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CRITTICAL AXTAT~COMPRESSIVE STRESS OF A CURVED RECTANGULAR
PANEL WITH A CENTRAT. CHOQRDWISE STTFFENER

By S. B. Batdorf and Murry Schilldcrout
SUMMARY

The theoreticael critical stress is derived for a simply supported
curved rectangular panel in exial compression having a central chord—
wise stiffener offering no torsional restraint. The results are
presented in the form of camputed curves and a table.

Because a panel of moderate or large curvature buckles in com—
pression at a stress considerably below the theoretical value, &a
method 1s suggested to aid 1n determining the critical streess for use
in design.

INTRODUCTION

A simplified method was recently developed for determining th=
theoretical buckling stresses of unstiffened cylindrical shells undbr
various loading conditions (references 1 and 2). In the prosent papsr
the theory is extended to include stiffened shells (appendix B), ani
the particular cese of curved rectangular panels In axial compression,
reinforced by a centrelly located chordwise stiffenor of zero torsional
gtiffness, is treated in detail (appendix C). Numerical results for
this case are given in figures and a table. Becauss tosts show that
unstiffened curved panels in compression buckle at a load considerably
below the theoretical (see reference 3), a procedure is suggested to
pormit the estimation of the actual critical strsss of a rectangular
panel with a central chordwise stiffener.

RESULTS AND DISCUSSION

Theorotical critical stress.— The effect of & central chordwlse
stiffener on the criticel axial stress of a curved rsctangular panel
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is to increase the buckling stress. The Ilncrease is very smsall or

zero for B < 0.7 (B 1is the ratio of the circumferential dimension

to the axial dimension) or when Z (curvature paremeter, see appendix A)
is greater than the values gliven 1n the followling teble:

B zZ
0.83 20.0
1.0 14,0
1.2 1.2
1.5 9.3
2.0 7.6
3.ol 6.3 -

Only wvhen B > 0.7 and Z is lees than the corresponding value
glven 1in this table,ls the buckling stress for the panel with a
central chordwise stiffener appreciebly greater than the buckling
gtress for the peanel wlthout a stiffener. The percentage increase
that can be expected is shown for a number of cases in table 1.

The critical stress for & curved plate with a central chordwise
gtiffener I8 conveniently computed by the use of the standerd buckling
equation for a curved plate (see equation in fig. 1) with the buckling
coef'ficient ky for the unstiffened plate increased by an amount Ak,
due to the presence of the stiffener. The critical-stress coefficient  ky
for an unstiffened curved plate of various aspect ratios mey be obtalned
from figure 1. Figure 1(a) gives the variation of k, with aspect

ratio for a flat plate (Z = 0); whereas figure 1(b) gives ky for
curved plates. The increase in critical-axial-etress coefficient Ak,
due to the presence of the stiffener is glven In figure 2. The

curves in figure 2(a) give the maximm possible increase in critical
stress and apply when & stiffener is used for which the stiffness is
equal to or greater than the critical stiffness, that ls, the value of
stiffness beyond which a further increase does not cause any increase
in the buckling stress. Figure 2(b) can be used to find the increase
in criticel stress when the stiffness 1s below the critical valus.

In order to £ind the theoreticael criticel-stress coefficlent for
a given curved plate with a central chordwise stiffener (ky + Aky),
first celculgte the values of Z and ¥ for this plate—stiffener
combination <ﬁhere 7 1is twice the ratio of stiffemer stiffness to
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plate stiffness 2 D-I%) Then find. the critical-etress coefficient for

the unstiffened plate k, from figure 1. Next find the maximum possible
increase of critical—stress coefficient Ak, due to the presence of

a stiffener fram figure 2(a) and the critical stiffness corresponding
to this maximm possible increase from the curve in figure 2(‘:3. If

the given stiffener has a stiffness equal to or greater than the critical
stiffness, add together the stress coefficlent ky for the unstiffened

plate and the increase Ak, Just found from figure 2(a); the sum is the

gtress coefficient for the plate—stiffener combination. If the glven
stiffener has a stiffness less than the criticel stiffness, add together
the stress coefficient ky for the unstiffened plate and the lncrease Aky

found Prom Pigure 2(b).

The curves of figure 2 apply to plate—stiffener combinations buckling
In one wave in elther direction. As the curvature of a panel increases,
the axial wave length tends to diminish. In order to show why the use
of a central stiffener does not increase appreciebly the critical com—
pressive stress of the unstiffened plate when the values of 2 are
groater than those glven in the preceding table, the curves of figure 3
have been drawn for B =1 +to include comsideration of cases of more
than one half wave In the axlial directlon. These curves show that for
two half waves (node at the stiffemer, 14 < Z < 23) no increese in
stress due to a stiffener occurs and that for three half waves (23 < Z < 38),
only a slight increase In stress ls possible and even this slight increase
requires a stiffener of high stiffness. Only 1f the unstiffened panel
buckles into one helf wave in the axlal dlrectlon, does 1t appear worth—
while to use a single chordwlse stiffener. Computations carried out for
curved plates with the circumferentlsl dimension 1.5 and 2 times the
axial dimension showed the same results. In all of these cases the
minimm load was found when there was one wave In the circumferential
direction.

Egtlimation of design crltical stresses.— Panels having moderate
end large values of Z Dbuckls at compressive stresses conrlderably
lower than the stresses predicted on the basls of the small-deflection
theory. In the absence of experimentel data on the compressive
buckling stress of panels with e stiffener having a flexural stiffness
less than the critical stiffness, the fraction of the total possible
increase in experimental critical stress, actuaelly achleved by use of
the stiffener, may bs assumed to be equal to the fractlon predicted by
the theoretical solution (obtainable from figs. 1 and 2). This
assumption permits an estimate to be made for the compressive streess
of such & panel when the stresses for the limiting cases of an unstlffensd
panel and for a panel with a stiffener having a flexursl stiffnsss
equal to or greater than the criticel stiffness asre known. According
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to the aforementioned assumptlon the critical stress Cexp(7) for the
stiffened pansl is given by

Ue@(7) =Uexp(o) ‘+ R [Uexp(7cr) - Ue@_(o)] (l)

where
Ly (7)
Akx(7cr)

The increase in the theoretical critlcal-stress coefficients Ak,

needed to calculate R for panels having a wide range of ratios of
clrcumferential dimension to axial dimsmsion is obtained from figurs 2.

The stresses “sxp(o) and o (7cr) mey be regarded as the
critical stresses of unstiffened panels: cexp(o) is the critical
stress of the original panel with no stiffensr and Uexp(7cr) is the

critical stress of a panel having the radius, thickness, anl circum—
ferentlial dimension but half the axiael dimension of the original panel.
Because adequate design data on the buckling stresses of curved
rectangular pansls in axlal compression are not available, some method
of approximating these stresses must—be used. Three lower limits may
be given for the buckling of a curved pansl; they are the buckling
stress of the corresponding flat panel which may be obtained from
figure l(a), the buckling stress of the complete cylinder which may

be obtalned from figure L adapted from reference 4, and the buckling
stress of the long curved strip, of which the curved panel may bs con—
sldered a part, which may be cobtalned from figure 5 adapted from
reference 3., The highest of these three lower limits reopresents a
conservative approximetion to the actual buckling stress of the pan=1.
By use of values for cexp(o), Oexp(7oy), end R, determined in

the manners Just described, the design buckling stress Ouyyp(7) may
be determined fram equation (1).

CONCLUSIONS

The theoretical analysis shows that for c¢ertaln curvaturce and
aspect ratios designated in this paper, & curved rsctangular panel cuan
be appreclebly strengthened to resist additionel axlal compression
without buckling by the use of a centrel chordwise stiff=ner. The
gtrengthening effect decreases as the curvaturs incresascs and as the
ratio of the circumferential dimension to tho axial dimsnsion d-=cr-ases.
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With the ald of the semlempirical results contained herein, the axial—

compressive buckling strength of a curved rectanguler panel with a
central chordwiss stiffensr can be estimated.

Langley Msmorilal Aeromautical ILaboratory
Natlonal Advisory Committes for Aeronautics
Langley Field, Va., March 11, 1948
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APPENDIX A
SYMBOLS
axlal or circumferentisl dimension of panel, whichever

is larger

axial or cilrcumferential dimension of panel, whichever
ls smeller

integers

redius of curvature. of panel
thickness of panel
length of cylinder

displacement in axial (x~) direction of “point—in
medlan surface of panel

Adlsplacement-in circumferential (y—) directlon of
point—in median surface of panel -

displacement 1n raedisl direction of point in
medlan surface of penel; positive outward

axlal coordinate of panel
circumferential coordinate of peanel

3
flexural stiffness of pemel per unit length (| ————————o
12(1 — u2)

Young?s modulus of elasticity

Alry'e gtress function for msdianreurgace atresses ,:
produced by buckle deformation Q-E; stress in ’

2 <5y2

axlal direction; g—g” stress in circumferential )
x= .
direction
moment of inertia of stiffener

curvature paramster (;t y1 - u2 for penels or L

iﬁ Vi — 42 for cylinder%)

LY
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8kq, 8mns 8pq deflection coefficients in trigonometric series
ky critical—axial—-compressive—stress coizzf'ficient
D
appearing in the formula oy = for panels
K 72D b4t
or oy = for cylinders
I2%
P lateral pressurs
p=2
4 ratio of flexural stiffness of stiffener to half
flexural stiffness of plate 1n sames direction ( %ﬂ{):_)
Yor lowest value of 7 for which e buckle node occurs
at gtiffener location
T Poissonl's ratio
T shear stress in shell
Oy axial—compressive stress
Oy clrcumferential~compressive stress
Texp experimental axial buckling stress
Q operator defined in appendix C
6@ - g—> : Dirac ® Tfunction defined in appendix B
2 Lok
= (02 + 2eR)2 22 __ZREP — Kk pRp2
My = (:9 + q<B + xB<P
(02 + ¢282)°
L8
Z
Npq= (‘peBe+q_22+J;)_2; E?ng—kxﬁ%e
x (p 82 + ¢2)
4 by L
R o _ d o 3

N e

v inverse of V¥ defined by V'l"<vl"w) =W
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APPENDIZX B
EQUATTON OF EQUILIBRIUM OF CYLINDRICAL SHELL WITH STIFFENERS

The equation of equilibrium of a cylindrical shell under the action
of shear, both direct stresses, and lateral pressure is (reference 2):

DVW+EbV'J+alLW+t Gxaaw+21' aaw+cy§_2£ +p=0 (B1)
2 auc %2 dx dy dy2

In this equation sach term is a force per unit area or pressure. The
first term 1s the restoring pressure dus to ths bending stiffness of the
shell the second is the restoring pressure due te the stretching
stiffness of the shell, the third is the (negative) restoring pressurs
dus-~to compressive stress in the axial direction, and so forth.

Ths equation deseribing all the effecte of a stiffener riveted to—
the ghell 1s quite complex, since even when all cross—sectional deforma—
tions are assumed zero any real stiffensr has two princlpal bending
stiffnesses, a torsional stiffness, & bending—torsion stiffness, and &
stretching stiffness. In many problems it is sufficlent to ideallze
the stiffener by consldering 1t to be located along & line on the shell
end to have only the bending stiffness that restrains radlal deforma—
tions of the ghell., Thils ldesalization is equivalsnt toc considering the
gtiffener to be without torsilonal stiffness and attached to the plate
by a frictionless bond which maintalns contact but— allows the plate to
slide freely under the stiffener.

If the force per unlt length exerted by the stiffensr on the
panel is q and this Torce 1s applled uniformly over the width of
the stiffener ¢, the pressure becomes q/fe. A term must therefors
be added to equation (Bl) which has the magnitude gq/e¢ under the
stiffener and is zero sverywhere else. As € approaches zero this
term bocomes simply g8 where & 1s the Dirac delta function (refer—
ence 5), defined by the properties .

8(t —tg) = 0
when

t # ty
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and
to
f 8(t —tg) dt =1
t1
so that -
£(t) 8(t — to) at = £(%g)

t1

when to 1s within the intervel (%1, to) and £(t) is a continuous
function in the neighborhood of t,. The effect of a stiffener located
at X = X, would be represented by the term q 8(x — x,) added to

equation (B1) and of a stiffener at Y = ¥o would be repressnted by
the addition of this term q 8(y — yo).

If the stiffener runs axlally, the beam theory gives

ox ox=
If the stiffener runs circumfersntlally, the beam theory gives
a""w 3%
e=El 3 +P—5 - (B3)
oy oy

where EI 1s the stiffness of and P +the compresslve forcs in the
stiffener and w 1s the deflection of the plate at the stiffener. In
the problem of the present peper the stlffener is located et x = B-

B

P 1is zero, and only axial stress is applied to the shell so that the
equation of equilibrium becomes

h" P/'t"' v }+ J-l— . {/
F I"Dvl‘w+3v'“aw+maw's<—2+ctﬁ= (BL4)
\ 2 P I "a_yE /. 322
#n aan A
#on (!

T + 5§ ET 9y ¥
by - DY G- L
mh e Loy ¢
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APPENDIX C

THEORETICAL: SOLUTION FOR CRITICAL AXTAT, STRESS OF CURVED

RECTANGULAR PANEL WITH CENTRAL CHORDWISE STIFFENER

Fquation of equilibrium.— The criticel exisl-—compressive stresses
of curved rectangular panels having a céntral chordwlse stiffemer of
zero torsional end stretching stiffness pleced at x = R may be found

by solv the equation of equilibrium, equation (B4). Division of
equation (B4t) by D followed by appropriate substitutions gives

2 L L 2
. 12i v—l|.a EI (_b)a L&=o (c1)
b 2 3x®
The equation of equllibrlum may be represented by
Q(w) = 0 (c2)
where Q 1e the operator defined by
, e2? a m a” ::2 3°
Q =t V‘lL éc - 2) = (c3)
T R |

Method of solution.— Equation (c2) may be solved by the Gelerkin
method as outlined in references 2 and 6. As suggested in reference 2
for simply supported rectangular panels, the followling seriles expa.nsion
1s used for w

W—E _S_ amsin—sin—“z (ck)

m=1 n=1

(The coordinate system used is shown in fig. 6(a).) The coefficients I,
are then chosen to satiefy the equations

a nb
f f gin 2 g1p P Q(w) dx dy = O (c5)
oJo b. a '
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When the operations indicated in equation (C5) are performed, a set of
homogeneous linear algebraic equations in a 1s obtained with kx
appearing as a parameter. The solution for the critical—exial-stress
coefflicient k, 1s then found to be the minimum value of ky for
which the algebraic equations have a nonvanishing solution for 8pq>

that 1s, for which the plate is in equillbrium in a deflected state.

The boundary conditions "I'm-n'l"l ed by the method of solubtion are

zero radial d.eflection and end moment a:b each edge, zero displacement
along each edge, and free displacement normal to each edge in the
median surfaece of the panel (see reference 1); that is R

w(0,y) = w(b,y) = 0 w(x,0) = w(-x,a.) =0
3w 32y _ Py _ v _
axg (O:y) axe (bgy) =0 ayz (X,O) = ayz (x,a.) =0
- ﬁ (cé)
- v(0,5) = v(b,y) =0 u(x,0) = u(x,a) = 0
°F (65) 2 F (4 ) o o%F % a) -
592 (0,5) 572 (b,y) =0 - (x,0) - (x,a) = 0 |

Solution for circumferentlsel dimension greater than axial dimension.—
Substitution of the expressions for Q and w given by equations (C3)
end (Ck) into equation (05) leads to the following set of algebraic
equations:

I
202 12 7B - ob 2
(PB )+ kB p
;E(peﬂg 22l'kx
+2%‘:|::5-q,IL sinp-%: %akqsin%ro (c7)

wvhere p=1,2, ... and ¢ = 1,2, ...
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whilch may be written in two sets of equations as follows:

epoq + 7&(—1)25_ > e ()% =0 |  (e8)

'Whel‘e P = 1,3, coe a-na- qQ = 1,2, eecse

and

BCPQ%Q. =_‘O ' - (c9)

where p = 2,4, ... and q = 1,2, ...

For buckling across the stiffensers there must be an odd number of
half waves in the axial direction; hence, the set of equations (c8)
applies. Dividing through the set of eguations by N g glves

L k—1

L o0
74 T 2
+ —— (~1) § gycq (—1) =0
EL =135

where p = 1,3, +o. and q = 1,2, ... Multiplication of each equation -
EJ; ’ . N
by (~1) 2 and suming with respect to p glves

00 1 k=1

> apq(—-l)-?_ + E § e —1) 2 .o (c10)

p=1,3 7=1,3 Toq =1,3
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where q = 1,2, ... Eguation (C10) reduces to .

[2]
1
:L+7q_lL § —_— =0 (c11)
v=1,3 Mg
or
7= - L
Z El
1,3 Ypq

where ¢ = 1,2, ...

It is known that et low values of the curvature perameter Z ome
half wave (q = 1) glves the minimmm buckling load

y = — _ — (c12)
> =
r=1,3 Npl

Equation (C12) glves the minimum value of 7 for which the plabe—

stiffener combination is in equllibrium in a deflected state at a given
value of ky. Figures 2 and 3 present results obtained from equation (c12).

The solution to equations (C9) corresponds to no buckling across
atiffeners and 1s given by

Npq=o

where p = 2,4, ... and q = 1,2, ... The lowest roots of these
equations are the values of ky given in column (b) of table 1 for
various penel shapes and stiffener stiffness.

Solution for axial dimenslon greater than circumferentlial dimension.—
When the axlial dimenslion is greater than the circumferential dimension,
interchanging a and b in equation (Ck) is convenlent in order to
retain b as the shorter dimension

W= Z Z 8y, sin———sin :ty (013)

m=1 n=1
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The coordinste system used is shown in figure 6(b). The use of these .
coordinates Involves & slight modification of the squatlon of equilibrium .

as the gtiffener 18 now placed at x = %. The modified equation 1s now

b b
D Vi + Bb vt 3¢ 5 (82w, 1 W_ o
EC G el e e
and
Q=T+ 12z2“v_u a T o ( > =32 (c15)
bt 2 T2 502 |

This problem 1s solved in & manner similar to that in the previous
problem by a substitution of the expressions for Q and w glven by
equations (Cl3) and .(C15) into equetion (C5) (also modified by inter—
changing & and b). The followlng set of algebraic equations results

Yol
2 12 Z°'p 5
oy, (92 + a2B2)° + 5 — kxfp
(p2 + ¢°B2)
+2%B3q4 sin EX §'akq s_ifl}—gs=0 _(016)

'W’here p =_l,2, X} aIld. q_ = 1,2’ eo e

As in the previous problem for buckling across the stiffener, an
odd number of half waves in the axlal dlrectlion 1s necessary and for
no buckling across the stiffensr an even number i1s necessary. For this
case again et low values of Z one half wave in the circumferential
direction gives the minimun critical stress to cause the dbuckling of
the stiffener. An equation similar to equation (Cll) results, in which

Npé 1s replaced by o -

12 ZQPLI-BLI-
2
2p2)

2
(22 + g
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o e o s - . - - R - - o - .
and the 7 1is replaced by 7B>. For low values of Z, ¢ =1 ani

A — 010 - (c17)
R - 1
83 1
=1,3 Mpl

Equetion (C1l7) gives the minimum value of ¥ for which the plate—

gstiffener combination 1s in equilibrium in a deflected state at a -

_ glven valuse of  kx. Few resultis are shown for this case as a pansl

_having the axial length equal to or greater than about 1.5 times the

circumferential lsngth would not be significantly strengthened by

addition of a central chordwlise stiffener of zero torsional and
stretching stiffness. (See table 1.)

The solution which corresponds to no buckling across the stiffener
is given Dby '

Mpg = 0

whers p = 2,4,6 ... and ‘g = 1,2,3 ... The lowest roots of these
equations are the values of ky given in column (b) of table 1.
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TABLE 1L

STIFFENER AND FOR NO BUCELING ACROSS STIFFENER

OFFERING ZFERO TORSIONAL RESTRATNT

MTMTAAT _AVTAT (MAAUODTIAQOTYI_ OISO AnToT T AT IS TYYD T TS, WO
VR LAWWALTTA AL UVANL OSSO ¥ DAL VUAC & LVl Ll LD LW BUCKLING WITHCUT

2
py -« T2
D
e _ ﬁ [ x| ) Poroentage increase
b b Buckling without Fo buckling soross (—b)—,'-'\la—) x 100
stiffener stiffensr (&)
F— b .——}
1 0 k.00 6.25 56
5 k.77 6.7k Iy
10 7.08 8.22. 16
30 21,1 22,2 5
100 70.3 70.3 0
1000 703. TO3. (o}
1.5 o] 2.09 h.oh 136
1 2,15 .96 131
5 3.56 5.54 56
10 T.h2 T.h2 o]
30 21.1 21.6 2
100 70.3 T0.3 0
2 0 1.56 k.52 190
1 1.64 k52 176
5 3.53 5.20 k7
10 7.08 T.22 2
30 21,1 21,1 0
- f
? a - b
— E - ——
—_— — \L
——
1.5 (o] 4.34 .34 0
5 5.04 5.04 o}
10 T.17 T.17 o
30 21,2 21,2 °
100 T70.2 70.2 o}
1.000 0L, TOL. 0
2 0 4.00 k.00 0
10 7.08 7.08 0
100 70.3 T70.3 0
1000 0k, 70k, 0
NI NACA =
~AR
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(a) Flat panels. (b) Curved panels.

Figure 1.~ Critical -axial-compressive-stress coefficient for rectangular panels.
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(a) Maximum possible increase. (b) Increase for given stiffness,

Figure 2.- Increase in critical-axial -compressive-stress coefficient due to the presence
of a central chordwise stiffener over the value for the unstiffened panel.
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28 7
\
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- "Critical stiffness’ curve .
14 /_ Left of “critical stiffness" curve-
\/ buckling of sheetf and stiffener
g LIO=—— Right of "critical stiffness" curve -
\ buckling of sheet alone
7/ =
4 a
—b—
1] |
O 1
0 4 8 12 16 20
14

Figure 3.- Effect of central chordwise stiffener upon critical-axial-
compressive~-stress coefficients for simply supported curved

rectangular panels of % = 1.
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Figure 4.~ Critical-axial-compressive-stress coefficients for simply supported cylinders.
(Figure adapted from reference 4.)
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Figure 6,- Critical-axial-compressive-stress coefficients for a simply supported infinitely
long strip with iransverse curvature., (Figure adapted from reference 3.)
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(b) Panels with the axial dimension
> larger than the circumferential
X dimension.

(a) Panels with the circumferential
dimension larger than the axial
dimension,

Figure 6.~ Coordinate systems used in theoretical analysis.
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