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NATTONAT. ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAT. NOTE NO. 1530

PLASTTIC BUCKLING OF A RECTANGULAR PIATE
UNDER EDGE THRUSTS

By G. H. Handelmsn and W. Prager
SUMMARY

The fundamental equations for the plastic buckling of a rectangular
plate under edge thrusts are developed on the basls of & new set of

stress-strain relations for the behavior of a metal in the plastic range. =~

These relatlions are derived for buckling from a state of unlform
compression. The fundemental equatlon for the buckling of a simply
compressed plate together with typical boundary conditions is then
developed and the results are applied to calculating the buckling loads”
of a thin strip, a simply supported plate, and a cruciform section.
Comparisons with the theories of Timoshenko and Ilyushin are made.
Finally, an energy method is glven which can be used for finding
approximate values of the critical load.

INTRODUCTION

This paper 1s concerned with the plastlc buckling of a rectangular
plate which, previous to buckling, is under a uniform compressive
stress o, 1n the direction of one of its edges. In the case of elastic

buckling, in which 0, remains below the elastlic limit of the plate

material, it is well known that the buckling stress depends on the
dimenslons of the plate and on the manner in which 1t 1s supported

(cf. reference 1, ch. 7). In the case of the plestic buckling of beams,
on the other hand Engesser (reference 2) and Von Kérmén (reference 3)
developed a satisfactory theory based on the fact that for a fiber
which is compressed beyond the elastic limit the tangent modulus

(1.e., the ratio of the variation of strain to the corresponding
variation of stress) assumes different values depending on whether the
varlation of stress constltutes an increase or a relief of the exlsting
compressive stress. ’

Generalization of this theory to the plastlc buckling of plates
has repeatedly been attempted. These attempte can be divided into two
groups which may be labeled formal and analytical generalizations. Ths
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formal generalizations start from the remark that the formmlas of the
Engesaer-von Kérmén theory of the plastic buckling of beams differ from
the well-known formulas for the elastic buckling of besms only by the
fact that the so-called 'reduced modulus” replaces Young's modulus. A
formal generalizetion of the Engesser-Von Kdrmdn theory to the plastic
buckling of plates 1s therefore obtalned by inbtroducing the reduced
modulus into the formules for the slastilc buckling of plates In such a
maenner that the results of the Engesser-Von Kérmén theory are obtained
in the caese of a narrow rectangular strip which is free om 1te long
edges and simply supported on the short edges where 1t carries a
compressive load. Of course, thie formal generalization 1s more or less
arbltrary and leade by no meens to a unlgue result. Formulas of this
type have been suggested by Bleich (reference 4, p. 216 ff.) and
Timoshenko (reference 1, p. 38L).

In contrast with these formal generalizetions of the Engesser-
Von Kéarmén theory, the analytical genmeralizations do not merely introduce
the reduced modulus of the theory of beams Into the formulas for the
elagtic buckling of plates. Instead, the analytical generalizations go
back tc the considerations by which the reduced modulus 1s derived and
try to apply these to the case of a buckled plate. Genersglizations of .
this kind have been previously presented by Kaufmann (reference 5) and
Ilyushin (reference 6). As is shown in the present report, however,
these suthors use stress-strain relations which do mot fulfill certain .
poetulates of the theory of plasticity; the correctness of their results
mst therefore be questioned.

The present paper aims st developing a theory of the plastlc
buckling of plates which takes full account of the modern theory of
plasticity. The stress-strain relations in the plastic range are
discussed at considerable length in the first section of the ANALYSIS,
and 1t is shown that,for an adequate treatment of buckling phenomena,

a theory of plastic flow 1s indicated rather than a theory of plastic
deformation of the type used by Kaufmenn and Ilyushin. The precise
definitions of these terms and the basic conslderatlons suggesting the
use of & theory of plastlc deformastion for problems such as buckling are
fully discussed in the ANATYSIS. A particular theory of plastic flow
guitsble for the treatment of the problems under consideratlon l1s
_ developed in the first section and 1ts relatioms with other theorles of
plasticity are polnted out. It is shown that in the particular case of
a plate buckling out of a state of slmple compression there is very
1ittle freedom in the cholce of the stress-straln relation if 1t 1s to
fulfill certain simple postulates. This means that all the empirical
information which is necessary for the theoretical treatment of the
plastic buckling of a rectengular plate under edge thrusts can be
cbtained by a simple compression test.

The second section presents the development of the fundamental
equation of the plastic buckling of & simply compressed plate, and the .
appropriate equations describing typical boundary conditions are given
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in the third section. The remaining parts contain several examples,
which are carried out in detail, as well as an equivalent energy
principle which proves to be very useful for approximate camputatlons.
Finally, the appendlixes contain detalled discusslons of several
technical points ralsed in earller parts of the paper.

The authors are indebted to Professor H. S. Tslen for drawing thelr
attention to the work of Kaufmenn (reference 5) -

This investigatlion was conducted at Brown Unlverslty umder the
gponsorship and with the Tlnancisl assistance of the Natlonal Advisory
Committees for Aeronsubtics.

SYMBOIS
a length of plate
A oonstant in compressive stress-straln law .
A expression in variational principle
a', a", &', »', B", »"', ¢ coefficients in plastic’stress-strain
law
b width of plate
B expression in varlationsl principle

c=( - 1)/&5 - W) - (1 - ev)aj
c1, Co, c3, C) arbltrary constants appearing in equatlion for 'w
D flexural rigldity of plate (-J-_lg—h3Eo /(1 - VE))

Dll’ D12’ ZD,22 coefficlents In plate equatlon for plas.'bic. flow

Diy' = D11/D, Dip' = D1pfD, Dpp' = DgpfD

Dll* s Dl2* s 'D22* coefficients in plate equation for Ilyushin's theory
of plastic deformation

By = D1*/Ds Dyp = Dig¥[Ps Dpp = Dpgt[D

B tangent modulus in compression
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E, Young's modulus
4
E* Von Kédrmén's reduced modulus
Egy secant modulus obtained from compressive stress-strain diagram
£(y) section of buckled middle surface for x = Constant i
h thiclkness of plate
T moment of inertia of cross section
coae(l - ve)
k = 12—
ﬂehan

.12

-

a

ﬁ:: (2 - V)ﬁl + (2V - l)ke
£y = Pufad, Ky = Pafoy?, kip - 23Pifoxdy
m number of half waves in buckled configuration
I\:Ix rate of change of bending moment about y-axis

rate of change of bending moment sbout x-axis

Mxy rate of change of twisting moment
n integer
Ny reduced compressive stress resultant (aoh/E°>
1‘\Tx rate of change of stress resultant in x-directilon
ﬁy rate of change of strese resultant in y-direction
o2 = (M)E D12
a/ Doo -
P total compressive force (oybh)
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= E312 - (1 - V)Z_EJ/DEQ

( _z() DllD22 - Dyp°

= \lp(q + D)

R side ratio (b/a)
5 = \p(a - p)

t time

u= 8V + 12y - 23

W deflection rate

X, ¥y, 2 i’ec’bang&l&r Cartesian coordlnates; x,y-plane coincides with
middle surface of unbuckled plate

(2 - & + (2v - 1)

K
2
@=1 c(5 - LV)
a ratio of Von Kérmdn's modulus to Young's modulus (in section
"Buckling of & simply supported plate" only)

B constant ln compressive stress-straln law

" - 7] :

Ll -3¢+ ;( +) ;

5t 2§_o+2§° | for ¥ >0 _
8= <

i1+3§'-l(§ AN for & <0

2 27 2\’0 / |
A_D11Dpp' - D1p®
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€ unlaxial strain

dex’ d'eyi dez}
infinitesimal strain incrememts present in buckling

xys 7yzs 875

de ', ds ', de, 0, dym' reversible (elastic) strain increments
de_", de_", ae_", day_ " permenent (plastic) strain increments
X ¥ z’ Xy

él(x,y) normal strain rate in middle swrface in x-direction

EQ(X,Y) normal strein rate in middle surface in y-dirsction

¥(x,¥) shear strain rate in middle surface

:O = 2zo/h

+ _ 2 _
§o =& + Va 1

- 2
§o = -a - o 1
n= gb
(3 ratio of Von Karman's modulus to Young's modulus (E¥/E )
A ratio of Young's modulus to tangent modulus (Eo/E)
v Poisson's ratio
£ =1rdb
o uniaxial stress

’ 2 2 -2

oy Intenslity of stress Oy + oy - Ox0y + 3Txy
Oop critical compressive stress
0, = -0, original compressive stress in plate
Oxs Oys Oy normal stress components
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Txys Tyzs Tzx shear stress components . _ .
G-O'x: dcy: dgg, : :
infinitesimal stress increments present in buckling

OTyr, AT ,, @1, e

v=ot - 1VF) ( ’%‘@2*&1-(1?%““’)

W function of the Intensity of stress oy
®' = &nfdoy
2=/l - )
Q=88 5

do; 1
Q' = d0/doy
- superscript denoting values on unload:‘lng g8lde of neutral

A surface

+ superscript denoting values on loading side of neutral surfsace

ANATYSTIS

Stress-Straln Relations for Buckling from =
State of Tniform Compressilon

The mechanism of buckling beyond the elastic limit 1s relatively
complicated because the material, which was originally in a state of
simple coampression, is loaded In some regions and wnloaded in others
during the buckling process. Consequently, the stress-gtrain relations
must be considered in soms detall wlth speclal reference to the problem
of loading beyond the elastlic Iimit followed by unloading.

The material must exhibit strain-hardening if the determination of
the buckling stress is to constitute a problem. Indeed, for a perfectly
plastic material which yields under constant stress, Von Karmin ‘s reduced
modulus venishes once the 1nitisl compressive stress has reached the
yield 1limit. This means that the bending stiffness is reduced to zero
and buckling must be expected quite independent of the dimensions of the

bar. .
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Stress-strain laws for materlals which exhibit strain-hardening

can be divided into two types which, for convenlence, wlll be called
"theorles of plastic deformation' and "theories of plastic flow."
According to the first group, there exists a one-to-one correspondence
between stress and strain in the plastic range, as well as the elastilc,
provided that the material is being loaded. The stress-straln law of
the well-known Hencky-Nadai theory (reference 7, ch. 14, and reference 8)

and the law used by Ilyushin (reference 6) in his discussion of plastic
buckling are typlcal theories of plastic deformatlion. On the other
hand, the theorles of plastic flow are based on the assumption that,
for a glven state of stress, there exlsts a one-to-one correspondence
between the rates of change of stress and strain in such a manner that
the resulting relation between stress and straln cammot be integrated
so a8 to yleld a relation between stress and strain glone. Typical
examples of theories of plastic flow are the stress-straln relations
developed by Prager (reference 9) and Handelman, Lin, and Prager
(reference 10). A particularly important difference between these two
basic theories of plastlcity lles in the faot that according to the
theory of plastic deformation the strain which corresponds to a certain
state of stress the theory of plastic deformation is entirely independent
of the manner In which this state of stress has been reached, whereas,
according to the theory of plastic flow, the strain depends on the manner
in which the state of stress 1s buillt up.

The stress-strain relations to be used in the enalysis of the
plastic buckling of & rectangular plate wmder edge thrusts form a
speclal case of those developed by Handelman, Lin, and Prager in -
reference 10. In this particular case, however, it 1s possible to
develop the stress-strain relation In a quite elementary manner, ang
the inherent difficulties of the theories of plastic deformation can
be seen from a slightly different polnt of view. It appears worth
while, then, to examine these relations in some detall with special
reference to the problem which forms the subJject of the present report.

In the following, the stresses and strains in the buckled plate
wlll be referred to a fixed system of rectangular Cartesian coordi-
nates x, y, and z. The x,y-plane of this coordinate system coincides
with the middle surface of the unbuckled plate, and the axes of x
end y coincilde wilth two of 1ts edges, the other edges falling on the
lines x=8 &and y = b. Prior to buckling, the plate ls under a
uniform compressive stress o, 1in the direction of the x-axis (fig. l)

The investigation of the stability of the state of stress

Cp = =0

X o] ‘,
o‘y = O'Z =0 (l)
T = T = =0
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requires the knowledge of the relatlons between the Infinltesimsl
increments of stress dog, do'y, do,, d'rx,y: d:ryz, end d4T,, and

the corresponding increments of strain dey, dey, de,, d.7xy_, d.7yz B
end dY,,. Within the fremework of plate theory, o, = T,, = Tyz = 0,
even in the buckled state, and hence do, = dry, = d.'r‘.),Z = 0. Accord-
ingly, @Yy = d'7yz = 0. Within the elastic range the remaining

Increments of stress and straln are relsted to esch other by means of

Eo d€x= d.o’x -V d.cry

Eod.e'y:-‘Vdo'x+d.o'y

E, 4 -Vdo_, - Vdo [ ®
o G468y = x v

Ep @7xy = 2(1 + v) d7yy 3

vhere E, denotes Young's modulus and V, Polsson's ratio. Before an

analysis of the plastic buckling of the plate can be attempted, the
relations replacing equations (2) in the plastic range must be knowm.
In order to establish these relatlons, 1t wlll be convenient to think
of the straln increments as conslsting of reversible (elastic) and
permanent (plastic) components:

dey = de ' + de," ]
- 1 "
dey = d.ey + dey (3)
de, = d¢€_' + de_" r
z - Z A
- 1 11
d.')'}qy = d7xy + d7xy g

Primes and double primes denote elastic and plastic components,
respectively. The elastlc increments of straln are related to the
increments of stress by means of equations (2), in.which the left-hand
gides %z,s‘b all be written with primes now:

L
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E, dey' = doy -V doy
Ey dey' = -V doy + doy
" (L)
Eo de, ' = ¥ 4oy - V dog
' =
Eo.d.'yxy =2(1 + v) ar o 3

These relations may be regarded as the definitions of the elastic
increments of sbtrain. The purposse of the followlng discussion is to
establish similar relations for the plastic lncrements of strain.

The elastic increments of strain, equations (4), depend only on
the increments of stress and are lndependent of the exlsting stress o .

Moreover, & reversal of the signs of all increments of stress leads to
a mere reversal of the signs of all elastlc increments of strain. The
plastic incremente of strain, however, do not have these properties;
since they muet vanlish as loig as o0, remains below the elastic

limit, they camnot be independent of the exlsting stress o,.
Moreover, if for a glven valus of o, certain stress increments

produce plagtlc incremente of strain, stress increments of the same
magnitudes dbubt opposite signs do not produce any plastlc deformastion.
In other terms, beyond the 1limit of elasticity an infinitesimal change
of stress may be classified as loading the material or not according
to whether it 1s accompenied by permanent deformastion. Infinltesimal
changes of stress which do not load the material masy be classified

in turn as unloading or neutral. Unloading brings the material into
a state of stress such that all sufficlently small further changes of
stress are accompanied by elastlc deformations only. These basic
dlfferences in loading and unloading appear somewhat more clearly if
the simple example of a uniaxial state of stress and strain (say a
tensile test) is considered. ILet o denote the stress and € +the
strain in figure 2 and suppose the material is loaded to the point P.
The stress-strain dlagram for unloading i1s a stralght line PA wilth
the same slope as the loeding curve at the origin 0. The permanent
strain corresponding to loading up to the point P 1is measured

by OA. Suppose now that, after the polnt P has been reached, the
test specimen 1s further loaded to the point P;; by thils, the

permanent strain 1s increased by the amount AAl. In other words, the
change from P to Pl congtitutes loading in the sense Just defined.

On the other hand, 1f the new state of stress and strain is glven by
the point P,, that is, 1f the stress has been reduced below that
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at P, +the permsnent strain is left unchanged. Furthermore, any
emall chenge of stress from the point Pg (strictly, all changes

within the ranges PoP and PoA) produces an additional deformation
which 18 purely elastic. The materiasl has thus been unloaded.

For uniaxial stress any change of stress constitutes either
loading or unloading. A third possibility, designated as'heutral"
change of stress, exists in the case of comblned stress. A neutral
change of stress, while not accompanied by a permanent deformatlon,
brings the materlal into a state such thet there exist certain further
changes of stress which are arbltrarily small and yet produce a
permanent deformation. This third conditlon 1is illustrated in the
enalysis of the buckling of a plate. It 1s preclsely the possibillity
of the occurrence of neutral changes of stress which distinguishes
the present problem from that treated by Engesser and Von Ka'rmén,
for in thelr case the stress is uniaxial in the buckled state as
well as in the umbuckled. Accordingly, a change of stress can be
only an increase of the existing compressive stress (loading) or a
decrease (wmloading). The situation 1s more complicated in the case
of a plate.

Since there is no permasnent deformation accompanying neutral

changes of stress or unloading, de," = d.ey" = de, " = d7xy" = 0; and

the relations of equations (h-h define the total change of strain. For
loading, however, equations (4) must be supplemented by equations of
the form ) .

t 1
Eo d.Gx =a'd.o‘1+b day
Ey dey" = a" dog + b doy

n 1ty [ R] r (5)
Eo d.sz =8 d.cx + b do’y

1" 1
Eo 6'7127 = 2¢ d'Txy

where the coefficients a', d', a", b", a'", b'", and c¢' depend

on the existing stress o,- .

As 1s customary in the theory of plasticity, the plastic defor-
mations will be supposed to represent a mere change in shape but no
change in volume. Accordingly,
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dey" + d6g" + a€;" = 0 (6)

This relation must hold independemntly of the values of do, and dcy-
Thus, . '

I
o

(7)

! 1"
a +a +a'

and

p' +d"+1v'"" =0 (8)

The elastic formulas, equations (4), exhibit a certain symmetry of
the coefficlents appesring on the right-hend side. For instance, the
coefficients of do, 1n the second and third equations are equal, as

are the coefflcients of do'y in the first and d.cx in the second.

equations. Which of these symmetrles, i1f any, will be maintained in
equations (5)? The existing state of stress singles out the x-axis,
but 1t does not matter which of the other two axes 1is labeled ¥y
and which =z. Accordlingly,

a'"=2a"" (9)

a"-_:a"':--la' (lO)

These coefficients can easily be expressed in terms of the so-called
"tengent modulus' corresponding to the compressive stress og.

Application of equations (L) and (5) to simple campression in the
x-direction ylelds (with doy = 0)

! n
Eo dex Eo @ex + d.ex)

= do, + &' doy (11)
or
do E -
X o)
E = de 1+ a4 (12)



NACA TN No. 1530 13

where E denotes the tangent modulus. With

A= EofE (13)
equation (11) gives

(1k)

I
>
]
~

al
Hence, according to equation (10),

a" = a'" = = - 1) (15)

Next, the criterion for neutral changes of stress must be considered.
Any given infinitesimasl cheange of strain can be decomposed 1n the
following msnner:

dey = %‘(dex + d.rsy + d.ez) + %(Edex - dey - d_ez) ]

de, = -%-(dex +deg + d.ez> + %‘(-dex + 2dey - de,)

de, = %(d.sx + deg + dez) + %(—dex - dey + 26.62) L (16)

d’yyz =0 + d.')’yz

The change of strain defined by the first members of the right-hand
gides of these equatlons is a uniform expansion (or contraction) in
all directions. Such a uniform expansion changes the volume but not -
the shape of the element to which it is applied. The change of straln
defined by the second members of the right sides of equations (16), on
the other hand, affects the shape of the element but preserves 1ts
volume. Ths work done by the existing stress or stresses on the change
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of gtrain, equations (16), consiste of the work done on the change of
volume represented by the first members of the right sides of
equations (16) and the work done on the change of shape represented
by the second members. Since all changes of volume are supposed to
be of an elastic nature, 1t seems natural to speak of loading or
unloading according to whether the work W which the existing
stresses do on the change of shape alone is positive or negative.
Venishing of this work must then be interpreted as indicating =a
neutral change.

In the case under discussion, the only existing stress
is oy = -0,, and the criterion for loading or unloading is furnished

by the sign of

Oo
aw = -—3-<2de - dey - dey) (17)
while neutral changes are characterized by
2dey - dey - dey = O (18)

Now, for unloading, the entire change of strain 1s of an elastic
nature and equations (2) apply. Equation (17) is therefore equivalent
to -

E, W = '-'23-9";(&01_ - Vdag) - (-v a0y « aog) = (v aoy - v d.oy>] (19)

Since o, >0, this expression will be negative, whenever

2doy - doy >0 (20)

This inequality, equatlon (20), 1s thus seen to constitute the criterion
for unloading. Similarly, the criterion for neutral changes of stress
is found to be

2doy - dog = 0 (21)
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Changesof stress which satisfy neither equation (20) nor (21), that’
is, changes of stress for which

240y - dogy <O (22)

must therefore congtitute loading. Another definition for the crilterion
for the three types of change of stress, which is found by combining
equations (20), (21), and (22), is that the change of stress is classified
by the sign of the increment in the second inveriant of the stress
deviator, which measures the intensity of stress. A detalled account

of this alternatlive formulatlon is found in reference 10.

By a suiltable choice of the values of do; and doy, the
expression 240, - dgy can be made. to fwlfill the following
inequalities:

0> 2doy - doy> -« : - (23)

where ¢ 1s an arbltrarily prescribed smasll positive number. A1l
changes of stress satisfylng equation (23) constitute loading and are
therefore accompanied by plastic deformations in accordance with
equations (5). For € —> 0, however, these changes tend toward
neutral changes of stress for which there are no plastic deformatlons.
Furthermore, there are no plastic increments of strain vhen

2804 - duy.> 0. It is to be expected that the total strain increments

wlll be contlnuous i1n the reglon which marks the transition from
unloading through the neutral state to loading. Although such a
statement does not follow specifically from the equatlions of equilibrium
or compatlbility, continulty should be expected In the strain increments.
With this assumption, the plastic increments of strailn, equations (5),
should vanish whenever the increments of stress satisfy equation (21).
This furnishes the conditlions

a' $+ 2b' =0 T

a4+ 2b" = 0 L
_ (24)
al”_'_ 2 HI= O

c' =0
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Together with equations (14) and (15), these equetions determine all
coefficients appearing in equations (5), which therefore take the
form

A -1 ]

E, d6g" = (M - 1) doy - 5 doy

4] _7\. il l X - l
Eo d.sy =-S5 dox + n ddy

s (25)

w_ _M=1 A -1
E, 46, = ) doy + = doy

144
EO dyxy =0 _

It 1s interesting to note that here agaln the coefficients of do, in

the second and third equations are equal, as are the coefficlents
of do'y in the first and of doy 1n the second equation. Whereas

in the elastic case this type of symmetry in the stress-straln relatlons
is a consequence of the 1sotropy of the material, this is no longer 8o
in the case of equations (25). Indeed, the equality of a" and

(see equation (15)) follows from the assumption that the plastic
deformations do not involve a change in volums. The equality of D'
and a", on the other hand, migh't. be described as almost accldental,
the value of the ratio a."/a being fixed by the assumption Just
mentioned, while the value of the ratio b'/a' is fixed by the form

of the condition for neutral change of stress.

Combination of equations (4) and (25) finally ylelds the stress-
gtrain relations which will be used throughout this paper:

E, deg = A dog - (v
By dey = +2‘-'—é—l)dax+2“—i—3dcy

~ (26)
B, dey = - )d.o’ V-)‘;:")doy

B dyw = 2(1 + V) dTJQT
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It seems worth while to stress once again the assumptlons on the
basis of which these stress-straln relations are derived. These are

(1) Plastlc deformations do not involve a change of volume

(2) The criterion for loading or umloading is furnished by the
sign of the work dW which the existing stresses do on the changs
of shape produced by the ilncrements of stress

The first assumption is commonly made in the theory of plasticity
(cf. reference 7, p. 10) and is confirmed by the experiments of
Bridgman (reference 11, p. 166). The second assumption is a slight
generalization of a similar assumptlion which Prager (reference 10)
introduced in the case of incompressible plastic materials; more
recently, it has been used by Ilyushin (reference 6).

It is Interesting to note how far the stress-straln relatloms,
equations (26), differ from those used in previous work on the plastic
buckling of plates. In the present notation, Kaufmann's stress-straln
relations (reference 5) are -

Eo dex = A dux -V dcy W

Ey dey = AV doy + dog - (27)
= v

E, d‘)’m (L +2)(1 + V) d:rxy i

(The expression for deé; 1is not given because this strain component

i1s not necessary for the determination of the bending and twlsting
moments in the buckled plate.) .It 1s seen that here the coefficilents
of dcy in the first equation and that of do, 1n the second are

unequal. In an earlier paper on the plastic buckling of cylindrical
shells (reference 12, footnote 1, p. 422) in which similar stress- ~
straln relstions were used, Kaufmann comments on this lack of symmetry,
recommending that the stress-strain relations, equations (25), be
checked by experiment. Since thils type of symmetry in the present
stress-strain relations, equations (26), has been characterlized as
almost acclidental, the lack of symmstry in Ksufmann's relations hardly
constitutes a sufficient reason for discarding the stress-strain
relstions, equations (27). It is not a@ifficult, however, to show

that these relatlons correspond to an unacceptable condition for
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neutral changes of stress. Indeed, subtraction of the elastic
increments of strain, equations (L), fram the total increments of
gtrain, equations (275, ylelds the following plastic increments of
gtrain:

i

E, dey" = (A - 1) dog
E, dey" =v(h - 1) doy "
11 -
. E, dyxy = - 1)(1 + v) deJ

Theses plastic Increments of strain vaenish if

doy = O

ar = 0

Xy

According to Keufmann's stress-strain relation, neutral changes of
stress are characterized by the two conditions given as equations (

(28)

(29)

29).

If the most general chaenge of sitress considered here 1s represented

by a point with the coordinates do,, day, and drxy in a three-

dimensional space, the condltion of equation (21) represents a plan
through the origin which separates the 'region of loading"” from the
"region of unloading." ZEquations (29), however, define a straight
line which does not mark off two such regions.

e

Ilyushin (reference 6) considers sn incompressible material and

assumes the stress-strain relations for loading to have the form

2oy - o .

B €= .
ox "~ o1 - w%
- 20, - Oy F
o7y T 2(1 - w)

3t

oy < Tig |

(39)
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vhere ® 1is a function of the intensity of stress o; defined by

\]0’1 + 0‘ - 0’10'y + 31':7‘2 (31)

For losding, the Increments of stress and strain are then connected by

1 ?.‘;:_r___z
E, deg = (1 - @ 245, - d.ay &9
1
€ = - -
Eo 4% = prr gy 2%y - o - l_m ) (32)
E, d.)’m (I,Y 'l—g-dt;
J
For buckling from a state of uniform compression oy = -0,, in
particular,
= G0 =-00 -
w = o0y =% (adn'x. aoy) (33)
where i
Equations (32) then reduce to
1 '
E, dép = ——=2—o— (1 - ® - ®'c,){2d0, - do
0 %%x = o ayal @'50) (247 - 853)
¥
1 oL
E_ de_ = - —————r l-w+20'a>'d.cr+[2(l-w)— ]do’ k(35)
o J o(1 - (.D)2 ( o ) x _ 2 y
3 ar
Bo drgy = T- 2 Txy _
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For unloading, the relations, equations (2), are supposed to hold with
v =1/2 on account of the assumed incompressibility of the plate
material:

B, dey = 5(Ra0y - aoy)
E, dey = 5(Raoy - aoy) - (36)

By &gy = 38Ty

As to the criterion for loading end uwnlosding, this is again supposed
to be glven by the sign of the expression

W = oy deg + Oy dey + Txy a7 xy (37)

In particular, 1t is given by the sign of

-0 déy (38)

in the case of buckling from a state of uniform compression Gy = ~Oqy-

In view of the first of equations (35), this means thet neutral changes
of stress are agalin cheracterized by equation 521). It is easily seen,
however, that for 2doy - doy = 0, equations 35) and (36) do not give

the same increments of strain. Ilyushin's stress-strain relatlons are
thus seen to exhlblt an obJectionable discontinuity along the

surface 2doy - dcy = 0 which geparates the region of loading from
the region of unloading. A more detalled analysis of the effect of
this discontinuity in the case of a buckling plate isg found in
appendix A.
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Fundemental Equation of Plastic Buckling of a
Simply Compressed Plate

The technique used in the derivation of the fumdsmental equation
of the plastic buckling of a simply compressed plate is quite simllar
to that needed for the same problem in the elastic range. (See, for
exsmple, the more generel problem of combined bending snd compression
of elastic plates In reference 1, p. 302.) There is one essential
difference, however, in that the stress-strain relations glven in
equations (26) must be used in the regilons of loading rather than
generalized Hooke's law. Consequently, the mlddle plane of the
unbent plate will no longer play the role of the neutrasl surface in
the buckled position. Once the pogition of the neutral surface has
been found and the bending and twlsting moments determined as functions
of the second derivatives of the deflection of the plate, the
equilibrium conditions and the final differential equation can be
derived in exasctly the same fashion as that used by Timoshenko in
reference 1.

It will be found more convenient, in the following discussion,
to use "reduced stresses"” rather than actual stresses, that is, stresses
reduced by dividing the actual stress by Young's modulus E . No new

notation will be employed to denote these reduced stresses; therefore,
care must be teken In Interpreting the results obtained here in terms
of the known facts for elastic buckling. An sttempt will be made at
such points to keep the notatlon clear. In addition, the use of
differentials of stress and strain may lead to some confusion in
deriving the equations of equilibrium for an element. Since the
stress~strain relations given in equations (4) and (26) are linear
in these differentlals, both sides of the equations may be dlvided
by dt >0, where t may be regarded as the time. It should be
noted that t appears homogeneously; that 1s, the time scale may be
arbitrarily distorted without chengling the eguaetions. If differenti-
ation with respect to t 1s denoted by a dot, equations (&) and (26)
can be rewritten as reduced stress-strain relstions, for W 20 )

—

Mme
i

] x—ll
x Xcrx-('\'+ 5 >chy

o £2oDg M x3
= (V-l- 2>Gx+ n 0’y

Mmoo
|

’ - (39
(gD - (0252 a)
'}m= 2(1 + Vg
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. N
EI =0y - ‘ng
Gy = -Vo’x+ Uy
r (40)
Gz = ‘VO’I - VO'y
Yxy = 2(1 + v)Txy .

vhere W = dW/dt.

The stress rates &x and. &y can be found in terms of the

corresponding straln rates for loading by solving the first two of
equations (39). Thus,

Q-

1 [, . .. -
= (5 ~ )_'_v)x (1 _ 2\))2_(}" + 3)€x + 2(1- 1 Qv)sg

g (k1)

. 1 > . .
O, = 2(n - 1 + 2v)é, + hxe]
(5 - b - (1 - 2w)2L x A

The criterion for loading

o5, - . <0 (42)

can then be written as

1 _ . ) ,
(5 - bv)n - (1 - 2v)? Ez Vieg + (av 1)Ey] <9 (43)

N:ow, Polsson's ratio Vv satisfles the inejuality -1Sv &1

2>

2
(¢f. reference 13, p. 10k); in addition, X = 1. Consequently, the
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expresslon appearing outside the brackets 1s always positive and the
inequality, equation (43), can be replaced by

(2 - V)éx + (2v - 1)éy <0 (bh)

The strain rates appearing in equations (39) and (40) must now
be evaluated. The straln rates in the middle surface will be demnoted
by &) = él(x,y), the normal strain rate in the x-direction;

é2 = &(x,y), the normal strain rate in the y-direction; and

7 = ¥(x,y), the rate of shear strain. Points on the normal to the
undeformed middle surface are assumed to remain on the normal o:? the

bent middle surface. This implies that the strain rates &, €gs
and 'yry at any point of the plate can be written in the following

form:

E.y = €& - Ztg - ( 45 )
'.7 = 7.' - Ztla
= -~

The Juantities Kl, 1'12, and Kla appearing in equations (45) are

defined in terms of the rate of deflection w = w(x,y) of the middle
surface in the followlng way:

. 2.

K, = oW
dx2

Kp = i s (46)
By2

= . %

Kip =2 Oxdy j
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Geometrically, Kl and ﬁé represent the rates- of curvature of

the middle eurface 1n tlie x- and y-directions, respectively,
whereas Kie represents the rate of relative twist. The criterion

for loading, equation (44), can now be rewritten in terms of the
strains of the mlddle surface and the quantities Ki, Ké, and Xip.

It 1e seen that loading takes place provided
(2 - v)éy + (v - 1)éy < z Bé - V)K, + (2V - 1)K2] (47)

With the word "sign' to denote the sign of the quantity within the
parenthesis and vertical bars to denote the absolute value of the
enclosed expression, the last inequality may be transformsd into

(2 - Vv)éq + (2v - 1)é

z slgn [22 - V)X, + (2v - 1)K ] > h - (48)
1 K2 (2 - V)ky + (2v - DK,
This inequality can be simplified further by 1ntroducing two new
guantities K and z, defined by
[2 M i
= (2 - VK; + (2v - 1K,
> (49)

_(2 - )& + (2v - 1) &
© K

The inequglity, equation (48), becomes then

z sign (X) =Kz || = 2, slan (K) (50)



NACA TN No. 1530 ° 25
that is,

z > Z, for positive K
(51)

z < zZ, for negative K

| The surface 2z = z, separates the regions of loading and unloading in

the plate; a given part is in a state of loading or not according to
wvhich condition of equations (51) ie satisfied.

The criterion Jjust developed must now be applied to the problem
of buckling. As mentioned previously, the stress distribution of the
buckled plate differs from the original state of pure compression by

certain additional stresses &y dt, c'ry dt, and +1¥ dt. These new

stresses are such that thelr total stress resultants must vanlsh and
the moments produced will be in eguilibrium with the moment generated
by the original compressive force in the buckled plate. The vanishing
of the stress resultants will lead to a formula for 2z, in terms of

the constants of the material and the value of o,. Once this equation

has been developed, a rather straightforward computation will lead to
the deslred equation of equilibrium.

The rates N and fi'y of the stress resultants are defined as

p:d
. h/2
Ny = / &y 4z
-h/2

hf2 .

Ny- = O'y dz
-h /2

e (52)

As indicated in equations (51), two cases must be considered according

to whether K >0 or K <0. TFor K >0, dlrect computation shows
that
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4 [ - L] h 2
Ny - vN& €1h + GK(§ - 24

* _ " . . l . h _ 2
Ny = €2h -é-ﬁ%-é ZO)

where the gquentity c¢ 18 a function of A &nd v glven by

- (53)

<

=2
o]
i

c = A -1 (54)
(5 - b - (1 - 2v)2

Appendix B contains the details of this calculation and others used
in this section. It has been pointed out previously that N, and Ny

must vanish. According to eguations (53), this yields

t

2 §;h  2¢€
R L P
(- -2 2)

Thus the straln rates él and € in the middle surface are
related by the equation

iy = 2E, (56)

From the definition of 2,, equations (49), and this result, it is
seen that '

zg = (2 - v)%-«- (2v - 1)—%2-

= I.§(5 Lv) _ (57)

’
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This result may then be substituted back into eguatlon (56) to yileld

ho_ 2_2&211__ 2z h 8
(5 Zé) Tk c(5 - hv) (58)

Relation (58) cen be solved for 2, bto yleld the equation of the

neutral surface which separates the regions of loading and unloading.
Since h, ¢, eand Vv depend only on the geocmetry of the plate and
the applied compressive stress, 2z, will depend only on these

quantities. It 1s more convenient to introduce a new quantity §g
defined by .

t, = =2 _(59)

Then the quadratlc equatlon for z,, equation (58), becomes a
quadratic equation in QO, namely,

(1-@0)2+J;§QRT=O (60)

There are two solutions to this equation, in general, but the only
one which 1s physically realizeble is

€ = 8" =+ \e? - 1 N

where

=1 - 2 .
R =) - @

Equation (61) gives the desired formula for the meutral surface.
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When K < 0, ‘the procedure is exactly the same as that outlined.
Again the detalls are found in appendix B. The formule for the neutral
gsurface is glven in this case by

§=§_=-C!.-d,2“l (63)

Roushly speaking, the sign of K indicates whether the plate "buckles
up" or "buckles down.' Consequently, the differences in sign found by
comparing equations (61) and (63) are quite natural. It would also be
expected that the rates of change of the bending and twisting moments,
as-well as the resulting equilibrium equation, should be independent
of the sign of K. This will be shown to be true.

The rates of change of the bending and twisting moments can be
computed now that z, or £, is known for K >0 and for K <O.

The rates of change of the bending moments, . and My, " are

defined as
. nf2 |
MI = UIZ daz
-h/2

. nf2
My = f OyZ az
-h /2

where the moments are taken about the y- and x-axes, respectively.
The rate of change of the twlsting moment Mxy is given by

o

r (6%)

. h/2
M, = - T gy? @2 (65)
-h/2 '

The calculation of the rates, equations (64) and (65), must be carried
out separately for X> O and K< 0. It can be shown that the only
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quantlty appearing in the final result which depends on the sign
of X 1= the function & deflned by :

B 3] R
1 + 1lfe +
s=§1—g§o+.2.(§o) for K >0
> (66)
- 3] ;
_1 -1 .
R & I
According to eguation (63), CO— = -t o+5 the numerical value of §

obtained from equations (66) will therefore be the same in either case.

Thus the expressions for Mg, ﬁfy, and MW will be the same in both
cases. The details are found in appendix B in which it is shown that

fax =--]—2-G15-3_—E-<{f[l[l - c8(2 - ‘V)EJ +KQE - c8(2 - v)(2v - lﬂ} (67)

v B3 [(1 -v) = :l
oy = 12(1 - v2) 7 M2 (69)

The equation of equilibrium cen be set up in terms of the bending
and twisting moments and compressive load without reference to the
stress-strain relations. This has already been done by Timoshenko
(reference 1, p. 305) for the more general case of combined bending
and tension or compression. His results may be applied to thils speclal
case of a simply compressed plate. With the present notatlion, the
equation of equlilibrium is
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Py | Py, P N
a2 tEy T T TRge (70)

Timoshenko 's relation was origlinelly written in terms of the actual
bending momsnts and actual compressive stress resultent N, rather

than the rates of the reduced quantities. Timoshenko's equation can
be differentiated with respect to time and divided by E, on both

sldes, so that equation (70) is the desired equation of equilibrium
provided N, is defined as

Ny = 0ch|E, ()

From equations (46),

Ky = 3%ufor?
£y = 3% [o52
K

1o = 235 [oxdy

With these relations and equations (67), (68), and (69), equation (70)
may be rewrltten as |

Dy1¥yprx + D1pVyxyy + DpoVyyyy = ~Oohigy (72)

where the subscripts denote partial differentistion wlith respect to
the varieble named and S
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(w
[
[

]

DE. - ¢8(2 - v)z:l

Dyp = DL - o8(2 - v)(2v - 1)]

o (73)
Dpp = D|1 - cB(2v - 1)2]
h3E
D= —0 0O
12(1 - v2) 3

The quantity D 1is the well-known flexural rigidity of the Lgte.
Equation (72) resembles the equation for the buckling of aﬁ?anisotropic
plate (reference 1, p. 380 ;There is one important difference, :
however. In the case of an aﬁisotropic plate, the coefficlents Dy4,

Do, end Dosy are constants of the material; for the plastic
case D1y, Djp, &@nd Dyy are functlons of o,. In other words,

the plate 1s anisotropic but thls anisotropy is caused by end is a
function of the compressive stress. Consequently, certain changes
must be made in the standard procedure for calculating buckling loads
for anisotroplic plates. BSeveral examples illustrating this technique
are glven in the succeeding sections. Graphs of the quantities

to 1 - o8(2 - )2

Dyp =

D12'=l-c'6(‘2-‘\1)(2\1—l) -
and

D, '=l-c8(2V—l)2

20

ag functions of A for v = 0.32 are given in figure 3 and the
numerical values are listed in table I.
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Typical Boundary Conditlons for the Fundemental Equation
for a Simply Compressed Plate-

The discussion of the boundary conditions for the buckling
equation, equation (72), 1s facilitated by expressing the moment
rates M, M&, and Miy in terms of the second derivatives of

the deflection rate w and the stiffnesses Dy;, Djp, and Doy

introduced in equations (73). Thus, it follows from equations (6T7),
(68), and (69) that '

EMy = -DyqVyy - E)m - (1 - V)D]v'ryy

Eol\'/[y - -[D12 - (1 - V)D]v'ru - Dppwyy r , (74)

EoﬁxY:D(l-v)irxy -

The followlng boundary conditions are typlcal in the buckling of
rectangular plates:

(1) Simply sﬁpported edge 8t X = 0.- The deflection rate W
and the moment rate M, must vanish at this edge; that is,

w=0
(75)
'Dll‘.'rxx - E)l?_ - (l - V):Djv}yy = 0
for x= 0.
(2) Built-in edge at x = O.- At -thls edge, the deflection
" rate W and the slope rate W, must vanish; that 1s,
w=20
(76)
Wy = O

for x=0.
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(3) Free edge at y = 0.- For a free edge, the rates of the bending
moment M& and of the equivalent shear load (-EBMinE§§ + (aMy aj)
must vanish (reference 1, p. 300). Consegquently,

[D -(l-V)D:lw + Dy = O

(77)

I:Dle + (1 - V)]jwm + Do o =0

for y=0.

(4) Plane of symmetry at y = - I? the buckled shape of the
plate is symmetrical with respect to the'plans ¥y = 0, the rates of the

slope wy and of the equivalent shear losd (-25M3y18%> + (?My Bi)

will vanish. Therefore, -

x:ry =0 ]
e (79)
[D12 + (1 - v)D]x'«-m + Dpgiy = 0 .
or
w'ry =0
r (79)
Vyyy = © 5

for y = 0. Should these boundary conditions be given on other edges,
the necessary changes in the formulas can be made easily.

Several examples of the buckling of a simply compressed plate
with various boundary conditions of the type Just discussed are
congldered in the next sectlon. In sll these examples 1t is aseumed
that the plate is in the state of compression previously
described, oy = -0,, and that the edges x=a and x= 0,
perpendicular to the dirsection of the compressive force, are simply
supported. The other boundary conditions are specified for each

example. Equations (75) are satiefied at x =0 and x = a "if the
deflection rate is written in the form
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wa £(y) sin (mnx/a) (80)

where m 18 an integer. Thus & section of the plate in the buckled
state, obtalned by setting ¥y « Constant, is described by a series
of sins waves] the integer m glves the number of half waves.
Bubetitution of this expression for w Into the partial differential
equation (72) yilelds the ordinary differential eguation

(mn/a)hbllf - E(Eﬁ/a)eDlEfii + Dggfi"' - ooh(mn/a)ef (81)

in which the Roman numerals denote the corresponding dsrivatives with
respect to y. With

- (W) 52

Dpp
(82)
—-
2 - oh (M)E D13Dpp - D3p
Dip \a D35Dpp
squationa (82) can be written in the form
piv . oppBpll 172(p2 - q_g)f = O (83)

The general solution of this squation in #£(y) 1ia
f(y) o) cosh ry + cp slnh ry + oy cos 8y + o) sin sy (84)

where 01, Cp, Cq) and c) are arbltrary consteante which must be
determined from the boundary conditions, and
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r = \]p(q + D)

L (85)

s = \p(q - D)

.

Equation (84) is the fundemental relation which must be studied
for each particunlar case of buckling from s state of simple compression.
The boundary conditlons of the type discussed lead to linesr homo-
geneous eguations for the constants c;, cp, C3s . and cj. The

condlition that these equations possess solutlons Cis Ops c3 s

and cy which are not all zero ylelds an equation in r and e from
which the critical stress o, cen be determined.

Speclific Examples

Plastic buckling of a narrow strip; relation of present theory to
beam theory.- It enems worth while to investigate how the present
theory of the plastlic buckling of plates is related to the Engesser-
Von Kdrmdn theory of the plastlic buckling of beams. Conaider a
rectangular plate of thickness h which 1s simply supported
along x=0 and x=a, free along y = tb/2, and under the
compreseive stress o0p = -0, A8 b—> 0 for a fixed value of 4,

the buckling condition for this plate might be expected to approach
that of a beam which has the length a, is simply supported at its’
two ends, and possesses a rectangular cross section of height h
and width bD.

The solution given by equation (80) automatically fulfills the
boundary conditions at x =0 and x = a. In addition, the symmstry
condition along y = 0, equations (79), requires 'bhat the coefficlents
in equation (84) satisfy

rceo + 8¢ = O (86)

~

and

r3c2 - 330)+ =0 (87)
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Accordingly,

C2= Ch:O - (88)

if the function f(y) 1s not to vanish identically. Boundary
conditions, equations (77), for a free edge along y = b/2 furnish
the equations .

LR (1 - v)D n 2 sby
52 _12 _ Cl co8 ) + 03 co8 2

+--D22<recl cosh_%? - 52?3 cos %g) =0
>~ (89)
2 .
- E_gg Do + (1 - v)é](?cl sinh %; - sc3 ein %?
a2 b
+ D22 r3cl ginh rd + &3¢, ain %; =0 _J

2 3

The boundary conditions corresponding to a free edge al y = -b/2 are
fulfilled automatically if equations (89) are satisfied. Now these
ralatlons are linear homogeneous eguations in c, and 03; 1f they

are L have nonvanishing sclutions, the determinant of the coefficlents
must be zero. Therefors,



Dppr® —

[D12 ~ (1 =) D]} cosh 2

*ON NI VOVN

=0
[ 22
rg(DQQr [D12 ¥ (1 ~v 15_‘} 1‘— 8 1D2252 + BT o, + (1 —v)D] > 6in 2 5
L a? a? 3
- (90)
This determinantal equation can be reduced to the form
( 2 _ 22032 2, 2 2 3
£2 - ﬂQRGDntan121+('q +mn2R2®gtanh§=o (91)
vwhere
R = b/a R
E =rb = b\/p(q + P)
r (92)
1= 8b = b\[p(qg - p)
-

LE -
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If, for a fixed value of the span a, the width b of the plate
approaches zero, R and hence £ and 17 tend toward zero too.

Accordingly, the functions £ teanh (&/2) and 1 tan (n/2) appearing

in equation (91) may be replaced by t2/2 and n2/2, respectively.
For m = 1, in particuler, this relation can be reduced to

kDEQ’ - AD22'2 - D12t2 + Q2D22!2 = 0 (93)

in which the followlng notation has been used

> (94)

Dpp' = Dop D

- - D2
A= (Dll'Dee' 1312')/922 2

A detalled development of sequation (93) is presented in appendix C.
If the plate under consideration buckles within the elastic range,
Di7' = Dp' = Dop' = 1; consequently, A =0 and Q = V. According

to equation (93) then, k=1 - v2 and

°E
0'0 = ﬁl;iqefg (95)
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The compressive force P = o bh under which the plate buckles is thus
gseen to equal

3
P,.’.‘g_hiﬂ_q,ﬁl (96)
12&2 a?

where I = bh3/12 18 the cross-secticnal momerit of 1nertia.
Bquation (96) is Euler's formula Pfor the elastic buckling of a simply
gupported beam of span .

If the plate buckles after the compressive gtress o, has

exceeded the limit of proportionality, the evaluation of egqustion (9?)
becomes mores 4ifficult. Noting the relations gilven in equations (94),
equation (93) can be transformed into

k = Dll' - Q?‘.D-a2' (97)

For v = %, this relation can be hanfled quite simply. A straight-

forward computation (see appendix C) ylelde the following result for
the critical compressgive stress ¢ or = a :

2
. LE Kk 1 (98)
3a2 [
The oritical budkling losd P 18 given by
£E T
P = 0,bh = g' - 4 s (99)
a (}-LVKD .

where agaln I = bh3/12 is the cross-sectional moment of inertia.
Hence the reduced modulus E¥* 1g given by
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bk b ®

CEeRP (R

according to the definition of A glven by equation (13). This
reduced modulus ig identical with thet found in the Engesser-Von Kermdn
theory of the buckling of beams beyond the elastic limit. (See
references 2 and.3.) Thus in the case of an incompressible material,

V= %, the critical load for a beam cen be found as a limiting case

from the theory of plates. It should be noted that; within the
fremework of beem theory, the critlcsl stress is lindependent of the
value of Poisson's ratio V.

This result 18 not necessarily truve for materials which are not
incompressible, Vv f %. The quantity

Xk 1200a2

1- 7 P,

(101)

which 1s slmply a constant multiple of the critical stress for a glven
plate, has been evaluated as a function of A for the case Just
mentioned,. V = 1

57 and for a material with v = 0.32; the results

are plotted in figure 4. Although the two fumctions agree at A = 1,
as previously proved, there 1s a marked difference which increcases
with increasing values of M. Conseguently, two beams of the sames
shape but with different values of Polsson's ratio will buckle at
different critical stresses.

At filrst sight, these results may seem somswhat contradictory
since the analysis of plates developed herein is a generalization of
the Engesser-Von Kérmén theory of the buckling of beams and yet thils
"theory doee not always appear as & limiting case of the present :
analysis. An explanation of this discrepancy is afforded by & closer
examinatlon of the position of the neutral surface 2z, as a function
of the parameter A. The function 2z, depends on the plate
thicknesse h and on VvV and X. The limiting process considered
does not affect this relation and the neutral line in the beam 1s

determined by the intersection of the neutral surface in the plate
end the vertical plane y = Constant. The neutral line so determined
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need not coinclde with the neutral line determined dlrectly from the
theory of beams. This difference 1s the basis of the dlscrepancies

in k/(l -v2) noted.

According to equations (49), the function 2z, 1s glven by

(2—v)él+(_21_) -l)é2 |
ﬁ —

Zq =

where

(2 - )& + (2v - 1)K

A
fl

The quentities él and é2 are the strain rates in the mlddls

surface in the x- and y-directione, respectively. T¥For the small
displscements studied herein, Kl 1s the rate of curvature of the

line of intersection of the plame y = Constant and the middie --
gurface. Similarly, K2 is the rate of curvature of the line of

Intersection of the plane x = Constant and the middle surface. In
generel, the position of the neutral surface depends on the four

quantities ¢&,, é2’ ﬁl’ and K2 and this holds in the transition

from plate to beam. On the other hand, the Engesser-Von Kérmin i:lieory
of beams assumes that the positlon of the neutral line depends on él T

and Kl alone. (See reference 1, p. 158.) The position of the

neutral line will depend on the type.of analysis used. Specifically,
it cen be shown (see appendix C) that the position of the neutral
line found by consldering the intersection of the neutral surface
and a plane ¥y = Constant and the position determined by the

Engssser-Von Kérman method agree 1f and only if V = % Therefore,

it is to be expected that the transition from plate to beam is valid
only under this condition.

Buckling of a simply supported plate.~ The critlcal load for a
simply supported plate under edge thrusts, stressed beyond the elastic
limit, has been discussed by Timoshenko (reference 1, p. 387) on a
purely formal basis. The obJect of thils sectlon 1sg the dsvelopment -
of an snalytical formula for the criticel stress of such s plate on
the basis of equation (72) and the subsequent comparison with
Timoshenko 's results.
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According to eguations (75), the boundary condlitions for a plate
pimply supported at pll four sides cen be written in the form

¥=0
(102)
. "Dllwxx - I:Dle - (l V)]ﬂ W.Y}' = 0
et x=0 and x =g, end
w=20
(103)

at y=0 end y =1, The boundary conditiong at x =0 apnd x = a
are fulfilled automatically if the function w 18 of the form glven
by equationg (82) and (B1). Equations (103), applied to the
function f£(y) at y = 0, require that

cl + 03 =0
2 e o _ (10k)
Dpg (0, = sPag) + (B) 1o - (1 - ¥ID](0y + o) - 0
Conaequently,
61 = =¢3
(105)
c \re + Ee) =0
thus
Ol = 03 = Q (106)

since 1P + 82 4 0 if buckling is to take place.
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The conditlons at y =b Iimply that

czsinhrb+chsinsb=o

-D22-<r202 gsinh rb - sech gin sb) r (107)

+ (%)2@12 - (1 - v)] (02 sinh rb + cp Sin sb) = OJ'

which ere egquivalent to

Co

sinhrb-t-chsinsb:O
(108)

r202 glnh b - szch gln gb = 0O

Now these equations are linear, homogeneous equatlions in the two
unknowns co and cyj they possess nontrivial solutions if snd only

if

sinh rb gin sb _ ]
= -(12 + 52> gsin &b &inh rb = 0O (109)
r2 ginh rb -52 sin sb

This condltion will be satisfied if e + 82 = 0, r»r=0, or 8§=1xg
where n=0, 1, 2, - . . . The first possibllity is untenable; 'bhe
second implies, accord.ing to equations (108), that & = 0, =, 2mr, o ¢ .
If 8 = 0, then from equations (108) r must also vanish and buckling
will not take place. The buckling condition must therefore be & = nn
where mn=1,2, 3, - « + « B
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Since s ='\ﬁ(q = p) from equations (85), it follows from
equations (82) that

2 _ Il
B2
= pla - p)
- \/ (_132 D11Pop - P1o° _ my|[Di2 (110)
Dio T DiDes & {Dpp
”

With the notation of the previous Sections for Dy1's Dio's Dpp's
end 4, this relation can be written as

n2n2 _E I o h
Dee DD12

The critical stress O, can then be found by direct computation to be

t
- ox\|_12 (111)
a D22 !

o

%o

oy (fb\lp_ \L;‘) e Saf

Now each of the terms in the first perentheses on the right-hand side
18 positive; consequently, the minimum critical strese will occur
when n = 1. Thus the critical stress 18 glven by

cr T
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Cop = —5— “QDDE Dll%\’ =2 im E\ID > 22 G‘“‘) (113)

In the elastic case, A = 1 and the functions appearing in the
formula for the critical stress take on the values Dy ' = Dlg' = D22’ =1,

A = 0; consequently,

2
,f_]_)(l a b
= =2 +m= 114

This result is the same as that found for the elastic case directly

(reference 1, p. 330). Timoshenko suggests (referemnce 1, p. 387) the
application of the followlng equation for. the buckling of a simply
supported plate compressed beyond the elastlic 1limlt,

xx

D(a,w + 2 \IEw yyw) *Nw =0 (115)

where here o = E¥/E,, the ratio of the reduced modulus (defined in

equation (100)) to Young's modulus. Under these assumptlons, the
critical compressive stress 1s found to be

2
Dfla ,b
T =%<mb +ma\IE> : (116)

Although Timoshenko (reference 1, p. 387) gives only the critlcal
stress for the half-wave number m = 1, his results can be easily
extended to the form glven in equation (116).

It will be found more convenient to use a new quantity kX rather
than Oy for comparison of the two theorles. This parameter is a

modified form of k defined in equation (9k4); more precissly,
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120, b (l ) Vé)

nEhEE

i

2
0 opbeh

5 (117)

For the theory proposed in the present report, this guentity becomes

2

- 1\’322' P’ 2
k = DlE'(%% 5157 + &R 55;7 L+ DEQ'Am?R (118)

where R = b/a, as before. In the elastic case, k takes the form

- (% . m)g (119)

On the other hand, Timoshenko's result can be written as

_ (5% R ma\ra>2 (120)

The differences in the two results appear more readily if
equations (118) and (120) are expanded in full. After scme simplifi-

catlons, equation (118) becomss

Doy '

n®R®

(121)

E = :DJ_-:L-'I.T].E.R2 + 2D]2' +
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while equation (120) takes the form

¥ = am®R® + 2\ + 2]1;2 (122)
m

Tt is_seen then that ¥k 1is the same type of rational function
of mRZ2 for both theories except for the fact that the coefficlents
are different functions of A.

Unlike in the case of the cruciform section which is treated in
the next section, the computetions involved in evaluating k as a
function of A and mR are relatively simple since the coeffi- -
cients Dll', D12' ; D22’ , and a can be tabulated once for all
Independently of the stress-strain law and the particular geometrical
ratios umnder consideration. The critlcal values of k can be found
with reasonable speed by the following procedure. Curves of k
against A can be obtained for various velues of the paramsters m
end R by evaluasting equation (121) or (122), depending on which
theory is used. These results, which form the bulk of the camputation,
do not depend on the stress-strain law but only on V. Consegquently,
the curves of k against X\ thus found are valid for all materials
having the same Poisson's ratio. On the other hend, kX and A are
related by a second equation which depends on the stress-strain law;
namely, from equation (117),

2
E=;1-§—_é—EI%(1- \?)

Since Oop is a function of A, determined by the given compressive

stress-strain law of the materlsl in question, k also can be plotted

as a function of A once the plate wldth-to-thickness ratio b/h

has been flxed for a particular example. If these curves are plotted

on the same sheet as those previously described, the interssections

will give the critical value of Xk, and hence the critical stress, T
corresponding to a glven stress-straln law and given plate param-

eters b/h and R. It should be noted that k depends on the

ratio b/h in the plastic range, whereas this 18 not the case within

the ordinary elastic theory. —
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Since the gquantity A enters into the computations for the
second set of curves through the stress-strain relations, 1t is quite
useful to represent the stress-strain curve analytically. An
expresslon of the form .

B

€ = Lo+ Ag (123)
(o]

has been fitted to the experimental data in such a way that the
experimental and theoretical curves pass through the same initial

end final points and the slopes at these points coincide. The fitted
curve together with the experimental points is shown in figure 5.

The computational program described has been carried out for the
material given in figure 5 and the ratlo of plate width to plate

thickness fixed at b2/n® = 1000. The solid curves of figure 6

glve k as a functlion of A with parameter R as defined by
equation (121), each set of curves representing a different value

of m. These curves can be applled to a plate with any ratio of b/h
and any compressive stress-gstrain law provided v = 0.32. The dashed
lines, on the other hand, represent the relation between k and A

glven by equation (117); they correspond to b2/h2 = 1000 and the
gtregs-gtrain curve of figure 5. The points of Intersection have

been determined and the critical values of X plotted in the usual
fashion as functions of 1/R in figure 7. Timoshenko's results are
also shown as well as those for the elastic theory. 8Since the critical

stress is given by k¥ multiplied by a constant, the interpretation of
these curves of kX against l/R holds equally well for the critical
stress as a function of 1/R.

Firet, it should be noted that the plate wlll buckle in one or
more half waves according to the magnitude of the ratio 1/R = a/b;
this holds for plastic buckling as well as elastic buckling.
Furthermore, it ie necessary only to consider that part of the curve
corresponding to & glven value of m which lies below the inter-
sections with curves belonging to adjacent values of m. Under these
conditions, 1t can be readily seen that the critical sitress obtained
from the present theory lies between the results of the elastic
analysis and Timoshenko's formal procedure. More precisely, the
elastic criticel stress i1s higher than that predicted by the present
theory, whereas Timoshenko's buckling stress is lower. The transitlion
from a buckling mode with a given number of half waves to the next
higher occurs at practically the same values of l/R in both plastic
theorles; whereas, this transition occurs at sllghtly larger values
of 1/R in the elastic range. Finally, the locus of minimums of
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all three sets of curves is, to a high degree of approximation, a
straight line. While this straight line is fixed for all values
of b/h in the elastic case, it will shift 1n the plastic case as
this parameter 1s changed. '

With a slightly different computational procedure, the results
Just obtailned for the buckling of a simply supported plate by the
present theory can be compared with Ilyushin's solution of the same
problem (reference 6). Ilyushin's general equation for the buckling
of a rectangular plate compressed in one direction is of the same form
as equation (72) except for the difference in the coefficlents. His
fundsmental relation can be written as

+ 2D, *w

oot . o
Dy, *w. 10 + D, Xy = ~ho _w (12k)

2 yyyy xx

* * * 14 -
where the coefficlents D1l B D12 , eand ZD22 are rather compli_“

cated functions of the stresses which will be discussed shortly.
Since these results apply only to incompressible materials, the theory
developed in the present report must be specialized to the case for

which ¥V

For the case of a simply compressed plate, the baslc functions
entering in the definition of the coefficients in equation (124) can
be given in a slightly less complicated manner than that used by
Ilyushin for the more general problem. Let ZEg denote the "secant

modulus, " that is, quotient of the compressive stress divided by the
compressive strain as obtailned from a compression test for the

material in questlion. Then Ilyushin's function w can be shown

to be -

E
s
w=1- ﬁ; (125)

wvhere E, 1is Young's modulus for the materiel. With Von Kénmén‘s

modulus, E¥, as glven in equation (100), a new quantity &k may be
defined by settling

K = E*/‘Eo . (126)
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The function V will be used to designate the following relstion
containing K and o,

v=wé-%W><-%ﬁ)2+el-(l'i%ﬁ)w =

The coefficients D;,¥, Dyo¥, and Dpp* can then be shown to be
of the form ’ '

~
D]_]_*=D(l'\l’)( ,ﬁl—’l’-ﬁ

Dyg* = D(1 - ¥) r (128)
D22* = D(l - \'{')

where D 1s the flexural rigldity of the plate defined In
equations (73). It should be noted here that Ilyushin's coefficlents
depend on the two modull E and Eg, whereas those appearing in the

present theory depend only on the tangent modulus E or rather the
ratio A = EfE,. Consequently, 1t 1s extremely difficult to carry

out the larger part of the computations for k independently of
the stress-strain law as can be done with the method presented herein.
The numerlcal technique must therefore be changed somewhat .

The boundary condltlons for the simply supported plate Iin
Ilyushin's analysis are

-
I
(o]

(129)
3 h? 3
"Dll*chc - §D22*Wyy =0

at x=0 and x = a, eand
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w=0

(130)
'%922*"’:& - DEE*"’W =0

at y=0 and y = b. These boundary condltions are completely
analogous to equations (102) and (103), provided Polsson's ratio Vv
1s taken to be 1/2 in the equations (102) end (103). If the new

gquantlties Dll’ D12’ and 522 are introduced 1n the following

manner

Dyp = D17*/D )
Dp = Dyg¥[D | . + (131)
Tpp = Dpg*[D 3

the critical parameter X can be found in precisely the same fashlon
as that used in developing equation (121). Consequently,

- - - D
k = Dy{m°R2 + D1, + —22 132
11 12 55 (132)
As has bsen previously noted, the coefficisents '511, 512 5

and 522 are functlons of both the secant modulus end the tengent

modulus with the result that specific reference to the stress-strain
law in compression must be made in order to evaluate equation (132)
readily. The critical quantity Kk has been computed as a function
of 0, for the material shown in figure 5 with m and R appearing

as parameters. For a given wildth-to-thickmess ratilo b/h, k can be
determined by finding the intersections of these curves with the
straight line defined gy Squation (117). This procedure has been
applied to the case b /h = 1000 previously discussed. The resilts
obtained from Ilyushin's method and from the present method

with v = % are shown in figure 8. Agair considering only those
parts of the curves which lie below the Intersection points corresp_ondiﬁg
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to consecutive values of m, certaln general conclusions can be
drawn. The minimm value of k a8 determined by Ilyushin's method
is practically comstant for all values of m as has been seen in the
other theories considered. On the other hend, Ilyushin's theory

predicts emaller values of k and hence lower critical streeses
than those of the present theocry. Comparilson with figure 7 would
indicate that Ilyushin's critical stresses lie roughly betwesen those
of Timoshenko end the present theory. Finally, buckling occurs at
practically the same wave number in both theoriles although the Jump
In form takes place at slightly smaller values of lm in the
present theory.

Torsional buckling of cruciform sectlons.- The torsional buckling

of a cruciform secitlon under compression can be studled by treating
each flange as a simply compressed plate, simply supported at y =0
and free at y = b. (See reference 1, p. 340.) As in the previous
case, the deflection rate- w wlill be given by equation (80) where
f(y) 1e found from equation (84). The conditions for the simply
supported edge (equations (75)) at y = 0 become

C3 = -Cl
(133)
£11(0) = 0
r2c = & - - 2
The last equatlion implies c) = 8%c3- Since c3 = -C3 end
and g2 do not vanish, c¢; = c3 = 0; consequently,
£(y) = cp sinh ry + cy sin sy (13%)

Finally, the boundary conditions at the free edge y = b require,
according to equations (77), that

-QA&E)E[DJ.Q - (1 - v)D] (c2 ginh rb + ey sin sb)

+ D22<r2c2 ginh rb - :3201L gln 519 =
r (135)

_(%E>2E312 + (1 - ‘v)DJ @'02 cosh rb + sc) cos s'a

+ Dee(r3°2 cosh rb - 15;301+ cos 5'9 =

.
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Now equations (135) are linear homogeneous equations in the two
unknowns Co and cy. If these equations are to Jield nonvanishing

solutions, the determinant of the coefficients must vanish; that is,

a3 by ,
=0 (136)
g bp
where ‘
ay = 6)221-2 - {mexeﬁbla - (1 - ‘V)]E] /a2}> sinh rb
by = - 632252 + {majfgﬁjla - (1 - V)]é]/aﬂ») sin sb
8 = r€)22r2 - {me‘]'[EE)lz + (1 - V)]ﬂ/a":}) cosh rb
b, = -8 <D2252 + ‘{manzﬁblz + (1 - V)ﬁ]/a?}) cos sb

Except for a systematic interchange of the hyperbolic and trigonometric
functions, the determinant in equation (136) is the same as that
appearing in equation (90). The determinsntal equation can then

be reduced to

2
2 ;
s Daara - m_&aﬁ[{)lz - (1 - v)ﬂ} tanh rb

2
- r D‘2252 + m—agiﬁla - (1 - v)é]} tan sb (137)
&a

With the notation introduced in equations (92), thils result can be
rewritten in the form
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(§2 - m?n?Reé)e Eﬂ%?ji = (;2 + mgﬂggeq)a Eé%-n (138)

Again €& and 1 can be determined as functions of the guantities Djq’,
Dip's Dyy's end k defined in equations (94). With some additional

transformations, equatlon (138) can then be put into a form sultable
for solving for the quantity k as a function of M. Although the
computations are somswhat tedious, the solutions obtalned are completely
independent of the stress-straln law. These results are represented by
the s0lid lines of. flgure 9 aund are marked Ffor various values of the
gide ratic R. The dashed curves, on the other hand, represent the
quantlty k as a function of A as derived from equation (117).

These curves have been computed for the stress-straln law shown In
figure 5 and the values of the wildth-to-thickness railo b/h as
indicated in the graph. Gilven the two dimensionlsess guantities b/a
and b/h, the criticel stress 1s then determined by the corresponding
80li1d curve and dashed curve. Thie point gives the desired value

of E, from which the buckling stress is found by solving

equation (117). The detalls of the procedvre are found in appendix C.
It should also be pointed out that the solid curves have been computed
for the half-wave number m = 1, for it is shown in appendix C that
the lowest value of X, and consequently the lowest critical stress,
will be obtained for this value of the wave number.

Certaln genersl conclusions concerning the buckling of such a
gection can be reached without reference to the stress-strain law by
meens of the so0lld curves of figure 9. These curves show that, for
a glven side ratio R, %k 1s a decreasing function of A. This
decrease is not the same for all values of the slde ratio, however.
For small values of R (large length-to-width ratios), k¥ 1s almost
constent. In fact, when R = 0.10, E is practically constant and
the critical stress is the seme as that found In the theory of elastic
buckling of plates. The plastic effects are very pronounced fur
larger velues of R and increase as R —> 1, that ls, as the
rectangular plate becomes more nearly squ:re.

Finally, the intersectlons of the solid and dashed curves of
figure 9 yield k as a function of the side ratio R; these are
replotted in figure 10. The top curve represents the elastic case
(A, = 1) and is independent of b/h. The other three curves
correspond to the cases bQ/h2 = 300, 250, and 200, respectively.

It should be noted that k for the elastic case 1s always greater
then k for the plaestic case; this difference 1s more marked for

shorter (lerger R) and thicker (smaller b2/h2) plates.
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Energy Method .

In the preceding sectlon rigorous solutions were obtalned for
several cases of plastic buckling of simply compressed plates. In
cagses for which the rigorous solution becomes too wmwleldy or 1s not
known at all, the energy method provlides a convenlent mesns of
finding approximate values of the buckling loads. o

As far as the elastic buckling of plates 18 concerned, the energy
method is well estasblished. (See, for instance, reéference 1,

Pp. 325 £f.) At first glance, it may appesr somewhat doubtful
whether this method can be extended to the plastic buckling of plates.
That such an extension 1s legltimate, however, follows from the fact
that equation (109) has the sams form as the equation for the elastic
buckling of an orthotropic plate with flexural rigidities D1y

and b22 and torsional rigldity D127 Since the energy’ method is
valld for thils problem of elastic buckling and since the plastic '
buckling of a simply compressed plate 1s governed by the same eqpation,

the applicatign of the energy method to the plastic buckling of plates
1s legitimate.

Under sufficlently emall edge thrusts the flat form ¢f the plate
represents a stable equilibrium configuration. When the edge thrusts

reach the critical value, however, thls equilibrivm bescomes indifferent

and the plate may assume a bent form. This transition from the flat
to the bent form, that is, from one indifferent equilibrium configura-
tion to another one, does not involve any energy input or output.
Accordingly, the work done by the edge thrusts equals the flexursl
energy of the bent plate. The mathematicel expression of this
principles 1is the basic energy equation:

fo {[1 — o8(2 —V)2]{oru2 +2fv —es(2 —=v)(2v - 1)] w}n{«yy

2

[1 — cd(2v - 1)%653,2 + 2(1 - V)"'xy dx dy

ogh ffv'rxe ax dy o - (139)

where the range of integration i1s the area of the plate, thet is,

0s xS a, O Sy<Sb. Ae is easily seen from equations (46)
and (7h), the left-hand side of equation (139) equals

+
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B, ff(MxKll - Mm}ile + Mytaz dx dy (140)

which represents twlce the rate at which work 1s done by the bending
and twisting moments. In the elastlc range, ¢ = O, this expression
can be written in the famililar form

fo |:<wmc + iryy)a —2(1 - v) (ﬁn&yy - {vm?)] dx dy (141)

The right-hand slde of equation (139) repregents twlce the rate at
which work 1s done by the edge thrusts and has the same form as in
the elastic case.

The followlng expresslon for the critical load of the plate is
obtained from equation (139):

ooh = & - (142)
where
A= fo{[l — o8(2 —v)2]v'rn2 +2|v—oc8(2-v)(av - 1):| LA
(143)

+ [1 - cs(2v - 1)] ‘-rny +2(1 - v 2o ax ay

B=ff€wx26.xdy (144)

The right-hand side of equation (142) depends on the function w,
that is, on the deflected shape of the plate. Now, any restriction
which is imposed on the deflection rate w, over and above the
boundary conditions discussed in the third section of the ANALYSIS
emounts to an increase in the stiffness of the plate and must,
therefore, lead to an Increase in the critical load. The critilcal

and
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load for a gliven plate is accordingly found as the smallest value

which the right~hand side of equation (142) can assume for functions w
possessging continuous partial derivatives of the second order and
satlsfying the boundary condltions for the deflection of the plate.

Tn the elastic case, c¢ = 0, the right-hand side of equation (142)
is independent of the buckling stress o,. Eguation (142) therefore

furnishes the buckling stress o, which corresponds to a glven plate

thickness h. In the plestic case, however, the numerator A of the
right-hand side of equation (142) depenmds on the buckling stress Oo

through the quantities ¢ &and 8. Equation (142) should therefore

be considered as an equation which determines the critical thickness h
corresponding to a given buckling stress. If the expression for D,
from equations (73), is substituted into equation (1%43) and the
resulting form of equation (142) solved wilth respect to h, the
following formuls 1s obtained: :

h = 120'0(1 - V2)B
= EO.A.'

(145)

where B is glven by equation (144) and A' denotes the integral on
the right-hand side of equation (143).

The energy method will now be applied to the buckling of =a
cruciform section previously considered. A suitable cholce of the
approximate deflection rate w 1s

goalt - 234 (146)

where t = x/a and 1 = y/b. This function satisfies all the boundary
conditions on the plate except at the free edge y = b. Nevertheless,
this expression proves to be a satisfactory approximation s will be
seen _shortly. The necessary Ilntegrations Indicated in the definitions
of A and B (equations (143) and (144)) can be easily carried out
in this case; for example,

. 1 1pL
ffwnedxdy 2;3‘/;‘/; n2(§-§2)d§d.q

e
)

(147)
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L |
W 2 dx dy = ——=— (1 - 1262 4 8e3 . 36t - 85 . 16§6> at dn
d agR 0

= L 148
3582R ( )

[

Rf lfl n2(1 - 1082 4 8e3 4 3eet - et 1655) at an
oyo

- iR
- 1 (149)

where R = b/a. Thus

17a°R?
168821 - oa(2 - v)2] 4+ 102(1 - v)

B
Y

- e (150)
168R2Dll' + 102(1 - v)

and.

168R2Dll' + 102(1 - V)

k= (151)
1752
where k is defined in equation (117).
Since D,,' has been previously computed as a function of A

11
(see table I), k may be readily evaluated from equation (151) as a
function of A for various values of the parameter R. Thls has
been done for the example ¥V = 0.32 conslidered in an earlier section.
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The results are shown In figure 11 in which the solid lines represent

the solutlon obtained by the energy method and the dashed lines are

those found from the exact solutlion. A brief inspection will show

that the energy method, as spplied here, glves a very good approxi-

mation in the technlcally Interesting region of small values of R.

The error Increases a8 R becomes large and reaches & maximum of
about 8 percent. It should also be noted that for a given value -
of R the error is an increasing functiom of A. The energy method

actually yilelds better results when the complete problem of deter-

mining the criticel values of k assoclated wlth a glven stress-

strain lew 1s carried out. These polnts are found from the intersectlons

of the curves of flgure 11 and the curves derived from the stress-

strain law through equation (117) (fig. 9). Since the curves of

figure 9 are monotonic, increasing functions of A with a slope T
angle of less than 90°, the error will be smaller than the original

estimate. The results of applying this method to the cases treated

in the previous section on exasct analysis are shown in figure 12. The

solid curves represent the solution by the energy method, whereas the

dashed curves ares the exact solution. It 1s seen that the maximum

error is of the order of 2% percent of the value of k. This appears

to be well within the order of accuracy of the theory itself. Finally,
the approximate value of k 1is always greater than the exact soclutilon
as 1s usually found in the application of the energy method.

Equation (151) also affords an easy means of studying the general
character of the critlcal parasmeter k as a function of A Ffor
various values of R. It has already been polnted out that DJ_'L' is

a decreasing function of A starting at Dll’ =1 for A =1 and
approaching Dll’ = 0.2413 for A —~—> ». Thus for small values

of R, the first term has 1little influence and k¥ 1is appro:d.mately*
a horlzontal line defined by the equation -

The slastic solution based on the snergy method with the deflection
glven by equation (146) is

2
% 168R" + 102(1 - v) (153)
1742 :
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and equations (152) and (153) agree qulte closely for small values
of R. TUnder these clrcumstances, then, the criticel stress deter-
mined from the plastic theory will be the same as that obtained
from the elastic formmlas.

Brown University
Providence, R. I., March 26, 1947
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APPENDIX A

DIFFICULITIES PRESENTED BY ILYUSHIN'S STRESS-
STRATN RELATTIONS

It has Dpeen pointed out in the first sectlon of the ANAIYSIS that
certain obJectlomable discontlnuitles are present at the neutral
surface when the state of stress and strain In a body 1s described by
relatlons of the type used by Ilyushin (reference 6). More precisely,
it has been shown that the equations for loading and unloading do not
glve the same increments in strain at the neutral surface; thils
difficulty is not present in the theory of plastic flow developed
in the present report. Such problems always arlise when an attempt
is made to take unloadling into account in a theory of plastic
deformation. {See reference 10, p. 400.)

The inconsistency is brought out more clearly if the whole
problem 1s consldered in terms of the state of stress and strain
exlsting in the buckled plate. Let

&= Q(Ui) B l(i)a) (1)

Then Ilyushin's stress-strain relations for loading in the case under
congideration (equations (30)) can be written in the form

2Eey = (1 + Q)(de - Gy) )
2B = (1 +0) (moy + 2ory) - (a2)
Eg¥xqy = 3(L + Q)7

Differentlated with respect to time, these become equations of the
following type:

2B ey = (1 + 0)(25y - 6y) + d(aoy - oy) (A3)
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In particular, for buckling from a state of simple compression,
(o] =
x

=0 and O'y=Txy= o,

o an

o= e—— &i
4oy
= - ¥ - §
- -1 0'(28, cy) (Ak)
vhere Q' = dQ/doy: Accordingly,
P ¢, = (1 + Q4 %QD (26 - &y) (85)

The boundary between the regions of loading and unloading is a
plene 2z = Constant. If the dlsplacements are to be continuous across
this plane, &, éy’ and 7xy’ too, must be continuous. Morsover,

according to Ilyushin's theory the sign of -0,€y 8serves as a

criterion for loading and unloading. Since éx is contlnuous, it
must vanish at the boundary between the reglons of loading and
unloading. Thus, 264 - dy is continuous, too, and £ = O on the
boundary. Denoting the values on the loading side of the boundaxry
by the superscript + and. the values on the other side by the
superscript -, the strains at the meutral surface become

.
o8¢y = (1 + 9)(25, - 6,*)
= 20y - Oy
=0
» . + - +
otéy = (14 0 (-6 +25%) L (6)
= -&x- + E&y—
By, =301+ o7*
o' xy Xy
= 3’Txy J
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Thus
6, = (1 + Q)&xf
.-= Q.+ ~
L (1 + )cry (A7)
ty =@ +n)+xy+

Since (1 +Q) > 1, the reates of stress on the unloading side of the
boundary are of the same sign as those on the loading. Furthermore,
the absolute valuss of the rates of stress on the unloading side are
greater than those on the loading side. While thls prediction of
Tlyushin's stress-strain relations does not violate the equations of
equilibrium, 1t does seem quite strange when compared with the usual
notions of loading and unloading. The result 1s of a sufficlently
startling character to call for direct experimental verification
before a theory of structural stebility in the plastic range 1s based
on these stress-strain relations.

That the discontinuities implied in Ilyushin's stress-strain
relations are a source of concern to Russian scientists working in
this fleld 1s seen from the followlng passage which is quoted from
W. W. Sokolovsky's recent paper (reference 1l4) in which the stability
problem is speclifically dliscussed:

"Tn solving these problems, the Mises-Hencky theory was employed,
under the assumptlon of the Incompressibility of the plastic raterial.
This assumption has a strong influence upon the value of displacements
and does not permit satisfylng completely the condltions of the
continuity of all components of stress and displacements on the
boundary between the elsstic and the plastic zones. An obJective of
recent work is to avoid these defects of the theory.'

While the discontinulties appear to have been noticed, the
source has not been traced correctly, for these discontinuities
subsist even if the compressibility of the material is taken into
account. They can be avoided only by replacing Ilyushin's theory of
plastic deformation by a.theory of plastic Tlow of the type glven in
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APPENDIX B

DETATLS IN DEVEIOPMENT OF FUNDAMENTAL PLATE EQUATION

Determination of Neutral Surface

The neutral surface cen be determined from the condition that the
additional stress resulbants present in the buckled state must be in
equilibrium. Rather than compute the rates of the stress resultants
arising from &x and. éy separately, 1t is much simpler to consider

the comblnations &y - be and dy - V&x. (A similar device is

employed in reference 6, p. 341.) For unloading, equations (40)
may be used to yleld

Oy = V05 = €x
(B1)
Oy = VOy = éy
On the other hand, equations (39) glve for loading
. . . A -1 |
€x=o'x-VO'y+(?\.-l)o‘x- 5 Oy
- (B2)
. . A -1 A -1
€y=0'y VO’x ) O'x-l- n O'y J
Transposition in the first of equations (B2) leads to
» - . ) -x,.l » _n
b6y = Voy = éx - (de cy) (B3)
which, according to equations (41), can be written as
. . . o(n - 1) Ej . .
g -Vo_=¢., - 2 -v)_ + (2v - 1)e | (B4)
x T X (5 - (1 -2v)? x 3
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With

c = AL
(5 - hv)r - (1 - 2v)2

(B5)

and K end z_, as defined in equations (L9) , equation (B4) becomes

o]

Og - Vc'ry = é; +2cK(z - zp) (B6)

The quantity c¢ dJdepends only on the properties of the material
through v &and on the compressive stress through A. It is a
nondecreasing function of A, for :

de (5 - hp) - (1 -2v)2 - (5 - W)(a - 1)

a - 2
[gs - W)n - (1 - 2v)2]
_ 5 -lhy-14bv-?
[Zs - by)n - (1 - 21;)2]2
_ (1 -v?2)
[(5 - win - (1 - 20)8]?
20 (B7)
since -1S v S % For A = 1 (the smallest value of A, ¢ =0;

for M=o, c=1/(5 - bkv). A simllar expression for c'ry - Vg, can
be found by the sams technique; namsly,

éy - K(z - zo) (B8)
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4

The rates of change of the stress resultants ﬁx and Ny can be

computed from equations (Bl), (B6), and (B8). Two cases arise
depending on whether the region z.> 2z, 18 a region of loading or

whether z < z, 1is the region of loading, that is, whether X >0
or whether K< 0.

Case (1), K> 0.- Since K> 0, the reglon z > z, is the
region of loading and z < z, that of unloading. Consequently,
equations (Bl) are valid for z S z, and equations (B6) and (B8)
hold for =z 2 Z,. Now the rates of the stress resultants ﬁx

and. Ny are defined as

- h/f2 .
Ny = Oy dz

h /2
r (B9)
. hfe |
Ny = O'y dz
-h/2 3
According to equations (Bl) and (B6) ‘then
. . h/2 . . hj2
Ny - VN, =f / éy 42 + 2cK / (z - zo) dz (B10)
-h /2 Zg

The strain rate &, = &; - zK from equations (45); neither the
function él nor K depends on z. Therefors

fh/zéxdz=fh/2éldz—ﬁfh/azdz
_h/g -h/2 -h/2

= €.h (B11)

1
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and
. . . -/ 2
Ny - VNy = é1b + CK(E - 2z, (B12)

In the same wey, it can be showm that

. . hfe . - fn/fe
Ny‘VNx=f eyd.z-cKjZ (z - z) az
= e]

h/2

il

. . 2
éh - %cK(-g- - Zo> (B13)

From equations (Bl1l) and (B13) it has been shown in the second section
of the ANAIYSIS that the position of the middle surface 1s given by
that value of =z, which is the solution of equation (58). With

to = 22,/B, equation (58) becomes equation (60); and with equation (62)
the solutlon can be written as

b, =at \/v:r,2 -1 (B1h)

Since ¢ 1s a nondecreasing function of A with values in the

range 0SS cS 1/(5 - ), +the quentity o will lie in the range

a= -1 . (315)

Consequently, only the positive root in equation (Bl4) can be kept
if the inequality lt,oI = IEZO/hI S 1 is to be preserved. It will
be convenlent to denote this root by QO"'; that 1is,

(=t —a+\P -1 (B16)

This is the formula for the neutral surface given in the second
section of the AWATYSIS.



68 ' NACA TN No. 1530

Case (2), K < O.- The same technigue, as used for case (1), with

the exception of certain changes in sign can be employed in the case
when K < O. When K< O, the region z < z, 1s the region of

loading end z > z, that of unloading. Consequently, equation (BY)
is now vaelld for z 2 z, whlle equations (B6) end (B8) hold

< . :
for =z = Zge Thus 1\Tx - VNy becomes

- . h 2 . d
Ny - Wy = / ¢y dz + 20K [ © (z - 2q) az (B17)
-h/2 -h/2

which can be evaluated, as in the previous case, in the form

i [ . d h 2
Nx - 'VNy elh - GK ‘-2' - Zc)>

. . 2
€ - ax(g- + zo> (B18)

Similarly,

z-

. . . 2
g " VN, = &h + -gK(—g + Zo) (B19)

Again the rates of the reduced stress resultants ﬁx and Ny must
vanlish. This glves

o €.h 2¢, h
(B+2o) =L --—2 (520)
cK r

Bquations (49) can be used to show that
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€ €
z_ = (2 - v)=£ + (2v - 1)-2
o= ( < ( <

2 (5 - W) (321)
= }- 5 vV

and equations (B20) and (B21) yield

2 o 2zn
2 = - 42 = Q
.(2 * Z0> & o5 - W) (222)

Equation (B22) is the analogue of equation (58) which was found for
the case XK > 0. It can also be solved by introducing the nondimen-
sional quantity £, defined as &, = 23, /h. The quadratic equation

fTor §° is
4 .
(1 + §°)2 R _°]W) -0 (B23)

and thls can be transformed into

;2

o +2[l--a§%m]+l=0 (B24)

The quantity appearing ln the brackets was deflned as o 1in
equations (6L); thus the solution of equation (B24) is given by

t = -at\f -1 (25)

Again, the restriction that IQO' s 1 requires that only one of the

signs in equation (B25) can be taken, namely, the minus sign. Thus
the solution is that glven by equation (63); nemely, '

Ey = -a- Va© - 1= 857 (B26)
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where the symbol ¢§ o- has been introduced to distinguish this case
from the root §o+ rreviously found. Comparison of equations (Bl6)

and (B26) shows that

& =-¢ (B27)

In addition, ¢, ¥ <0 for K>0 and {,~ >0 for K<O0, as
might be expected from the geomstry of the situatlon.

Determination of Rates of Change of Bending
and Twlsting Moments

The moment rates can be computed now thet 2z, or Co is known
for each of the cases K >0 and K <O. Since the rates of change
of the reduced bending moments M, and My are defined as in

oequation (64), the device of computing Mx VMy and My VM may
be used here.

Case (1), K >0.- Application of equations (Bl) and (B6) yields

M_x-vl}:jy fh/ezd.z-q-chf/z(z-z)

-h/2
k h3 s 3 4 3 h2z z 3)
I h? .o . o o
= -+ 2cK<2L__ 3 5+ 3 (B29)

The quantity =z, can be replaced by h€°+/ 2 = z_ with the result

My - VM = '%El'ckl'ggo++%go+?>] (B30)
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With

28 =1-3¢.* s 1653 (831)

the last equation becomes
. h3 . -
My -VMy = - 35 (Kl - acSK) (B32)

Equation (B8) for cry -v&y, differs from equation (B6) for oy -vo

only in that K replaces oK end Gy replaces E in
equation (B6). Without further computation, it can 'be seen that

b

i - VAL ;--11%(1':2 + cak) (B33)

Equations (B32) and (B33) can be solved for the reduced bending
moments with the result that

My = —-—-—27[31 +VK2 - (2 -V)caK:l (B34)

12(1
) 3 . :
iy = - iy e - @ - veel] e

The curvature K can be expressed in terms of ﬁl and ﬁa according
to equations (49); consequently,



el

M, = -__lfm K1 - cd(2 -v)"j + KQE* - b2 - v)(av - 1ﬂ]{ (B36)

T oe(1-v8) |

. 3 . . 2
h
My = - Kdv - e8(2 - v)(2v - 1)| + [1 - cb(2Vv - 1)] (B37)
12(1 - vzs 1[ :I 2 }
These relations are the same as equations (67) and (68) which were given in the second section

of the ANALYSIS without proof.

Cane (2), K <0.~ This case can be handled in exactly the eame menner as the previous one
provided the integrasls are split up as follows:

ﬂx—ﬂ:%,z h/‘?éxzdz+20ﬁfzo z(z-z()d.z (B38)
-h/2 -h/2
K-,h3 ./z03 n3 203 zcha\ s
= - +2cK\—§-—+2 "—2—-+—‘—B—‘} (B39)
. : 3
Por X <0, zo=h§0/2 and B
=
2
¢
. 3. . - -
- h - -1t -3
%-V%:-E[Kl cK(1 EEO +%§°] (BYD) %’
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Now go' = - §O+; thus,

(l-%go-%ggo-):(“.21.;;3-.3@;):25 (341)

In other words, VM.y wlll be given by the same formula for K< 0
as for K > 0. Similarly My VM wlll be given by the same
expression in eilther case; and, consequently, M:x and My can be

found from equations (B36) and (B37) independently of whether K<oO
or K>O.

The rate of change of the reduced twlstlng moment M’U is

defined in equation (65). According to equations (40) and (45)
equation (65) may be rewritten as

'xy = Zl + V) fh/2 7 dz (Bk2)
1 h/f2
= - 7 - zZK-n)Z 4z (B43)
o(1 + v5fh/2 ( 12)

Integration of the last equatlon furnishes

3 )
’ - h (l -y ]
Yy 12(1 - w) 2 2 (Bk)

This result, too, holds independently of whether k >0 or K<O.
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APPENDIX C

DETATTED COMPUTATIONS FOR SPECIFIC EXAMPLES

Buckling of a Thin Strip

According to the definitions of r and s, eguations (85),
and of p, equations (82),

oD
r2 s g2 2 op? o 2(1-‘!-‘ 22 (c1)
a D22

The terms of the second row of the determinant (equation (90)) can
therefore be written in the form

2
r {DEQSE + m—:éﬁﬁlz - (1 - v)DJ} sinh 229

L (o)
8 {D22r2 - Ej_g_z.E)lz - (1 - V)D]} ﬂ.’m—’?—;Q

>

The determinental equation (90) 1s thus seen to be egquivalent to

2 2 2
2 _ o gb
8{3221” - ag b - 1 - V)D]} tan 22

2
2
+r {DEQE:2 + %Q—E)m - (1 - V)D]} tanh Ié—b =0 (C3)
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With the definitions of equatioms (92), equation (C3) can be
rewritten in the form of equation (91). The evaluation of the roots
of the transcendental equation (91) can be simplified further by
introducing equations (94%). A simple computation will show that

§2

2 naRe \[@22 -

2!2 + Dlet

r (ck)

o 22 kD '
22

If, for a flxed value of the span a, the width b of the plate
approaches zero, R &and hence £ and - tend toward zero too.
Accordingly, the functions & tanh (€/2 % and 17 ten (n/2) appearing
in equations (CL) may be replaced by /2 and 1 /2 respectively.

For m= 1, in particular, eqpation (91) caen then be written as
follows:

2
: 3 - - 2 .
@@22’ ADpp ™ + Dip’ %2} <\[k322' ADop * D12'>

2 ' 2 2
* \IKDEE' - Mo - D1’ + QJ322> (\1@22' - Mg +1312> =0 (c5)
or in the form of equation (93) as

1 1 T 12
Khop' - &Dpp'2 - D1p'® + @PDpp @ =

Equation (99) for the buckling load when V = % can be

developed from the followlng comnsiderations. According to
equations (73) and (94),
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(cé)

for Vv = From these results and equations (92), it is easily seen

v 1o

that Q = V; consequently,

k = ﬁ (1 - 3c8) (c7)

when V = % For this value of Poilsson's ratio, a straighiforward
computation will yield

> (c8)

s - Ma +\I_3)
(1 +\IT)3 )

Therefore,

8 = (\/Y - l) (\/_7: + 3) . (c9)
3(1 +V%)?

and

] - 3¢8) = C10
k h(l 3cB) 1+\l7)2 (c10)
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On the other hand, according to equations (94},

2
a
1 h2Eo
where .. 18 the critlical compressive stress. Consequently,
@E_h? 1
g,,=—2 (c12)

cr ~ 302 (l + V‘x).? '

end. the critical buckling load P 1is glven by

from equation (99). This is the desired result from which Von Karman's
equatlion follows.

It has been pointed out in the third section of the ANALYSIS that
the neutral line of the beam and the neutral surface of the plate will
coincide if and only if ¥ = % This can be seen qulte simply from
the following discussion. If ¥V = -;:, then z, = él/fc according to

equations (49). It follows from equations (C8) that

B __NX-1 (c13)

° h ﬁ+l

ve
+
i
I

The distance of the neutral surface from the lower surface is given by

by, - b _y_VE (c14)
2 \]—>:+1 \[E—o+\lf
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This is the same result as that obtained in the direct analysis of the
buckling of a beam. (See reference 1, p. 158.)

Conversely, assume that the two positions of the neutral line
agree; that 1s,

¢ F - NA -1 (c£5_j
V7C + 1

vhere §0+ is computed from equation (B16). Since equation (C15)

must be an identity in A, 1t must be valid for any particular value

of A. For computational convenience, consider the case when A = k.
Then

o = u
3(5 - V) B

where u = 8VF 4 1oV - 23. Consequently,

+ _ u 1 2 _ _ 2
N R M G Ve - 905 - )

(c17)

|
]
Wik

and subsequent simplification lesds to

u= -5(5 - 4v) (c18)
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Evaluation of u in terms of Vv ylelds

(2v - 1)% = _ (c19)

or

(c20)

<
[}
1o i~

Therefore the two methods of determining the neutral line will agree
if and only if v = %‘-, and the transition from plate to beam will

be valld only under this condition.

Buckling of a Cruciform Section '

" The transcendental equation (138) must be solved to determine
the critical stress. A straightforward computation will show that

"
me 2R2
2 _ 112R o
£E= = - ADyy 'S + D
- (c21)
2 2.2 !
2 _ mPqeR KDoo ' 2 _ ,
n = D22' <\I m2 ADQEI Dl2
J
Since
o o 2m2:'r2R2D]2
£ =1+ _D—s'- T (C%)
22
Equation (138) can be written entirely in terms of n and the
paremesters R, Q, D12" and D22'- For given veluss of m and R,

the remalning parameters in the transcendental equation are functions
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of A alone. Thus 1 can be determined as a function of A by
solving this equation by the usual iteratlive procedures. The
quantity k can then .be found as & function of A by solving the
second of equations (C21l). These results are independent of the
stress~straln law of the plate material. On the other hand,

| 26

that is, for a given material Xk can be written as a function of A
once o, 1is known as a function of A.

It is a little more convenient to write the solution in terms of
the quantity ¥ rather than _k. This parameter was defined in
equation (117). Curves for %k as a function of A For glven values
of m and R can be obtalned in the following way. The gquantity k
can be computed, as previously desoribed, by solving equations (138)
and (C21); kX cean then be found from equation (117) . .These results
are independent of the stress-strain law and consequently hold for
any rectangular plate. On the other hand, k¥ can also be camputed
as a function of A for a glven stress-strain law according to

equation (117). The resulting function wlll depend on the

parameter be/h2 Once the side ratio R, the width-to-thickness B
ratio b/h, and the wave form m have been selected, the value of k
corresponding to the buckling stress can be obtalned by finding the
intersection of the two corresponding curves of- k against X\

computed as Just outlined. '

It has been polnted out in the third ssction of the ANATYSIS
that the lowest value of ¥k, .and hence the lowest critical stress,
will be attained for m = 1. This can be seen easily from the
followlng considerations. Figure 9 showed that for m= 1 and a
fixed value of A, %k increases for increasing R. With a simple
change of variasbles, the sclution for any value of m can be obtained

from the solutions for m= 1. Iet

-

-
-

2
R' = mR - (cok)
=X

m2 !
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Then equations (138) and (C21), written in terms of k' and R' will
be precisely the same as those for k and R when m = 1. Thus the
curves of figure 9 can be used for any m provided R 1s replaced

by R' end k by k'. For m>1 then, k>k' and R<R'. In

other words when m # 1, the value of k for a given value of R

eand A will be larger than the corresponding value of k for m = 1.
Since the dashed curves are monotonile, 1nc_1_'easing functlons of A,

this implies that the critical value of k will be lowest for m= 1.
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TABIE T

D12',

AND D,,'

VAIm::s OF Di;', oo
FOR Vv = 0.32
A Dy’ Dyp! Do
1.0 1.0000 1.0000 .0000
1.2 .93030 1.0149 .99680
1.4 8Lk 1.0269 .o9kok
1.6 .828Y7 1.0368 99212
1.8 78973 1.0k51 .9903L
2.0 .T5655 1.0522 .98882
2.5 .69086 1.0662 .98580
3.0 64178 1.0768 98355
3.5 60345 1.0850 .98179
4.0 57255 1.0916 .98037
h.5 54698 1.0971 .97920
5.0 525414 1.1017 97821
6.0 4910k 1.1091 .97663
7.0 L6459 1.11h7 9751
8.0 L4365 1.1192 -97hL5
9.0 10652 1.1229 97367
10.0 L1206 1.1259 .97301
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Figure 1.- Plate under uniform compressive stress in direction of
. x-axis prior to buckling,
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Figure 2.- Stress-strain diagram for loading and unloading for
uniaxial state of stress and strain.
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Figure 3.- Graphs of Dy{', Dig', and Dy’ as functions of A for

A

v = 0.32.
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Figure 6.~ Curves of k as a function of A for differenf: values of
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Figure 6.- Continued.
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Figure 7.- Comparison of values of k for values of 1/R with
v = 0.32 as determined by different theories.
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Figure 8.- Comparison of values of k for values of 1/R with
v = 1/2 as determined by the present method and that of Ilyushin,
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Figure 9.- Results of solving for k asa function of N by using
equations (117) and (138).
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Figure 10.- Curves of kK as a functionof R from figure 9.
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Figure 11.- Curves of k obtained by the energy method and exact
solution for v = 0,32 and various values of R.
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Figure 12.- Results of applying energy method to cases of figure 10,



