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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1614

KNOCKING COMBUSTION OBSERVED IN A SPARK-IGNITION ENGINE
WITH SIMULTANEOUS DIRECT AND SCHLIEREN HIGH-SPEED
MOTION PICTURES AND PRESSURE RECORDS

By Gordon E. Osterstrom

SUMMARY

Simultaneous direct and schlieren photographs at 40,000 frames
por second and correlated pressure records were taken of knocking
combustion in a special spark-ignition englne to ascertain the ‘
intensity of certain end-zone reactions previously noted from
schlieren photography alone.

The first stages of the avtoignition process as seen in the
schlieren photographs emitted insufficient light to be photographed
directly. In one instance, the last stages of the preknock auto-
ignition process emitted enough light to be photographed. A violent
propagated homogeneous autoignition, or a similar phenomencn, observed
previously, was again observed. The pressure records show autoignition
of varying violence before the passage of a probable detonation wave.
Extensive autoignition without occurrence of gas vibrations was seen
in one explosion.

INTRODUCTION

All previous photographic investigations of combustion and knock
employing the NACA high-speed motion-picture camera have been conducted
with schlieren photography instead of photography of the combustion by
its own light, or "direct" photography (reference 1). These investi-
gations demonstrated two separate and different phenomena in addition
to ordinary combustion, namely, a relatively slow preknock reactlon
termed "autoignition" and a fast reaction termed the "explosive
knock reaction.” In schlieren photography, irregularities in the
refractive index of the gaseous contents of the combustion chamber
are photographed. A flame or other reaction occurring within the
combustion chamber causes localized differences in index of refrac-
tion that can be recorded. With the type of schlieren system used
for these studies, the actual temperatures cannot be found. Inasmuch
as knock is a thermochemical phencmenon, knowledge of end-gas-reaction
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temperatures is of prime impcrtance in the study of kmock. The
schlieren method was used, however, because the flame reaction

could thereby be easily photcgraphed with an exposure of

0.000025 second. Direct photographs, by showing that reactions

have proceeded to the luminous state, do offer a rough conventional
method of distinguishing between low- and high-temperature reactions.
However, direct flame photographs have certain disadvantages. They
afford no means of determining the absence cof a flame because of

the possibility of insufficient detection sensitivity. Moreover,
such photographs are indistinct in outline and very difficult to
obtain with an exposure of 0.000025 second without the use of addi-
tives to increase actinic radiation. In order to obtain any pictures
at all, extremely fast camera lenses and films must be used, which
yield images whose definition is inferior to that obtained with the
schlieren pictures.

~ The investigation reported is based on experiments that simul-
taneously utilize the respective advantages of both schlieren and
direct photography. Motion pictures simultanecusly taken with both
schlieren and direct photography have been chronologically correlated-
with one another and with a pressure record in an attempt to determine
whether preknock end-gas reactions, as seen in schlieren photographs,
may represent flame. This report is based on photographs of only
nine explosions; therefore, it cannot be regarded as having universal
applicability. However, individual explosions are assuredly correctly
described because the single motion picture is composed of hundreds

- of photographs. Each photograph.may be thought of as a kind of data

point with adjacent photographs as check points. Thus.a given
phenomenon shown by a single motion-picture series unguestionably
happened at least once. Questions of the possibility, but not
necessarily the probability, of the reoccurrence of a given phenomenon
can thus be answered.

APPARATUS AND PROCEDURE

Engine cylinder and piston. - The engine used was specifically
designed for photographing the entire volume of burning gas within
it during a single explosion; it is a single-cylinder spark-ignition

engine with a 4%~inch bore and 7-inch stroke. Figure 1 shows a:

gimplified sectional view of the engine. The glass window forming
the upper wall of the combustion chamber is made of two disks of
l-inch-thick plate glass. A concave spherical-surface mirror,
made of stellite, is fastened to the top of the piston by three
screws, which appear in the schlieren photographs as three black
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spots near the edge of the mirror. The combustion chamber is

4% inches in diameter._ Openings around its walls prcvide access

for a spark plug, a piezoelectric pickup for pressure measurements,
and a fuel-injection nozzle. After each explosion the stellite
mirror, the cylinder walls, and the windows are polished with
optical rouge suspended in a mixture of water and a wetting agent.

The plston is operated without o1l because oil would cloud the
windows and -the mirror and make irregularities in the pictures., In
‘addition, burning oil droplets would add to the difficulty of
interpreting the pictures. The only lubricant is a small amount of
graphite occasionally rubbed onto the cylinder walls.

Air system, - The air flow in and out of the cylinder 1is
controlled by the piston as it covers and uncovers inlet and exhaust
ports near the bottom of the piston stroke. Figure 2 is a diagram
of the air system that was used to measure and control engine flow,
pressure, and temperature conditions. The air flow through the engine
is adjusted by altering the difference in pressure between the inlet
and outlet passages. This pressure difference, as well as the
absolute pressure in the cylinder before compression, may be adJusted
by manipulating automatic inlet and precompression outlet valves.

An orifice flowmeter and a thermocouple are .installed in the inlet-
air lines. Mercury manometers measure the pressure in the inlet-:
and outlet-air lines. The air 1is electrically heated.

Fuel system. - The fuel is admitted to the combustion chamber in
the liquid state. A triple-orifice nozzle discharges the fuel at
high velocity from the injection valve into the combustion chamber.
The desired quantity of fuel is forced through the injection valve
and out the orifices at the proper mcment by the automatic release of
a single-stroke spring-driven piston pump. The pump meters the fuel
to an accuracy of 2 percent. This type of system fails to insure a
homogeneocus mixture of fuel and air. Mixing the fuel and air
continuously before admission to the engine was impractical because
the ‘compression of the mixture was sufficient to explode the charge
every revolution. This situation would be intclerable, as the window
would become coated with scot and might even crack from temperature
gtresses. The fuel system was carefully purged of gases before use,
and was kept under pressure to prevent vapor bubbles from forming in
the hot injection valve and connecting tubing. The circulating-type
system previously used in NACA invéstigations was not used because
the proper type of circulating pump was unavailable when the apparatus
wag constructed.
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Fressure-recording system. - The arrangement of the explosion-
pressure-recording system is shown in figure 3. A quartz plezoelectric
pressure pickup of the flat-spring-diaphragm type (fig. 4) was used
to measurs combusticn-chamber pressures. The dynamic performance cf
this instrument was measured by a method (reference 2) in which the
pickup diaphragm is driven by the 1inverse piezoslectric effect. The
motions of the diaphragm were measured by using it as one plate of
an electrical condenser whose voltage variations can be cbserved as
" the frequency of the sinusicdal constant-ampllitude driving voltage
ig varied while the charge in the condenser remains ccnstant. Tests
performed by this method show that the instrument has nc cbjecticn-
able natural frequencies through the test range and will probably not
be set into vibratiocn by ordinary combustion shocks. It should be
noted, hcowever, that the response of the pickup 1s far from uniform
ag the frequency is varied from 700 tc 40,00C cycles per second. ,

For example, the unit is six times as sensitive to 16,500-cycle-per-
gecond vibrations as it is to 700-cycle-per-second vibraticns.

In operaticn, the output of the pickup passes through a lcw-
frequency compensating network and thence to an amplifier develcped
especially for this type of application (reference 3). The output
of the amplifier passes to the vertical-deflection plates of a
cathocde-ray tube. An image of the tracing spot on the screen cf the
cathcde-ray tube is formed by a lens on a film strip wrapped once
around a cylinder rotated by a synchronous motor.. The cathode-ray-
tube circuits are fitted with a2 switch connected to the crankshaft
that turns the electron beam cn at the proper moment and keeps it
on for about one revolution of the film cylinder. The amplifier
remains ineffective for a brief period after the electron beam is
turned on., This lag causes a straight line tc appear on the pres-
sure record that representes the average motcring pressure of the
combustion chamber as the engine rotates before the single explcsion.

The average voltage input to the cathode-ray tube during the

- motoring period 1s zero because leakage to and from the electrode
plates in the pickup maintains the average charge at zero. The
voltage output corresponding to the average motoring pressure there-
fore 1s zero. The neutral position of the tracing spot on the
cathode-ray-tube screen is at rest with zeroc deflecting voltage
applied. Hence, even though the pickup and the oscillcscope are
unconnected, the neutral position of the spot on the screen corres-
ponds to the average motoring pressure in the cylinder. When the
amplifier begins to function, the tracing spot follcws the
instantaneous pressure.
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In order to use the pressure records quantitatively, some
datum pressure (such as the average motoring pressure), the pressure-
deflection constant of the tracing spot on the recording film, and
the linear speed of the recording film must be known. The average
motoring pressure was obtained by measuring, while the engine was
being driven, the pressure in a vessel that was temporarily connected
to the combustion chamber by a restricted passage. The deflection
constant was determined by analyzing pressure records of the englne
rotating with a range of values of average and peak compression pres-
sures. The peak compression pressure was measured with a CFR peak-
compression-pressure gage.  The relation between the deflection
constant and the time absclssa was such that the pressure-time
record was much flatter than records shown in previous NACA reports,
In order to compare the present pressure records with previous NACA
records, the slopes of the present records should be increased by
a factor of about 10. Slight irregularities on pressure records
of the present series might have appeared as discontinuities on
previous pressure records.. The linear speed of the recording film
ig fixed by the synchroncus electric motcr, which is driven from
the city electric-power system.

Time-correlation system, - The time-correlation device is also
shown in figure 3. Each high-speed camera contains one neon lamp.
Another lamp 1s placed in the pressure-recording system at the edge
of the cathcde-ray-tube screen and in line with the motion of the
gpot on the screen. When these lamps flash, they mark the camera
and pressure-reccrd films., All three lamps are in series with one
another and with a device that gives two distinct pulses of current
through them. The first pulse occurs when the engine crankshaft is
about at top center. The subsequent pulse comes at about 20° A.T.C,
The simultaneous markings on the two high-speed camera films and on
the pressure record permit a time correlation of the three records.

In order that the direct and schlieren high-speed motion pictures
be directly comparable when laid side by side, the camera rotors had
to cperate at the same speed at the moment the explosion occurred.
Just before the engine was fired, the difference between the speeds
of the two rotors was reduced to a satisfactory minimum through the
use of a cathode-ray tube as a frequency comparator for the alternating
vcltages of the two electrical camera tachometers. Compariscn of the
distances between timing marks on the two high-speed-camera film
strips showed that the speed equalization was sufficiently accurate
to permit direct comparison to within 1/15 frame near the time of
knock.

Cameras, - The NACA high-speed mction-picture camera, twc of
which were used, is described in detail in reference 4. Figure 5
indicates the positions of the cameras with respect tc the combustion
chamber. :
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One camera is arranged to take bright-field schlieren photographs.
With this type of schlieren system, irregularities in index of
refraction (such as those caused by thermal gradients) are indicated
by black areas on a normally white background. The light-gathering
capacity of the schlieren camera is ordinarily inadequate to record
combustion-chamber luminosity. Figure 5 indicates the method of
operation of the schlieren system. A beam of light from the
incandescent lamp is directed at the mirror on the piston top. The
mirror reflects most of the light that falls on it, forming a con-
vergent beam, A large part of the beam reflected from the piston top
is converged through the obJective lens of the camera. Should there
be an irregularity at a point in the combustion chamber that deflects
a part of the beam in such & manner that the light passing through
the irregularity is not converged into the camera, the irregularity
will appear black on the photographic positive. The irregularity is
unilluminated as far as the camera is concerned. The camera obJjective
lens is focused on the mirror and the adjacent combustion chamber,

The physical dimensions of the schlieren systems are shown in fig-
ure 5. These dimensions.fix the sensitivity of the system.

The direct high-speed camera is equipped with a lens of aperture
gsufficient to record combustion-chamber radiations with a picture-
taking rate equal to that of the schlieren camera when panchromatic

‘f1lm hypersensitized by the mercury-vapor process (reference 5) is

used,

The two high-speed cameras view the combustion chamber along
different lines., The schlieren camera views the chamber along a
line that is within 1° of perpendicularity to the mirror on the piston
top. The direct camera views the chamber along a line that makes an

_angle of about 3° with the line of view of the schlieren camera. The

oblique viewing angle of the direct camera causes the combustion-
chamber images formed by it to be slightly elliptical, turned, and
cut off around part of the edge when compared with the schlieren
pictures. These differences in shape, orlentation, and size of the
pictures are small enough to be unimportant for the sccpe of the
present work,
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Engine conditions. - The engine conditions used were:

Inlet-air temperature, OF . . . . « ¢ ¢ ¢« ¢« o ¢ ¢ &« « « « o« o o 350
Compression ratio « v « o o o o o o o o o o o o o o o o o o o o 1.8
Engine temperature, °F . . . . . . . . . . . o .0 o s ... . 212
Fuel-alr ratio . « ¢ v o ¢ o ¢ o o o o o o o o o o o o « o « 0.19
Preinjecticn fuel temperature, OF o v vt .. 212
Inlet-air pressure . . . ¢ ¢ ¢« ¢ ¢ ¢ o & Approximately atmospheric
Ignition spark, deg B.T.C. . « ¢ « ¢« ¢ ¢ o ¢« o ¢ o o o o o « « 20
Engine speed, rpm . . . . ¢ o o o . . . e e o o e« o o s « o 600
Fuels . &+ v ¢ o« ¢« ¢ ¢ o o o o o &« D= Heptane and M-4 reference fuel

PRESENTATION OF RESULTS

Enlarged positive prints have been prepared from the original
motion-picture negatives and are presented in figures 6 to 14. The
entire motion-picture negative strip from a single explosion includes
several hundred frames. In order to permit large reproductions, only
those frames showing the most pertinent phencmena are included. The
progress of the normal flame is omitted. :

The schlieren field is uniformly white before the passage of
the flame. Inspection of motion pictures of runs that failed to
ignite for various reasons shows that the schlieren field retains
the same appearance throughout the time when the ccmbustion reactions
ghould have occurred.

A dashed white line between adJjacent frames indicates that inter-
mediate frames have been omitted. If none 1s omitted, the period
between complete exposure of successive frames is 0.000025 second.:
The frames are numbered according tc their order before or after
piston top center; top center is indicated as zero. The frames after
top center have negative signs before the frame number. The direct
and schlieren pictures are presented in parallel rows correlated to
less than one frame with respect to time,

* Circles have been drawn in to represent the outline of the
combustion chamber. The position of the spark plug, pressure pickup,
and fuel-spray nozzle may be seen in the combustion-chamber cross
section in figure 1. In general, the combustion front proceeds from
the spark at the lower left towards the pressure plckup at the upper

right.

In the schlieren pictures, the normal flame is indicated by an
irregular dark band on a white field. The front of the band is
frequently distinct but the rear is usually indefinite. Mottling
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ahead of the flame front Indicates some form of end-zone reaction.
The darker the mottling, the more intense is the reaction. In the
direct pictures, light areas represent recordable luninosity (except
for cccasional photographic defects).

The entire pressure record is presented together with an enlarge-
ment of the portion involving knock. On the enlargement, points on
the curve corresponding to motion picture frames are noted, Table I
shows those characteristics of the explosicns obtained from the
pictures and pressure records that can be presented in tabular form.

The schlieren photographs of knocking combustion are similar in
most respects to those described in previous NACA reports (refer-
ences 1, 6, and 7). Certain points of difference, however, will
be emphasized. The several phases of knocking combustion will be
described in detail in the following discussion.

RESULTS AND DISCUSSION
Normal Flames

The luminosity of the normal flame preceding knock varies greatly
from explosion to explosion. Figures 6 and 7 show only a few bright
points in the burned region. No general luminosity is recorded until
shortly before the accelerated end-zone reactions. Figure 8 shows
a brilliant flame with slight gradations in luminosity up to the
leading edge of the flame. Figure 9 shows a brilliant illumination
near the spark plug with gradual fading toward the leading edge of
the flame. The faintly luminous area in this run shows points similar
to those in figures 6 and 7 but less bright. Figure 10 shows a faint
and somewhat flocculent flame. No two flames have the same general
appearance back of the flame front. The contours of the flames, as
geen in direct and schlieren pictures taken simultaneously, obviously
do not closely correspond in most cases,

The large variation in the Iintensity of the actinic luminosity
fram one explosion to the next is incompletely understood. The
amount of fuel sprayed into the cylinder was 185 percent of the
stoichiometric requirement. This quantity was the minimum that would
ccnsistently explode. How much of this fuel actually evaporated in
the charge air is unknown. Some of it may have been projected across
the combustion chamber and clung as a liquid to the opposite wall.
If the amount thus rendered unavallable for mixing with the air varied
with successive explosions, some of the variation might be explained.
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Preknock End-Zone Reactions

All the schlieren photographs indicate, by darkening or
extengsive mottling, slow reactions in the end zone preceding, by
many frames, development of recordable end-zone luminosity and the
violent pressure changes denoting knock.

In the present experiments, the simple shape of the end zone
(resulting from the use of a single spark plug) made the end-zone.
reactions easily distinguishable in most cases. Table I, column 2,
indicates the number of frames by which the first signs of the slow
reaction in the schlieren plictures precede the end-zone luminescence.
The reactions show as .various types of gradual mottling in the end
zone. For example, in figure 6, the mottling develops in an almost
uniform manner over the entire end zone. In figure 11, the mottling
first appears as a locallzed dark area immediately aheéad of the flame
front. All other explosions show both localized and general mottling
in various proportions. All of the schlieren photographs show
mottling in the end zone long before luminosity in the end zone is
detectable.

In three of the direct photographs, end-zone luminosity is
evident before the pressure record shows the knock to have begun.
The relations for all the runs are in table I, column 3. In fig-
ure 6, the luminosity is visible in frame 30 before top center; the
pressure record shows no knock until between frame 27 and 26 before
1
2
up was directly in contact with the gases first showing luminosity,
and no delay caused by pressure-wave-transit time across the combus-
tion chamber could have been involved. In figure 9, the luminosity
is visible in frame 44 before top center. The pressure record does
not show knock until frame 42 before top center, or two frames later.
In this case, the earliest luminous zone was about 2 inches from the
pressure-pickup diaphragm. Had a pressure wave started from the
luninous zone in frame 44 with a speed of 2000 feet per second, it
would have arrived at the pickup diaphragm two frames later, or at
frame 42, The end-zone lumincsity thus may have first appeared at
the same moment that the kmock occurred. The situation was the same
in figure 11, Figure 6 may have been the only one in which end-zone
luminoslity appeared before the knock occurred. . .

top center, or 37 frames later. The diaphragm of the pressure pick—

The preknock reactions as seen in the schlieren photographs are
important because they may glve some indication of the chemical
condition of the end gas at the moment that the violent knock reaction
camences. If the chemical condition of the end gas is known, the
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chemical processes of the knock reaction may be more readily analyzed.
Two questions have arisen concerning the preknock mottling since it
was firast reported in reference 7: .

1. Are the disturbances represented by the mottling a form of
oxidation reaction?

2. If they are oxidation reactions, are they releasing heat
rapidly enough to be classified as flames?

In these experiments, no evidence was obtained that would permit
any conclusive statement as to whether or not end-gas oxidation was
occurring during most of the preknock mottling period. Other ‘
investigators, however, such as Withrow and Rassweiler (reference 8)
have obtained spectrographic evidence of the presence of an oxidation
product, namely formaldehyde, in the end gas of an engine operating
under knocking conditions.

A further distinct possibility exists, however, that mottling
in the end 2zone may represent fuel dissociation with varying degrees
of oxidation. The fact that the end gas theoretically attains a
temperature of 1350° F by adiabatic compression introduces the
probability that at least part of what is seen as schlieren mottling
represents the complicated situation of thermal and catalytic
dissociation, or cracking of the fuel molecules in the presence of
oxygen. The dissoclation of the fuel molecules, neglecting any
oxidation effects, would be accompanied by an expansion of their
volume (due to the increased number of molecules) and an absorption
of energy from surrounding molecules due to the endothermic nature
of the cracking process. This dissociation theory possibly explains
the preknock flame motions and end-zone mottlings described in previous
NACA investigations (references 9 and 10), which were interpreted as
exothermic combustion reactions. The possibility could be experi-
mentally determined by adiabatically compressing a mixture of fuel
and an inert gas to end-gas conditions and observing any dissociation
reactions with a schlieren apparatus similar to that used in the
present experiments., The effect of oxygen could be ascertained by
diluting the inert gas with oxygen in various proportions. Any
cracked molecules probably would react quickly with oxygen, thus
furnishing a ready supply of energy to accelerate the process until
some equilibrium condition was achieved or the reaction was completed.

If, in answer to the first question, the mottling is assumed to
represent oxidatlion reactions, the second question may be asked:
"Are the reactions releasing heat rapidly enough to be classified as
flames?" The authors of reference 7 raised the question, concerning
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the degree of reaction represented by a hamogeneous end~zone mottling
appearing 0.006 second before the knock, whether the apparently
exothermic reactions in the end zone are sufficiently intense to emit
visible light. This speculation has been experimentally verified to
a limited degree in figure 6 of the present repocrt in which luminosity
was apparent 5% frames before knock. Thus 1t would seem that in some
instances the final stages of the preknock mottling may be considered
to represent inflamed gases.

In the photographs other than figure 6, which all fail to show
luminosity before knock, the explanation may be that the photographic
method is insufficlently sensitive.

In reference 7, the behavior of the end zone undergoing gradual
darkening before knock seemed to Indicate that considerable pressure
was*being developed as the end-zone gases darkened. "When the motion
plctures presented herein are projected, this momentary reverse move-
ment in the combustion front is visible. As the front proceeds into
the end zone, it appears to stop momentarily at the time the field
in the end zone starts to show the darkening already discussed. The
combustion front then proceeds again in the forward direction."

The schlieren photographs taken in the present studies show no
sudden vibrations or motions of any kind in the end zone as the
mottling begins to develop. There is no heasitation of the flame; it
goes on consuming the end zone up to the moment of knock as if nothing
were happening there. This steady flame progress occurred in all runs
regardless of whether n~heptane or M-4 was used. Any pressure rise
due to preknock reactions was so small that it failed to cause a
noticeable increase in the rate of rise of the pressure record or to
affect the normal flame movement. The preknock end-zone reactions
described in previous NACA reports may have been more intense than
those of the present experiments.

First Evidences of Knock on Pressure- Records
and High-Speed Photographs and Their
Chronological Correlation

The deflection in the pressure records that indicates the
beginning of accelerated combustion occurs at different crank posi-
tions in different explosicns. Table I, column 4, pointing out this
variation, shcws that the first deflection cccurs as early as 3° B.T.C.
and as late as -3° B,T.C. (A negative sign in front of a value
indicates that the crank has passed top center.)
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In figures 9, 11, 12, and 13, pressure-record enlargements show
the initial deflections as the beginning of a momentery surge. The
duretion of the pulses vearles from 1/10 ,000 second to l/ 20,000 gecond.
In other explosions, except for figure 10, the first deflection was
so quick that the recording spot moved too fast to leave a continuous
record on the film: Teble I, columm 5, listing the pressures at the
moment -when the first pulse occurred, shows them to vary from about
420 to 560 pounds per square inch. The helght of the pressure surges,
vhen they occurred, varied from one explosion to the next. A comparison
of surging pressure records with corresponding schlieren photographs
shows no correlation between size of end zone and helght of pressure
surge.

It should be emphasized that the momentary smooth pulses, evident
on the pressure record as the first sign of knock, would have appeared
as violent irregularities in previous NACA pressure records. An
explanation, as set forth in the APPARATUS AND PROCEDURE section, lies
in the relatively small ratio of pressure-deflection modulus to time-
abscissa tracing rate used in the present experiments. The
discontinuities visible on the pressure records in this paper would
have been even more abrupt in the previous records had the older
recording system had adequate photographic speed to catch them.

Near the time of the first pressure surges, the schlieren
photographs show a sudden diffuse blackening of the already darkened
end zone. Table I, column 6, indicates that the sudden blackening
occurred as early as five frames before the surge and as late as one
freme after the surge. The schlieren photographs presented hereln
shov the sudden blackening fairly well in frame -13 of figwre 7,
frame 24 of figure 8, and frame 4 of figure 1ll. In other explosions,
the photographs have to be examined as motion pictures in order to
distinguish the sudden blackening from the confused but relatively
static dark pattern that existe in the end zone before the first
pressure-record deflection. The rapid darkening end the motions
were the only signs that indicated the onset of knock.

It was found in reference 9 that the repid reaction, first
visible as a slight blur in the high-speed schlieren photographs, was
simultaneous with the beginning of violent gas vibrations. Both pres-
sure records and motion pictures indicated subsequent violent vibra-
tions of the geses within the combustion chember. The present
experiments indicate the same sort of relation; however, certain
differences exist in the appearance of the pictures. The schlieren
flames in the present experiments were diffuse in appearance Just
before the knock; hence, any blurring of the sort described in ref-
erence 9 could not have been seen. The present experiments show
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instead a sudden diffuse blackening in the usually already dark end
zone followed by a rapid clearing of the schlieren cambustion pattern.
Other work done with the same experimental engine also indicates the
lack of schlieren blurring at the onset of kmock. This lack of
blurring and other points of difference between the results of
reference 9 and the present results may be ascribed to the use of
heated inlet air, a different fuel, a different engine, and a dif-
ferent optical system.

End-gas temperatures less than 0.000025 second before knock
wvere estimated by using the relation

~

where

T, end-gas temperature immediately before kmock, OrR

'1'1 Pprecampression charge temperature, °R

2 canbustion-chamber pressure immediately before Imock ’ poumls
per equare inch

Py precampression charge pressure; pounds per square inch -
-.n polytropic-campression-exponent

It wes necessary to assume that negligible heat was Deing
released by preknock end-zone reactions. A value of 1.3 was chosen
for n. The end-gas temperatures thus computed are listed in degrees.
Fahrenheit in table I, columm 7. They range fram 1310° to 1430° F.
For the eight n-heptane runs, the values of end-gas temperatures range
between 1510° and 1390° F. The pressure ratios p,/p, from which the

temperatures were camputed are shown in table I, column 8. The

relatively narrov range of values for the end-gas temperatures is a -
1.3-1

. , 1.3
reflection of the decreasing sensitivity of the function (%)
. 1
to increasing values of pz/pl- If the time-pressure conditions to
vwhich the end-gas was subjected had been altered by changing engine-
operation settings such as spark timing or campression ratio, the
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knock probably would have occurred at a different time or pressure
or both. This effect has been demonstrated in a contimlously

running engine (reference 11).

Knock Reaction

When the schlieren photographs are projected as motion pictures,
the sudden blackening and the violent expansion surge that initiate
the characteristic periodic vibrations of the cambustion-chamber gases
seem urmistakably and intimately assoclated in time and space. This
relation 1s impossible to see in the still pictures presented herein
(except for fig. 7) because of the confusion resulting fram the
inability to distinguish between the static and the rapidly moving
portions of the schlieren pattern in the end zons.

The pressure records of figures 9, 11, 12, and 13 indicate that
the rapid reaction that marks the initlation of gas vibrations may
progrese to completion in two stages. The first stage shows as a
smooth rise and fall, or pulsation; the second stage 1s marked by a
discontinuity. Perhaps this discontinuity 1s a manifestation of a.
detonation wave as reported in reference 1. The initiation of gas
vibrations in two stages suggests that kmock may scmetimes be preceded
by autoignition, sufficiently violent in itself to cause gas vibrations,
followed by a detonation wave which makes the reaction even more violent.
It seems that the autoignition process alone may or may not be suf-
ficiently rapid to cause gas vibrations. Figure 10 1s clear proof
of this. Here, a very large end zone underwent autoignition without
a trace of periodic gas vibrations in the motion pictures or on the
pressure record. Figure 12 shows a mild knock possibly developing
as a violent autoignition in frame 18 on the pressure record followed
by same kind of discontinuity between frames -25 and -26 o abrupt
that vibrations of 80,000 cycles per second were excited (probably
within the pickup). This discontinuity may be an indication of the
passage of a detonation wave. When the photographs are viewed as
motion pictures, the vibrations seem to start in frame -18 and no
evidence of a detonation wave can be seen in frame -25 or -26. The
wave could not have been violent, as can be seen from the pressure
record. This mildness may be why it was missed in the motlon pictures.

The sudden blackening resembles the propagated homogeneous auto-
ignition observed in another investigation. A camparison among
frames -13 to -16 in figure 7 of the present report and similar
pictures from the other investigation clearly shows this relation.
This abnormel form of ccmbustion may be a borderline case between
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hamogeneous autoignition and a detonation wave. Other explosions
of the present serles show an easlly visible fast spatial propage-
tion of autoignition when viewed 1in motion pictures, dbut the still
pictures fail to show this form of autoignition.

The means by which the considerable volume of the end gas could
became intensely reactive throughout a sufficient proportion of its
bulk in a short enough time to cause gross pressure discontinuities
hag been a point of speculation and investigation for decades.

Ricardo (reference 12) proposed what has become known as the simple
autoignition theory of knock. As he expressed it: "Now when the
residual unburnt portion of the charge is compressed and heated by

the burning portion to a point above its self-ignition temperature it
will ignite instantaneously throughout its whole bulk, and the local
"rise in pressure due to this instantansous ignition is so sudden as

to cause the cylinder walls to spring in much the same manner as
though they had been struck by a hammer." Other investigators believed
that some sort of detonation wave passed through the end ges, completing
the cambustion in a sufficiently short period to cause gross pressure
discontinuities (reference 1).

The principal obJection to the simple autoignition theory is
that it assumes perfect homogeneity of composition and condition in
the end gas. The relation between the degree of homogeneity and the
velocity of sound In the end gas necessary for the formation of either
shock-forming homogeneous autoignition or a rapidly moving wavellke
mechanism, such as a detonation wave, is discussed in reference 1.
It is concluded there that elther is possible, depending on the
conditions. The present experiments support this concept of the two
possibilities. '

. The motion pictures show that in four cases, namely figures 6

- to 8 and 14, the surge reaching the wall opposite the end zone for
the first time mamentarlily raises the temperature thereabouts so
high that the direct radiation from the gases located Jjust above the
screw head 1s recorded by the schlieren cemera. As previously stated,
the schlieren photographs are taken by the reflection of externally
supplied light by the mirror camposing the piston top, because
ordinary fleme reactlions are insufficiently actinic to record. A
nonreflecting portion of the piston top is normally a black spot.
Striking evidence of the speed with which the knock reaction may
proceed to campletion is that the schlieren patterns in the four
aforementioned explosions have almost entirely cleared before the
pressure wave fram the reaction causes the extraordinary 1llumination
at the wall described. This illumination is visible in the still
photographs of these four explosions presented.
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SUMMARY OF RESULTS

Simultaneous direct and schlieren photographs at 40,000 frames
per second and correlated pressure records were taken of kmocking
cambustion in a spark-ignition engine.

End-zone luminosity was preceded In all cases by extensive
darkening of the end zone as viewed by the schlieren system. In
one explosion, the direct photographs indicated end-zone luminosity
preceding the beginning of fluctuations on the pressure record by
more than three frames. This explosion thus indicated that the final
stages of the preknock end-zone reaction shown in the schlieren
photographs were intense enough to photograph and be classified as
flame and so substantiated, to a limited extent, the conclusions of
previous NACA reports that the prekmock end-zone mottling in the -
schlieren system represented autolgnition flames. Schlieren frames
showing early stages of autoignition were unaccampanied by corres-
ponding inflections in the pressure record and luminosity of the
end zone. Early stages of autoignition were thus probably low-
energy reactions even though quite extensive within the end zone.

The blur of the schlieren photographs precisely denoting the
beginning of knock in earlier NACA experiments was imperceptible in
the present schlieren photographs. In at least one instance, the
final stages of autoignition seemed to merge into a propagated
hamogeneous autoignition resembling that previously reported by

TACA investigators. A violent expansion of the end zone accampanied

“the.propagated hamogeneous autoignition when the schlieren photographs
wére viewed as motion pictures. From the appearance of the schlieren
photographs at the time of knock 1t was lmpossible to say whether or
not a detonation wave similar to those described in previous NACA
reports had passed through the end zone. Some pressure records,
however, show combustion-pressure pulsations of varying height
followed by a discontinuity (probably a detonation wave).

Extensive autolgnition ﬁithout knocking vibration occurred once,
showing that autoignition alone may sametimes be incapable of exciting
gas vibrations.

Flight Propulsion Research Laboratory,
National Advisory Camittee for Aeronautics,
Cleveland, Ohio, September 16, 1947.
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