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BUCKLING IN SHEAR OF CONTINUOUS FLAT PLATES

By Bernard Bud.iens@, Robert W. Connor, end Manuel Stein -.

SUMMARY

As basic information for the design of thin-web spars, the
theoretical sheer buckling stress is presen-d for an Infin$.telylong,

—

clamped plate dfvided into square panels by rigid intermediate supports.
In addition, results are given for the shear buckling stress of a plate
of inffnfte length and width having intermediate rigid .supportstkt
form en array of square panels. The results indicate the fallacy of

——

the usually made assumption that each panel buckles $n shear as if it
‘weresimply sup~rted along the intermediate supports:

The
buckling
flsnges,
flexural

—

INTRODUCTION ,

design of a thin-web beam requires a lmowledge of the shear
stress of the web. In many cases the beam has fairly heavy
and nm.nyequally spaced, intermediate stiffeners of M@
rigidity and low torsional rigidity. The shear buckling of

—-

the web of &ch a beam may be analyzed-by considering the web to be
a long clamped plate, divided into equal panels by intermediate
supports which completely restrain the plate from deflecting but
offer no torsional restraint. (See fig. l.)

The assumption js implicit in the work of - writers that each
panel of the plate shown in figure 1 wwld buckle in shear as if it
were simply supported along the intermediate supports. (See
references 1, 2, end 3.) Although the assumption is valid for the
compressive buckling of continuous plates having equal bays, it does
not hold true for shear buckling. Adjacent panels buckling in shear
restrain each other, so that the plate bending nnmsnts do not van3sh

—

along the intermdfate supports, as they must for simple support.
This continuity effect Is probably a mximum for nearly square panels;

t from physical considerations it is evident that the continuity effect
disappears for very small and very large values of the ratio b~a.

.-

The present paper gives the theoretical shear buckling stress for
-. an infinitely long, clamped plate divided into square bays by inter-

-—

mediate r3gid supports. In addition, as further information on the

. /
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f=
effect of plate continuity on sheer buckling stresses, results are ,
given for the shear buckling stress of a plate of infinite length and
width having intermediate rigid supports which form an array of square

.

penels. (See fig. 2.) The theoretical analyses of both problems,
performd by the Lagrangien multiplier =thod, sre presented in

-..

appendixes.

a

b

t

E

v

D

T

k8

length ofpanel

width of panel

plate thickness

yoq~s modulus

Poissonts ratio

plate stiffness

SYMOms

of elasticity
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critical shear stress

critical~hear-stress coefficient in the

()TT2DfO&la T = k8 —
b2t

plate coordinate parallel to length

plate coordinate parallel to width

deflection normal to plane of-the plate

Fourier coefficients

Lagramgian multipliers

internal bending energy

etiernal work of applied stress

integers

Kronecker delta: 1 i~ m = n; O if m+n
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RESULTS -AND DISCUSSION

rnfini~ly Long Clamped Plate with Square Bays _ __

The critical shear stress of the plate shown.in figure 1 is given
the formula

r ()=ke~
b2t

The theoretical analysis given in appendix A yields the result

k~ = 13.14

for the case of squere bays. This result, which represents the average
of uppeblimit end lower-limit solutions, is within 0.6 percent of the

—

true buckling stress coefficient.

It is of interest to compare the present result for a continuous
plate with the shear buckling stress coefficients of sq~ P1-aWs ~th – ..

.-

(a) two opposite edges clamped end the other two simply supported, and
(b) a13 four edges clemped. !17hiscomparison is shown in the following
table:

Boundexy conditions ks

Two opposite edges clamped, two simply supported
{

a12.6
b12.28

TWO opposite edges clamped, two continuous 13.14

All edges clamped %4.71

4Jpper limit (reference 1).
%eference 4.

—

#

cMaximumerror 0.6 percent (reference 5, appendix A) .

!ITnis,for square bays, changing the boundary conditions along the
transverse edges from simple support to continuity provides ah-out.
25 percent of the increase in shear buckling stress that wouid be ‘“ . ——
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.

obtained by changing the bo’mdary cond!tlons from simple support to
clamped edges.

Doubly Infinfte Array of Square Panels

The buckling in shear of the doubly infinite axray
panels continuous over rigid supports shown in figure 2

of 8qutie
ie analyzed

in appendix B. The result for the critical-shea&stress coefficient,
obtained to fou?+figure accuracy by means of upper-limit and lowex
limit solutions, is

.

—

ks = 11.10

Comparison of this result with those for square plates having other
boundary conditions is shown in the following table:

Boundary conditions k~
,,—

All edges simply supported 9.35

All edges continuous II.1O

All edgSB clamped 111,~~

?Reference 6.

Thus, continuity of the square panels at all edges provides
over 30 percent of the Increase in s,hearbuckling stress that would
be obtained by clamping all edges of a

CONCLUDING

The theoretical results presented

simply ‘supportedsquare plate.

REMARKS

indicate the fallacy of t-he
usually made assumption that continuous plates hav!ng equal.,finite
bay6 buckle in shear ae If each bay were simp_Jysupported at the
inte~diate supports. The Increase in buckling stress due to-
continuity at the supported edges of square panels is of the order
of 25 percent of the increase that woul&be provided by clamping t~e
edges. This continuity effect is probably a maximum for nsarly equare

I

.—
--
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panels; from physical considerations it is evident that the continuity
effect disappears for very small and very large values of the vidth-

. length ratio b~a.

Langley Memorial Aeronautical I&boratory
National Advisory Committee for Aeronautic

Lsngley Field, Vs., January 20, 1948 , .

-.
—.
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AH?ENDIX A

INFINITELY LONG CLAMPEDPLATE

The sheer buckllng of the plate shown

WI!I!ESQUARE BAYS

in fiKure 1 wi11 be analvzed

.

.

by the Lagrsngian mult~pller m-tied (references ~ and 5 ) to obtain ~oth-
upper and lower Limits to the true buckling stress. Several possible
types of buckling confi@rations wi11 be Investigated; the correct

—

configuration is that whlch correspends to the lowest buckltng load. ..

Buckling configurations.- It is intuitively evident-that, for
square baysj each bay will have the same buckling configuration;
however, it is not evident whether all bays w1ll buckle in the sam
direction, or whether the directions will alternate. It is probable
that the deflection of each square bay of the continuous plate is
symmetrical about the bay midpoint since simply supported square plates
(reference 6) and clamped square plates (reference 8) buckle in sheer
with synunetrlcalpatterns. However, for completeness, the possibility
of an antisymnwtrical deflection in each bay till be investigated.

Boundary and continuity conditions, and deflection functfons.-
From the many possible types of Fourier series discussed In appendix B
of reference 5, suitable series will be chosen to represent the various
possible types of buckling patterns. Schematic representations of the
three buckling configurations considered (where the notations S and A
refer to buckling patterns that are s-trical and entis-trical about
the bay midpoint, respectively, and the signs preceding these notations
indicate d.irectlonof buckling), with the series chosen for these
configurations, R@ the conditions ,ofcontinuity which they satisfy,
are as folbws:

.—

-
—

r

J~Y

/~ ~//~////~////~///////////

b +s +s +s
‘b+ x

////////////~//////////////

m=l n=l m=()n=O
‘1 (Ala)

.
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AY

b

w ‘XE
In=l,3,5, . . . n=l

Cos

------- -

+ z z’-’”%’””%
m=l,3,5,... n=O

&,Y) =-?&,y)

AY
/

!
/////////////////////

+A +/$ +A

‘b -

~o,,) =&,,)

(Alb)

—
.—

(Ale)
1

r
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The conditions of oontlnulty are eatieffed by these deflection
functions term by term; but the boundary conditions at the clam~d
edge8,

w(x,O) = w(x,b) = O (A2)

$(x,O] = *O) =o (A3)

and the condition of zero deflection at the intermediate supports,

w(O,Y) =W(bsy) =0 (A4)

will be introduced by UXUIS of bgrangian

The re=inder of the derivation will
of the buckling configurations (Ala) (which, as will be shown, is
actually the governing one); the d!etailsof analysis for the other two .

buckling patterns are analogous to those presented.

multipliers.

be perfornwd for the fl.rst

Energy eXpressions●- The internal energy of the plate V and the
.

external work of the stresses T are given by the expressions

N
bb

T = -Tt
2$

dx dy
00

Substituting the chosen expanston for w (equation (Ala)) into
these energy Integrals gives

.



NACA TN No. 1567 9

v )[ (.*~$(n’ +n’2,%’ l-%o-80J +%’@+ %+80nj
m=o n=o

-—

T = ‘TtZ2 ~F%%n

m=l n=l

—

—

(A5)

where

.

Note

~.2(m2+n~(l+5~+5~) ,

that v- T is independent of doo, since NO = O. --

Constraining relationships.- In order ta satisfy the boundary
conditions of zero deflection (_eque.tlons(A2) smd (Ak)), it is necessary
to impose the following constraint relationships:

.

~%=o -–—
(J = 0,1,2,...)

m=o .

00., z ‘in = 0
n=O

..--—— .—.
.

(i = 0,1,2,.”..) (A6b)

.
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.

Sifila.rly,in order to satisfy the condition of zero S1OP slow
the clamped edges (equation (A3)), it must be true that

m

z ‘sin = 0 (f s 1,2,3, ...)

n=l

.

—-
.

(A7) .

The term ~o, which does not appear in the energy expression V - T

(equation (A5)), maybe eliminated from these constraining relationships ‘
by subtracting the first of equetione (A6b), the equation for i = O,
from the first-of equations (A6a), the equation for j = 0. The necessary
constraining relations finally become

~%O-~dOn =-O
m=l n=l

m

1 din = O

n=O

m

x ‘h =0
n=l

(J = 1,2,3,...)

(1 = 1,2,3, ...)

(i = 1,2,3,...)
,.

(A8a)

(A8b)

Imer-limlt solution.-A lower-limit solution requires that V - T
(equation (A5)) be minimized with respect to all the coefficients ~

and ~, whereas the constraining relationships (equations (A8a)

and (A8b)) are to be satisfied only as far as i =T and J = q. As
required by the Lagran@an nwltiplier method, the expression to be
minhized is

.

.

—

.
...%

.



NACA TN No. 1565
. .
J-L—.. ,.. .

( ‘)-.~%o-~%n -~’,jl%ltj
nl=l n=l J=1 m=O

1

-t-w2%.-:%2-%.. __:_‘ ‘- L91 -’::i=1 n=o i=l n=l

1,--,- * ?; =“Uk. .!._’_:___ “: .- :
—

The quantities US kj> vis’and

equations for minimizing V - T
relationshipps on the **B and

to i =p and $ = q) becom

Ti are Lagranglan multipliers. T@

while satisfying the constraining
d~s (equations (A8a) and (A8b) up . _ .

&=o (m,n = 1,2,3,...)
a-

(m,n = 0,1,2,...)

5=0

Equations (A8a) and (A8b) up to i = p -end J = q J

By evaluation,

~’%d%#s% -nqm=O (All)

a
—=~~-ke~-kn-~=O (m,n + O) (A12_)
a%

—
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(A13)

(A14)

In equations (All) to (Alb) Xn does not appear for n > q, nor

‘0 %1 - % ‘or ‘7P”
When both m>p and n>q, the

multipliers ‘nj ?m> ‘d ~m vanish from equations (All) and (AM) .

Then one of two conditions is possible: either

%n2- %2m2n2=0

or

%n’%m=o

The first alternative, however, for given values O? m > P
and n > q, wI1l ordinarily lead to a very high value of the buckling
coefficient ka. For the lowest buckling load, therefore, when m > p

and n 7 q,

—

.. .
.

.

--

.

.

%Il=%Im=O

For the re~ining a$s and dts; solving equations (All) and (AK?)
gives

( A15a )

~ = Bm(An+~) “+ ncm~m (A15b) .

.
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where

B- = %

&n* - %n2

Dm
cm =

%n2 - %112

in which

Dm = ~~

From equations (A13) and (A14),

.(Ju6)

(JU7)

It,is to be emphasized that, in equations (A15a) to (A17),

~=~m.o for m>p
—

Snd,

?sn=0 for n>q --— .—

Substituting the values of ~ and ~ given by equations (A15a)
to (A17) in constraining relationships (A8a) and (A8b) up to j = q
and i = p gives

—. -——.



P
‘t=

(M-8a)

(A18b)

(Al&)

(M)

In order for these 2p + q + 1 equations ta be computable, the determinant of th coefficients of
the Iagren@an mltfpli.ars met vanish, FroIs this determinantal. equation the critical value of the
buckling coefficient my be foumi. Those terms h the stxibility determinant involving infinite ~
❑mmtions my be evaluated by nmms of computation aids sindlar to those de6cribad in the appemiix

sof reference 8.

~
Uppl-wllit solution .- Ths theory of the uppar-limft solution in the Lagrangiem multiplier ~

method (reference 7) requires that son .~~B ~ dts @Ifwly b8 SSt OqUI?d ~ ‘eroz ‘ht

equation (A5) be minimized with reeqmct to all the remaining ass and d~s, and that all the
constraining relationships of equations ( A8a) and (A8b) be satlefied.

G

31

#

.-
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As a result of the necessity for satisfying all the conetrainlng
relati,onehipe,a redundancy exists aunng equatione (A*) (see
reference 7); this redundancy cen be remved by discarding the first
of equations (A&i). The necessery constraint relationships now becoxw :

The arrays of
limit solution are
ease of solution.

S-Ju=0 (J s 1,2,3,... )
m=o .

m

I din = O (f = 1,2,3, . . . )
n=o

mx ‘in =0 (i = 1,2,3,...)
n.1

.-
(A19a).

(A19b)

(A19c) ,

Fourier coefficients to be retained in en upper-
chosen with the intention of combining accuracy with
TM procedure followed in the analysis of the shear

buckling of.a clamped p-bte (reference 5, appendix A)-suggests that the
restriction on the existence of the coefficients can be as follows:

———

d~=O (when either m > p or n > q)

%m=o (when m > p)

When these limits are imposed on the existence of the coefficients,
the constraint relationships (equations (A19)) take the form

2% =0 (J = 1,2,3, *..q)
m=o

q

Y din = O (i =lj2,3,...P)

( A20a )

(A20b)
—
n=o
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x mqn = o (i = 1,2,3, . ..p) ( A20c)
n.1 .

.——

The function to be minimized is J ._=___

Setting
~=~

= O then gives

%m=‘mn(kn + %) + “mn%n

% = ~*m

%n = &n

n=l

(for dm # O)

(for m,n # O)

(A21) ~ “

.-+

.

.-

Substituting these values in the constraint relationships (equations (A20))
gives the final stabflity equations: .



. 1 ,

b

a a a

The stability criterion1S tb

equations (A22) .
deteminent of the tieff i cienta of the

,

(i = 1,2,3,...,) (A22c)

Numrical. results .- Humerical results for the critical-she~tmss coefficientobtained in the
present case ere as follows:

1

Ap,roximtion Lower limit Uppn limit

First; p = q = 1 1.2.50 13.56 .“

Seconi; p.q. z’ 13.06 13.22

,iq

,i i
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Thus, the average of the
the second approximation must
buckling stress coefficient.

upper-limit and lower-limit results of
be within 0.6 percent of the true

Lower-lfmit results for the other types of buckling configurations
were sufficient to indicate that the buckling configuration Just
analyzed cmrespaxls to the lowest buckling streBs. Analysis of the
second configuration (equation (Alb)) provided the lower-limit
result ks = 14.29 with a sixth-rder determinant; calculations for

.

the third buckling pattern (equation (Ale)) gave the lower-limlt
value ks = 14.1 with a fourth-order determinant. Since both of

—
—

these values are higher than the upper-limit result for the first- —
buckling.configuration (equation (Ala)), it 1s evident tlu?.tthis_
first configuration Is the governing one for the case of square ba,ys.

—4

Although the same general method of analysis outlined in this
appendix may be applied to the problem of the buckllng of a continuous
plate where the bays are not square, care must be taken to investigate
all the possible buckling configurations; it may no longer be true
that each bay will exhibit the same configuration as every other bay.
Also, as the depth of the bays increases, the effect of continuity
decreases, until, when b/a is Infinite (see fig. 1), sdJacent bays
act as simply supported strips. —

.

.
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APPENDIX B
.

a

DOUBLY INFINITE ARRAY OF

.

.

-—

SQUARE PANEIS

The shear buckling of the plate shown in figure 2 wi~ be analyzed
by a mthod closely analogous in general principle and specific detail
to that of appendix A. Two possible buckling configurations will be
investigated; as before, the governing configuration is that whfch
provides the lowest buckling load.

Boundary and continuity conditions,and deflection functions.- In
this problem it Is quite evident that the buckling configuration will
be syrmnetrlcalabout the midpoint of each bay; it is only necessary,
therefore, to Investigate the question of whether the direction of
buckling Is ths ssme or alternating from bay to bay. The two possible
configu,mtlons may be represented by the following series, which satisfy
the required continuity conditions term by term:

~b~

t
y~,+s +s +s b

+s +s +s

-x
+s +s +s

.*
~x,()) = $x,b)

.
.-

1(Bla)
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‘b-

Y, , -s +s

+s -s +s

-s +%s-s

.

00 w

w= x x * Cos y Cos *Q-
m=1,3,5, . . . n=lj3~5J ● 00

en
~ ~~ln~afn~

i

.

+
z

m=l,s,5,... n=1,3,5, . . .
(Bib) - -

@oJY) = -&@

$(XSO) ~x,b)
= -by J

The boundary condltions of zero deflection at the supperts MUSt be
introduced by mesme of Lagrsngian multipliers.

Stability criterions.- The f&st of the aforementioned bucmg
configurations (equatiom (Bla)) was the governing one; the remainder

. of this analysis will be perfozmd for that case.

It may be seen that the deflection function chosen to represent the
buckling configuration in the present problem is identicsl with that
employed in the detailed analysis of appendix A. As a result of the

.,

.-

.
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close similarity of the two problems, much of the snalyal 8 of appendix A
may be applied to the present problem with only simple revisions. The
constraining relationships are the same for the two oases except that in
the present problem no condition of zero slope at the boundaries exists;
therefore, the condition of equation (A7) Is omitted, end, in ‘
equations (A9 ) and (A21), the multiplier qi is get equal tO zero. .- —

A further simli f 1cation occurs in the Present problem because of
the symmetry about-both diagonals of the
bay . As a result it can be proved that,
function w,

%n=%lm

k=%

buckling pa~tern within each
among the terms of deflection

Consequently, in the application of equations
present case,

U.c)

,

XJ = Vf for i =

(A9] and (A21) to the

——

.—
.—

J

Hence the stabllit~ equations may be written directly from
equations (A18b) and (A22a) by employing the followiu relations:

First, for the
stability equations

+

lower-llmlt result, from equation (A18b), the
are

P -.

‘J> BmJ+~Bm~m=O (J = 1,2,3,...P)
lll=o In=l

(B2)



22
.

For the upper-limit result, from equat!on (A23a),
equat!ons become

P P

NACA TN No. 1565

,-
the stability

● “

(B3) ‘ .–

Numerical results.- The computed results for k8 in the present

problem are tabulated below: —.

.

Approximation Lower limit Upper limit
,.

First; p = 2 U .07 u .18

1-Second; p = 3 11.10
I

11.10
I

The lower-limit result for ks obtained from the other buckling

configuration (equation (Bib)) is ks = 13.10; this result indicatas

that the first pattern is the governing ob. -—
.

Exten~ion of this analysis to bays other than square is subject
to the sam qualification concerning the introduction of other poss~ble
buckling configurations as that stated in appendix A.

t.

“

.
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. Figure l.- Infinitely long clamped plate with equally spaced

T

intermediate rigid supports. -

I
I

-.

Figure 2p- Doubly itiinite array of square panels.
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