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Page T7: The lmportant derivatives C]-_d and Cm& are obtained

incorrectly. The corrected values for these d.erivatives should read
as follows:

A Bt (BC) — Man(gcl

CLC!,__ 2 1 (ka)
' — MPH(EC
O, = 54 B (20) - MH(EO) (58)

The same correction should be made for these derivatives in table I
in the column "Principal body axes.™ In the column ®Stability axes™
of table I the corrected expressions are

o, = -2 E''(BC) — MPE(EC)

2 M2 -1

cg)E‘ t(BC) — M2H(EBC)

Cmg, = "%@.+8c M2 1

The error in the derivation consists in the assumption, carried
over from reference 1, that the surface potential, equation (3), is
not altered by a small normal acceleration. This assumption is true
for the narrow triangles treated in reference 1 but falls for ths
general triangles treated in the present paper. The assumption is

equivalent to the neglect of the time dependency texms =L @y
a

and _l-? ¢'t'b (where +t represents time and & is the speed of sound)
-1

in the linearized partial differential eguation for unsteady motlons:

’: aketa, l

i |||.|.l.| n -
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32¢J;x—¢yy_¢zz+_a‘2__g'¢xb+a_3_;é¢tt=o (a)
which legsves only the steady—state (Prandterlauert) equation

B~ Gy~ Py = O ()

The correct potential to replace equation (3) must satisfy both
equation (a) end the boundary condition on the wing

@ZZ - | (o)

In an unpublished paper, Mr. Clifford S. Gardner has, In effect, shown
that a suitiable solution 1s

z

2 2
S - | (@)

where YV 1s the steady—state potential corresponding to a unit
pitching veloclty about the y—exis and X 1is the steady—state
potential corresponding to unit angle of esttack. Both ¢ and X
satisfy equations of the form (b). That equation (d) is a solution
can be verified by direct substitution into equetions (a) and (c).
Thusg, Gardner has shown that the time—depeondent potential for an angle
of attack &t may be compounded of two time—free, or steady—state,
potentlails, one for a constent angle of attack and the other for

gteady piltching.

The 1ift distribution at time + = O for the angle of-attack &t
is obtained from the potential by . ’

AP

29(V¢x + ¢t)

R
4 [M (02) s - bivz(ap)a;l_mj (o)

R
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where -
(aP) q=1 1ift distribution for umit pitching velocity

(aP) ael 1ift distribution for unit angle of attack

LHP¥* valus of AP per unit & used in deriving the

incorrect equations (4) and (5)

Integration of equation (c) over the plan form to obtain the 1ift and
moment and reduction to coefficlent form ylelds

L = CI' te 32 O, = 32<Clﬁ)* (£)
Cmg, = Be Cag st—sz x2<2AP> x dy - 2( )* (&)
%2?:& a=1 -

vhere the * designates the incorrect values in equations (4) and (5)
respectively, and the y—axls is teken through the center of gravity.

Values of Cf , Cmu,’ and C, , may be obtained from table I

c and (C *, from equations (&) and (5). The
end (Org) et (Cmg)

quantity (I%) is obtalned by setting « =1 and a = C@- c + x)
PV
) 2 a=1

in equation (1). Substitution and integration then yields the T

corrscted values for Org and Cpy (equations (ka) and (52)) as set _
forth at the beginning of this erratum. o
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Page 1li: The mection entitled "DERIVATIVES CYB, CnB’ Cy., and Cp”

and the part of table I in which these derivatives are presented have
been found to be in error. The null result deduced for these
derivatives (in the neglect of friction drag) is incorrect as a result
of the omission of a compressibility factor in the treatment of the
lesding—edge suction force. Thus, on page 14 (last sentence of

first paragraph), the remark that the inltially symmetric distribution
of leading—edge suction persists in sideslip (for small values of
sideslip) is e misstatement. The initially .symmetric distribution of
lsading-edge velocity persiste in sidesllp, but compressibility upsets
the symmetry of the leading—edge suctlon. According to equation (17)
the suction per unit length of edge is '

£ = ngR2\1 — M2 - .

For infinitesimal sideslip the constant K, related to the edge
velocity, is unchanged, but M', the component Mach number perpendicular
to the edge, is altered: M! increases on the right edge and decreases
on the left edge. The error under discussion consiste in the neglect

of the change in M', : -

Because of the change of M' with sidesliﬁ angle B the édé;
suction may be written - :

f=f=+;3-i> (21)
B=0 9B/a-0
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By differentiation of equation (17), with X constant and
M' = M gin(e £ B), there results

- . - - _ ' 2 - - - -
f=fB=O:,_-ﬁf'B=O_M___§.0_E§€_> (22)
: 1-M
o p=0 P
- xa
where the upper part of the double sign refers to the right edge and
the lowel part to the left edge.
The gquentity fB—O 1s obtalined by setting p =0 in the last
equation of page 12: - - ‘j_;
. Tg=0 = > 3
. 2 EE! (BC)] ) -
Substitution of equation (23) in the last term of equation (22) and
simplification, with tan ¢ = C, ylelds - e
V2aPx0oM
g0 ¥ B i = (2k)
2[Ef(Bcﬂ \/1 — 327 ,
Equation (24) gives the suction per unit length of edge for a
triangular wing with an angle oi‘ sideslip B, _ e
For the case of a small anguler velocity of yawing r the edge
suctlion mey be approximasted by : .-z
f=1f.o+r <§f-> B
where f,._g ~1s the same as ﬁ——o—and is'- glven by equation (23). If the -
center of rotation is (30, 0, 0), the componen'b Mach number normal to the
edges 1s "~ - T s : S — p_ﬂ_“;_

r _ + rf2 - )
M _Msine V(BG cos € X sec e]

IR B

]
HI
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This value of M'! 1s to be incorporated in equetion (17) for f

before cerrying out the Indicated differentiation -g—i The final result is

r

( %c - X seo%-) :rQV’c.f,ExCEM2
f =7 Fr

=0 ¥ .
a[E* (0) ]2 \1 - B%2

The suctlon equations (24) and (25) have been used in procedures
simllar to those presented on page 13 to yleld corrected values of
the stabllity derivatives CY‘ s C_, CY » and a correctlion term to be

added to the right—hand side of equation (20). The results are
incorporated in a correction to table I in the column labeled
"Principal body axes". Since one or another of these four derivatives
figures in their transformation to stability axes, several of the
equations in the colurm of table I labeled "Stabilify axes" have also
required correction. ' ) '

(25)

The yawing derivatives CYr and Cnr as corrected herein ere

gtill subject to the uncertainty inherent in the limitations of the
linearized theory for yawing motion pointed out on pages 9 and 10,

e 18: Formmlas for C C C and should be
Pag ng? “ny0 “nps GYﬁ: GYP’ CYr ]
changed to read as shown in attached correction to table I.



Corrected version of part of table I following the derivative €y o
r

(fi?“flg,‘: Principal Body axes Stability Axes \
Deriva.‘f;i'm dor 1ved , (origin at %c) ,i (Origin at distance Xog ahead %C point /
herein) e
2 x
c 2 0 ey A2 ..c_s>
ng 15 L 2A2M2Q(BC) 3 EE (BC) + <16 + = M?Q(BC)J
A il A, 8 Xg _A_ _ 1,4
Cnp <—91-A + )J(BC) m,[:<9A YRR E)J(BC) 35 I(BC):l Q'CDO<6 + 9A2)
1 ) 2(1 §_ cg [n - il
_0D0<1 _A_) _%<_+_>_m<9 __)E (BC) — J(BC
Torm 1n Cp, 6 9A2 0\6 ~ ga2 A 16 9A T
C
Dy derived in 0.0 3 x
_xdM A, W 2 A _ w1 A 9A3  Feg 8%
reference 1. 5 Q 5 5}(30 — o 2 T(BC) 9 <q + 256 + A = + 2T Q(BC)
Oty ~ § aPaq(B0) ~ ¥ a®AMRQ(E0)
c 2o 2m
Y, 2 J(BC) : J(BC)
Cy 2" 22929 (B0) 2na

2 [_ J(BC) + (’% + %—%MQQ(BC):,

vhere Q(BC) =

n

E'(BC

\11 - B2

is a new function,

VIVIEE

SLCT *ON NI VOVN
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TECHNICAL NOTE NO. 1572

-~ STABILITY DERIVATIVES OF TRIANGUIAR WINGS AT
SUPERSONIC SPEEDS

By Herbert S. Ribner and Frank S. Malvestuto, Jr.
SUMMARY

The analyslis of the stebllity derivatives of low—espect—ratilo

riangular wings at subsonic and supersonic speeds, given in NACA TN

‘0. 1423, is extended to apply to trianguler wings having large vertex

1gles end traveling st supersonic speeds. The 11ft, rolling moment

2 to sideslip, and damping in roll and pitch for this more general )
cese have been treated elsewhere on the basls of the theory of small
disturbances. The surface potentials for angle of attack and rolling
taken therefrom are used to obtain the 1lift due to downward acceleration,
the seversl side-—{orce and yswing-moment derivetives that depend on
leading-edge suction, and a tentative value for the rolling moment due
to yawing. All the known stability derivatives of the trianguler wing
et supersonic speeds, regardless of source, are sumarized for convenlence
and presented with respect to both body axes and stebllity sxes. The
resulte are limited to Mech numbers for which the triangular wing 1is
contained within the Mach cons from its vertex. The spenwise variation
of Msch number in the case of yawling is neglected, although the effect
must be of importance.

INTRODUCTION

An earlier investigetion (reference 1) has provided theoretical
stability derivetives of low—aspect—ratio wings of triasngular plan form
at subsonic and supersonic speeds. The restriction to low aspect ratio
was a consequence of the limitetions of the theory., Several investigators
have sl e obtalned pressure distributlions for angle of attack, rolling,

itchin, , and sideslip at supersonic speeds (references 2 to 6 and S

1publir “ed analyses), without restriction to low aspect ratio. These

wwivati 8 have employed variesnts of the lineer theory of supersonic
ow end ave, In fact, constlituted importent steps in the development
the 1 ory.

If the rotaetions ere teken about the vertex, the pressure distribu—
on for each motion in the more general case is found to have the same )
,kape es the corresponding low—espect—ratio epproximation, so long as
the trisngular wing is contained within the Mach cone from the vertex,
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The magnitudes differ by factors which are functions solely of the ratio
of the tangent of the semivertex angle of the triangle to the tangent of
the Mach angle. The same similarity exists between the distributions of
surface potential. It is thus relatively simple to extend most of the
derivations of reference 1 to remove the restriction to low aspect ratio
for supersonic speeds. Such an extension is made in the present paper.

The lift—curve slope, the damping in roll and pitch, and (in effect)
the rolling moment due to sldeslip have been evaluated in references 2
to 6, so that the principal contributlions of the present paper are the .
geveral side—force and yawing-moment derivatives and a tentative value
of the rolling moment due to yawing. All the known stability derivatives
of the trlangular wing at supersonic speeds, regardless of source, are
collected hereln for convenlence and presented with respect to both body
axes and stabllity axes. Wings with dihedral are not trested (although
they were included in reference 1) and the results ere limited to Mach
numbere for which the wing i1s contained within the Mach cone from its
vertex,

SYMBOLS

X,¥,2 - rectangular coordinstes (fig. 1)

u,v,w incremental flight velocities along x—, y—, and z—exes,
regpectively, figure 2; induced flow velocities along
X—-, y—, and z-axes of figure 1, respectively

Psq,r angular velocitles about x—, y—~, and z-exes, respectively,
) figure 2

flight speed

stream Mach number (V/Speed of sound)

M? component Mach number normal to wing leeding edge 2
\/l + Cé
B cotangent of Mach angle (\/Eﬁ - l’
o« angle of attack (Flight w/V)
8 angle of sidealip (Flight v/V)
€ semivertex angle of triangle -

T Mach angle Got—l \/Mz - l>
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AP locel pressure difference between lower and upper surfaces of
airfoil, positive in sense of a lift

o] denslty of air

a semiwidth of triangle at distance x from vertex

b span (base of triangle)

c root chord (heilght of triangle)

ol

b/2
mean aerodynamic chord | & = g (/; (Local chord)® dy = %c)

da A D
edge slope (x ax % 2c)

A agpect ratio (cﬂ)
S ' area of triangle (%‘bc)
¢ velocity potential

= -1 ¥
n = cos &
x = /1 — %2
E'(BC) complete elliptic integral of the second kind with

z \, 2
modulus k3 fQ 1—k251nzdz
- 0

F*(BC) complete elliptic integral of the first kind with

5

E"(BC) =
E*(BC)

1 - B2
(1 — 2B2C2)E'(BC) + B2C2F*(BC)

G(BC)

H(BC) = 3G(BC) ~ 2E"(BC)
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2(1 - B2¢2)
(2 — B2C2)E*(BC) — B2C2F*(BC)

J(8C) = E*(BC)I(BC)\/1 — B2C?

I(BC)

K constant defined in equation (16) .
N yewing moment
Y lateral force
T suction force per unit length of edge
Lift
C L 1ift coceffliclent
S
2 "vz
c pltching-moment coefficient —i—tﬁmnﬂ-m
n 2
_ V<Sc
Roll moment
Cz rolling-moment coefficient olling
L pVas'b
Cn yawing-moment coefficient
= pv23b
CY latersl-force coefficient
z p72$
2
Cy profile—drag coefficient [ 2xof ileedra.g
0 L ov's
2
M induced surface velocity normsl to wing leeding edge
8 perpendicular distance of point (x,y) from wing leading edge
' X, g dlstance of center of gravity forward of %—c
Subscripts:
R right edge

L loft edge
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Whenever «, @, Q, P, B, and r are used as subscripts, a
nondimensional derivative 1s Indicated and this derivative is the slope
through zero. TFor exsmple,

e B

C. = F Ly C = acm. c. = BCZ
B& o oy 1
&) /(%) L)
B @->o | \@V/}lg—0 &/ | p—o

x | %]
EX =

__t 1
i ->0 L 21:-—)0

A dot above a symbol denotes differentistion with respect to time.

All engles are measured In radians.

ANALYSIS

SCOFPE

The stability derivetives of triangular wings at supersonic speed
that have been treated theoretically herein or elgewhere ere listed in
teble I, together with the expressions that have been found for them.
All the derivetlions meke use of body axes. The derivations that follow
glve the values with reference to the préncip body axes of filgure 2
with origin at the serodynamic center (3(:, O,a:é). Conversion hes been

made to the system of stabllity axes shown In figure 3 with origin a

distance 108 shead of the %c point. Table I comprises parallel columns

which present formulas relative to both systems. The expressions are
limited to Mach numbers for which the triangle is contained within the
Mach cone from its vertex.

DERIVATIVES C C and C
Ly’ Ly’ me,

The pressure distribution on a thin delte wing at an angle of attack
in a supersonic streem has been cobtalned in references 2 to 4 by the
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lingarized theory without restrlction on the vertex angle of the triangle.
The apprcximation originally glven for the slender (low-espect=ratio)
triangle (reference 7) and used as the basis for reference 1 is found to
apply to the general case upon division by a constent (an elliptic integral)
that depends on the ratio of the semivertex angle to the Mach angle. That
1s,

AP - _haCm -
2 o7 E'(B0)\fa? - 52

where E'(BC) is the complete elliptic integral of the second kind with

modulus
\/1-3202
Vi@ -9

Thus the lift—curve slope for the more general case 1s the value given by
references 7 and 1 divided by E*(BC):

(1)

W
it

A
G, = ———
(o4 EE'(BC)

g AE" (BC) | | (2)

The surface potential given in equation (3) of reference 1 is likewise
extended to include nonslender .triangles at- supersonic speeds upon division
by EY(BC). The revised potential is

(Bagno - £ 122 2i0 0

E'(BC)
2
Vo a8 -
=ZI s (3)
E*(BC)
The elliptic integral E'(BC) depernds only on the paramster BC = %gg—i

(ratio of the tangent of the semivertex angle of the delta wing to the

L'i' Ii .
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tengent of the Mach angle) and 1s therefore a constant for a given wing
at a glven speed. The derivations in reference 1 for CL and Cm&,

%
which are based on the potential @, thus merely acquire a factor
E" (Bc) = —-L_ H ’
E* (BC) -
o - ,:A. "
Cm&' 12 E"(BC) (5)

DERIVATIVES Cp ch, end czp

The derivatives Cmq, Cr, s and C.L are derived in reference 5.
q P
With respect to the axes of figure 2

O = - 33:—2*; ¢(8C) (6)
L - Z m(zc) (7
Oy " " 2 1(20) (8)
where
6(%) - (1 - 23202);'-(-132?03 B2C2F*(BC) (9)
E(BC) = 3G(BC) —~ 2E"(BC) (10)
1(80) = 201 - %) (11)

(2 — B2c2)E*(BC) — B2C2F*(BC)
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and F'(BC) and E*(BC) are the complete elliptic integralg of the first
and second kinds, respectively, with modulus k = /1 - B%g

DERIVATIVE C 1
B

The pressure distribution over a thin delta wing in yaw (sideslip) at
an angle of attack at supersonic speed hes been cbtained in reference 6
and unpublished work. If the angle of yaw 1s assumed to be small B 134- R

the rolling-momernt coefficient can be expressed in the approximate form

~ o X "
¢, ~— 2 B(50)

Thus, the derlivative with respect to B 1s

cIﬁ = - ’3’—“ E"(BC) (12)

An slternative derivation based on the surface potentisl, equation (3),
for the unyawed wing will be glven because the method provides the starting
polnt for a derivation of C, , C, , and C, .

r Ry Y.

The potential for the disturbence velocity may be expressed relative
to axes alined with the stream (wind axes) or wlth respect to exes that
yaw with the body (body axes). For small angles of yaw 23 << I\J;)’ the

linearized equation for the potential has the same form relative to either
system of axes. The potential 1s determined by the normal velocity of
points of the surface and by the orientation of the surface; for
negligible thickness, this normal velocity is just oV Ffor all angles

of yaw. The potentlal expressed relative to wind axee thus varies as

the wing yews relative to these axes. The potential expressed relative
to body axes is constant for small yaw because the orientation of the wing
relative to the axes does not change.

For wind axes, Bernoulli's law has the form

-
AP = 20V S

and the change in the pressure distribution with yaw results from the change
in the potentlal function with yew, For body axes with small yaw,
Bernoulli's law has the approximste form _
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AP = ep\@% _p g-@ (13)

and the change in pressure distribution with yaw results from the
term -8 ?;_ gince @ does not change.

In reference 1 in the section entitled "DERIVATIVE c, ," the
B
derivation employs body axes and equation (13) of the present paper.
The surface potential used (equation (3) of reference 1) is the
epproximation for narrow vertex sngle. Equation (3) herein for a
general vertex angle may be used instead. Equation (3) herein differs

only in the factor 1/E%(BC), whence the earlier expression for c,
B

(equation (19), reference 1l,with I = 0°) acquires this factor to agree
with equation (12).

DERIVATIVE C
ZI'

The foregoing discussion of the triangular wing in yaw (sildeslip)
may be extended to provide a preliminary treatment of the case of a
small anguler velocity of yaw r. The corresponding extension for
narrow vertex angle is made in reference 1. The treatment is general—
1zed to an arbitrary vertex angle for supersonlc speeds,as before, by
using equation (3) herein for the surface potential. Two changes then
appear in the pressure equation, equation (20), of reference 1, The
right—hand side isodivided by E'(BC), and the term al = xC2 must be
retainsed, since C< 1s no longer small compared with unity (C = tangent
of semivertex angle). With these changes, the derivation leads to

1 A
= = + 2 \E"(BC
c?'r T (9A + l6> (BC) . (14)

In the derivation of equation (1L4), the spanwise varistion in local
Mach number caused by yawing 1s not taken into account although the
variation in forward speed 1s taken into account. The surface potential
that 1s used, equation (3), satisfies the linearized equation for a flow
of uniform Mach number. This potential is inadequate to describe the
compressibility effects assoclated with a spanwlse variation of Mach
number.

Thus, consider a high—espect-ratio rectangular wing with tips cut

off along the Mach lines, In straight flight the Ackeret theory can be
applied. The pressure dilfference is given by
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2p!42(Speed of sound)?

Ve -1

In yawing flight the forward veloclty varies linearly along the span. If
the rate of yaw l1s made sufficiently low, the varistion from wing tip to
wing tip can be made so small thet the flow 1s still nearly two—dimenaional
at any point. Thus the Ackeret theory is still applicable if the local
Msch number 1s used at each spanwise statlon.

AP = o (15) .

The varlation In pressure with local Mach number can be obtainsd from
equation (15)., As the Mach number is increased, the pressure decreases
from infinity at M =1 +to a2 minimwm at M = 1.4 and then increases again.
Thus below Mach number 1.4 the faster moving sections of the yawing wing
have the lesser 1ift., Thils result 1s contrary to subsonic behavior and to
that which would be predicted if the spanwise variation of Mach number were
neglected., Thus the spanwise varlation of the compressibility effect causes
a reversal of the gign of the rolling moment due to yawing for rectangular
wings at Mach numbers between 1 and 1.4, and at M = 1.4 the moment 1is
zero. (This result refers to yawing in e system of stability axes, fig. 3.
For body an)ces, fig. 2, the effect is simllar but the reversal extends
to M= o '

A yawing triangular wing msy be expected llkewise to show an effect
of the spanwlse varlation in Mach number. If the triangle is contained
within the Mach cone from its vertex (the only case considered in this
paper), however, the effect should be very much less than for the rec—
tangular wing. In particulsr, where the predicted effect for ths rec— -
tangular wing is a reversal of the sign of the rolling moment, the effect
for the triangular wing ls expected to be merely a change in the magnitude.
A reversal In sign is not expected untll the edges of the triangle protrude -
from the Mach come. Thls behavior ls inferred from the fact that the
analyses of references 2 to 7 show meny subsonlic characteristics for
triangles wlthin the Mach cone and a marked changs In characteristics for
triangles with slde edges outside the Mach cone.

DERIVATIVES C. and C
¥p Dp

Extensive changes are necessary to generalize the treatment of CYP

and. Cn,p in reference 1 to arhitrary vertex angles for supersonic speeds;
therefore, the revised derivation 1s given in detail. .

The derivatives CY and. Cnp relative to body axes for = very
D

thin delta wing without dihedral arlise entlrely from suction on the wing
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slde edges. Conslder a condition for which the induced veloclity normal
to the edge 1s of the form

=+

vy = (16)

BLis

in the immediste neighborhotd of the edge, where s 1s the perpendicular
distence from the edge and K 1s a constant. Reference 3 points out
that for such a flow there is a suctlion force per unlt length of edge,

£ = qpkS \f1 — M12 (17)

so long as the delta wing does not protrude from the Mach cone from 1ts
vertex. In equation (17), M? 1is the Mach number of the c nent of
the stream flow normel to the leading edge. The radical 1l ~-M is
the Prandtl-Glauvert compressibllity factor for the normasl component of
flow. Equetion (17) is limited to real values of the radical by the
condition expressed for the Mach cons.

For the delta wing in rolling motion the induced veloclty component u
haes been obtained in reference 5 as

+ pyC2

2 _ (X
2.\ lC (x

I(BC)

ul-

Angle of attack gives the additional contributlion (refersnce 2)

avcg . . [ ——
u, = +
t 2
E (BC);;C (%)5

The total induced velocity on the upper surface 1s thus the sum of 1y
and u, with the plus sign

Very near the side edge thils veloclty l1s approximabely
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C3/2 oV

= — + KX 1(pe)
;7220 - ’%l) E*(BC) 2

where the plus sign refers to the right edge and the minus sign to the left
edge.

If a similar calculation is made for v = g, it 1s found thet as

the slde edge 1s approached the resultant induced velocity \/u2 + v2

becomes normel to thes edge. Thus the normal velocity near the edge is

AV

The perperdicular distance of point (x,y) from the side edge is

x(c - |
x

\/1+ CE‘

The resultant induced veloclty very near the edge may therefore be
expressed approximstely &as N

+| o , I(BC)pCx (1 +c2)1/1; (C_x 1/2
E*(BC) 2 28

which 1is of the form of equetion (16). The suction force per unit length
of edge is from equation (17) thus

_x o2 [I(BC):IEEQCQIE T(BC)aVpCx 3
f-epr E)'(BCDQ-'- m i—(E_'(%C_fg— \/(l-l-C)(l—H'a)

where the plus sign refers to the right e and the minus sign refers to
t dge. The factor (1 + c2)(1 — M*'=) can be reduced to
1 ~ B=Cc, where B2 = M2 -1,

The lateral component of this suction force is given by _ ) o
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Y=./;c (fR—fL)dx

1(8C) \/1 — B2
E*(BC)

= % pCac3cr.Vp

The lateral-—force coefficient is formed by division by % pvzs, and
the derivetive with respect to pb/2V is the stabllity derivative CYP.

It is
c. . 2ma I(BO) \/1 ~ B%* (18)

T 3 E*(BC)

Y

The yawling moment of the leading—edge suction gbout the vertex of
the triangle 1s

v [ (en-mi) 2 Pl )

1(8C) \J1 — B%?
E'(BC)

- -E pCzch'cr.'V'p(l + Ce)

The moment about the reference point (—i—c ,O,o> is

N

2

I(Bc) \J1 — B%C?
E*(BC)

- L o2larp(1 + 5c2)
36 .

The yawing-moment coefficient 1s formed by division by %— pVESb, and

the derivative with respect to pb/2V is the stebility derivative Cnp
It is

- 1A\ I(Bo)\1 - B%2 '
Cn_p = - Itd.(;; + E) (19)

E*(BC)
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\"-_
“DERIVATIVES C C and C
/ YB ’ ] nB ’ nr
/ /. \
Accord&ng to the discussii? Cl small angle of yaw or Al
"\

sidesfzy. g <K:M does no@/alter the suxrfa

releti¥e to body axes. As d'consequence the influced velocity distribu—
tilon“1s unchanged. Thus ;ﬁa Initially aymmetric istribution of leading—;
edgé suction persiasts in’sideslip, and the deriva Qves CYB and. Cn ///

aye zero. // N\ B
The surface potfentlal relative to body axes is I)giaise unaltsrﬁlfin
the first appro tion by & small angular velocity of Accordlngly,

/ inasofer as the Préssure forces are concerned, the deriva%éves CYr‘ and Cnr
are zero. Sub énic experience, however, suggests an appr;é able
Cnr—derivativ (demping in yaw) from profile drsg. This ing derivetive
has been evsduated in reference 1 as - \\

! ¢ ol - N

3 -

7/ ',’ 1 L AY
. C, = S g —— N (20)
AN 9A2) \

RESULTS AND DISCUSSION

The formulas that have been obtalined for the verlous stabllity
derivatives are collected in teble I. Derivatives obtained elsewhsere
are included for completeness, and the source 1s Indicated in each
instence. Expressions are glven Tor two systems of coordinate axes.

In the first colum are shown the derlvatives relatlve to the principal

body axes of figure 2 with origin a dlstance %c from the vertex of the

triangle. In the second columm are shown the resulte relative to
stability axea with origin a dlstance xég ahead of the %c point.

The relationship between the two systems of axes 1s shown in flgure 3.
Equations for transforming from body axes to stablility axes are given
in reference 8; the shift in origin results in additional terams,

In the transformetion of the present results from principal body
axes to stability axes terms of order AZ/16 “and the more important
terms of order of are retained (see footnote, table I), whereas in
reference 1 such terms are dropped as a consequence of the narrow vertex—
angle arproximation, -

1
[
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These results for an arbitrary vertex angle may be compared with the
asymptotic values for the case of vertex angle approaching zero given in
reference 1. The present results for principal axes are found to differ
from the asymptotic values (except for small terms in A2 and o ) only
in the acquisition of certeln factors which are functions of BC. Thus
the asymptotic values for CLa CL&’ Cmq CZB and Czr are multiplied

by E"(BC); C, 1is multiplied by G(BC); C;, is multiplied by H(BC);
' q q :

Cz is multiplied by I(BC); and cn and Cy eare multiplied
b
py L(BCINI - B°c? = J(BC). The parameter BC = 21 € 1g the ratio of

E*(BC) tan p

tangent of the semivertex angle of the triangle to the tangent of the .
Mach angle. BC approaches zero, therefore, as the vertex angle approaches
zero. The several functions E"(BC), . . ., J(BC) all approach unity

as BC approaches zero, and thus the derivatives obtained herein approach
the asymptotic values of reference 1 as the vertex angle goes to zero.

The variation of these stability derivatives with Mach number is
contained entirely in the factors E"(BC), . . ., J(BC). The five

factors are plotted against BC = %Eg—ﬁ, the ratio of the tangent of
o) -

the semivertex angle to the tangent of the Mach angle, in figure 4.

The derivatives-apply to a wing of triangular plan form and zero
thickness. The calculations are based on the assumption of potential
flow with small disturbances, except in the case of the derivative Cnr’
in which skin friction is considered. The predicted infinite negative
pressure acting on an edge of zero thickness to yleld a finite suciion
force is, of course, a mathematical idealization. (The local violation
of the assumption of small disturbances is not serious.) Subsonic
experience indlcates that with a sultably rounded edge a considerable
leading—edge suction force may be realized in practice, with the
theoretical value an upper limit. On the other hand, a sharp leading edge
is known to cause loss of the leading—edge suction. The requirements of
extreme thinness and a rounded leading edge (that is, appreciable radius
of curvature) are evidently in conflict. Thus the degree of applicability
of the yawing-moment and latersl-force derivatives to actual triangular
wings is uncertain. A further limitation on validity, already elaborated
on in the section on Czr, exists also for the derivatives with respect

to yawing velocity. The analysis neglects the spanwise variation In
Mach number caused by the yawing (but not the spanwise variation in
velocity). The result is an error in the magnitude of the yawing



16 NACA TN No. 1572

derivatives that ls expected to vary from zero for BC—>0 to an important
amount for BC—1.

The votential @ satisfies the linearized equation of motilon for
the steady state but not the more general linearized equation for unsteady
motion. This circumstance impllies that the present expressions for the
gstabllity derivatives are sultable only for steady motlons, motlons with
small accelerations, or sinuous motiong of low frequency. This limitation
is accepted in all stebllity work and may become serious only in cases of
high-frequency oaecillations such as flutter.

Langley Memorial Aeronautlcal Laboratory
National Advisory Committee for Aeronautica
Langley Field, Va., November 6, 1947
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TABLE I.— STABILITY DERIVATIVES OF THIN TRIANGULAR WINGS AT SUPERSONIC SPEEDS

°r

r

Refersnce 1

ot 2)

22 j(pc)
3

Bource Principal body axes Stadility axell
Derivatives {1r ;::.t:.:z)'ived (origin at §c) Grigin at digtance xcg ahead of §c poln;.>
ch. Refarenc_on 2tou - ZA I"(BC) 5: E"(BC)
A gn A gn
CI'&. > E"(BC) 2 Z"(BC)
CLq Refarence 5 % E(BC) % H(BC) + mA x—;_-g- ¥ (BC)
x
cmu. Refarences 2 to & [} - 525 -%ﬁ I"(BC)
x
Oy, - 5 p(ac) -H1+8 —;91:'(&)
3 ‘ e Zeg
_ Jaa — =K ~ &k 28 - L 4
c'q Refarence 5 = &(BC) i a(mc) %= (BC) — xA —’g- E"(BC)
¢ Refarence 6 — X gr(po) — E& " (BC)
p 3 3
o Refarence 5 - % I(BC) - EA I(Bc) + —— 1+8 ﬂ) [l (BC) — J(ME]
?
o 4(9-1- + —) " (3¢) xu.l:<9A 2. —°ﬁ> ™ (ac) + L r(nc} ’c”o& + —
2
X0 g (peo

cnp o 3 (8¢)
cnp —KE%*‘EAS)J(BC) —m[( +A.+_8_ c‘ J(BC)——I(B(:] ocpoé+;A—2>

P S A A, 8 ZeaYfuiney - —xe? A
%@1-9[3 mg(g‘--&ls-o-% E)El (BC) J(Bc] ne' 32I(Dc)

2xe
= 3(a0)

- 3— J(BC)

J‘In the transformation from body axes terms of order o
/A have been retalned, since they may be appreclable for emall values of A.

order

have been neglected in ccmparison with unity, but terme of
NACA
"\.’
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Figure 1.- Axes and notatlion used 1ln analysils,

V~—__

w,2

Pigure 2.~ Velocitles, forces, and moments relative to
principal axes with origin at %c.

FPigure 3.- Velocities, forces, and moments relative %o
stabllity axes with origin at %c - Xege Princlipal

axes of flgure 2 dotted in for comparlson.
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Figure 4 . Ellptic integral factfors of the
stabi/ity derivartives That determine
theiwr varration writh Mach number.

(See Table T.)



