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TECHNICAL NOTE NO. 1563

EFFECT OF PARTTAL WING LIFT IN
SEAPLANE LANDING IMPACT

By Stanley U. Benscoter

SUMMARY . o

A solution. is presented for the motion of a prismatic float of
infinite length that is dropped vertically into the water at zero trim.
A 11ft force, simulating seaplane wing lift, is assumed to act on the
float and to remain constant during the impact period. The float is
assumed to have a uniform mass per unit of length and a uniform wing lift
Per unit of length. The solutlon is determined for values of the 1ift
ranging from zero to full wing 1lift. Time variations of the accelsration
have been computed for a specific nmumerical example. The value of the
mass ratio (ratio of apparent water mass to float mass) at the instant of
maximum acceleration is determined in general form. The variation of

maximum acceleratlon with sinking speed ig illustrated for various .

amounts of wing lift. o T

INTRODUCTION _ S

During a rough-water landing of a seaplene, some stalling of the
wings may occur during the second and subsequent lmpacts. The wing 1ift
becomes legs than the weight of the sgeaplane. Solutions for the meximum

acceleration in smooth water landings are availsble for both two— and
three—dimensional cases of fluld flow when the wing 1ift equals the
weight of the seaplane (references 1 and 2). These solutions may be
converted to rough-water landings by assuming & reasonable ghape for the
wave surface. With partial wing 1ift the solution for ths three— e
dimenslional case becomss very complex mathematically. The effect of
partial wing lift upon the maximum accelereation occurring during the
impact is not known. However, the two—dimensionael case can be readily
golved. This solution offers valuable suggestions for the writing of o
structural design specifications. -

SYMBOLS SR p—

e acceleration

c half loaded wldth

c " dimensionless parameter o
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g acceleration due to gravity
E momentum of fluld
Xk wing 1ift factor (L/W)
L wing 1ift per unit length
m apparent water mass
M float mess per unit length
t time
W weilght of-float per unit—length
zZ draft of float
. B dead—xrige angle
€ apparent-mass coefficient
n dimensionless parameter
u mass ratio (m/M)
Subscripts:
) instant of entry (t = 0)
m instant of maximum acceleration
A dot 18 sometimes used to indicate differentiation with respect tu
time. . o —

The magnitude of all physlical quantities i1s assumed to be determined
by a consistent system of units.

SOLUTION OF DIFFERENTIAL EQUATION

In the following analysis, a two-dimensional soclution of a float
entering water is made; that is, a prismatic float of infinite length
ig considered to enter the water at zero trim from a vertical drop. A
1ift force 1s assumed to be distributed over the length of the float
.1n correspondence to the wing lift in a segplene landing and is assumed
to remain constant—during the Impact. The float is assumed to have a
uniform mass per unit of length and a uniform wing 1ift per unit of
length. A cross section of the float and coordinate system used is
shown in figure 1. In the analysis, the equations are written for a
unit slice of float and of fluld. The float has a mass M per unit
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length. The fluid 1s assumed to have a total momentum that can be

defined in terms of an apparent mass. In the present case, ‘the apparent
mass may be considered to be the mass of fluid contained in a half circular
cylinder as originally introduced by von Karman (reference 1) and shown
in figure 1. The float is acted upon by a 1lift force L, ites own
welght W, and the water reaction. Forces and drafts are considered
to be positive downward.

— e —

The apparent mass is proportional to the square of the loaded width.
Consequently, with flat—side wedge—bottom floats, the apparent mass is
also proportional to the square of the draft. The apparent mass and
momentum of & unit slice of the fluid may be expressed in the following
forms:

(1)

In order to write an equation of motion governing the draft of the
Tloat, the float and the fluld may be considered to form a single system
that is acted upon by the externsl forces W and I.. Newton's law on

the rate of chenge of momentum mey then be written for the system as

follows:

%_E(Mé+m'z)=W—L @

Thisg equatlon could be developed by & somewhat different argument. The
second term %‘E (mz) represents the rate of change of momentum of the

fluid and thus may be regarded as the force exerted on the fluild by the
float. If this quantity were preceded by a negative sign 1t would become
the force exerted by the fluld on the float and would be written on the
riéht—hand. gide of the equatlion. The right—hand side WouldT then repre—
gent a1l of the forces acting on the float. The equation would then be

regarded as an application of Newtont!s law of motion to the float i';self?'_"_"""

A fairly large amount of experimental evidence is available to
Justify the use of this ideal fluld theory. Test results obtained in
the NACA lmpact basin have shown good agreement with theory. The problem
of the three—dimensional case for full wing lift has been solved eand =~ —
compared with experiment in reference 2.
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The initlal conditions for the solution of the differential equation
are as follows: when t = O,

(3)

M
H
N
o
TN\

Zo = &o

The initial velocity and initial acceleratlon ere assumed to be known.
The 1lift may be expressed by the product W where k 1s consldered
herein to vary from O to 1. Introducing this value into equation (2) and
performing the indicated differentlatlon gives

M+ m)zE 2= (1 - k)W (k)
at

This equation is nonlinear but may be readily converted into an inte—
greble form. It is convenient in developing the solution of this egqua—
tion to introduce the dimensionless mass ratio u and the initial
acceleration ag:

m -
b= (5)
ag = £, = (1 — kg (6)
Dividing through equation (4) by M and inserting the formulas (5)
and (6) gives
az s du
1+ =+ z==28
( U) at at (o) (7)
This equation may be integrated to obtaln the followlng formula for
velocity:
. z aqt : :
g =2t O _ (8)

1+
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In this equetion the appropriate value of the constant of integration
has been introduced.

The equation for velocity may again be integrated to obtain the o
relationship between draft and time. Equation (8) may be written in
the following form:

(L1 + u) dz = (20 + aot> at (9)

After substitution of equations (1) and (5), equation (9) may be inte—
grated to glve the following formula: . _

In this case the constant of integration is zero. This equation 1s a
cubic equation in 2z or a quadratic equation in +t. _Hence, it 1s more
convenient to solve for +t in terms of the draft. Therefore,

+3—(1+E>z (11)

Tn the design of a seaplane the quantity that is required ls the
value of the acceleration. It may be noted that the original equation
of motion ig linear 1n the acceleration. Consequently, it may be solved
to obtain a Formule for ascceleration in terms of drafts and velocities.
Equation (7) may be solved for the acceleration to obtaln :
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From equations (1) and (5) it 1s seen that—pm —1le related to the
draft by the formula

ez
W = - -
£ (13)
Differentiating eguation (13) gives

(14)

=2_€Z-=
M

3
“Jp

Substituting equations (8) and (14) into equation (12) gives the following
formila for ascceleration:

(io + aotjg

P=—o 2 (15)

truo2 (1 + u)3

Equation (15) may be remarded as a formmla for the acceleration in terms
of time and draft. It 1s convenilent to ®Bliminate +—1in order to obtain
a formule for acceleration in terms of -the drafts

Equation (11) may be rearranged by transposing the first term on
the right-hand side and squering both sides. )

- 2_ 2., " : -
(Zo + aot) = 2, + 2ayz <l + 5) (16)
This formula may be substituted into equation (15) to obtain

_ —2p.é.02 + a.0<3 = 6u - “2)
z2(1 + p)3 3(1 + )3

If various valuss of 2z are assumed, the corresponding values of- Z can.
be computed, use belng made of equation (13) to determine p. The asso—~
clated valuss of t mey be computed from equation (11). A graphical

relation between acceleretion and time may then be plotted. By use of

an
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formula (17) for acceleration, a formula mey be readily derived for the
hydrodynamic reaction force. The resulting force formula would be in
agreement with that for the case of no wing 1ift (8 = g) glven in

reference 3.
NUMERICAL, EXAMPLE —

For plotting purposes, 1t 1ls convenlent to express the acceleration
in dimensionless form. Dividing through equation (17) by g gives

Z_ _—ep (202>'+ (1L —x)(3 — 6p — u?) (18)
g 3 \8z 3 ' L
(1 + u) 3( + p)

In order to illustrate the varlatlion of acceleration with time &
gimple example has been computed. The followlng values have been assumed
for the float propertles and the initlal conditlonsg: - T "

Mass of float, M, slugs per foot . . . . . .. . .. . .. .. . 100
Apparent mass coefficient, €, slugs per cubilc foot : « + « » » « . 20
Tnitial velocity, 20, foet per second . o+ .« o+ o o oo 0 oo oo . . . 12 -
Wing 1ift factor, kK . . . . . . . ¢ v v o v o s oo s .lor2/3

The value k = 1 1s for full wing 11ft; whereas, the value k 2 ig

It
Wi

a reagonable reduction factor for wing 1ift to be used iIn deslgn practice.
A graphicel representation of the solution for the two cases 1s shown in
figure 2. It may be seen that there ls some reduction in the maximum
acceleration with pertial wing 1lift. However, the effect ls small enough
to be disregarded in most practical design cases.

MASS RATTO AT MAXTMUM ACCELERATION

In design practice 1t is actually necessary to know only the value
of maximum acceleration that occurs during the impact. This maximum
value may be found by differentiating the formule for acceleration with
respect to time or draft. This derivative is set equal to zero. Thus,

E_o ‘ (i9)



8 NACA TN No. 1563

Differentiation of equation (17) glves, ‘after some rearrangement of—
terms,

aozm<l5 - lO].l.m - u.mg) - 3(5pm - J) .';402 =0 (20)

The subscript m has been introduced to indlcate that the values of
the quantltles are those that occur at the instant of meximum
acceleration.

Equation (13) shows that the draft may be expressed in terms
of- u. Thus,

2= \| & (21)

This formulsa holds true at all instants, including the instant of
maximum acceleration. Hence, 1t may be used to eliminate the factor zj

in equation (20) by direct substitution. The result may be written in
the following form:

(15 = 200y — uy? )i - é02\]-3-= o (22)
3(51-’-m" 1) a, VM ,

The parameter C . depends upon the initlal conditions and the float
properties. Instead of solving for M it 1s more convenient to assume

various values of- o and compute the corresponding velues of C. Such
values are ghown in the following table and are plotted in figure 3.

Hm C
0.20 2
22 19.94
24 10.24
.26 6.99
.28 5.35
.30 L.28
4o 2.29
.50 1.53
.60 1.12
.80 .63
1.00 .33
1.20 . .11
1.32 o]
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Equation (22) shows that for full wing 1lift ( a, = O), o must
have the value 0.2. This universal wvalue of My Was originally glven
in reference 3.

MAXTMUM ACCELERATTON

A formule Ffor the relative acceleration at eny instent 1ls given by
equation (18). The value of u, as determined from equation (22) may

be substituted into equation (18) to determine the maximm acceleration.
However, it 1s possible to develop a simplified formula for the accelera— _
tion which is appliceble only at the instant of meximum acceleration.

Equation (20) may be rewritten by use of equation (6), in the fol—
lowing form:

22 (1~ k)(ls - 10y, — pme)

= (23)
8z 3(5Hp — 1)

Substitution of this equation into equation (18) gives, after combining
terms,

Zm 11—k
_— - ——— 24
g Sty — 1 (24)

In_ order to show the variation of acceleration with sinking speed
speed zo, the parameter C (equation (22)) may be expressed as

c=,,(l ) (25)

vwhere

(26)

For a particular value of k, the parameter C may be determined for

various assumed values of 1 from equation (25). The corresponding
values of TH be determined Prom equation (22) and substituted into
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equation (24) to obtailn accelerations. These accelerations mey then be
plotted egainst the paremeter 1. Buch graphs, for various values of k,
are shown in flgure L.

At full wing 1ift, equation (2k) becomes indeterminate. The
velues k =1 and py = 0.2 may be substituted into eguation (18).

Introducing equations (21) and (26) gilves the formula

EE =22 _ n = =0.518n | | | . _(27)

g 108\0.2

For thls case the graph in figure L 1s a straight line.
CONCLUSIONS

The vertical drop of a prismatic float of infinite length with
constant partlial wing 1ift has been analyzed to determine the maximum
acoeleration. The float 1ls assumed to have a uniform mass per unit of
length and a uniform wing 1ift per unit of-length. The mass ratlo at -
the instant of maxlimum acceleration is found to depend upon a single
dimensionless parameter involving the initlal conditions and the float
properties. The solution shows that partial wing 11ift may have a small
effect upon the maximim acceleration. The effect 1s small enough,
however, to bPe disregarded in most practical deslgn cases.

Lengley Memorial Aeronautlical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., February 5, 1948
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Figure J.- Two-dimensional ¥float

en+er~ing fluid.
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Fisur~e 3.- Mass ratio at maximum acceleration.
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Figure 4.- Variation of acceleration with sinking-speed parameter 7.
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