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A SIMPLIFIED METHOD OF ELASTIC-STABILITY

ANALYSTS FOE THIN CYLINDRICAL SHELLS

I - DONNELL tS EQUATION

By S. B. Batdorf

SUMMARY

The equation for the equilibrium of cylindrical

shells introduced by Donneli in NACA Report No. 479 to

find the critical stresses of cylinders in torsion is
applied to find critical stresses for cylinders with

simply supported edges under other loading conditions.

it is shown that by this method solutions may be obtained

very easily and the results in each case may be expressed

in terms of two nondimenslonal parameters, one dependent

on the critical stress and the other essentially deter-

mined by the geometry of the cylinder. The influence of

boundary conditions related to edge displacements in the

shell median surface is dLscussed. The acciLracy of the

solutions found is established by comparing them with

previous theoretical solutions and with test results.

The solution_ to a nt_iber of problems concerned with

buckling of cylinders with simply supported edges on the

basi_ of a unified viewpoint are presented in a convenient

form for practical use.

INTR ODUCT ION

The recent emphasis on aircraft designed for very

high speed has resulted in a trend toward thicker skin

and fewer stiffening _lements. As a result of this

trend, a larger fraction of the load is being carried by
the _kin and thus ability to predict accurately the

behavior of the skin under load has become more impor-

tant. Accordingly, it was considered desirable to pro-

vide the designer with mor_ information on the buckling



of curved sheet than has been available in the past. In

carrying out a theoreticsl research program for this pur-

pose, a method of analysis was developed which is believed

to be s_mp]er to apply than those generally appearlni:_ in

the literature. The specific problems solved as a part
of this research program are treated in dcta_l in othor

papers. The purpose of the present investigation, which is

discussed in two papers,ls to present the method of analysis

that was developed to solve these problems. In the present

paper the method is briefly outlined and applied to a mzmber
of the simpler problems in the buckling of cylindrical

shells. In reference i the method is generalized for
application to more complicated problems.

THEORET ICAI, BAC._(GROUND

In most thcoretica! treatments of the buckling of
cylindrical shells (see refe ....,_ _n,_e, _, 2 to 4) three simul-

taneous partial differential equations have been used to

express the relationship between the components of shell
medlan-surface displacemen_ u, v, and w in _.;he

a::lal, circtui_ferential, and radial directions, recpec-

tive!y. No general agreement has been reached, however,
on just what these equations should be. In 1954 Donnell

(refer_mce 5) pointed out that the differences in 1:he

various sets of equations arose from the inclusion or

omission of a num1_er of rel?_,ively unimportant terms

(referred to in the present paper as higher-order terms),

and proposed the use of simp].cr equations in which only

the most essential term,_; (first-order terms) "::ere retained.

The omitted terms were shown to be small, and thus the

simplified equations to be appli_,able, if the cylinders
have thin walls and if the square of the num__er of cir-

cumfcrentia! waves is larFe compared with unity. Donnell

further showed that the three sim.01ifi<d equations can

be transformed into a sin,-zle eighth-order partial dif-

ferential equation in w (see appendix A of the _rescnt

paper) in which the effects of the displacements u

and v are properly taken into account; thi,< equation

wii]. hereinafter be referred to as Donno!l's equ,qtion.

When hishcr-order terms are inc].uded in the throe

partial differential equations previously mcntlonc, d, the

resulting theoretical buckling stresses are u,_:ual!y very
comp].icatcd functions of the cylinder dimensions and tlle
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elastic properties of the material. A family of curves

is ordinarily drawn giving the critical stress as a

function of the length-diameter ratio for specified

values of the radius-thlckness ratio and for given
elastic properties (references 3, 2, and 6). V_hen the

hlgher-order terms are omitted from the equations and

the requirement of an integral number of circumferential

waves is removed, new par_eters can be in_roduced w_ich

combing the cylinder dimensions and material properties

in such a way that the results can be given in tcrms of

a single curve. These parameters have been used, ,_ith

slight variations in detail, by Donnel!, Kromm, Leggett,

and Redshaw (references 5 and 7 to i0). The omission of

the hlgher-order terms also greatly simplifies the cal-

culations, snd the calculations are simplest if Donne!l's
equation, rather than the set of three simultaneous equa-

tions, is employed. Donne!l's equation, or an equivalent

equatior_may therefore be presumed to be the most prom-

ising for use in solving hitherto unsolved problems in

the stability of cylindrical shells.

In splte of the fact that it ,vas intro(_uced some

time ago, Donnell's equation has not achieved the wide

acceptance for use in the stability analysis of cylin-
drical shells which it ao,oears to merit. Some 'investi-

gators have continued to use simultaneous differential

equations in which hlgher-order terms app@ar, presumably

on the assumption t_!at the errors arising from neglect

of these terms might be undesirably large. Others have

dropped second-order terms but have continued to employ

simultaneous equations, probably in order to specify

directly edge-restralnt condition, s having _o do with

displacements in the axial and circ_mnferential directions,

which cannot be done with Donne!l's equation.

The purposes of the present paper are to establish

the accuracy of the equation by comparing the results

found by the use of Donne!l's equation with tae results

found by other methods and with experimental results and

to investigate the question of ooundary conditions on u

an_ v. The additional purpose is achieved of presenting

the solutions of a number of problems concerned with

buckling of cylinders with simply supported edges on the

basis of a unified viewpoint and in a convenient form

for practical use. In rc:f_rencc ! Donnc_ll'_ equation is

:_odificd to facilitate _clu_on of proT_.!cm:_ concerned

with shells having c!ampcd cdEes.
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a length of curv3d panel

b width of curved panel

d diameter of cylinder

m, n integers

P lateral pressure

r radius of cylindrical shell

thickness of cylindrical she]l

Ii di f) " J"spl_cemen_ in azial (x-) direction of point
on shell median m_rface

V displacement in circmuferential (y-) direction

of point on shell median surface

W displacement in radial direction of point on
shell median surface; positive outward

X axial coordinate

y circ_ferentlal coordinate

amn, bmn_
',. numerical coefficients

Cmn, dmn J

ks

k X

shear-stress coefficient _ tL2

rot c nln  ermtb--_2 for infinltelv long curved, strip

D_ 2
2

_xtLaxial compressive-stress coefficient ----

_xtb 2 \ Dw 2
._n_initely lon Cfor cylinder or for ", _

curved strip) i_r2

circumferential comoressive-stress coefficient

_ytL 2 _ytb 2'" f or <_,lin_,.er or

_"I_r2 p) D_2long curved stri

or

for infinitely
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Cp

w o

D

E

F

L

k

T

C X

ay

/prL2_

hy@rostatic-pressure coefficient _D_ 2J

amplitude of deflection function

plate flexura! stiffness per unit length

2( 1 - _2)

Young' s modulus

Airy's stress function for the median surface

stresses produced by the buckle deforT_lation

length of cylinder

/L 2

curvature parameter _ _I - _2 for cylinder

!

b2 Vl _2 for infinitely nong curvedor _ -
rt

strip )

L/k for cylinder or b/k for infinitely long

curved strip

half wave length of buckles; measured circumfer-
entially in cylinders and axially in infinitely

long curved strios

dimensionless az-_ial coordinate (x/b)

dimensionless circ_uferential coordinate (y/b)

Poisson's ratio

applied shear stress

applied axial stress, positive for compression

applied circumferential stress

compression

, positive for



V2 b 2 6 2

_x 2 5y 2

62 62
qO2 = -- + --

b ,2 6h2

BUCELING STRESSES OF CYLINDERS WITH S!,_PLY SUPPORTED E,r_ES

Lateral pressure.- The theory for the lateral pres-

sure "(uniform external pressure applied to walls only)

at which a cylinder will buckle is Eiven in apperLd_ix B

in which it is assumed that the lateral pressure causes

the buckling by _roducing a circr_m,ferential stress Oy

and that it affects the buckling in no other way. The

results are shown in a icgarlthulic plot in figure I. The

ordinate in this figure is the stress coefficient ky

which appears in the flat-plate buckling equation (see,
for ex_ple, reference _., p. 3_9)

7T2D

Oy = ky
L2t
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(The _iscussion given in the section of the present paper

entitled "Parameters Appearing in Buckling Curves" shows

the relationship between a cylinder of length L and an

infinitely long flat plate of width b = L.) The abscissa

Z --- - : _i - _2
rt r 7

may be regarded either as a measure of the curvature, or,

for any given ratio of radius to thickness, as a measure

of the length-radius ratio of the cylinder. Figure i

shows that for small curvature ky approaches the value 4,

which applies in the case of simply supported long flat

plates in longitudinal compression (reference 4, P. 327).

As the curvature parameter Z increases, the stress coef-

ficient ky also increases. For large values of Z,

the curve approaches a straight line of slope 1/2. This

straight line is expressed by the formula

As the length-radius ratio increases, for a given

value of r/t, the number of circumferential waves n

diminishes. Although n must be an integer, the curves

of figure I were obtained on the assumption that n is

free to vary continuously. Only small conservative
errors are involved in this assumption. Because n = i

corresponds merely to a lateral displacement of the entire
circular cross section, the minimum value of n is oa.,
which corresponds to deformation of the section into an

ellipse. This limitation on n results in splitting
the curve of figure i into a number of curves for dif-

ferent values of r/t when Z becomes large. Thick-

walled cylinders may reach n : 2 at moderate lengths,

but thln-walled cylinders reach n = 2 only when much

longer than they are likely to be in practical construc-
tion.

In figure 2 the curve of figure I is compared with

results based on more complicated calculations given in
reference 4 and in reference 6. At fairly large values



of Z the results given in reference _ and in refer-
ence 6 are in good agreement with the results of the
present paper. At small values of Z the curve based
on reference _ (Timoshenko) is _efinitely too low,

Sbecause .:_ hould approach the flat-plate value of
as Z approaches zero. An interesting feature of the

comparison is that one calculation gives results below,

and the other calculation results above, those given

herein. The test data, taken from reference 6, are in
reasonable agreement with and show more scatter than the
theoretical curves.

In the case of cylinders so long that n : '2, the

requirement for the validity of Donnell's equation
o

that n- >> 1 is no longer satisfied and appreciable

error is to be expected. Indeed it may be shown that for

very long cylinders when n = 2 Donnell,s equation

gives !_D/r3 as the critical value of the applied

lateral oressure, whereas the accepted theoretical result

is 5D/r 5 (by use o!" the formula given on p. _50 of

reference k). Tbe curves for n : 2 will probably not

often be needed, however, since they apply bnly when

F} > _, _ which in the case of thin cylinders
corresponds 'to a very large length-z_adius ratio, and if

needed, the curves for n - 2 can be applied in con-
junction with a correction factor 0 _a

.Axial comoression.- The theory for the axial st]_ess

at wb_ich a cylinder will buckle is given in appendix B,
and the results are shown in figure 3. The ordinate is

analogous to, and the abscissa identical with,the corre-

sponding coordinates used in figure i. Figure 3 shows

that for small values of Z, kx approaches the value i,

which applies in the case of long flat plates in trans-

verse compression with long edges simply supported
(reference _). For large values of Z, the curve

becomos a straight line of slope i. This straight line
is expressed by the formula

kx : "*Z = 0.70,9Z
Tr2
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For any fixed value of r/t some value of Z always

exists above which L/r is so large that the cylinder

fails as an i_ler strut rather than by buckling of the

cylinder wal_s. Pin-ended Euler buckling of cylinders

is indicated in figure 3 by means of dashed curves.

The result just given for the critical-stress coef-

ficient for a cylinder in axial compression leads to the

following expression for the critical stress:

X

1 (1)

 3(i- r

The value given in equation (i) for the critical stress

of a moderately long cylinder in axial compression by

use of Donnell,s equation is identical with the value

found by a number of investigators using other equations

as starting points (references 2 to 4). In the case of

cylinders under axial compression the errors involved

in dropping the second-order terms are therefore con-
cluded to be small.

The buckling stresses given by equation (I) are

nevertheless in serious disagreement with the buckling
stresses obtained by experiment (reference ii). For a

discussion of the degree of correlation that can be found

between theory and experiment for cylinders under axial

compression, see reference 12.

Hydrostatic pressure on closed cylinders.- When

closed cylinders are subjected to external pressure, both

axial and circumferential stress are present. The theory

for buckling under these combined loads is given in
appendix B. The results are shown in figure 4. The

ordinate Cp used in this figure is a nondimensional

measure of the pressure p defined as follows:

prL 2

Cp - _2D
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The coefficient Cp can be directly related to the
corresponding stress coefficients kx and ky. By
definition

OytL 2

ky - n2D

and, according to the hoop-stress formula,

Dr

_Y =7

It follows from the three preceding equations that Cp

is ntunerically equal to ky. Similarly Cp can be shown

to be numerically equal to 2k x.

At low values of Z, Cp approaches the value 2,

which implies that kx = i and ky = 2. Ti_at these

values of k represent a critical combination of stresses

for an infinitely long fiat plate was shown in refer-

ence 15. At large values of Z, the curve approaches

the curve given in figure i for buckling under lateral

pressure alone and, like that curve, has Oranches

representing buckling into two circumferential waves.

In figure 5 the computed values of the pressure

coefficient Cp at which the cylinder would buckle if

only the axial pressure _ere acting and if only lateral

pressure were acting are compared v_ith the results when

both are acting because of hyck'ostatic pressure. At

large values of Z the circumferential stress at which

buckling occurs under hydrostatic pressure is suostan-

tially the same as it _ould be if no ax'al stress were

present, as in the case of lateral pressure. The reason

that the circumferential stress appears as the main factor

in buckling at high values of Z presumably is that at
these values of Z the axial stress required to produce

buckling is many times the circumferential stress required,

whereas under hydrostatic pressure the axial stress

actually present is only one-half the circumferential
stress.
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In figure 6 the curwc of figure )_ is compared with
curves re_resenting Sturm's theoretical res1_!ts (refer-
ence 6) and with a curve based on the follo_ing 1'ormula
developed at the U S. _ocrimenta! ,_del Basin (refer-
ence 14, equation (9)):

p

i t '_/2-,_,.42E )

- - - 0.45 j

This formula is an anproximation based on theoretical
results obtained by von I_ises (reference 4_ P. ]_79) which

are identical with the results in the present paper for

buckling under hydrostatic pressure. Figure 6 shows that
Sturm's theoretical results (reference 6) are in reasonable

agreement with those of the present paper and that the
formula from the U S. Exoerlmen_al Y_odel Basin practi-

cally coi aoi@es v_ith the presen_ resclts exceot at verst

low values of Z.

Test _esults from references 6 and 14 are included

in figure 6. The test data are in good agreement with

the theoretical resul_s except at low values of the

curvature oarame_er Z at which the theoI'etical results

are appreciably above those obtained experimentally. A

possible explanation _,f the @[screpancy between the

theoretical and experimental results at low curvature is

suggested by the relative importance of axial and circum-

ferential stress in causing buckling. The axial stress

becomes important only at low values eY the curvature

parameter Z. It is known experimentally that buckling

under axial stresses may occur far below the theoretical
value of the critical stress• At low values of Z

cylinders under hydrostatic pressure may therefore be

expected to buckle well below the th_oretica! critical

load just as cylinders do under axial compression.

Torsion.- The problem of the determ_ination of the

buckling stresses of cylinders in torsion was solved by

Donneli (reference 5) who gave an approximate solution
of the equation of equilibrium. ._ somewhat more accurate

solution of this equation is given in reference ]-5• The



12 NACATN No. 13_,_l

essential results are shown in figure 7 taken from refer-
ence 15. _t low values of Z the buckling-stress coeffi-
cient k s aooroaches, the value _,.3_ apnropriate, to
infinitely long fiat plabes loaded iu shear (reference 16).
At higher values of Z the curve approac_les a straight
line given by

= °.&5z3/ 

At very high values of the curvature parameter the curve

solits up into a ntu_ber of other curves, depending on the
value of r/t. The curves for various r/t values at

high values of Z renresent buckling into two circum-
ferential waves. As mentioned before, D_nnell's equation
is not reliable for the case n = 2 (a case which occurs

for cylinders in torsion wLen > !0 . A solution

for this case given by Schwerin and discussed _n refer-

ence 5 results in critical stresses about E0 percent

below those of the present paper. Because Sch-_erin,s

solution does not satisfy the conaition w = 0 at the

end of the cylinder, however, it is nrobable third the -:

error in the presen_ solution for n = 2 is lo_s than

20 percent.

In experimental investige_tion_ of eyli_dars in
torsion th_ maxlmtum rather than the critioai loads have

usually been reported. Because th_se maxinnum loads

usually exceed the critical loads by only a small margin,
it is co,anon practice to. check theoretical buckling

stresses by comnarison _ith the avera_c stresses at
maximu_m load. Such a comparison is provi@ed in figure 6

which incorperates test data fro_:_ references 5, II, 17,

and 18. For this figure the test results average about

15 percent below those given by theory.

DI SCU SSi O;:,T

Parameters anpearing in buckling curves.- The fact

that the buckling of a cylinder under axial compression,

lateral pressure, hydrostatic pressure, or torsion

involves substantially the s_ue parsm_eters is not a mere
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coincidence but is a direct consequence of the differential
equation. The differential equation implies that when the
requirement of an integral number of circumferential waves
is removed the six variables L, r, t, E, K, and the
load may be combined into two nondimensional parameters,
one (kx, ky, k s , or Cp) describing the stress condi-
tion, and the other (Z) essentially determined by the
geometry. (See appendix C.) It is also shown in appendix C
that the buckling of a curved rectangular plate of any
given length-width ratio may be represented in terms of
these parameters. The critical stress of a cylinder or
a curved plate of given length-width ratio may therefore
be given by a single curve relating the two parameters
provided that the number of circtunferential waves may be
regarded as continuously variable. This restriction
becomes Lmportant at very large values of Z, for which
the curves may split into a number of curves for cylinders
of different values of r/t buckling into two circum-
ferential waves.

Except for hydrostatic pressure, each type of loading
considered results in a single uniform stress in the
cylinder, and the nondimensional _rameter k describing
this stress is defined as follows in analogy to the
parameter used in describing the buckling of a flat plate:

(_ (or T)
k -

_2D

L2t

As the radius of the cylinder increases toward infinity

(the other dimensions remaining constant), the cylinder

approaches an infinitely long flat plate of the same

thickness as the cylinder, having a width b equal to

the length L of the cylinder. Accordingly, as the

radius approaches infinity, the critical-stress coef-

ficient k for the cylinder approaches the value of the

corresponding stress coefficient for an infinitely long

flat plate under the appropriate loading condition.

The other nondimensional parameter Z is defined

by the equation
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rt t

If the small correction due to Poisson's ratio is

neglected, a direct physical significance can be assigned

to Z when its magnitude is small. The maximum distance

from a slightly curved arc of length L and radius r

to its Chord can be shown to be given by the expres-

sion L2/Sr, which is called the "bulge" by some writers

(see references 9 and I0). Accordingly, in the case of

a curved strip of length L in the circumferential direc-

tion, L2/_rt is the bulge divided by the thickness and
is thus a nondimensional measure of the deviation from

flatness of the strip. As apolied to a short cylinder,

L2/$rt is the deviation from flatness of a square panel

of the cylinder, each side of "_vhich is equal to the length

of the cylinder. For cylinders having a length greater

than a few tenths of the di_neter, the parameter Z

loses this simple physical significance and is perhaps

best regarded as a nondLmensional measure of the length

of the cylinder. Some indication of the variety of

cylin@er shapes corresponding to a fixed value of Z

is given in figure 9 ....

Boundary conditio_ns. - When problems in the stability
of cy_n-drical shells are solved by the use of Donnell's

equation, boundary conditions on u and v cannot be

imposed _lirectly because only w appears in the equa-

tions. The metl_od of solution, ho'_ever, may in some cases

imply boundary conditions on u or v. In appendix D

it is shown that for simply supported cylinders the method

used in the present paper (a solution using one or more

terms of a Fourier series satisfying the boundary condi-

tions on w term by term) Implies that at both ends of

the cylinder the circumferential displacement v is

zero, but that the cylinder edges are free to warp in
the axial direction (u # 0). For a sim_oly supported

rectangular curved panel, the oresent method implies

(with regard to diso!acements within the panel median

surface) zero disolacement along the four edges of the

panel and free warping normal to the edges. These edge

conditions on u and v are appropriate to cylinders

or panels bounded by light bulkheads or deep stiffeners

which are stiff in their own planes but may be readily

warded out of their planes.



NACA TN _,_o. 13_l 15

Relatively few calculations of the stability of a

('ylinder take into account the boundary conditions ou u
and v. A calcu._ation for the case of torsion, however,

was recently made by Leggett (reference 19). The results

of this calculation, computed for u = v = 0 at the

edges of the cylinder, are given only for Z < 50.

Throughout the range for which they are given, however,

they agree very closely with the results found by the

method employed in the present paper, which implies that
at the edge of the cylinder v --.0 and u _ O. Restraining

the ends of the cylinder from warping in the axial direc-

tion may therefore be asslnned to have a negligible effect

upon the buckling stress. This assumption receives

added support from the form of the equation of equilibritLm

given in appendix A

(_ 62w 62w 62w 82F 1)
DV4w + p + t x----- + 27 + c ---- + o = 0

6x 2 6x 6y y _y2 6x,_

In this equation, Gx , Cy, and 7 are the stresses

_2F

present Just before buckling and -- is the circum-

6x 2

ferential stress produced by the buckling itself. The

equation indicates that the only difference between the

buckling behavior of a cylindrical sheet and that of a

flat plate (found by omitting the last term in the fore-

going equation) is due to the effect of the circtun-

ferential stresses caused by the buckling deformations.

Because the restraint against warping in the axial direc-
tion requires the application of axial rather than circtun-

ferontial stresses, this restraint might be expected to

have only small effects on buckling stresses. Circum-

ferential stresses would have to be applied to the

straight sides of a curved strip to prevent warping normal

to these edges during buckling. Because the circum-

ferential stress due to buckling appears explicitly in

the equation of equilibrium, the imposition of the

restraint v = 0 to the straight sides of a panel should

have an appreciable effect on the buckling stress (except

when the straight sides of the panel are short compared
with the curved sides).

Theoretical results on the buckling of curved strips

infinitely long in the axial direction are available to
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test the foregolng conclusion. In figuro i0 the critical

axial compressive stress for an infinitely long curved

strip with u and v both zero along the edges (refer-
ence 9) is compared with the critical axial compressive

stress when u is zero along the edges, and the edges
are free to warp in the circumferential direction. (See

appendix B for solution.) The critical axial stress is

appreciably increased by the constraint v : 0 in a

certain range of small curvature. In figure ll the

critical shear stresses are compared under the same sets

of edge conditions (references 7 and 8). The critical

shear stress is conspicuously increased by the con-

straint v = 0 except near the limiting case of flat
plates.

It appears from the foregoing discussion that the

effoct on the buckling stresses of preventing free warping

normal to the curved edges of a cylinder or, pan_l is very

small but that tho effect on the buckling strosses of a

similar restraint on the straight edges of a panel may

be quite important.

Simplicity of results.- The theoretical results
based on Donnell, s equation for the critical stresses of

cylinders under a given loading condition appear par-

ticularly simple when oresented as a logarithmic plot of
buckling coefficient k against the curvature parameter Z.

As r approaches infinity, and therefore as _ approaches

zero, k approaches the value appropriate to a flat

plate. At large values of Z the curve apDroached a

straight line in each of the cases investigated. These

stl_ a • .' _ _l_,r_ lines had slooes 0.5, 0.75 and i and are given

approxinately by tlae following equations which have

already been given in the present paper and are reassembled

here and provided with upper and lower iLmits for easy
reference:

. .12
ky = l. OkZ

ks = o.85z 3/4 (g

kx = 0.702Z 3< Z<
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These equations can also be written (when
to be 0.316)

is taken

ay 0.926 Et Ftr_ I/2 926Ert_5/2_r -- :o. (0

T = O. 71_7 _ f't---rhl/l! 7_1 E't 5_-'-r 1A t

Ox= 0.608 E__t
r

C ONCLUDING }IE}[ARKS

The use of Donnell's equation to find the buckling
stresses of cylindrical shells leads to simpler results

and involves less labor than the use of equations in

which second-order terms are retained. The buckling
stresses found by use of Donnell's equation are in

reasonable agreement vdth results based on other theo-
retical calculations. Exceot for the case of axial

loading, they are also in reasonable agreement with test
re suits.

Boundary conditions having to do with axial and

circumferential disolacements cannot be handled directly

by use of Donnell's equation. _uis disadvantage is not

considered serious, however, because the boundary condl-

t[ons on axial and circumferential displacement, whicll

are implied by the simple solutions given, correspond

approximately to those that are most likely to occur in

practical ccnstructlon and because in many cases the

buckling stress is not very sensitive to these boundary
c ondi ti ons.

Langley Memorial Aeronautical Laboratory

National Advisory Com_ittee for Aeronautics

Langley Field, Va., }_arch 20, 19_7



18 NACATN No. ].3kl

APPENDIX A

SIMPLIFIED EQUATIONS OF EQU!LIBRIUN FOR

CYLINDRICAL SHELLS

The orincipal sets of simplified equations currently
in use for the equilibri_._ of cylindrical shells are
listed for convenient reference. The various sets of
equations are equivalent. The reference papers in which
the equations are derived are also listed. The equations
given are generally not identical witli those in the refer-
ence papers but are modified in certain resoects to
include all the loading conditions studied in the present
paper or to put them in the n_tation of th(_ present paper.

The three following simultaneous equations in dis-
placements u, v, and w (reference L_) are derived from
the conditions of static equilibritni_:

_au + _ a2.u+ _ _av

6x 2 2 6 y2 2 6x 6 y r 6x
- o (Al)

62v + _.i- _ 62v_ + i + _ 62u + i 0w

, 2 2 _
cy 6x _ 2 _x 6y roy

-_ o (Aa)

I r( 1 -_L2) + _ + + tr/ 6x2
+ 2T_

Two simultaneous equations in deflecticn w

function F (reference 7) are as follows:

i, E 62w
V_F + - 0

r 6x 2

+ 2T _2w _%v 1 _2f.F_
+_y 4 + p

c3x 6y (3y2 r 6x2_

and stress

(_)

= o (AS)

p=O

(A3)
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A single equation in deflection w (Donnell,s equation,

reference 5) is

DV8w +Et 6hw tVh _ _2w_+2T 6awr 2 _x_ + x _x 2 5x 5y
+ qy 52w_+ Vl_p = 0

 y2/
(a6)

The relationships between u and w and between
and w are (reference 5)

V

_3w 53w
rV_ = - _--+

_x 3 5x 6y 2

(AT)

rV_v = - (2 + _)

53w _3_v

5x 2 _y 5y}

(A3)
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APPE}_! X B

THEORETICAL SOLUTI ONS

Donnellts equation for the equilibritw_ of cylindrical

shells is used to investigate the stability of simply

supported cylinders subject to lateral pressure, axial

compression, and hydrostatic pressure, and of simply
suoported curved strips long in the axial direction
subject to axial compression.

Cylinder under Lateral Pressure

If bending of the cylinder wall is neglected,

constant lateral pressure on a cylinder causes only

circu_ferential stresses. Donnell's equation (equa-
tlon (A6)) then reduces to

Et 84w 8 2 w

D@w + r2 _ x4 + _ytv4 .... = 0

where

(BI)

and p is the pressure applied. (The term _p appearing
in equation (A6) is zero when p is constant.) Division

of equation (B1) by D results, with proper substitutions,
in the following equation:

VSw + 12Z 2 8_w _2 _2w
+ vh = o

The boundary conditions corresponding to simply supported
edges (no deflection and no moment along the edges) are
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w(O, y) = w(L, y) = 0

62w 6 2w
(o, y) -_ (L, y) = o

_x 2 3x 2

A solution of equation (B2) satisfying the boundary condi-

tions for simple suoport is

Y m_x
w = wo sin w_ sin

A L
(B3)

where k is the half wave length in the circtunferential

direction. Combining equation (B3) and equation (B2)

yields the following equ __ _..on:

The solution of equation (Bk)for ky is

, ,,+ ..... 12z_ky=  2)2+
_2 _A^2f 2 +_I_ km _2) 2

(B5)

where

The critical value for ky is found by minLmizing the

right-hand side of equation (BS) with respect to m.

and _. If the numerator and deno_l.inator of the last
|

term in equation (BS) are divided by m _, it becomes

evident that under the res5riction of integral values
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of m, ky will be a minimum when m : I.
therefore becomes

Equation (B5)

....... i 2Z2(I + 2 +

ky = _2 _2( 1 + _2)2

(B6)

The results found by minimizing this expression for ky

with respect to I._ (considered continuously variable)

is shown in figure I by the curve independent of r/t.

At low values of 7 buckling is characterized by

a ]_arge number of circtm_f'erential waves. As Z increases,
the number of circumferential waves decreases until it

becomes _wo \(}_= 7)'_r' corresoond_ng, to buckling
finally

into a_n elliptical cross section. The curves for buckling
into two circumfe:'ential waves are shown in figure i as

the cu:_ves for various values of r _i - _2. The equa-
4-

tions for these curves are foun_ by substituting in equa-

tion (B5) the last of the foi!o_'{iag expressions for _:

L 2L

,_ Tfr w r

Cylinder in Axial Compression

Vdqen only axial stress is present, equation (A6)

be comes

DV8w + Et 6kw 62w
' + (_xt _ : 0

r .2 6x4- _x 2
(BT)

Division by D results, with proper substitutions, in
Q

the foIlowing equation:



NACA TN No. 13_i a3

vSw + 12Z 2 64w w2 V4 62w+ kx --= 0 (BS)

Combination of the deflection equation (B3) with equa-

tion (BS) yields the following equation:

(m 2 + _2) 4 + .r_..t" , - kx.m2 tin-+ 62) 2 = 0 (Bg)

The solution of equation (B9) for kx is

(m_+ _,2)2+ _-2z_2
k x = ,,,_ _ (,,,_+ _)_

The critical value of

may be found by minimizing

parameter

k x for a given value of

k x with respect to the

(m 2 + _2) 2

m 2

Z

If no restrictions are placed on the value that this

parameter can take, the minimum value of k x is found

to be

kx = _['J_4_PZ : 0.702Z (BIO)

_2

which coincides with the results generally given for the

buckling of long cylinders.
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For values of Z below 2.85, however, the straight-
line formula (equation (BIO)) cannot be used, since it
implies either imaginary values of the circumferential
wave length k or the number of axial half waves m
below unity. The critical stress coefficient k x for
Z < 2.85 is found by substituting the limiting values

= 0 and m = 1 in equation (Bg). The results are
shown in figure 3.

Cylinder under Hydrostatic Pressure

Hydrostatic pressure applied to a closed cylinder
produces the following axial and circumferential stresses:

pr
c X -

2t

pr

Y t

The equation of equilibrium (equation (A6)) when both

circumferential and axial stress are present is (since

V4p : o)

Et 5_v
DvSw +

r2 6x_

6 2w ' 6 2w

+ _ytV _ _ = 0
axtV_ 6x 2 _ 6y2

+ (BII)

By use of the definition

prL 2

Cp -- D_ 2

equation (BII) can be written

12Z 2 5_vVSvj + (BI2)
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If the deflection equation (equation (B3)) is combined

with equation (BI2), the following expression results

for Cp:

+  2)2 12z2ma
Cp = +

m2--+2 _2 _ (m2 + _2)2< m2_-+ _2)

(BI3)

The critical value of Cp is found by m inimlzing the

right-hand side of equation (BI3) with respect to m

and p, with due regard to the values w'hich m and

may asstuue. It can be shown that the minimum value of Cp
is found by taking m equal to i, so that equation (BI})
becomes

(i • _2) 2 12Z 2
+ ( 14)

Cp : i

Equation (BI_) is equivalent to an equation derived by

yon Nises (reference 4, p. 479). The results of mini-

mizing Cp with respect to _ are shown in figure 4.

r _ _2(The curves given for various values of _ 1 - have

the same significance as in the case of a cylinder

buckling under lateral pressure alone.)

Long Curved Strip in Axial Compression

Because it merely describes equilibrium at a point,

equation (BI) applies to the buckling of a long curved

strip as well as to cylinder buckling. In modifying this
equation to obtain nondimensional coefficients as in

equation (B2), however, it is convenient to define k x

and Z in terms of the width of the strip b rather

than in terms of the axial length L, which applied in

the case of the cylinder. Accordingly, equations (BI)

and (B2) for a cylinder in axial compression may be

applied also to the buckling of a curved strip, long in



26 NAC  To.1341

the axial direction, subjected to axial compression, pro-

vided the curved _'tdth b is every_vhere sub_titu_ed for

the axial length L. Substitution of the deflection

_x n _y

w = w o sin -_ sin b

into equation (B2) (modified by substitution of b

for L) gives

kx -

(n 2 + p2)2 12Z 2_2

_2 + ll,_- (n 2 + _2) 2
(BIS)

where

b

Equation (BI5) is very s._cuilar to equation (B5) and

each equation yields the same critical value for k x at

large values of Z. A_ small values of Z, the minimum

value of kx is found by taking n = 1 in equation (B15)

and minimizing with respect to _ the resulting expres-

sion for kx. The results are given in figure lO together

with results found by Leggett (reference 9).
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APPENDIX C

PARAMETERS

It is shown tha* Donnell,s equation implies that

under certain limitations the buckling coefficient k,

fs_milis.r from f!at-plate theory, can be expressed in
terms of the curvature parameter Z alone in the case

of a complete cylinder or a curv_ _ rectangular panel of
given length-width ratio.

Donnell,s equation (A6) is (when p is constant or
zero )

Et 614w + tV 4 (_ 62w 62_vOVS"_v+ r2 _x_ x _ + aT 6x _y
(Cl)

Let

X

b

Y

b

and

= 6 2 6 2
VG2 _ + --

6_ 2 6_ 2

Then

V G 2 = b 2 +

Multiplication of equation (Cl) by b$ and substitution

of the dimensionless coordinates _ and _ gives
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hEtb ' 6%J
D_G8w +

r 2 6_I_

0

Division by D results in

+Etb_, 6'_w b2t VG_ £ 62w 62wVGSw --7" + _ _ + 2T

Dr 2 6_ _ D k vx 6_ 2 6_ 6_

_t3
or, since D :

12( i -- _Ji2 )

VGSW + 12 Z2 6_w ]_ __k 62w 62w
+ _2VG_ _ + 2k s

5_ 4 x 6_ 2 6_ 6n

: o (ca)

where

Z : -- _2
rt

oxtb 2

kx -
D_ 2

T tb 2
k s -

D_ 2

Even without solving this equation it is clear that w

must be a function of the independent variables _ and _,
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and also the parameters Z, k x, k s , and ky, and the
derivatives of w will be functions of the s_ne variables
and parameters. Thus, if only one type of loading
(represented by the buckling coefficient k) is present,
equation (C2) may be written

fl(_, _,, Z, k) + 12Z2f2(_, _], Z, k) + _2kfs(_, _], Z, k):0

(c3)

where fl, f2, and f3 are definite, though unknown,

functions. The w riables _ and _ may now be'eliminated

by integration of both sides of this equation over the

entire range of _ and _. In the case of a curved panel
of circmuferential d1_aension a and axial dimension b

the resulting equation is

_, Z, k) + 12zaf2(_, _, Z, k)

(cA)

The integrals of the functions fl, f2, and f5

depend only upon Z, k,. and the calue of the ratio a/b.
Accordingly, equation (C4) implies that a relationship of

the following type exists:

(c5)

Equation (C5) indicates ti_at for any given value of the

panel aspect ratio a/b, the critical-stress coeffi-

cient k depends only upon Z.

If a complete cylinder of length L rather than a

panol of length b is under consideration, and the
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deflection w is periodic with wave len_oth 2,k in the
circumferential coordinate, the integration

a

b

appearing in equation (C_) may be replaced by

where _ and _ are now defined as x/L and y/L,
resnectively. The result then becomes

or

(c6)

The actual buckling stress is found by minimizing
respect to 2k/L.

Theoretically, k must satisfy the equation

k with

_r = nk (C7)

where n is the n_]mber of circumferential waves and

therefore an integer. When many c_rcmmferential waves
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are present, however, this restriction does not signifi-

cantl_ affect the buckling stress, and the minimization

2k
of k with respect to m (considered continuously

b

variable) leads to the result

k-: fT(Z) (C8)

Equation (C8) indicates that provided the ntunber of circum-
ferential waves is not too small the critical-stress coef-

ficient for a cylinder depends for practical purposes only

upon the curvature parameter Z.

When n is so small that its integral character must
be taken into account, it appears from equations (C6)

and (C7) that k depen,Js upon both Z and r/L. Since,
howe ver,

<L) 2 = 1 [ _I-Z t _2

k for small values of n can alternatively be expressed

in terms of .Z and -_ 1 - _2, as _.. figures i, 14.,

and 7.

By a similar analysis, it can be sho':a] that when the

buckling of a cylinder under hydrostatic pressure is

reoresented by olott.!ng the pressure c_efficlent Cp

against Z, a single curve is obtained except where the

small number of circumferential waves requires splitting
the curve into a series of curves fo_ different values

r__ _x2of _" .
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APPENDIX D

BOUNDARY CONDITIONS ON EDGE DISPLACENENTS

_TH±_ THE NEDIAN SURFACE

The solution of Donnel!'s eighth-order partial dif-

ferential equation for the-stability of cylindrical shells

is not unique under the _moosition of the ordinary boundary

conditions for simpl?! supported or clamped edges. Two

more boundary conditions at each edge, for example, one

condition for u and one for v, are required to define

completely the physical problem and are therefore needed

to make the solution unique. Because only w appears in

the equation, boundary conditions on u and v cannot

be imposed directly; they mav, however_ be implied by the

method of solution. The purpose of this appendix is to

show what boun@ary conditions on u and v are implied

by the method of solution used in the present paper. In

order to simplify the discussion, the analysis will first

be made for the case when only axial compression is
present and will then be extended to other ceses.

When only axial stress is pr_sent, Donnell's equa-
tion (equation (A6)) becomes

DVSw + V4
+_xt _: 0

r2 _x 4 6x 2

If the shell describe@ by this equation is a curved panel

with the origin of coordinates in one corner of the panel,

a solution satisfying the usual boundary conditions for

simple support is

m_x nwy
= w o sin _ sin _ (DI)a b

where m and n are integers. This solution is also

the solution to the problem of the buckling of an infinite
two-dlmensional array of _mnels identical to the one under
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consideration. (See fig. 12.) _en such an array buckles,

the displacements u, v, and w as well as the stresses,

described by the stress function F, may be presumed to

be pcriodlc over the interval 2a in the axial direction
and 2b in the circumferential direction.

Any function u(x, y) that is periodic with a ,Nave

lengtL 2a in the x-direction and with a wave length 2b

in the y-direction may be expanded as follows (see, for

example, reference 20):

u=_" Z _sin_. amn sin m_a n,_Yb

m=l n=l

+ bran sln mrrx__cos nwy
a..._ a b
m=l n=0

CO CO

Z m_.x nrty+ _ cos _ sin
/---- Cmn a b

m=0 n=l

OO CO

+_-_i _-- mwx nvy___ dmn cos _ cosa b
m=O n=O

(D2)

The relationship which must exist between u and w is

(equation (AT))

53w 53w
rV_u = - _ _ +

6x 3 6x 6y 2



Substitution into this equation of the expressions for u
and w from equations(D2) and (DI), respectively, and
use of the orthogcnality of the functions in equation (D2)
leads to the result

r L(_a +

m_rx nwy
cos -- sin

a b

Accordingly, the boundary :.onclltions on u are

u(x, o) : o (93)

u(_., b) = 0 (D4)

!liu (o, y) = o (DS)
6x

_u (a, y) = o (_)
6x

Similarly by use of equation (AS) instead of equa-

tion (&7) it can be sho_. that the boundary conditions

on v are

v(O, y) : o (D7)

v(a, y) = o (m%)

5-Iv(x, o) = o (09)
6y

o'v (x, b) = 0 (D10)

5y
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The boundary conditions of equations (D5), (D6),

(D9), and (DlO) may be combined to give four boundary
conditions on the stresses induced by buckling. These

boundary conditions, which are also derivable from equa-
tion (A/i) by a method analogous to that just used to

derive the conditions relating to u, are

(0 y) = 0
6y2

(DII)

_2F (a, y) 0

cSy 2

(DI2)

62F (x O) = 0

6x 2

(DI} )

62F
-- (x, b) = 0 (DI4)

gx 2

52F 62F
where -- and -- are, respectively, the median-

6y2 _x 2
surface axial and circumferential stresses caused by

buckling. The eight boundary conditions given by equa-
tions (D_)_ (D_), (DT), (DS),and equations (Dll) to (Dl_),

plus the eight boundary conditions on w for simple

support of the four panel edges taken together uniquely

determine the buckling stress.

Although the preceding discussion of boundary condi-
tions started with the assumption of axial stress only,

the only "._semade of this ass_n_ption was in obtaining

equation (D1) as the solution for the buckling deformation.

The same deformation, and hence the same arguments, apply

when circt_ferential stress is present. Vvhen shear is

present, a series of terms of the type in equation (D1)

must be used to represent the deflection surface, and
hence series of terms occur in the e_pressions for u,

v, and F. Since the boundary conditions derived in
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the preceding analys_s a_ply to each of the terms indi-
viduallv, by tile principle of superposition they must also
appl?i for the sum, so that equations (DII) to (DI4)
represent the boundary condition no matter what the
applied stresses are.

In su_mary it may be stated that the substitution
of one or more terms of a double-sine-series expansion
for w into Donne!l's equation and solution of the
resulting equation for the buchling stress gives the
solution corresponding to the following boundary condi-
tions :

(i) Each edge of the panel (or cylinder) is simply
supported; that is, the 6isp!acement nor_nal to the sur-
face of the panel and the applied moments are zero at
the edges.

(2) }_otion parallel to each edge during buckling is
prevented entirely.

(3) _otion normal to each edge in the plane of the
sheet occurs freely.
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NACA TN No. 1341 Fig. 9
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NACA TN No. 1341 Fig. I0
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Fig. II NACA TN No. 1341
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