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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL NOTE NO. 1565 ST T I

BUCKLING IN SHEAR OF CONTINUOUS FLAT PLATES

By Bernard Budiansky, Robert W. Connor, and Manuel Stein
SUMMARY

Ag basic informstion for the design of thin-web spars, the
theoretical shear buckling stress is presented for an infinitely long,
clamped plate divided into square penels by rigid intermedlate supportis.
In addition, results are given for the shear buckling stress of a plate
of infinite length and width having intermediaste rigid supports that
form an array of square panels. The resulis indicate the fallacy of
the usually made assumption that each panel buckles in shear as If it
were simply supported along the intermediate supports.

INTRODUCTION

The design of a thin-web beam requires a knowledge of the shear
buckling stress of the web. In many cases the beam has falrly heavy
flanges, and many equally spaced, intermediate stiffemers of high
flexural rigidity and low torsional rigidity. The shear buckling of
the web of such a beam may be analyzed by considering the web to be
a long clamped plate, divided into equal panels by intermediate
supporte which completely restraln the plate from deflecting but
offer no torsional restraint. (See fig. 1.)

The assumptlon ie implicit in the work of many writers that each
panel of the plate shown in figure 1 would buckle In shear as If it
were simply supported along the intermediate supports. (See

references 1, 2, and 3.) Although the assumption is valid for the
compressive buckling of continuous plates having equal bays, it does
not hold true for shear buckling. AdJjacent penels buckling in shear
restrain each other, so that the plate bending momenits do not vanish
along the intermediate supports, as they mist for simple support.

This continuity effect is probably a maximum for nearly square panels;
from physical considerations it is evident that the continuity effect
diseppears for very small and very large values of the ratio b/é.

The present paper glves the theoretical shear buckling stress for
an infinitely long, clamped plate divided into square bsys by inter-—
mediate rigld supports. In addition, as further information on the
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effect of plate continuity on shear buckling stresses, results are
given for the shear buckling stress of a plate of infinite length and
width having intermedlate rigld supports which form an array of square
panels. (See fig. 2.) The theoretical analyses of both problems,
performed by the Lagrangian multiplier method, are presented. in
appendixes.

SYMBOLS
a length of panel
b width of panel
t plate thicknéss
B Young's modulus of elasticity
M Poissonts ratio
D plate stiffness in bYending -—E—t:-i——-
: 12(1 - u)
T critical shear stress
kB critical—ehear—stresg coefficient in the
formila T = ks<_§22>
t
x plate coordinate parallel to length
y . plate coordinate parallel to width
w : deflection normal to plane of_ths plate

8 b d Fourier coefficients

m.? °mn s S “mm
cz,,p.i,XJ,ni Lagrangian miltipllers
v internal bending energy
T external work of applied stress
m,n,i,3,p,q integers

Sm Kronecker delta: 1 1f m=n; O if m#n
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RESULTS -AND DISCUSSION

Infinitély-Long Clamped Plate with Square Bays

»
The critical shear stress of the plate shown in figure 1 1s gi

by the formula
T =Xk

The theoretical analysis given in appendix A ylelds the result

k, = 13.1k

for the case of square bays. This result, which represents the ave
of upper—limit and lower—limit solutions, is within 0.6 percent of
true dbuckling stress coefficlent.

ven

rage
the -

It 18 of interest to compare the present result for a continuous
plate with the shear buckling stress coefficlents of square plates wilth

(a) two opposite edges clamped and the other two simply supported,

and.

(b) 21l four edges clamped. This comparison is shown in the following

table:
Boundary conditions ks
212.6
Two opposite edges clamped, two simply supported b12.28
Two opposite edges clamped, two continuous 13.14
All edges clamped : Cih.71

Sypper 1imit (refererce 1).
PRererence L.
CMaximm error 0.6 percent (reference 5, appendix A).

Thus, for square bays, changlng the boundary conditlions along

transverse edges from simple support to continuity provides about

the

25 percent of the increase in shear buckling stress that would be
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obtained by changing the boﬁndary conditions from simple support to
clemped edges.

Doubly Infinite Array of Square Panels

The buckling in shear of the doubly infinlte array of squdre
panels continuous over rigid supports shown in figure 2 is analyzed
in appendix B. The result for the critical-shear-stress coefficient,
obtalned to four-figure accuracy by means of upper—limit and lower—
limit solutions, 1is '

kg = 11.10

Comparison of this result with those for sguare plates having other
boundary conditions is shown in the following table:

Boundery conditions ky
All edges simply supported 89.35
All edges continuous 11.10
All edges clamped 1h.71

@Reference 6.

Thus, continulty of the square panels at all edges provides
over 30 percent of the Increase in shear buckling stress that would
be obtained by clamping a2ll edges of a slmply 'supported square plate,

CONCLUDING REMARKS

The theoretical results presented Indicate the feallacy of the
usually mede assumption that continuous plates having equal, finite
bays buckle in shear as if each bay were simply supported at the
intermediate supports. The increase in buckling stress due to-
continulty at the supported edges of square panels is of the order
of 25 percent of the increase that would . be provided by clamping the
edges. This continuity effect is probably a meximum for neerly sguare
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panels; from physical considerations it is evident that the continulty
effect dlsappears for very small and very large values of the width—
length ratio b/a.

Langley Memorial Aeronautical Laboratory
Nationael Advisory Commititee for Aeronsutics
Langley Fileld, Va., January 20, 1948
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APPENDIX A

INFINITELY LONG CLAMPED PLATE WITH SQUARE BAYS

The shear buckling of the plate shown in figure 1 will be analyzed

by the Lagrengisn multiplier method (references 7 and 5) to obtain both

upper and lower limits to the true buckling stress., Several possible
types of bucklling configurations will be investigated; the correct
configuration 1s that which corresponds to the lowest buckling load.

Buckling configurations.~ It is intuitively evident-that, for
square bays; each bay willl have the same buckling configuration;
however, 1t 18 not evident whether all bays will buckle in the same
direction, or whether the directions will alternate. It 1s probable
that the deflection of each square bay of the continunous plate is
symmetrical about the bay midpoint since simply supported square plates
(reference 6) and clamped square plates (reference 8) buckle in shear
with symmetrical patterns. However, for completeness, the possibility
of an antisymmetrical deflection in each bay will be Investigated.

Boundary and continuity conditions, end deflectlion functionse .-
From the many possibvle types of Fourier series discussed in appendix B
, of reference 5, suitable series will be chosen to represent the various
possible types of buckling patterms. Schematic representations of the
three buckling configurations considered (where the notations S and A
refer to buckling patterns that are symmetricel and antisymmetrical about
the bay midpoint, respectively, and the signs preceding these notations
indicate direction of buckling), with the seriles chosen for these
configurations, and the conditions of continuity which they satisfy,
are as follows!

4i299066§644/7799666/4%/7799644/
b +S|+S | +S
t[*b™ _«x
T T
14 =ZZ &m sin Qm_:x sin 2:1;{;9' +ZZ dmn cos 2m1;tx cos a%“y
m=1 n=1 m=0 n=0

S (Ala)
0,5 = H(b,y)
Ix ox
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\-<—U'—>-

0 [
W = E E 8yn COS mf;x sinen.;q

m=1,3,5,... n=1

(-]
5 2 nrx 2n
+ dyn sin -5 cos —F

m=l,3’5, DY n=o

g_';(osy) = -%(b,Y)

Ay

LLLL LA A

+A+A[+A
~—b —

77, //////////7//////////////

(-]
j Z 2m:tx nny
w = bmn cos 5

m=1 n=0
® o0 ‘
+E E cmcos—r’msin?{—q
- m=0 n=1

- g—;(O,y) = %;(b,y)

(Alb)

(Ale)
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The conditions of continuity are satisfied by these deflection
functions term by term; but the boundary conditions at the clamped
edges,

w(x,0) = w(x,b) =0 (A2)

%(1,0) = g(x,b) =0 (A3)
and the condition of zero deflection at the intermediate supports,

w(0,5) = w(b,y) =0 (Ak)

will be introduced by means of Lagrangian multipliers.

The remainder of the derivation will be psrformed for the first
of the buckling configurations (Ala) (vhich, as will be shown, is
actually the governing one); the details of analysis for the other two
buckling patterns are analogous to those presented.

Energy expressions.— The internal energy of the plate V and the
external work of the stresses T are given by the expressions

320\ P P 2e V2|
ff <612 w2 T TRy T\ |

b
dw dw
T =—1t dx dy
J; 0 =&

Substituting the chosen expansion for w (equation (Ala)) into
these energy integrals glves
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® o 2
SO SRR S
m=0 n=0 )
T = QTtnaii e mdon — -
m=1 n=1 : - -
Then
2 2. = |
(V_T);:E; =mZ=O; %Amlémz(l—ﬁm—fion) +d-mne]
—ksmamdmn} (45)
where .

Apgn = 2(m2 + n2>(l + B0 + 80n> .

Note that V — T is independent of dgg, since Ay = O.

Constraining relationships.— In order to satisfy the boundary
conditions of zero deflection (equations (A2) and (Ak)), it 1s necessary T
to impose the following comnstraint relationships:

S ayeo  (G=oLgTYTTER
m=0 . T
i dyp =0 (1 =0,1,2,...) | (A6Y)
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Simflexrly, in order to satisfy the condition of zero slope along
the clamped edges (equation (A3)), it must be true that

Z na, =0 (1 =1,2,3,...) (A7)
=1

The term dgp, which does not appear in the energy expression V — T

(equation (A5)), mey be eliminated from these constraining relationships
by subtracting the first of equetions (A6b), the equation for 1 =0,

from the first of equations (A6a), the equation for J = O. The necessary
constraining relstions finally become

:ﬁ?: 4o "j?: don =0
n=1 .

m=1

-]

> amy=0  (3=123,..0 [ (48a)
m=0

dgp = O (1 =1,2,3,...)
n=9 J
S na, =0 (1=1,2,3,...) (A8b)
n=1 v

_ lower-limit solution.— A lower—limit solution requires that V — T
(equation (A5)) be minimized with respect to all the coefficients ey,
end d,., whereas the constraining relationships (equations (A8a)

and (A8b)) are to be satisfied only as far as 1 =p and J =q. As
required by the Lagrangian mmltipllier method, the expression to be
minimized is

Vil
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m= n=1 J=1 m=
o P ® o
- § by z din — E N1 B84n 49
1=1 n=0 1=1 =1 | —
?"-"r: e ;:-,4 £ I 4 ?z". -;& /—‘- £ ——~>Fi—— -

The quantities «a, )'J-‘ My, ’and 74 &are Lagrangian multipliers. The
equations for minimizing V — T while satisfying the constraining o

relationships on the a's and d4's
to 1 =p and J = q) becoms

(equations (A8a) and (A8b) up

-——a} =0 (m,n = 132531"')
Oeym
G 0 (m,n = 0,1,2,...) - (a10)
Oy
Equations (A8a) and (A8b) up to L =p and J =4
-
By evaluation,
G . .
F Ay — kgndyy, — Dy = 0 : (Al})
G
.a.a_n; = A dn —kgmna — Ay —py =0 (m,n # 0) (Al2)
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aiio = Apodmo =@ ~ By =0 (A13)
oG -0 (A1k)

SET_ = Aopdon + @ = Ap =

In equations (All) to (Alk) A, does not appear for n s q, nor
do N and P for m> p. When both m>p and n > q, the
multipliers \,, ny, and p, vanish from equations (All) and (Al2).

Then one of two conditions is possible: either

2.2 2

Aﬁne -k mn = d

or
&m = dyn =0

The first alternative, however, for given values of m > p

and n > q, will ordinarily lead to a very high value of the buckling
coefficient kg. For the lowest buckling load, therefore, when m > p

end n >q,

= g = 0

For the remaining a's and d's, solving equations (All) and (Al2)

glves

= DBppnp + Cmn("n + “m) o (AL5a)

:f

Bun(An + bm) + "CymTin (Al5b)

g
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where
b o Pm
mm
Amn2 = Dm2
m =
Amn2 - Dmn2
in which
Dmn = kg mn
From equations (Al3) and (Alk),
dpo = ATJ;S(G, + ”m) . (A16)
e 32 wn

Ap =0 for n>gqg

Substituting the values of &m and dmn glven by equations (Al5a)

to (Al7) in constraining relationshipe (A8a) and (ASb) up to J = q
end 1 =p gives .




JZB uBOJ+iB ZJ g = O (3 =1,2,3,...q)
m=1 m=1
Mg ZBm +aByo + z‘ Byghn + ﬂiZ Wip =0 (1 =1,2,3,...7)
n=_ n=1 n=1

n, S naain + E( T E n¢, =0 (1 =1,2,3,...p)
n=1

n=1 n=1

(A18a)

(A18b)

(A180)

(A184)

In order for these 2p + q + 1 equations :to be compatible, the determinant of the coefficients of
the Lagranglan mltipliers must venish., From thies determinantsl equstion the critical valus of the

buckling coefficient may be found. Those terms in the stability determinant involving infinite

sunmations may be evaluated by means of computation alds simlilar to those described in the appendix -

of reference 8,

Upper—1imit solution.— FThe thsory of the upper-limit solution
method (reference 7) requires that soms a's and d's arbitrarily
squation (A5) be minimized with respect to all the remeining a's and

constraining relationshipe of equations (AB8a) and {AB8b) be satisfied.

COCT *"ON NI VOVN
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As a result of the necesgity for satisfying all the constraining
reletionships, a redundsncy exists among equations (A8a) (see
reference T7); this redundancy can be removed by discarding the first
of equations (A8a). The necessary constraint relationships now become

Z d.m'vj =0 (J = 1’2,3,.o-) (Al9a) o
m=0 .

Z din = o (i = 1,2’3,l|.) (Al9b)

n=0

M
B
(~]

(i = 112:330--) (Al9c)

The arrays of Fourler coefficlents to be retained in an upper—
limit solution are chosen with the Iintention of combining accuracy with
ease of solution. The procedure followed in the analysis of the shear
buckling of.a clamped plate (reference 5, appendix A) suggests that the
restriction on the existence of the coefficients can be as follows:

4 =0 (when either m>p or n > q)
& =0 (when m > p)

When these limite are imposed on the existence of the coefficients,
the constraint relationships (equations (Al9)) take the form

P

Z dmg = O (J = 1,2,3,...9) ~ " (A20a)

m=0 —_—
q i

Z d¢p = O (1 = 1,2,3,...p) (A20b)
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S nayp =0 (£ =1,2,3,...p) (A20c) _ e
n=1 -
The function to be minimized is .

G = i i %AmnE.mna(l. — 8 — SOn) + dme:l — kgma_d

m=0 n=0
D _
J=1 m=0 i=1 n=0 n=1
oG G R
Setting = = 0 then gives -
Sayn  Odmp | R

8y = MBppmm + Cm()“n + um) (for dpy # 0)

mn = pm  (for dpy = 0)

dpn = an(xn + “m) + NCpnnp (for m,n £ 0)
Io = i
Amo n
don = —1—7‘-n -
* Aon

Substituting these values in the constraint relationships (equations (A20))
glves the final atability equations: _ -



hy in ZBmen Z'}CIJ"E =0 (J=1,2,3,...q) (A22a)
m=)

m=]

G9GT *ON NI VOVN

z Bighn * u12:13111 My Z oCyp = 0 (1 =1,2,3,...p) (A22b)

n=1 n=1

q )
" anBm* Z =2 +pichin chmx =0 (1=1,2,3,...p) (A226)

n=l n=q+l n=1

The stabllity oriterion is the determinant of the coefficients of the Lagranglen mmltipliers in
equations (A22),

BNumerical results.— Mumerical resulte for the critica.l—-shear—-etreas cosfricient obtained in the
prosent case are ad follows:

Approximation Lower limit Tpper limit
First; p=4q =1 12,50 13.56
Secoml; p=gq =2 13.06 13.22
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Thus, the average of the upper—limit and lower-limit results of
the second approximation must be within 0.6 percent of the true
buckling stress coefficient.

Lower--limit results for the other types of buckling configurations
were sufficient to indlicate that the buckling configuration Just
analyzed corresponds to the lowest buckling stress. Analysls of the
second configuration (equation (Alb)) provided the lower-limit
result kg = 14.29 with a sixth-order determinent; calculations for

the third buckling pattern (equation (Alc)) gave the lower—limit
value kg = 1.1 with a fourth-order determinant. Since both of

these values are higher than the upper—limit result for the first
buckling configuration (equation (Ala)), it 1s evident that this
first configuration 1s the governing one for the case of square bays.

Although the same gsneral method of analysls outlined in this
appendix may be applied to the problem of the buckling of a continuous
plate where the bays are not squere, care must be taken to investigate
all the possible buckling configurations; it may no longer be true
that each bay will exhibit the same configuratlon as every other bay.
Also, as the depth of the bays increases, the effect of continuity
decreases, until, when b/a is infinite (see fig. 1), adJjacent bays
act as simply supported strips.
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APPENDIX B

DOUBLY INFINITE ARRAY OF SQUARE PANELS

The shear buckling of the plate shown in figure 2 will be analyzed
by a2 method closely analogous in general principle and specific detail

to that of appendix

A.

provides the lowest buckling load.

Two possible buckling configurations will be
investigated; as before, the governing configuration is that which

Boundary and continuity conditions, and deflection functions.— In

this problem it is quite evident that the buckling configuration will
be symmetrical about the midpoint of each bay; it is only necessary,

‘therefore, to investligate the question of whether the direction of
buckling 1s the same or alternating from bay to bay.

-—b —

yip+ S

+S

le— O —~

+ S

w ==:E: amm sin
m=1 n=1

é_w(o:y) =a—w(b:y')

dx ax

The two possible
configurations may be represented by the following series, which satisfy
the regquired continulty conditions term by term:

> (Bla)
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w,-s +S|—-S

bt— T >~

+S | -S|+S

W = E am cos8 Lg; cos8 E%tx
nF'=1,3,5,--. n=l,3,5,oo- )

©0

00
myx nx
+ E E dmn 8in == sin -Sl

m=1,3,5,... 0=1,3,5,...

[o)
-
|
N

]
Qll
R

o
.
g4
g

introduced by means of Lagranglan multipliers.

&' (B1b)

The boundary conditions of zero deflectlon at the supports must be

Stebility criterions.— The first of the aforementioned buckling

configuretions (equations (Bla)) was the governing one; the remainder
of this analysis will be performed for that cese,

It may be seen that the deflection function chosen to represent the

buckling configuration in the present problem is identical with that

employed 1n the detailed analysie of appendix A.

As a result of the
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close similarity of the two problems, much of the analysis of appendix A
may be applied to the present problem with only simple revisions. The
constraining relationships are the same for the two cases except that In
the present problem no condition of zero slope at the boundaries existis;
therefore, the condition of equation (A7) 1s omitted, and, in

equations (A9) and (A21), the multiplier n; is set &qual to zero.

A further simplification occurs in the present problem because of
the symmetry about both diagonals of the buckling pattern within each
bey. As a result it can be proved that, among the terms of deflection
function w,

' fmn * &nm
dgn = S

Consequently, in the application of equations (A9) and (A21) to the
present case,

a =0

A for 1 =]

3~ M

Hence the stability equeations may be written directly from

equations (Al8b) and (A222) by employing the followina relations:

Tli=0
a=0
)"J=”i for 1 = J

First, for the lower—limit result, from equation (Al8b), the
stabllity equations are

) P
XJ §=o BmJ + -2- Bm'jxm =0 (J = 1:2:3:---1’) . (32)
m: =1



22 NACA TN No. 1565

For the upper—limit result, from equation (A23a), the stability
equations becoms

P P
My E BmJ-+§E: ijxm =0 (3 = 1,2,3,...p) (331
m=0 m=1

Numerical results.— The computed results for kg in the present
problem are tabulated below:

Approximation Lower 1limit - Upper limit
First; p = 2 11.07 11.18
Second; p = 3 11.10 11.10

The lower—limit result for Xk, obtained from the other buckling
configuration (equation (Blb)) is kg = 13.10; this result indicates
that the flirst pattern is the governing one.

Extension of this analysis to bays other than sguare 1s subject
to the same qualification concerning the introduction of other possible
buckling configurations as that stated in appendix A.
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. Figure 1,- Infinitely long clamped plate with equally spaced
intermediate rigid supports.
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Figure 2,- Doubly infinite array of square panels.



