=k-1$ are readily accomplished with
the aid of formulas $6.830,6.833$, and 3.01 , numbers 1 and 13 , of reference 8 . The resulting formula for the direct atreas at any ring j fo for $\mathrm{D}_{\mathrm{n}}>1, \gamma_{\mathrm{n}}<0$, and $i=k=0,1, \dot{c}$, . . .

With a procedure analogous to that used for the determination of this equation, the following golutions are obtained for the direct otresses correaponding to the remaining five values of $a_{\text {in }}$: for $D_{n}>1$ and $\gamma_{n}>0$

$$
\begin{align*}
& \text { for } D_{n}<1 \text { and } \gamma_{n}<0 \\
& \sigma_{i}(0, \varphi)=\sigma_{R}+\frac{I}{2 R t} \sum_{n=2}^{\infty} \theta^{-\psi_{n} k} \frac{\alpha_{n n}\left[e^{\psi_{n}} \cosh k \rho_{n}-\cosh (k-1) \rho_{n}\right]+\alpha_{n n}\left[e^{\left.\psi_{n_{n}} \sinh k \rho_{n}-\sinh (k-1) \rho_{n}\right]}\right.}{\cosh \psi_{n}-\cosh \rho_{n}} n \cos n \varphi \tag{B5b}
\end{align*}
$$

for $D_{n}<1$ and $\gamma_{n}>0$.

$$
\sigma_{1}(0, \varphi)=\sigma_{R}+(-1) \frac{k I}{k R t} \sum_{n=2}^{\infty} e^{-y_{n} k} \frac{\alpha_{n n}\left[e^{\varphi_{n}} \operatorname{coshn} k \rho_{n}+\cosh (k-1) \rho_{n}\right]+\alpha_{2 n}\left[e^{\left.\psi_{n} \sinh k \rho_{n}+\sinh (k-1) \rho_{n}\right]}\right.}{\cosh \psi_{n}+\cosh \rho_{n}} \cos n \rho(B 5 c)
$$

for $D_{n}=1$ and $\gamma_{n}<0$

$$
\begin{equation*}
\sigma_{1}(0, \varphi)=\sigma_{R}+\frac{I}{\varepsilon R t} \sum_{n=E}^{\infty} e^{-\psi_{n} k \frac{\alpha_{1 n}\left(e^{\psi_{n}}-1\right)+\alpha_{n n}\left[\xi^{\left(\psi_{n}\right.}-(k-1)\right]}{\operatorname{cosin} \psi_{n}-1}} n \cos n \varphi \tag{B5d}
\end{equation*}
$$

for $D_{n}=1$ and $\gamma_{n}>0$

$$
\sigma_{i}(0, \varphi)=\sigma_{R}+(-1)^{k} \frac{I}{2 R t} \sum_{n=L}^{\infty} e^{-\psi_{n} k} \frac{\alpha_{I n}\left(e^{\psi_{2}}+1\right)+\alpha_{c n}\left[k e^{\psi_{n}}+(k-1)\right]}{\cosh \psi_{n}+1} n \cos n \varphi
$$

If the coefficients $b_{\text {in }}$ are consiacred, $\cos n p$ is replaced by $-s i n n \varphi$ in equations (BI) to (B5).

REFHRRENCES

1. Wignot, J. E., Combs, Fenry, and Ensrud, A. Fe: Anslysis of - Circular Sheli-Supported Frames. NACA ITN NO. 929, 1944.
2. Hoff, N. J.: Stresses in a Reinforced Monocoque Cylinder under Concentrated Symetric Transverse Loads. Jour. Appl: Mech., vol. 11, no. 4, Dec. 1944, pp. A-235-A-239.

3 = Kuhn, Paul, Duberg, John E_{a}, and Griffith, George \mathbb{F}_{s} : The Effect of Concentrated Loads on Flexible Rings in Circular Shells. NACA ARR No. I5H23, 1945:
4. IImoshenko, S.: Theory of Elastic Stability. McGraw-Hill Book Co:, Inc., 1936.
5. Crout, Prescott D.: A Short Method for Evaluating Determinants and Solving Systems of Iinear Equations with Real or Complex Coefficientse Supp. to Flec. Enge, Trans. Section, ATEE, vol. 60, Dec. 1941, pp. 1235-1240. (Abridged as Marchant Methods MM-182, Sept, 1941, Marchant Calculating Machine Co., Oakland, Calif.)
6. Fbner, H., and Köller, Ha: Calcuiation of Load Distribution in Stiffened Gyindrical Shells. NACA TM NO. 866, 1938, pp. 28-30.
7. Wise, Joseph A.: Anslysib of Circular Rings for Monocoque Fuselages. Jour. Aero. Sci., vol. 6, no. 11, Sept. 1939, pp, 460-463.
8. Adams, Edwin P., and Hippisiey, C. B.: Smithsontan Mathematical Formulae and Tables of Elifptic Functions. First reprint, Smithsonian Inst., 1939.

	Iaft-hand side (2)							RAght-heom asido (3).	
(I)	${ }^{\circ} \mathrm{On}$	${ }^{10} 10$	${ }^{2} 2$	${ }^{4} 3$	${ }_{4}^{4}+{ }_{\text {an }}$	0^{3}		\therefore (Lowit torm)	
	$\mathrm{b}_{\text {On }}$	$b_{l n}$	$b_{2 n}$	b_{30}	$b_{\text {ma }}$	$\mathrm{b}_{5 \text { 巩 }}$	Radial	Femomatial	Beniling moment
0	$2 \gamma_{n}+2 \beta_{n}+1$	$27 n+1$	1	---		--m-----------	$-\left(P_{0}-2 P_{1}+P_{2}\right) \frac{n}{x i}$	$-\left(T_{0}-2 r_{1}+r_{2}\right) \frac{1}{x}$	$\left(y_{0}-2 x_{1}+y_{2}\right) \frac{x^{2}-1}{x^{2}}$
1	27_{n}	${ }^{28}$	$2 \gamma_{n}$	1		-nmonmu-n-n	$\left\lvert\, \begin{gathered} \left(P_{0}-3 P_{1}+3 P_{2}-P_{3}\right) \frac{n}{x R} \\ \end{gathered}\right.$	$\left(\begin{array}{c}\left.\mathrm{I}_{0}-\mathrm{FI}_{1}+3 \mathrm{I}_{2}-\mathrm{I}_{3}\right) \frac{\lambda}{\text { d }} \text { (} \\ \end{array}\right.$	$\left(\mu_{0}-3 M_{1}+3 H_{2}-M_{3}\right) \frac{n^{2}-1}{x 1^{2}}$
2	1	$8 \gamma_{n}$	$2 \beta_{n}$	$2 y_{n}$	$\therefore 2$		$\left(P_{1}-3 P_{2}+3 P_{3}-P_{4}\right) \frac{n}{x i}$	$\left(x_{1}-3 x_{2}+3 T_{3}-x_{4}\right) \frac{1}{x R}$	$-\left(M_{1}-3 M_{2}+3 H_{3}-M_{4}\right) \frac{n^{2}-1}{x^{2}}$
3		1	27_{n}	$2 B_{n}$	27	1	$\left(P_{2}-3 P_{3}+3 P_{4}-P_{5}\right) \frac{n}{x R}$	$\left(F_{2}-F_{3}+3 T_{4}-I_{5}\right) \frac{1}{x R}$	$-\left(M_{2}-3 M_{3}+3 H_{4}-N_{5}\right) \frac{n^{2}-1}{J R^{2}}$
4	-	\qquad	2	$2 \gamma_{n}$	${ }^{\text {a }}$. ${ }^{\text {n }}$	$27_{n}+1$	$\left.\dot{\left(P_{3}-9 P_{4}\right.}+3 P_{5}\right) \frac{n}{x / 2}$	$\left(x_{3}-3 r_{x}+3 r_{5}\right) \cdot \frac{1}{2 x}$	$-\left(M_{3}-3 x_{4}+3 x_{5}\right) \frac{n^{2}-1}{x^{2}}$
5	-------..-----	-	\cdots	1.	$27_{n}-1$	$2 \beta_{n}-2 \gamma_{n}-6$	$\left(P_{4}-4 P_{5}\right) \frac{n}{x R}$	$\left(m_{4}-4 m_{y}\right) \cdot \frac{1}{2 R}$	$-\left(x_{4}-4 x_{5}\right) \frac{n^{2}-1}{x x^{2}}$

${ }^{1}$ coofficiente a apply to radial londa; coofficients b to tanemential ar bendingmement loade.
${ }^{2}$ syibale are defined in equation (16).
$3_{\text {symbols are defined in equation (23). }}^{\text {(20 }}$

 CORRESPOMDING TO BASIC RITG LOADIHGS[Sign convention shom in Pig. 4]

MAMTOMAL ADVISCKY
COMADTLEER FOR AEROLANHTICS

Figure 1.- Part of typical cylinder.

Figure 2.- Coordinate system for typical bay.

Figure 3.- Side view of cantilevered cylinder.

Figure 4.- Sign convention used in analysis.

Figure 5.- Loaded part of infinitely long cylinder.

Figure 6.- Side view of cylinder 2 analyzed in reference 3.

Figure 7.- Comparison between calculated and experimental ring-bending moments for cantilevered cylinder.

ruan ingar
con
Figure 8.- Gomparison between calculoted and experimentil skin-shear flows for cantilevereded cylinger.

