
,

I

I
I

I

1

:

co

1

NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS

TECHNICAL NOTE

No. 1749

SHEAR FLOWS

,

J3NMULTICELL SANIXWCH SECTIONS

By Stanley U. Benscoter

Langley Aeronautical Laboratory
Langley Field, Va.

Washington

November 1948

I

I

‘1

1

. . . . ., -.’ ,- . . . --- ... -. . . .. . .. . . . . . . . .

https://ntrs.nasa.gov/search.jsp?R=19930082375 2020-06-17T20:59:41+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42803757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NATIONAL ADVISORY COMMITTEE

TECHNICALNom No ●

- lMIMllllMwlu
FOR AERONAUTICS

0Db50i?9

1749

SHE4R FJA)WSIN MULTICELL SAN3WICH SECTIONS

By Wanley U. Benscoter

SuiMARY

Solutions we developed for shear flows in multicell sandwich
sections for various cell-twist distributions. The problems of twisting
and .bendimgof a cantilever beam are first considered. More general
cell-t@.st distributions are then considered, includhg the arbitr~
distribution. A fomula is also developed
sandwich section.

mlsucmolt

for the tatiion constant of a “

The relation between load and deflection, for a homogeneous, elastic,
isotiopic plate, is expressed by a well-known fcurth-order clifferential .

equation. A s5milar relation between load and deflection for a mtiticell
sandwich ‘plateshould be given by a clifferential-difference equation
stice the internal shear flows and cell twists vary in discrete steps.
In order to develop this differential-differenceequatian for the relation
between load and deflection, it is necessery to know relations between
bending mcments, twisting mcmente, and deflections. It is convenient to
replace the concept of twisting mament by the concept of cellular shear
flows correspondhg to the well-known shear flows in a multicell section
according to the St. Tenant torsion theory. This paper is dOvOtOato the
determination of various relations between cellular shear flows and cefi
twists which may exist Physical&. Solutions are given for the distri-
bution of sheer flows required to preseme conttiuity of the warping
displacements when the rate of twist varies from cell to cell b various
manners. Symmetrical shear-flow distributions provide a resultant torque
on the section but no resultant shear. A@is_trical distributions
give neither a resultant shear nor a torque and, hence, are self-
equilibrathg. A fommik is also derived for the torsion constit of a
sendwich section with any nuuiberof cells.

SYMBOLS
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cell area

width of cell
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P

dimensionless factor deftnedby equation (14)

Young’s modulus \

shear modulus of elasticity

height of cell

moment of inertia of cross section about X-axis

torsion constant

nuniberof cells
.—

length of wall seggnent

nwnber of a cell (usually an

shear flow

coordinate along ce~ wall

wall thiclmess

torgue

displacement along cell wall

axiel (warping) displacement

concenkted load

nuuiberof an arbibmry cell

vertical coordinate

axial Coordinate

aspect ratio of waXl se*nt

dimensionless factor d.eftied.

&lmensionless factor defined

proportionaliiqyconstant for

Poisson’s ratio

end cell)

(z/t)

by eqmtion (17)
!.

by equation (41)

characteristic distributions
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shear slmees

angl= of twist

rate of ~st ,

function

D3WERENCE

d.efinedby equations (76) and (70)

E@ATIOIi REWTIN& SHFARFLOWS AND CIZLTwIsm

A difference equation relating cellular shear flow to cellular twist
(rate of twist) maybe derived from the condition that thewarpingdis-
placement must be a continuous function arouud my closed path. This is
the condition of continui@ for thin-walJ_edsections. Consider the sand-
wich section shown in figure 1(a). The nth cell is shown in figure l(b).
The displaced ~ositfon of the cell due ta loads is shown by dashed lines.
The angle of twist of the cell is tidicated as @n. The width and height
of the “ce13are indicated by c and h, respectively. The left web, AD,
is web k and the right web, BC, is web k+l.

The z-coordinate is taken prallel to the axis of a cell and is
considered to be positive in the direction extentldrqgoutward from the
~aper. The s-coordinate indicates ~thedistance along a well segent and
is considered to be positive in the counterclockwise direction. Axial
displacements (warping displacements) are indicated by w and kverm
displacements along a wall se~ent, by u. These displacaents ere
positive in the direction of positive coordinates. The shear stiess h
a wall se~nt may be deftied in tem.w of these displa&ments by

(u

The shear stress T, or the shesr flow q, are positive when acting in
the positive directibn of the s-coordinate. The vertical web displace-
ment yk ~d yk+l are considered positive upward. The angle of twist

is given by

“ ~n = ‘HIC- ‘k i2)

The rate of twist is obtained-by U.ffemntiating equation (2) with
respect to z. Thus,

(en=p+~-yk
c ) (3)

In the top and bottan walh the qusntity bu~z may be considered to
consist of two parts. The first part is due lm the rotation of the cell.

,--
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and is given by the fo~ enh/2. The second part is due to the
development of tensile or compressive stiahs and may be indicated as
l+(s). This function is antisymmetrical about the center of the wall

segment. In the vertical webs the displacement u is equal in magnitude
to the displacement y. fi the right web, u eq~ Y&l; ~d h the,

left web, u equals ‘yk“

Equation (1) may be written for each web separately as follows:

Web AB”

Web BC

Web CD

Web DA

T G*+~8n+ul(s)
= as

aywl
T @.t+G_

= a8 az

(4a)

(Ub)

(4C)

1,

(4a)

The condition of cont3nui@ of warping &Lsplacements is expressed by the
foll.owingequation:

Yawu=o
\

n as
(5)

The subscript on the integral sign indicates that the line integration
is carried around the nti cell. The equation must hold tie for each cell.

titegration ‘ofequation (1) around the nth cell gives, with substitu-
tion of equation (5),

$
Tds=G

$ n%~ (Q
n .

From the fommlas ti equations (4) it is seen that the integral on the
right may be evaluated to obtain

L

Y a (Tas=AGf3+Gh-y
n n az k+l - ‘k)

(7)

.,- — ——— ,.. . ---
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Q

.

The function

equations (2)
obtain

+) makes no contribution to the integral. From

and (3) the second term on the right may be evaluated to

Introduction of the shear flow q = tT gives

(8)

(9)

The total shear-flow distribution may be considered to consist of
two parts ● The first part consists of shear streeses associated with
bending action. These shear stresses are related by equilibrium conditions
to the rate of change of nomal stress. The second part of the shear-flow
distribution consists of cellular shear flows resembling the shear flows
of multiceld sections in elemen~ torsicm. The shear flow in the toy
or bottom wall of a cell is equal to the cellular shear flow associated
with the cell. The shear flow in a vertical web is e@al to the
difference between the cellular shear flows associated with the two
adjaceritcells.

b the.present paler only the second part of the shear-flow iLLstri-
bution is comidered. The shear flows accompanying bending are not
considered further h order that attention may be devoted to a development
of fomnulas for cellular shear flows with variable cell twists.

Equation (9) beccmles

where

(lo)

(n)

The coefficient = is the sum of the “aspect ratios11of the wall sefyaents
of a single cell. Structural dimensions of several sandwich sections are
illustrated in figure 2. Although the equations”have been develo~d for
a rect.anmilarcell. they are also applicable to ‘othershapes. The
structur& of fi&es 2_(b)and 2(c)-&e
as the relationship of equation (10) is

fi the development of solutions of
generally convenient to use the letter
Thus the arbitrary.cell is indicated as
ce~ is 9X and $he ce13.twist is e=.

mathematical& id&tical &ofar
conce”ned.

clifference equations, it is
x for the Independent variable.
cell x. The shear flow of this
The last cell may be indicated

as cell n. The nuniberimgof cells is shown in figure 3. A symmetrical.
numbering method may be used as shown in figures s(a) and 3(b) .

/
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For an
for an
number
may be
as the

, .

Oad numiberof cells the total number of cells it3 2n + 1, while
<d

even tmnber the total nuniber is 2n. With either an even or odd ‘
of celJ_sthe numbering from left to right as shown in figure 3(c)
used. Jn this case, h is equal to the number of cells. With x
independent variable, equation (10) becomes

-y9x-l + M 9X - y9x+l = *X (12)

UN13’ORMDHDUBUTI ON OF 8 (2URE lDRSION)

Consider a cantilever besm as shown In figure 4 loaded with a
torque T at the tip. According to the St. Venant theory all cells of
an intemnediate 6ection experience the 13am rate of twist. The cell
twist e= is replaced by a cmstant wst e, and equation (12) %ecomea

-%9 X.1 + &d9x - a29fi1= fWW (13) o

It is frequently found convenient h expressing the solution of a system
of ltiear algebraic equations to introduce a symbol for the ratio of
nondiagonal to diagonal coefficients. h the present case the following
factor i~ useful:

.
(14)

Methods for solvhg difference equations of the preceding type are given
in references 1 ~a 2.

The solution of equation (13) may be expressed in terms of exponential
or hyperbolic functions. The latter prove to be most convenient in the
present case. The cells are considered to be numbered in a symmetrical
manner as shown in figure 3(a). The comylete solution of equation (13)
may be expressed in the following fozm:

~= Bshh@+ccosh

where

and the section pruperty ~ is defined by

.

$x+D (15)

(IQ’
.,

the equatim

,,
(17)

This solution w be verified by direct stistitution into the equation.

——— ~-. . .. . . ,- .—.
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The first two terms form the general solution of the homogeneous equation.
~ The last term is the particular integral.

The constants of titegmtion, B and C, must be detemrlned. Because
of symnet~ the coefficient of the antisymmetrical tezm must be sat equal
to zero. Thus,

B=O

.’

9X =Ccosh~x+D (X3)

In order to detemnine the second constant of integration, it is necesssq
to d.efine .aboundary condition. This boundary condition may be determined
by considering the end cell (nth cell) of a section as shown ti figure 5.
The shear flow 5n the top and bottom walls is ~. A corner element of

the wall has been illustrated by cross-hatching at the.top and botlxm of
the end wall. In order that these cower elements shall be In equilibrium
5n the axial.d5rection, the shear flow in the end wa12 must @so have the

‘tire 9n ●
An “Imaglnq cell may now be considered as shown by the

dashed lines in figure ~. This cell would be numbered n + 1. In order
that the corner elements remati in equilibrium, the shear flow h the
5mag5nary cell must be equal to zero. This may also be convenient~
stated as the condition for preserving continuity of shear flow around
the exterior corner of the cross section. The assumption of zero shear
flow in the haghary cell corresponds to the zero value of Prandtl*s
stiess function at the edge of a solid member In torsion. The boundary
condition is given by the equation

9n+l = O (19)

This boundary condition was made known to the autjhorby M. A- Biot of
Brown University. The constant of integration is detemined by writing
equation (18) for the imaginary cell.- Thus,

Ccosh~(n+l)+’D=O

or

c =

.

-D

cosh ~ (n + 1)
(20)

Substitution of equation (20) in equation (18) gives the solution

[

q==D 1- cosh ~X

il

(X=o, 1, 2, ...) (21)
cosh P (n + 1
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When there is an even n@ber of cells, they must be nuuiberedas shown “
in figure 3(b). This peculiar nwibering is necessary -inorder to
preserve the finite difference of unity between adjacent cells through
the plane of symmetg. The boundary condition is that q& be equal

c

to zero. The resulting solution is

9X

[.

=D 1- cosh x

( )]
cosh!3n+~

A graph of the shear flows is shown h figure 4(c) for a seven-
cell merfiber.The graph may be regarded as a section through the Prandtl
stress surface. The ord3nates to the steps, or plateaus of the stress
surface, are tie cellular sheer flows. The cells have been considered
to be square with the same thiclmess for all wall segments. Thus,

.2=2
12

and consequently

The magnitudes of these

d= 0.25

cosh P = 2

P = 1.317

shear flows ae as follows:

.

0 .990D O .979D o .528D O .732D

LINEARDEYCRIBUTIOIi OF e (BMBmmG)

Consider the cantilever beam of figure 6(a) as being acted upnby
a tip loadW. It has been shownby Goodier (reference 3) that the
St. Tenant bending theory leads to the conclusion that celd..twists at an
intermediate section have an antisynmetrical linear distribution. The
corresponding shear flows form a completely self-equilibratingsystem.
The cell twists that arise are associated with the pronounced anticlastic
shape of the deflection surface which occurs in wide beems of Shdkw depth.

~, ._ --— .. -.. — -—-..”
. . .
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Th6 cell twist may be expressed as a linear function of x, that is,

(3X= -h (23)

Reference 3 shows that the constant k, for beam bend~, can %e expressed
as

~wz,
_ —Lk–EIX (24)

The values of Poissants ratio p and Youngis mdulus E are ass~d to
be the seinefor all wall elements. The moment of inertia of the total
beam cross section is indicated as Ix.

The difference equation (equation (12)) becomes ‘

-a29x-l + (Mlx - >qtil = -2AGICZ

The general solution 5s given by

!lX=BsinhPx+Ccosh~x+ fi

(25)

“ (2Q

where

F= -2AGk
(1 - 2d)Za

(27)

●

and j3 is definedby equation (17). Since the eolution must be anti-
Bynmletrical,

co=

and

The boundary condition
imaginary exterior end

qx=BaW.Px+Fx (28)

must again be a vanishing of the shear flow in an
cell. Thus,

~n+l = o (29)

Therefore, equation (26) becomes —

9X++-=, (X=o, 1, 2, ...) (30) -

A solution of this type was given in reference 3 but differed somewhat
because of the different boundary condition in the emmple considered.

. ..— .—— ._. ..__ ._. . _____ ___ __ — .. ... ... , —.. — ____
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A ~ph of these sheer flows is show in figure 6(c). The magnitudes
“

of the sheer flows for a seven-cell section, with square cells and constant

waXL thickness, are as follows:

‘o I 91
I

92
I

93

0 I o .928F
I

1 .711F I 1.918F

SUITEDISTRIBUTION OF O

Several solutions will now be given for cell twist distributions to
which no =diate @ysical significance can be attached. These solutions
are given h a brief manner to illmtrate the mathematical methods that
may be used to determine sheer flows in terms of cell twists. Distributions
are chosep which aypear to have the most promise of being useful in the
development of a general theory of multicell sandwich plates. Since the
twist function for a homogeneom, isotropic, elutic Plate has a
sirnmoldal variation across the -platein certati natural buckle modes,
a sine distribution of e may be of some usefulness in the analysis
of m.ulticellsandwich sections.

Consider a sandwich section numbered as shown in
Asswne the cell-twist d.istiibutionto be given by the

figure 3(a).
fOllowing fOmmlla:

“=-%$%
The general solution of the difference equation {equation

9x =Bshh Px+Ccosh Pxtb Sill
*

where

b= 2AGa .

[

l-2d

and ~ is defined by equation

ICosZ%-J ‘a -
(17) .

—..—— —

(3Q

(~) ) becmes

(32)

(33)
.

●

——
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When the condition of antieymmetry end the boundary condition are introduced,
the solution becomes

[
qx=bsti ‘ix

Sinh px
2(n + 1) - ainh ~(n + 1)1 (34)

The formula has been evaluated for a sewn-cell meniberwith square
cells and equal wall thiclmesses. Graphs of the celL-twist and sheer-flow
distributions are shown h figures 7(b) and 7(c). A dashed 1- is h-
through the graphs at the centers of the ceUs to indicate the general
distribution of the functions over the section. These continuous distri-
butions are suyertiyosed in figure 7(d) to indicate the clifference in the
distributions. The magnitudes of the cell twists and the shear flows are
as follows:

I ‘ e~ I el I e2 I e3
1 I !

t
o 0 .383a O .707a O .P4a

I I I i I
90 91 92 ~3

o o.365b O .635b O .653b

CHARACTERISTIC DBTKu3uT10N OF e

When the static load distribution acting on a structure causes
d.is@acements such that the load and displacement are proportional at
every point, the loads and displacements may be called characteristic
loads and characteristic displacements. This designation was introduced
in reference 4. The concept and designation may be applied to titernal
or external forces end displacements of a general nature. Arbitrary
distributions of functions may oftentimes be conveniently expressed in
terms of a series of characteristic distributions. Hence, it becomes
desirable to establish the characteristic-displacement functions that
may be associated with a given type of structure. h the present case,
characteristic distributions of e= and q= may be fomd by assumbg

e= = Aqx (35)

The difference equation (equation,) becomes

(30

.——..— ——— -.. .—— ——— ..z — ——— -—-—
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The soltiion of this homogeneous equation is given by

qx=astiyx+b cos yx (37)

The solution must be assumed in terms of circular, rather than hyperbolic,
functions in order to be able to satisfy the boundary conditions. Substi-
tution of -thissolution tito equaticm (36) gives the fo~owing rektion
between y and X:

(3$)

Either term in the solution as givenby equation (37) canbe made
to satisfy the boundary conditions by an appropriate choice of the coordi-
nate system. It willbe assmed that the cells are nmbered frcml to n, ‘
from left to right, as shown ti figure 3(c). The first term can be made
to satisfy the boundary conditions alone by a correct choice of 7.
Hence, the coefficient of the secand term may be set egual to zero to
give .

b=O

smd

~x = a sin 7x’

The boundary conditfon gives

%+1 = asin7(n+l)=0

(39)

(40)

All functions connected with the problem are cconpletelydefined
by n nmibers. Hence the functions are said to exist in an n-point
space. In such a space there is nothing of a useful nature to be gained .
by defh.ing more than n distinct values of cheractxxristicnunibers
such as 7 or A. There are m distinct values of 7 less than m
which WW bring about com@isnce with the boundary conditions as
stated by eguation (kO). The disttit values,of 7 and 1. may be
hiicated as 7k and Lk. They are given by

kl’t
7k=— n+l

-(k= 1,2,3, . ..n) (41)

1. (_Za ~ )- 2d Cos a
k 2AG n+l

—— — .- .— .,-,. ——. .——-- —
,. -.,
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characteristic
are thus given

13

tistiibution of f3 and the resulting distribution
by

.

(lx= a~ti a (k=l,2, . ..n) (43) ‘
n+l

la-(x~x=psin ~~x . (k=l,2; . ..n) (44)
k

ti equation (44) the ratio ak~k has taken the place of the coefficient a
in equation (39).

ARBITRARY DISTRIBUTION OF e

The n fommlas represented by equation (43) or equation (44) define
a closed orthogonal set of functions for sn n-point space. Any arbi%*
function may be represented by a finite Fourier series using these
functiom ● If e= is an arbitrary distribution of the cell twists, it
may be expressed as

(x=l,2, . ..n) (45)

The Fourier coefficients ak remain to be detemnined. From equation (44)
i.tis seen tiat the solution for shear flows is given by

!!X= “> —L s~ kl-cx (x=l,2, . ..n) (46)
n+l

k= k

This equation gives immediately the shear-flow distribution if the
coefficients ak for the cell twists are lmown. Equations (45) and (46)
illustrate the fact that, in general, e and q me not proportional I
functions● Although the tidividual terms of the two series me propor-
tional, the sums of two such series aie, b general’,not proportional.

The fommil.afor the Fourier coefficients may be conveniently
developed by using matrix algebra. Equation (45) represents a system
of n equations defhd.ng a line= relationship between the ex values

and the ak values. 1% matiix form this system is written as

[(3],= [S] [a]

In’this equation [9] and [aj are cohmm vectors (column matrices)

(47)

—- —- .=-. — --——— ----.— .-_. — .—— ——.—— -——-—
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Contah.@ ex and ak values. Ths square matrix [S] ccm.tainJ3

functions defined by

[s1 = p*]

8* =&l=
n+l

.-

/
17’49

Sk

(4a)

Consideration of the elements of LsJ shows it to be a symmetrical.

matrix having columnE which are orthogonal vectors, each having a norm

of n+l—. Consequenti&, when [s] is mtitipl.iedby itse~, a scalaro
L

matrix is obtained. Thus,

[s] p] ‘ y“ [1-.

where [1] is ‘theidenti@ matmix. The vzC&il& of equation (49)
uyon th6 orthogonality of the columns of LSJ. This orthogonal*
expressed in scelsr form by the eguation

42
This fozmmla corresponds
of continuous functions.

Multiply@ thOU@

or

(49) “

depends
is

(m)

to the %etter lamwn fomnik for the orthogonal.ity

eqmtion (47) by [S]

[d [e]=[s1El [+--

‘Q& [’1

cd=* [!1fill

l!liematrix equation may be expressed h scd.sr

n

gives

(51)

,ti

(52)

fomn to give

(53)

—.
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For my d.istri%utionof e= equation (53) gives the corresponding

Fourier coefficients. These coefficients ere then substituted into
eqw.tion (46) to obtain the solution for shesr fbws.

Since the shear flows are related linearly to the Fourier coefficients,
which in turn are related lineerl.yto the celJ-twists, there must be a
ltieer relation between the shear flows and celJ twlsta. This re.@tion
may be derived and, thus, the necessity of computing Fourier coefficients
may be avoided. The development of the relation may be most conveniently
~perfomed with matiix algebra.

Eguations (45) end (46) deftie two eystans of equations between
which the ak values can be ellminh.tedto ~btafn a single system
relating 19x and q=. Equation (45) has been expressed h matrix fomn

as equation (47). ~ order to write equation (46) in matrix form, it is
nece&ry to define the Uagonel mati~ [A]

[

‘1

[A] = 0
. . .

0

Equation (46) mey be written

[91

The reciprocal of a diagonal

—

0 ...0

%“”” 0
. . . . . . ..

O.. .?w
H1
—

.
as

h the following matrix fomn:

= [S] [AT1 [al

(54)

(55)

matrix is obtained by merely inverting the—
hdividual Uagonal elements.

Between equations (47) and (57) the column vector [a] may be
easily elindnated. Solving equation (47) for [a] gives equation (52).
Substituting into equation (55) gives .

(56)

For a given number of ce~ the matrix [S1 is a standard universal
matrix while the structural dimensions enter tito the diagonal matrix [A].
The relative distribution of shesr flows is deyendent only on the relative
asyect ratio of an internal wall se@nent as deftied by the factor d.
The solution given in equation (56) mey be regarded as a gene~ solution
of the system of difference equatione that $@ern the shear flows.
Further discussion of a stmiler clifference problem from this vi~oint
has been given h reference 5.

-—.-—— ---—-—- .—-——. —.—, -— —
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The

As a nmerical example, consider a section of four square cells with
wsU thiclmesses equal .- The factor d equaM 0.25
matrices [s1 ~a [A] becar.->

[

0“5$78 o ●9511

0.9511 0“578
[s] =

0.9511 -0”9378

0 .~78 -o .~ll
L

[A] . ~

0.5955

0.951.1

-0”578.

-0”5878 ‘

0.9511

0

0 0 .845P

o .5!378–

-0 ●9511

0.9511

-0.5878—

o

0

0 0 1.1545

Slibstitutionof

4AG=—
!ZZa

and n equals 4.

0 0 0 1.W

.

0

0

0

these matrices tito eguation (56) gives

-2.6796 0.7178 0.1914 0.0479-

0.7178 2 .8~ 0.7657 0.lg14

0.1914 0.7657 2 .87u 0.7178

0.0479. 0 .lg14 0.7178 2.6796
L -1

‘1

‘2

‘3

e4
. .

(57)

(m)

,’

.

(59)

For any given cell twists the shear flows may be immediately computed.

It is possible to reduce the matiices to approximately half size in
_zX for arbim Fell-twist distributimby taking advantage of
the s-try of the structure. The twist distribution may be divided
into symmetrical end entisy.mne%ricalparts. Separate matrix formulas,
such as eguation (56),may be established for each pert. The symnetiical
and antisynmetiicel parts of the sheer-flow d.istiibutioqwould then be
determhed separately.

ToRsIoN-coNSm I?OFMOIA

By the use of the formlas that have been
shear flows in pure torsion, it is possible to

previously developed for
derive a formula for the

torsion constant for a multicelL sandwich section. .(The author is tndebted

.

— -c ——. —. —.. .—.
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to M. A. Biot for assistice in the d.evelopnent.of this formula.) The
torsion constant may be introduced by express- the relatiaship between
section torque,of a beam and rate of twist at that section as

T=GJ(3 (60)

where G is the shear modulus of elasticity and J is the torsion
constant● Consider a section with an odd nwnber of celJm nuuibered
;s=tiically as shown in f@zre 3(a). The total torque acting on a
section is equal to twice the volume beneath the stress surface and hence
is givenby

The fommla for shear flow,
tuted into equation (61); tire,

n

T
, IL
=2AD l–

u
-n

as given by equatiun (21), my be substi-

n

=2(2n+ l)AD- =
,1

cosh ~X (62)
cosh @(n + 1

-n

The summation ccmtained in the second term’mustbe evaluated. For this
Pwose it--be separated m.follmm:

Introducing

n

z

-1 n

cosh ~X =’

-Z

cosh ~X + 1+

7

cosh ~X o

expmenthl functions gives

(63)

-1 -1

-zcosh ~X = ~
1( )

epx + e-$x (64a)

-n n

z
cosh ~X = ~

1( )
ePx + e-Px (64-b)

1 1

Formulas (@-a) and (@b) may be regarded as finite geometric pwer
series in e~ or e-~. The following known formula may be used:

..

(65)

. ..— ——— -—---- ——— — —- -—- —— —-—— -— --- —--—
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.
From this fommila it is seen that

,n

I
Cosh px

1

-1

= I cosh 9X

-n

[ 1.$ &++w
1- 1- -

(66)

Substitutiti in

&

equation (63) gives .

L Cosh $X = 1 + ~ + e-P(l - e-rip)

-n
1- eP 1- e-P

(67)

This formula may be continsed as follows:

Shitl (2n+ l)g
(6!3)

This fozmmla may now be mibstituted tito equation (62) to give

2ADsinh(2n+ l);
T =2(2n+l)AD -

cosh (n +lJP mlnh #

= 2(2n +’l)A@(~,n) “ (69) , s

where

Stclh (2n+ 1):
(70)q=l -

(2n + 1) cosh (n+ 1)~ sinh

somewhat more

B

calculatim purposes it is
fol.lowingequivalent i“omn:

—z ..—.. ..

convenient to express ~ in. For
the

,
,.- ——— _.. . .__.-,——..
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.,

Substitution of the fozmmla for D from eguation (16) into
equation (69) gives

4(2. + 1)A2G6$(13n)
T=

(1 - 2d)za

This formula may be substituted into equaticm (60). Dividing out the
factors @ gives the fol.lowingfommla for the torsion constant:

(7Q

(72)

(73)

It is convenient to introduce the torsion-constant formula for a single
cell as given by

(74)

\

If K is the number of cells (K = 2. + 1), the torsion constant for a
section havhg K cells is given by

[1JK=KJIP (75)
- 2d

Since ~ is determined when d is known, as shown by equation (17),

~ w be regarded as a function of d and K rather than P and n.
Thus, it becomes corivenientto inti-educeV (d,K) as

~(~@ .W=”w
J l-2d l-2d “

The torsion constant becmnes

JK = KJIV(d,K)

The function ~ is shown graphically in figure 8 for a section
having d = 0.25.

(70

.

(77)

—.. .._._ . . . .. . .—— _____ ___ . . . . . .= ___, _ _
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CONCLUSIONS
.

Fommlas have leen develoyed in explicit fomn for the shear flows
in multice12 sandwich leans in bending and torsion. Formulas have also
been developed for the sheer flows correapontMng to various functional
chordwise distiibutioti of the cell twists emd, in scalar or matrix
form, for the shear flows corresponding to an arbitrary“chordWisetwist
distribution. A fozmula for the torsion constant of a multicell sand-
wich beam ha6 alEo been developed.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

~ey Field, Ta., September 9, 1948

1. Ton K&&, Theodore, and
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(a) Sandwich sec+ion.

.

.
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A

.
D

~ c .
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--+1-nth

cell

B

Tf-i

“WY=’D~

(b) nth cel I of sandwich.

i

Figure l.-Displacements of a single cel I .
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(a) Rectangular cel 1S.

1 z, , A

(b) Triangular cel Is.
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z,

-=s$=

(c) Corrugated cel Is.

Figure 2.- ceil dimensions .
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-n -x -2 -t o I 2 . x n

(a) Odd number of cel IS wi+h
symmetrical numbering.

(b) Even number of cells with
- symmetrical numbering.

,

I 2 3 x-l x X+1 n

~w-p-

(c) Arbitrarq number of &eI IS with
unsym );trical numbering. .

Figure 3.- Cei I numbering.
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(a) Beam in +orsion,
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(b) Cell numbering.
o

mILLLl
(c) Shear f Io-ws.
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,

Figure 4.- Shear flows due to torsion.
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Figure 5.- Imaginary ce II useci

in statemen+ of

boundary condition .
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(a) Beam in be”nding.
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L .-

*

(b) Cell numbering,

P

1’I1
91: q2: 93

11.
1 ;
I I
1 J
1

I
,T

1
\

(c)Shear flows.
.

Ficjure 6.- Shear flows due to bending.
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(a) Sandwich section.
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>

I

i I
/

I
I (b) Ce I I +wis+s.

-.

/ 7

=s=
(d) Comparison

of 8andq.

Figure 7.- Shear flows with a sine

distribution of e . “
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Figure 8 .- Variation of + .
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