GOVT. DOC.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

\$ 3. No 29/5: 6/1760

1760

NACA TN No.

TECHNICAL NOTE

No. 1760

NACA AND OFFICE OF NAVAL RESEARCH METALLURGICAL

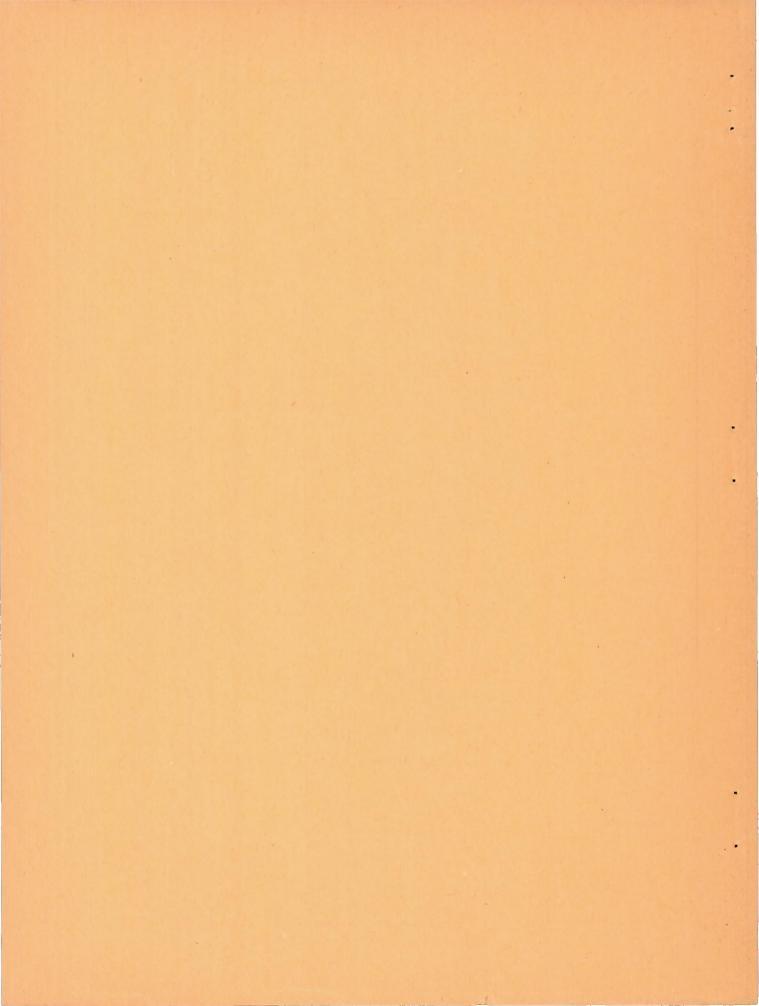
INVESTIGATION OF TWO LARGE FORGED DISCS

OF S-590 ALLOY

By

J. W. Freeman University of Michigan

and


Howard C. Cross Battelle Memorial Institute

Washington February 1949

CONN STATE FIBRARY

BUSINESS, SCIENCE & TECHNOLOGY DEP'T.

FEB 14 1949

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1760

NACA AND OFFICE OF NAVAL RESEARCH METALLURGICAL INVESTIGATION

OF TWO LARGE FORGED DISCS OF S-590 ALLOY

By J. W. Freeman and Howard C. Cross

SUMMARY

The properties of large forged discs of S-590 alloy at room temperature, 1200°, 1350°, and 1500° F were studied in order to determine the level of properties obtainable in forgings of the type required for the rotor discs of gas turbines. One disc was aged after forging. The other was solution-treated and aged. A limited amount of testing was carried out on the solution-treated disc prior to aging. The data reported include the results of tensile, impact, rupture, time-deformation, creep, and structural-stability tests.

The high physical properties of the forged and aged disc at temperatures up to 1350° F were its outstanding characteristic. The solutiontreated and aged disc had by far the best properties at 1500° F and, except at short time periods, was considerably better at 1350° F. Somewhat higher rupture, total-deformation, and creep strengths for time periods up to at least 2000 hours were obtained at 1200° F from the forged and aged disc. No great difference, on the basis of limited tests at 1200° and 1350° F, resulted from testing the solution-treated disc before aging.

The properties of specimens cut from different locations in the discs varied somewhat. However, the uniformity was good for the type of forging made from such a highly alloyed material.

Both the forged and aged and solution-treated and aged materials were structurally unstable during creep and rupture testing. The latter treatment, however, resulted in the best retention of properties over long periods of time at high temperatures.

The properties of the solution-treated and aged disc were similar to those reported for bar stock with the same heat treatments. This indicates that the properties should be reasonably reproducible in discs up to the size considered in this investigation. Reproduction of the properties of the as-forged and aged disc would probably require a considerable degree of control of forging practice. The work on which this report is based is part of a cooperative investigation of several heat-resistant alloys in the form of large forged discs. The properties of the S-590 discs are compared in this report with those obtained for similar discs of S-816 alloy.

INTRODUCTION

This report presents the results of a study of the room-temperature, 1200° , 1350° , and 1500° F properties of two large discs of S-590 alloy. One of the discs was tested in the as-forged and aged condition. The other disc was tested to a limited extent after only a solution treatment; and more completely tested as solution-treated and aged.

The primary purpose of this study was to determine the level of properties exhibited by S-590 alloy in the form of large forgings of the type required for rotor discs of gas turbines and to determine the relative properties of such discs as-forged and aged and as-solution-treated and aged. The S-590 alloy discs, for which properties are given in this report, were two of a series of similar discs of several alloys now being studied. The results obtained previously from similar investigations on 19-9DL, CSA, low-carbon N-155, Timken, and EME discs are contained in references 1 to 9.

The work on the disc materials is being carried out as part of two correlated programs of research on alloys for gas-turbine applications in progress in this country. The National Advisory Committee for Aeronautics is sponsoring work directed toward the development of improved hightemperature alloys for gas turbines used in aircraft power plants. A concurrent program, formerly sponsored by the National Defense Research Committee, Office of Scientific Research and Development, and now sponsored by the Office of Naval Research, Navy Department, is being directed to the development of alloys for gas-turbine applications in general and, in particular, to both ship and aircraft propulsion. The work herein was performed with the financial assistance of the National Advisory Committee for Aeronautics and the Office of Naval Research, Navy Department.

This report is based on the joint effort of the cooperating research programs and is being distributed by both the NACA and the Navy. The investigation of these discs for the NACA was conducted at the Engineering Research Institute of the University of Michigan and for the Navy by Battelle Memorial Institute.

TEST MATERIALS

The code number assigned to the discs was NR-74B. The as-forged and aged disc was designated NR-74B-F; the solution-treated disc, NR-74B-Q; and the aged portion of the solution-treated disc, NR-74B-QA.

The available information describing the two discs may be summarized as follows:

Manufacturer:

Allegheny-Ludlum Steel Corporation

Heat number:

41582

Dian

Chemical composition:

<u>C</u>	Mn	Si	P	S	Cr	Ni	Co	Mo	W	СЪ	Fe.	
0.45	1.44	0.56	0.015	0.018	19.76	19.05	20.20	4.03	4.08	3.35	Remainder	
Fabri	Icatio	on pro	ocedure	:								

A l2-inch ingot was poured from a 2-ton electric-arc furnace. The l2-inch ingot was hammer cogged from 2250° F to a 9-inch-square billet which was air-cooled and ground. Two portions of this billet were then upset forged from 2250° F to rough 4-inch-thick discs. All hot-working was with a flat die on a 12,000-pound hammer. The finishing and heat treatments for the individual discs were as follows:

Disc designation	Finish forging procedure	Heat treatment
NR-74B-F	The disc was reforged from 2250° F to $3\frac{3}{4}$ inches thick and cooled. Then it was reforged from 2000° F in one heat to $3\frac{3}{8}$ inches thick (10-percent reduction) by 18 inches	Aged for 16 hours at 1400° F and air-cooled.
NR-74B-Q	in diameter. The disc was reforged from 2250° F to 3 inches thick by 18 inches in diameter.	Solution-treated for $3\frac{1}{4}$ hours at 2300° F and water-quenched.
NR—74B—QA	Same forging as NR-74B-Q. Coupons of disc NR-74B-Q which were aged prior to testing were designated NR-74B-QA.	Coupons from NR-74B- were aged for 16 hours at 1400° F and air-cooled.

-Q

Sampling:

One-half of each of the two discs, NR-74B-F and NR-74B-Q, was supplied for the present study, one-quarter of each disc going to the University of Michigan and Battelle Memorial Institute, respectively. Figures 1 and 2 show the location of the samples cut from the halves of both discs and the code system identifying the coupons. The numerals refer to locations on the flat faces of the discs, and the letters refer to the locations through the thickness of the discs.

EXPERIMENTAL PROCEDURE

The investigation was designed to provide the following information: (1) The physical properties at room temperature, 1200°, 1350°, and 1500° F which can be expected in large forgings of the S-590 alloy analysis; (2) the effect of fabrication and heat treatment on these physical properties; (3) the variation in properties which might be present in various locations in such large forgings; and (4) the change in room-temperature properties resulting from exposure to elevated temperatures under stress for prolonged time periods.

The physical-property data obtained for these large forged discs of S-590 alloy included short-time tensile properties, impact strengths, rupture test characteristics, design curves of stress against time for total deformations of 0.1, 0.2, 0.5, and 1.0 percent at 1200°, 1350°, and 1500° F, and creep characteristics. The curves of stress against time for total deformation were obtained from curves of elongation against time from both stress-rupture and creep tests.

The uniformity of the disc materials was checked by means of a hardness survey and to a limited extent by tensile and rupture tests on coupons from representative locations throughout the discs. Hardness, tensile, and impact tests and metallographic examinations on specimens after completion of the tests were used to estimate the stability of the material during prolonged exposure to temperature and stress.

The testing procedures used for the short-time tension, stress-rupture, and creep tests were in accordance with the provisions of the A.S.T.M. Recommended Practices E21-43 and E22-41.

RESULTS

The data obtained from the S-590 discs are presented as a series of tables and figures which show the hardness, impact, tensile, rupture, time-deformation, creep, and stability characteristics. The principal results on the discs with three types of treatment are summarized in figures 3 and 4.

Hardness Survey

Results of hardness tests on the original materials are given in table I and figure 5. The surveys indicated that the hardness increase was only slight from the center to the rim of the discs. The material at the flat surfaces of the discs was considerably harder than the material in the interior of the discs.

The as-forged and aged disc, NR-74B-F, had a hardness range of 235 to 311 as compared with a range of 190 to 235 Brinell hardness for the solution-treated disc, NR-74B-Q. Although no hardness survey was made on the solution-treated and aged disc material, NR-74B-QA, hardness tests indicated that aging the solution-treated material increased the hardness by approximately 30 Brinell points.

Short-Time Tensile Properties

The results of the short-time tensile tests at room temperature, 1200° , 1350° , and 1500° F are summarized in table I.

The tensile strengths of the as-forged and aged disc, NR-74B-F, were in general somewhat higher, while its yield strengths were markedly higher at both room temperature and 1200° F than those of the heat-treated disc. At 1350° F the forged and aged disc had similar tensile strength but higher yield strength than the solution-treated and aged disc. On the basis of only one test the as-solution-treated material had higher tensile strength but similar yield strength to the material aged after solution treatment. At 1500° F the solution-treated and aged material, NR-74B-QA, was slightly stronger than the as-forged and aged material. A brief résumé of comparative tensile properties taken from table I is given in the following tabulation:

Disc	Temperature (°F)	Tensile strength (psi)	0.2-percent-offset yield strength (psi)	Elongation (percent)
NR—74B—F	75	129,050	98,250	8
NR—74B—Q	75	119,500	57,000	36
NR—74B—QA	75	130,500	70,500	17
NR—74B—F	1200	88,700	71,750	15
NR—74B—Q	1200	82,000	44,000	12
NR—74B—QA	1200	81,600	49,000	27
NR—74B—F	1350	64,625	55,000	29
NR—74B—Q	1350	71,250	46,000	11
NR—74B—QA	1350	65,750	46,000	25
NR—74B—F	1500	43,125	35,900	25
NR—74B—QA	1500	44,400	37,850	18

At room temperature the solution-treated disc, NR-74B-Q, had the highest ductility and the as-forged and aged disc, NR-74B-F, the lowest ductility. The reverse ductility comparison was true at high temperature. Aging the solution-treated disc for 16 hours at 1400° F caused a substantial decrease in room-temperature tensile ductility but resulted in just as marked an improvement in ductility at temperatures of 1200° F and above.

The properties of specimens from various locations in the discs were quite uniform. Specimens taken tangentially from the as-forged and aged disc had higher strengths than the radial specimens. No such strength difference was observed between radial and tangential specimens of the solution-treated disc. Because of lack of material no consistent comparison was possible for material taken radially near the surface and center material. However, what data there were indicated good uniformity.

Charpy Impact Resistance

Charpy impact resistance (V-notch) was determined on specimens from two discs, NR-74B-F and NR-74B-QA. Data are shown in table II and figures 3 and 4 for tests at room temperature, 1200° , 1350° , and 1500° F after holding at temperature for a time period sufficiently long to insure a uniform temperature in the specimen.

The Charpy impact resistance of the solution-treated and aged disc was slightly higher at all test temperatures than that of the forged and aged disc. For both discs, there was a slight increase in impact resistance with temperature. Specimens from near the flat surfaces of both discs had higher impact resistance than interior specimens at all temperatures.

Rupture Test Characteristics

The stress-rupture data for the tests at 1200°, 1350°, and 1500° F are shown in table III, and the rupture strengths obtained from the curves of stress against rupture time in figure 6 are summarized in table IV. Rupture ductilities at various time periods are also given in table IV. All specimens tested except one were radial specimens, located as indicated in table III.

There was very little difference in rupture strengths between the three conditions of treatment for the discs at 1200° F. The solution-treated and aged disc, NR-74B-QA, did show a slight superiority at time periods of 1000 hours and longer, its 100- and 1000-hour rupture strengths being 52,000 and 42,000 psi, respectively.

At 1350° F the solution-treated discs were definitely superior to the forged and aged disc at 100 hours and longer. Comparative rupture strengths were 32,000 psi for NR-74B-QA and 27,500 psi for NR-74B-F at 100 hours and 25,000 psi for NR-74B-QA compared with 18,000 psi for NR-74B-F at 1000 hours. Aging the solution-treated disc for 16 hours at 1400° F did not affect rupture strengths at 1350° F.

The solution-treated and aged disc was much stronger than the forged and aged disc at 1500° F. The comparative 100-hour rupture strengths for the two discs were 20,000 and 13,100 psi and 1000-hour strengths were 15,000 and 6,000 psi.

Inspection of the curves of stress against rupture time in figure 6 indicates little change in the slope of the curves with increased temperature of testing for the solution-treated disc. The increased slope of the curves for the forged and aged disc with increasing temperature accounts for its lower strength. This difference clearly indicates the beneficial effect of a solution treatment on properties at temperatures above 1200° F.

The rupture tests on specimens from various locations in the discs indicated that the disc material was fairly uniform and that, if anything, the material taken radially near the rim in the center plane tended to be weaker than material from other locations. Thus, since most of the material tested came from this location, the results obtained were probably conservative for the properties of the disc as a whole.

Rupture test ductilities shown were better for the solution-treated and aged disc than for the forged and aged disc in all cases. Aging the solution-treated material produced a marked improvement in rupture ductility at 1200° F but had little effect on ductility at 1350° F. Actually, the ductility of all the material was good, being at least 5 percent for fracture in 1000 hours.

Time-Deformation Characteristics

A convenient method of describing the high-temperature strength of a material is curves of stress against the time required for various total deformations. Deformation data from both stress-rupture and creep tests are used to prepare such design curves. This information, along with the curves of stress against rupture time, gives a fairly complete picture of the expected performance of an alloy under conditions of constant tensile stress. The time-deformation data obtained on the S-590 discs in three conditions are plotted on semilogarithmic coordinates in figures 7 to 14 for total deformations of 0.1, 0.2, 0.5, and 1.0 percent at 1200°, 1350°, and 1500° F for time periods up to 2000 hours. Additional curves which indicate the time of transition from a minimum creep rate to the increasing rate of third-stage creep have been added so as to show where rapid elongation preceding failure starts.

The curves of stress against time for total deformation were plotted from the data in tables V, VI, and VII. These data were taken from the curves of elongation against time for the rupture and creep tests. Somewhat erratic data resulted from the tests. Sufficient check tests were made, however, to demonstrate that these erratic results were due to a variation between specimens from different locations in the discs. The actual curves of elongation against time have not been included in this report.

The stresses to cause various total deformation in 1, 10, 100, 1000, and 2000 hours, as defined by the curves in figures 7 to 14, are given in tables VIII, IX, and X. The most pronounced difference between discs was found at 1500° F where the solution-treated and aged disc had deformation strengths from two to three times higher than those of the forged and aged disc. The difference between the discs was much less at 1200° and 1350° F. The forged and aged disc gave strengths somewhat higher than the solution-treated disc and both were higher than the solution-treated and aged material at 1200° F, particularly at 0.5-percent total deformation. At 1350° F the solution-treated and aged material had higher strengths, the degree of superiority increasing with the amount of total deformation considered.

Creep Strengths

Many engineers are accustomed to base designs on creep rates, especially for long periods of service. For this reason, the creep rate data have been collected from the curves of elongation against time and are shown in table XI for creep tests and table III for rupture tests. The logarithmic curves of stress against creep rate for the tests at 1200°, 1350°, and 1500° F on the S-590 discs are shown in figure 15. The creep rates plotted were either minimum rates or final rates from 1000-hour tests at 1200° F and 2000-hour tests at 1350° and 1500° F. The creep strengths obtained from figure 15 were as follows:

Disc	Temperature	Stress (psi) for creep rates of -						
DISC	(°F)	0.0001 percent/hr	· 0.00001 percent/hr					
NR-74B-F	1200	27,500						
NR-74B-QA	1200	23,000						
NR-74B-F	1350	10,600	12,100					
NR-74B-QA	1350	16,400						
NR-74B-F	1500	a2,800	7,100					
NR-74B-QA	1500	10,000						

Estimated strength.

It is observed that at temperatures above 1200° F the solutiontreated and aged disc, NR-74B-QA, is much superior to the forged and aged disc, NR-74B-F.

These creep strengths can be compared with the deformation strengths in tables VIII, IX, and X. The creep strengths for a rate of 0.000l percent per hour at 1200° F are apparently safe for use for time periods up to 10,000 hours since extrapolation of the curves of transition to third-stage creep in figures 7 and 9 to 10,000 hours indicates that at the creep strengths listed second-stage creep will still prevail.

At 1350° and 1500° F extrapolation of the transition curves of figures 12 and 14 to 10,000 hours gives stresses about the same as those producing a creep rate of 0.0001 percent per hour for the solution-treated and aged disc, NR-74B-QA. This is not true for the forged and aged disc, NR-74B-F, transition to third-stage creep occurring in approximately 2000 hours under stresses causing a creep rate of 0.0001 percent per hour. (See figs. 10 and 13.) This means that the reported creep strength for NR-74B-F at these higher temperatures would not be suitable as a basis for design for longer time periods than 2000 hours, while the creep strengths of NR-74B-QA can be used, with caution, out to 10,000 hours.

At 1200° F the data were not sufficient to define the strengths for a creep rate of 0.0000l percent per hour. At higher temperatures the slopes of the curves of stress against rupture time indicate that creep strengths for this rate would not be suitable as a basis for design for prolonged time periods for the forged and aged disc and that caution should be observed when extended service periods are contemplated for solution-treated and aged material.

Stability Characteristics

Some of the completed-test specimens from each of the discs were subjected to tensile, impact, and hardness tests at room temperature, after creep testing at 1200°, 1350°, and 1500° F, with the results shown in table XII.

The most significant property changes observed as a result of creep testing were the decreases in impact resistance and tensile test ductility at room temperature. Impact strengths were low initially and were very low after creep testing. The decrease in ductility was even more pronounced than that of impact strength.

There was no significant change in hardness as a result of creep testing for the forged and aged disc, but the solution-treated and aged disc increased in hardness during testing. The tensile-test strength properties of the forged and aged disc, NR-74B-F, decreased progressively with increasing creep test temperature. Those of the as-solution-treated material, NR-74B-Q, increased as a result of a 1200° F creep test, while the strengths of the solution-treated and aged disc, NR-74B-QA, were higher after creep tests at 1200° and 1350° F, but were lower in strength than the original material after a 1500° F creep test.

Photomicrographs of the structures of the original materials and after creep and rupture testing are shown in figures 16 to 22. The forged and aged disc, NR-74B-F, had nonuniform structure as evidenced by grain-size differences and distribution of the excess constituents. (See fig. 16.) These differences were also observed in the structure of some of the completed-test specimens.

Only a small amount of general precipitation was observed in the forged and aged disc as a result of creep and rupture testing at 1200° F. (See figs. 17(a) and 18(a).) Considerable agglomeration occurred during testing at 1350° F. The differences in amount of precipitate between the creep and rupture test specimens, shown by comparison of figures 17(b) and 18(b), were another indication of nonuniformity of material. Further agglomeration of the precipitated phases was observed in the 1500° F rupture specimen. (See fig. 18(c).)

The original microstructures of the solution-treated disc, NR-74B-Q, and the solution-treated and aged disc, NR-74B-QA, (fig. 19) were different in that more precipitates were present in the aged material. Heavy general precipitation occurred during rupture and creep testing of both materials and agglomeration increased as the test temperature was increased. The precipitation did not appear quite so heavy in the creep specimens as in the rupture specimens. Fracture of the longest-time rupture specimens of the forged and aged disc appear to be both transgranular and intergranular while those of the solution-treated discs were largely intergranular.

Allegheny-Ludlum Data on NR-74B Discs

Table XIII gives the available results from tensile, hardness, and rupture tests obtained by the Allegheny-Ludlum Steel Corporation on the other halves of these S-590 discs. Also listed are comparative results obtained in this investigation. In general, the comparative results show good agreement.

CONCLUDING REMARKS

In general, the solution-treated and aged disc had the best properties at high temperatures. At 1200° F the forged and aged disc had better rupture strengths out to 100 hours and higher total-deformation strengths to at least 2000 hours. At 1350° and 1500° F the solution-treated and aged disc was definitely superior in properties. On the basis of a limited number of tests at 1200° and 1350° F, the properties of a plain solutiontreated disc were almost the same as those for the solution-treated and aged disc material.

The as-forged and aged disc had much higher yield strength at room temperature, 1200° , and 1350° F than the solution-treated and aged disc. This characteristic might be important in applications involving high stresses at low temperatures at the centers of rotor discs or in applications involving high stresses for short time periods up to 1350° F.

The data reported by the Allegheny-Ludlum Steel Corporation show that aging the as-forged disc at 1400° F reduced properties at room temperature and probably increased rupture strength at 1350° F. Increasing the aging temperature to 1500° F further reduced yield strength at room temperature and lowered rupture strength below that of the material aged at 1400° F. Their data also show that aging at 1500° F after a solution treatment results in somewhat lower rupture strength at 1500° F than aging at 1400° F, at least for time periods longer than about 100 hours.

Table XIV has been prepared to show the comparative properties of solution-treated and aged bar stock of S-590 alloy and large discs. The tensile properties of bar stock were somewhat higher than a similarly treated disc. Rupture properties at 1350° and 1500° F and total-deformation properties at 1500° F agree quite well for the solution-treated and aged bar stock and the disc, an indication of the possibility of good reproducibility of high-temperature properties in different forms for S-590 alloy.

The properties of the discs had, in general, good uniformity for such large forgings of highly alloyed material. Wide variations in grain size and microstructure did not appear to affect properties greatly, except to cause erratic data for the studies of stress against time for total deformation. Such variations as were present were reduced somewhat by the solution and aging treatment.

A major problem in using data of the type obtained in this investigation is to estimate the degree of reproducibility. Experience with other highalloy steels indicates that fairly good control over forging practice would be required to reproduce consistently the properties of the asforged and aged disc. The agreement in properties between bar stock and the disc when solution-treated and aged suggests that the properties of discs should be fairly reproducible when heat-treated. Until more data on the properties of discs made by this and, especially, other fabrication procedures are available, it should be assumed that the data herein reported apply only to the particular discs tested and fabricated and heat-treated in the manner indicated.

The heat treatments used on the discs covered by this investigation were based on a large amount of experimental work by the Allegheny-Ludlum Steel Corporation. Deviation from these conditions would result in pronounced changes in properties at high temperatures.

Table XV presents a summary of the comparative properties of discs of two alloys, S-590 and S-816 (see reference 10), studied at 1200° , 1350° , and 1500° F in the cooperative research program. This comparison shows, in general, that for similarly treated material the S-816 alloy disc has better properties than the S-590 alloy disc.

University of Michigan Ann Arbor, Mich.

and

Battelle Memorial Institute Columbus, Ohio March 11, 1948 NACA TN No. 1760

REFERENCES

- Freeman, J. W., Reynolds, E. E., and White, A. E.: A Metallurgical Investigation of a Large Forged Disc of 19-9DL Alloy. NACA ACR No. 5C10, 1945.
- Freeman, J. W., Reynolds, E. E., and White, A. E.: A Metallurgical Investigation of a Large Forged Disc of CSA (234-A-5) Alloy. NACA ARR No. 5H17, 1945.
- 3. Freeman, J. W., and Cross, H. C.: A Metallurgical Investigation of a Large Forged Disc of Low-Carbon N-155 Alloy. NACA ARR No. 5K20, 1945.
- 4. Freeman, J. W., Reynolds, E. E., and White, A. E.: A Metallurgical Investigation of Five Forged Gas-Turbine Discs of Timken Alloy. NACA TN No. 1531, 1948.
- Freeman, J. W., Reynolds, E. E., and White, A. E.: A Metallurgical Investigation of Two Contour-Forged Gas-Turbine Discs of 19-9DL Alloy. NACA TN No. 1532, 1948.
- Reynolds, E. E., Freeman, J. W., and White, A. E.: A Metallurgical Investigation of Two Large Discs of CSA Alloy. NACA TN No. 1533, 1948.
- 7. Reynolds, E. E., Freeman, J. W., and White, A. E.: A Metallurgical Investigation of a Contour-Forged Disc of EME Alloy. NACA TN No. 1534, 1948.
- Cross, Howard C., and Freeman, J. W.: A Metallurgical Investigation of Large Forged Discs of Low-Carbon N-155 Alloy. NACA TN No. 1230, 1947.
- 9. Reynolds, E. E., Freeman, J. W., and White, A. E.: A Metallurgical Investigation of Two Turbosupercharger Discs of 19-9DL Alloy. NACA TN No. 1535, 1948.
- Cross, Howard C., and Freeman, J. W.: Office of Naval Research and NACA Metallurgical Investigation of a Large Forged Disc of S-816 Alloy. NACA TN No. 1765, 1949.
- 11. Cross, Howard C., and Simmons, Ward F.: Heat-Resisting Metals for Gas Turbine Parts. OSRD No. 6563, Serial No. M-636, War Metallurgy Div., NDRC, Jan. 21, 1946.

TABLE I

SHORT-TIME TENSILE PROPERTIES OF S-590 ALLOY DISCS NR-74B

[NACA data except where indicated. All tensile tests were made on standard 0.505-in.-diameter specimens]

Disc	Specimen	Specimen .location	Temper-	Tensile	Offse	et yield stren, (psi)	gths	Proportional	Elongation in 2 in.	Reduction of area	Brinell	Modulus
(a)	number	(b)	(°F)	(psi)	0.02 percent	0.1 percent	0.2 percent	(psi)	(percent)	(percent)	hardness	elasticity
NR-74B-F	14Y 14X 16Y 16X	CRR SRR CTR STR	75 75 75 75	130,600 127,500 137,750 147,000	69,000 72,500 75,000 91,000	91,000 89,000 99,000 110,000	100,000 96,500 108,000 120,000	37,500 47,500 37,500 50,000	9 7 11.5 10	11.5 9.2 23.2 20.6	267 267–302 293 311	30.5 × 10 ⁶ 29.9 28.8 30.3
	12 Z 14 Z	SRR SRR	1200 1200	87,900 89,500		62,500 70,000	70,000 73,500	22,500 40,000	16.5 14	21.3 23.0		23.8 22.1
	132 15X °2Y °1Z	SRR SRC CRR SRR	1350 1350 1500 1500	65,375 63,875 43,250 43,000		48,500 53,000 32,500 30,200	53,000 57,000 36,000 35,750	17,500 22,500	31 27 20 31	45.3 35.0 29.8 38.2		20.3 19.6 14.0 19.4
NR-74 B-Q	15Y 16Z 17Y 17X	CRR SRC CTR STR	75 75 75 75	117,500 121,500 119,000 121,000	37,500 35,000 40,000 30,000	53,000 48,500 53,500 47,000	59,000 55,000 59,000 57,000	22,500 22,500 25,000 17,500	30.5 42 38 40	27.2 41.3 37.2 38.5	211 215 223 218	27.6 23.5 29.4 27.6
	14Z	SRR	1200	82,000		41,500	44,000	20,000	12	17.7		22.2
	15Z	SRR	1350	71,250		41,500	46,000	22,500	11	13.0		22.2
NR-74B-QA	16Y	CRC	75	130,500	45,000	63,500	70,500	25,000	17	18.2	259	27.8
	16X	SRC	1200	81,600		46,000	49,000	27,500	27	31.2		23.8
	13X	SRR	1350	65,750	,	43,500	46,000	20,000	25	30.4		22.8
	cly c2Z	CRR SRR	1500 1500	44,500 44,250		35,700 34,400	38,250 37,450		22.7 13.3	27.2 15.9		18.0 19.5

^aHeat treatments:

NR-74B-F: As-forged; 16 hr at 1400° F.

NR-74B-Q: 2300° F water-quenched.

NR-74B-QA: 2300° F water-quenched; 16 hr at 1400° F. ^bCRR center-plane radial specimen near rim of disc.

SRR surface-plane radial specimen near rim of disc.

CTR center-plane tangential specimen near rim of disc.

STR surface-plane tangential specimen near rim of disc.

SRC surface-plane radial specimen near center of disc. CRC center-plane radial specimen near center of disc.

.

°NDRC and Navy data at 1500° F.

NACA TN No. 1760

TABLE II

CHARPY NOTCH-BAR IMPACT RESISTANCE AT ROOM TEMPERATURE, 1200°,

1350°, and 1500° F FOR S-590 ALLOY DISCS NR-74B

[NDRC and Navy data]

Disc (1)	Specimen number	Specimen location	Test temperature (°F)	Charpy impact strength (ft-lb)
NR-74B-F	5C 7C 8B 5A 7F	Interior Interior Interior Surface Surface	Room	5 5 5 6 7
NR-74B-F	5D 7D 8E 5F 10A	Interior Interior Interior Surface Surface	1200	8 8 8 13 10
NR-74B-F	8D 6D LOE 6A 8A 8F	Interior Interior Surface Surface Surface	1350	8 10 8 14 13 13
NR—74B—F	6C 8C 5B 6F 7A LOA	Interior Interior Surface Surface Surface	1500	12 10 13 18 17 14
NR-74B-QA	8d 7 e 8f	Interior Interior Surface	Room	6 10 10
NR—74B—QA	9C 8B 9A 9F	Interior Interior Surface Surface	1200	10 14 20 16
NR—74B—QA	9D 7C 9B 10A 7A	Interior Interior Interior Surface Surface	1350	12 12 16 24 20
NR—74B—QA	lod 7D lob lof 8A	Interior Interior Interior Surface Surface	1500	13 13 16 25 29

¹Heat treatment:

NR-74B-F: As-forged; 16 hr at 1400° F. NR-74B-QA: 2300° F water-quenched; 16 hr at 1400° F.

15

TABLE III

RUPTURE TEST DATA AT 1200°, 1350°, and 1500° F FOR S-590 ALLOY DISCS NR-74B

Disc (a)	Specimen number	Specimen location (b)	Test temperature (°F)	Stress (psi)	Rupture time (hr)	Elongation in 1 in. (percent)	Reduction of area (percent)	Minimum creep rate (percent/hr)
°NR-74B-F	17Y 17Y 17Z 17Y 12Y 17Z 12Y 17Z 12Y 12X	CRR CRR SRR CRR CRR SRR CRR SRR	1200	55,000 50,000 45,000 40,000 d40,000 37,000 d37,000	69.5 150 °1288 372.5 894 1396 2310 °2376	21 17 f ₉ 6 7 7	20.6 21.2 14.4 7.3 7.1 12.7	0.0102 .0036 .0018 .0013 .0012
	17X 12Y-C	SRR CRC		52,500 52,500	256 161	f ₁₅ 17	15.0 15.6	
^c NR-74B-Q	19Y 19Y 19Y 19Y 14Y 18Y	CRR CRR CRR CRR CRR CRR	1200	55,000 50,000 45,000 42,000 40,000	59 74 493 495 937	4 f f f 5 f 5	7.9 8.5 7.3 8.5 5.0	.0046 .0068 .0026
	19X 19X 14YC 17Z	SRR SRR CRC STR		52,500 50,000 50,000 50,000	14 111 228 10	6 4 13 18	13.6 10.9 15.3 6.2	
^c NR-74B-QA	13Y 20Y 20Y 13Y 13X	CRR CRR CRR CRR CRR SRR	1200	55,000 50,000 45,000 42,000 ⁴ 2,000	60 153 640 878 1596	11 13 19 12 13	13.8 16.7 13.3 13.3 19.1	.0086 .0072 .0036
	201	SRR		52,000	95	15	17.8	
^C NR-74B-F	17Y 17Y 12X 17Y 12X 12Y 12Y	CRR CRR SRR CRR SRR CRR SRR	1350	30,000 25,000 d25,000 20,000 d20,000 17,000 d17,000	60 180 676 ^f 196 1291 995	12 8 11 73.5 4 5	14.4 11.5 10.9 4.4 6.4 2.3 2.4	.0186 .0186 .0030 .0054 .0006 .0006
	17X 12Y-C	SRR CRC		27,500 27,500	86 198	6 17.5	10.9 18.9	
cNR-74B-Q	19Y 19Y 14Y 14Y	CRR CRR CRR CRR CRR	1350	33,000 30,000 27,000 25,000	86 252 204 951	10 11 8 11	15.6 15.0 8.0 17.8	.0048
	14X 14Y-C	SRR CRC		32,000 32,000	165.5 373	£4 5	5.0 7.3	
^C NR-74B-QA	13Y 13Y 13Y 13Y 13Y 13X	CRR CRR CRR CRR SRR	1350	35,000 30,000 27,000 25,000 d25,000	45.5 198 167 1121 °844	13 12.5 8 f ₁₃	17.8 16.0 15.6 17.8	.0044 .0050
1	20X	SRR		32,000	97	f ₁₈	18.3	
g _{NR-74B-F}	9A 9D 9E 2Z 9F	SRR CRR CRR SRR SRR SRR	1500	20,000 16,000 11,000 ^h 10,000 6,000	29 59 124 264 1018	6.5 9.0 12.0 10.0 5.0	12.8 8.5 17.5 9.4	.10 .05 .024 .0083 .0018
BNR-74B-QA	11A 11F 11E 11C 11B 11D	SRR SRR CRR CRR CRR CRR CRR	1500	20,000 20,000 19,000 18,000 16,000 15,000	76 104 203 372 642 1000	18.0 30.0 32.0 27.0 20.0 16.5	25.5 33.9 33.6 28.8 31.6 25.5	.027 .0065 .0038 .0014

^aHeat treatments:

NR-74B-Q 2300° F water-quenched. NR-74B-Q 2300° F water-quenched.

bCRR center-plane radial specimen near rim of disc. SRR surface-plane radial specimen near rim of disc. CRC center-plane radial specimen near center of disc. STR surface-plane tangential specimen near rim of disc.

°NACA data. (Specimens were 0.160 in. in diameter with a gage length of 1 in. unless indicated otherwise.)

dTest on 0.250-in.-diameter specimen with precision extensometers.

eDiscontinued at this time.

fFractured in gage mark.

SNDRC and Navy data. (Specimens were 0.250 in. in diameter with gage length of 1.3 in.)

hTest on 0.505-in.-diameter specimen.

NACA_

.

5

TABLE IV

RUPTURE TEST CHARACTERISTICS AT 1200°, 1350°, AND 1500° F OF S-590 ALLOY DISCS NR-74B

			Rupture	strength			Rupture ductility					
Disc (a)	Temperature (^o F)	Stress	s (psi) fo	or rupture	• in -	Estimated		ation (percent) to rupture in -				
		10 hr	100 hr	1000 hr	2000 hr	10 hr	100 hr	1000 hr	2000 hr			
^b NR-74B-F ^b NR-74B-Q ^b NR-74B-QA	1200	°69,000 °66,000 °66,000	52,500 51,000 52,000	40,000 40,000 42,000	37,000 37,000 38,500		20 6 12	7 5 12	7 12			
^b NR-74B-F ^b NR-74B-Q ^b NR-74B-Q	1350	^c 42,000 ^c 42,000 ^c 41,000	27,500 32,500 32,000	18,000 25,000 25,000	16,000 23,000 23,500	 15	10 10 12	5 11 13	 			
^d NR-74B-F ^d NR-74B-QA	1500	29,000	13,100 20,000	6,000 15,000	4,800 13,100	7	12 30	5 16				

^aHeat treatments:

NR-74B-F As-forged; 16 hr at 1400° F. NR-74B-Q 2300° F water-quenched. NR-74B-QA 2300° F water-quenched; 16 hr at 1400° F.

^bNACA data.

^CEstimated strength by extrapolation. dNDRC and Navy data.

17

TABLE V

[NACA data]

Disc	Specimen	Stress	Initial		Time (hi	r) for total	deformations	s of -			nsition to -stage creep
(a)	(a) mumber (nai)		deformation (percent)	0.1 percent	0.2 percent	0.5 percent	l percent	2 percent	5 percent	Time (hr)	Deformation (percent)
NR-74B-F	13Y 15Y 13X 12Y 12X 12X 12Y 17Z 17Y 17Y	25,000 25,000 35,000 37,000 37,000 40,000 40,000 40,000 45,000 50,000 55,000	0.107 .103 .150 .165 .190 .180 .220 .205 .230 .260		320 270 4 2 	612 6.5 122 21.0 23 11 3	286 610 124 236 33 13	 1150 1740 407 790 111 35 16	2265 835 277 96 37	1720 560 790 140 50	2.8 2.7 2.0 2.3 2.6
NR-74B-Q	15X 18Y 14Y 19Y 19Y	35,000 40,000 42,000 45,000 50,000	.199 .250 .310 .440 .800			187 25 4 0.5	590 168 48 27	390 200 185 20		890 340 480	3.5 3.0 3.6
NR-74B-QA	13Y 13Z 13X 13Y 20Y 20Y	25,000 35,000 40,000 42,000 45,000 50,000	.108 .158 .240 .215 .270 .430		130 5 	^b 1250 102 13 7 2	583 55 29 20 3	235 125 82 17	925 525 390 80	790 505 405 80	4.2 4.8 5.1 5.0

.

^aHeat treatments:

NR-74B-F As-forged; 16 hr at 1400° F. NR-74B-Q 2300° F water-quenched. NR-74B-QA 2300° F water-quenched; 16 hr at 1400° F.

.

bBy extrapolation.

.

NACA TN No. 1760

TA	BI	E	V	Т

DATA	ON	STRESS	AND	TIME	FOR	TOTAL	DEFORMATION	AT	13500	F	FOR	S-590	ALLOY	DISCS	NR-74B	

Disc	Specimen	Stress	Initial deformation		Time (hr) for total de	eformations	of —		Transition to third-stage creep		
(a)	number	(psi)	(percent)	0.1 percent	0.2 percent	0.5 percent	l percent	2 percent	5 percent	Time (hr)	Deformation (percent)	
NR-74B-F	bIY b2X c12Y c17Z b3X c17Y c12X c17Y c12X c17Y	12,000 15,000 17,000 20,000 20,000 20,000 25,000 25,000 30,000	0.052 .092 .085 .089 .099 .100 .115 .130 .154 .160	13 5 1 	158 78 6 10 	1530 522 44 100 71 42 4	1282 480 510 285 20 65 11 13 3	1825 920 850 590 260 	 655 150 160 42	850 600 600 375 260 65 85	0.66 1.2 1.2 1.28 2.0 2.1 2.1 2.4	
NR-74B-Q	с14Y с14Y с19Y с19Y	25,000 27,000 30,000 33,000	.115 .125 .145 .175		2.5	d2 d4 d4	28 9 15 13	72 50 50 31	685 170 190 65	740 170 150	5 .2 5 4 	
NR-74B-QA	b2Y b1X b3X c13Y c13Y c13X c13Y c13Y c13Y	12,000 15,000 20,000 23,000 25,000 25,000 27,000 30,000	.049 .085 e.125 .142 .142 .142 .142 .142 .120 .135	22 6 	275 58 12 1.5 2	a 3030 103 42 16 11 4 6	1765 235 52 46 11 14	 220 186 30 32	 725 142 133	 460 600 98 90	 1.35 3.7 3.7 3.7	

^aHeat treatments:

NR-74B-F As-forged; 16 hr at 1400° F. NR-74B-Q 2300° F water-quenched. NR-74B-QA 2300° F water-quenched; 16 hr at 1400° F.

^bNDRC and Navy data.

CNACA data.

dEstimated.

^eContraction upon release of load.

.

.

TABLE VII

DATA ON STRESS AND TIME FOR TOTAL DEFORMATION AT 1500° F FOR S-590 ALLOY DISCS NR-74B

NDRC and Navy data

Disc (a)	Specimen		Initial deformation		Time (hr) for total deformations of-										
(a)	number	(psi)	(percent)	0.l percent	0.2 percent	0.5 percent	l percent	2 percent	5 percent	Time (hr)	Deformation (percent)				
NR-74B-	F 9A 9D 9E 2Z 9F	20,000 16,000 11,000 10,000 6,000		 1 4	 2 5 22	1.7 4.5 11 35 132	6 13.5 28 86 392	16 31 64 145 700	28 54 101 250	15.5 24 48 74 464	1.95 1.56 1.42 0.92 1.17				
NR-74B-4	A 11F 11C 11B 11D 4X 1Z 2X	20,000 18,000 16,000 15,000 12,000 10,000 8,000		 3 72 430	 5 25 456 ⁴ 4000	10 20 70 58 1270 1800	24 72 180 325 3400	42 119 306 545 	69 220 474 787 	14 40 155 300 1700	.60 .62 .85 .94 .58				

^aHeat treatments:

NR-74B-F As-forged; 16 hr at 1400° F. NR-74B-QA 2300° F water-quenched; 16 hr at 1400° F.

^bEstimated.

TABLE VIII

TIME-DEFORMATION AND CREEP STRENGTHS AT 1200° F

FOR S-590 ALLOY DISCS NR-74B

[NACA data]

Disc (a)	Total deformation	S		psi) to o ormation		Creep strength (based on creep rates at 1000 hr) (psi)				
	(percent)	l hr	10 hr	100 hr	1000 hr	2000 hr	0.00010 percent/hr	0.00001 percent/hr		
NR-74B-F NR-74B-Q	0.2	38,000	33,000	28,500	22,000	^b 20,500	27,500			
NR-74B-QA	.2	^b 40,000	33,000	26,000	^b 18,500		23,000			
NR-74B-F NR-74B-Q NR-74B-QA	•5 •5 •5	47,000	44,000 41,500 47,000 40,500		31.000	^b 30,000 ^b 25,000				
NR-74B-F NR-74B-Q NR-74B-QA	1.0 1.0 1.0	50,000 47,000 46,500		40,500	34,000	^b 32,000				
NR-74B-F NR-74B-Q NR-74B-QA	Transition Transition Transition			47,000 ^b 50,000 49,000	39,000 39,000 39,000	36,000 36,000				

^aHeat treatments:

NR-74B-F As-forged; 16 hr at 1400° F. NR-74B-Q 2300° F water-quenched. NR-74B-QA 2300° F water-quenched; 16 hr at 1400° F.

^bEstimated strength by extrapolation.

TABLE IX

TIME-DEFORMATION AND CREEP STRENGTHS AT 1350° F

FOR S-590 ALLOY DISCS NR-74B

NACA, NDRC, and Navy data

Disc (a)	Total deformation (percent)	St		si) to comation			Creep strength (based on minimum rates) (psi)				
		l hr	10 hr	100 hr	1000 hr	2000 hr	0.00010 percent/hr	0.0000l percent/hr			
NR-74B-F NR-74B-Q	0.1	20,000	12,800				10,600				
NR-74B-QA	.1	19,000	13,800				16,400	12,100			
NR-74B-F NR-74B-Q NR-74B-QA	.2 .2 .2	26,400	18,600 b16,000 20,600	13,100 14,700							
NR-74B-F NR-74B-Q NR-74B-QA	•5 •5 •5	30,000	24,000	17,000 21,400							
NR-74B-F NR-74B-Q NR-74B-QA	1.0 1.0 1.0		33,000	20,500 24,100							
NR-74B-F NR-74B-Q NR-74B-QA	Transition Transition Transition			24,500 31,000 29,000	14,000						

^aHeat treatments:

NR-74B-F As-forged; 16 hr at 1400° F.

NR-74B-Q 2300° F water-quenched. NR-74B-QA 2300° F water-quenched; 16 hr at 1400° F.

^bEstimated strength by extrapolation.

NACA

NACA TN No. 1760

TABLE X

TIME-DEFORMATION AND CREEP STRENGTHS AT 1500° F

FOR S-590 ALLOY DISCS NR-74B

[NDRC and Navy data]

Disc (a)	Total deformation (percent)	S		psi) to prmation	cause t n in -	otal	Creep strength (based on minimum rates) (psi)				
	(percent)	l hr	10 hr	100 hr	1000 hr	2000 hr	0.00010 percent/hr	0.00001 percent/hr			
NR-74B-F NR-74B-QA	0.1 .1	10,000 b13,600	^b 6,800 11,500	9,400	^b 7,300		^b 2,800 10,000	 7100			
NR-74B-F NR-74B-QA	.2	13,500	7,800 14,000	11,000	9,200	8,600					
NR-74B-F NR-74B-QA	•5 ,•5		12,700 19,400	6,500 14,800	11,600	10,500					
NR-74B-F NR-74B-QA	1.0 1.0		17,300	9,000 17,200	^b 4,000 13,600	12,700					
	Transition Transition		20,400	9,300 16,700	Ъ4,200 12,800	11,800					
a. Heat tres	atmont a •							NACA			

^aHeat treatments:

NR-74B-F As-forged; 16 hr at 1400° F. NR-74B-QA 2300° F water-quenched; 16 hr at 1400° F.

^bEstimated strength by extrapolation.

TABLE XI

CREEP TEST DATA AT 1200°, 1350°, AND 1500° F FOR S-590 ALLOY DISCS NR-74B

Disc	Specimen	Test tempera-	Stress	Duration	Deformation upon	Cree	p rate (p	ercent/h	r) at -	Total deformation (percent) a				
(a)	number	ture (°F)	(psi)		application of load (percent)	500 hr	1000 hr	1500 hr	2000 hr	500 hr	1000 hr	1500 hr	2000 hr	
NR-74B-F	bl3Y bl5Y bl3X	1200 1200 1200	25,000 25,000 35,000	1108 960 1002	0.107 .103 .150	0.000082 .000082 .00028	0.000066 .000066 .00027			0.217 .217 .469	0.257 .605			
NR-74B-Q	b15X	1200	35,000	770	•199	.00095	c.00090			.915	c1.163			
NR-74B-QA	b13Y b13Z	1200 1200	25,000 35,000	1009 1002	•108 •158	.00026 .00090	.00025 .00087			•305 •925	.435 1.370			
NR-74B-F	d _{3X} d2X d _{1Y}	1350 1350 1350	20,000 15,000 12,000	(e) 1872 2059	•099 • 092 •052	f.0032 .00064 .00022	.00058 .00019	0.0013	g0.0025 .00017	1.65 .483 .301	•760 •405	1.22	^g 2.00 •586	
NR-74B-QA	d _{3Z} d _{3X} d _{1X} d _{2Y}	1350 1350 1350 1350 1350	23,000 20,000 15,000 12,000	h886 2016 2282 2135	.142 .125 .085 .049	.0015 .00026 .00011 .00007	.00013 .00008 .000019	.00012 .00008 .000019	.00012 .00005 .000009	1.42 .809 .323 .219	•907 •385 •237	•969 •420 •246	1.029 .440 .253	
NR-74B-F	dlx	1500	8,000	1743	.046	1.00185				1.021				
NR-74B-QA	d _{4X} d _{1Z} d _{2X}	1500 1500 1500	12,000 10,000 8,000	2136 2064 2039	•077 •068 •036	•00020 •00027 •000044	•00017 •00022 •000034	+00017 +00022 +000028	•00020 •00025 •000024	•375 •228 •104	•457 •330 •125	•536 •430 •140	.640 .620 .152	

^aHeat treatments:

NR-74B-F As-forged; 16 hr at 1400° F. NR-74B-Q 2300° F water-quenched. NR-74B-QA 2300° F water-quenched; 16 hr at 1400° F.

bNACA data.

CAt 770 hr.

dNDRC and Navy data.

^eBroke in threads shortly after 744 hr.

^fMinimum creep rate, measured between 75 and 400 hr; 0.00255 percent/hr.

gAt. 1872 hr.

hDiscontinued at 886 hr with 2.78-percent deformation. Minimum creep rate 0.0015 percent/hr between 250 and 500 hr. Discontinued at 743 hr with 1.56-percent deformation. Minimum creep rate between 150 and 350 hr; 0.00166 percent/hr. Data from this test were not used for the design curves.

NACA

43

	-		or testir	ng			Re	sidual room-te	emperature	e properties	3		-
Disc (a)	Specimen number	Temper_ ature	Stress (psi)	Time (hr)	Tensile strength		Offset yield strength (psi)		Propor- tional limit	Elongation in 2 in.	Reduction of area	Izod impact strength	Vickers
		(°F)	11/		(psi)	0.02 percent	0.1 percent	0.2 percent	(psi)	(percent)	(percent)	(psi)	nai uness
NR_74B_F	(b) d _{14Y} f _{3Y} , 4x	(c) (c) (c)	(c) (c) (c)	(c) (c) (c)	129,050	70,750	90,000	98,250	42,500	8	10.3	^e 2, 5 87, 6, 5	309
	dl3Y dl3X	1200 1200	25,000 35,000	1108 1002	127,000	61,000	85,000	94,500	27,500	6	7.3	^e 2, 2	278
2	fly f _{2X}	.1.350 1.350	12,000 15,000	2059 1872	110,500	58,000	76,000	85,000	40,500	•7	1.4	^g 1, 2	245
	flX (h)	1500 1500	8,000	743	105,000	53,500	71,200	80,800	37,900	1.5	1.6		
NR-74B-Q	(b) d _{14X}	(c) (c)	(c) (c)	(c) (c)	119,500	36,250	50,750	57,000	22,500	36	34.3	^e 24, 32	235
	d15X (h)	1200 1200	35,000	770	127,500	58,000	81,000	87,500	25,000	6.5	5.7		
NR-74B-QA	(b) d16y f3y, 4z	(c) (c) (c)	(c) (c) (c)	(c) (c) (c)	130,500	45,000	63,500	70,500	25,000	17	18.2	^e 9, 28 ^g 7, 8, 6	267 282
	d _{13Y} d _{13Z}	1200 1200	25,000 35,000	1009 1002	131,000	60,000	78,000	85,000	37,500	5.5	6.4	^e 5,4	284
	f _{2Y} f _{lX}	1350 1350	12,000 15,000	2135 2282	132,500	57,500	72,000	79,600	39,000	3.3	4.5	g4, 4	319
	fiz f _{4X}	1500 1500	10,000 12,000	2064 2136	116,000	43,000	55,000	62,500	31,500	4.5	4.9	⁸ 2,3	295

TABLE XII

EFFECT OF CREEP TESTING ON THE ROOM-TEMPERATURE PHYSICAL PROPERTIES OF S-590 ALLOY DISCS NR-74B

^aHeat treatments:

NR-74B-F As forged; 16 hr at 1400° F. NR-74B-Q 2300° F water-quenched. NR-74B-QA 2300° F water-quenched; 16 hr at 1400° F.

^bAverage of tests on center- and surface-plane radial specimens.

COriginal condition.

dNACA data.

^eSpecimens were 0.365-in. square with a 0.50-in.-deep V-notch. ^fNDRC and Navy data. ^eSpecimens were 0.450-in.-diameter, V-notch. ^NNo specimen available for impact and hardness tests.

S

RESULTS FROM ALLEGHENY-LUDIUM STEEL CORPORATION AND COMPARATIVE NACA, NDRC, AND NAVY

			Room-tempera	ture tensile pr	operties				Rup	ture properties		
Data source (1)	Treatment	Tensile strength (psi)	0.02-percent-offset yield strength (psi)	Elongation (percent)	Reduction of area (percent)	Brinell hardness	Temper- ature (°F)	Stress (psi)	Time (hr)	Elongation (percent)	Reduction of area (percent)	Brinell hardness
					As-forg	ed disc			•			
AL	As-forged	143,000 141,500 140,500	92,500 85,000 82,500	3.5 12.5 7	7.7 29.8 13.1	293–311	1350	30,000	25	6	18.4	293
AL	As-forged; 16 hr at 1400° F	133,500	72,500	13	19.2	302	1200 1200	50,000 45,000	134.5 397	17.5 13	30 16	293 27'i
UM	1400° F	129,050	70,750	8	10.3	267–311	1200 1200	50,000 45,000	150 372.5	17 9	21:2 14.4	
AL	Forged; 16 hr at 1500° F	132,500	55,000	13	10.1	285	1500 1500	20,000 17,500	9 23	15 23	27 22	277 285
					Solution-tr	eated disc						
AL UM	2300° F $3\frac{1}{4}$ hr water-guenched	125,000 119,500	32,500 36,250	39•5 36	34 • 3 34 • 3	229 - 241 211-223	1200 1200	45,000 45,000	178 493	3 4	4 7•3	223
		-		Sol	lution-treate	1 and aged di	LBC					
AL	2300° F water- guenched; 16 hr at 1400° F	134,000	45,000	22	18.8	255	1350 1350 1350	35,000 30,000 25,000	42 185 923	24 26.5 19	23 29.4 23	302 302 302
UM		130,500	45,000	17	18.2	259	1350 1350	30,000 25,000	252 951	11 11	15 17.8	
В							1500 1500	20,000 15,000	76 1000	18 16.5	25.5 25.5	
AL	2300° F water- guenched; 16 hr at 1500° F						1500 1500 1500	20,000 17,500 15,000	104 238 747	29.5 36 31	41.5 38 39	277 285 277

RESULTS ON THE S-590 ALLOY DISCS NR-74B

lAL data supplied by Allegheny-Ludlum Steel Corp. UM University of Michigan (NACA) data. B Battelle (NDRC and Navy) data.

All Allegheny-Ludlum data were on specimens representing chords from the discs. All University of Michigan and Battelle data were on radial specimens.

.

.

TABLE XIV

.

.

	1.					Теря	ile propert	ieg										
Form	Treatment	a	mper_ ture ^o F)		eile ength ei)		Offset stren (psi	yield gth		gation rcent)	Temper ature (^O F)	-	Rupti strer (psi	ure ngth	ture	mated rup- elongation percent)		
-						0.02	percent	0.2 perces	nt			100	hr	1000 h	r 100 h	r 1000 hr		
Disc (NR-74B-F)	Forged and age	1	75 129,050		,050	70,750		98,250		8	1350	27,5	00	18,000	10	5		
Disc (NR_74B_Q)	Solution-treat	ed	75	119,500		3	6,250	57,000		36	1350	32,5	00	25,000	10	11		
(NR-74B-QA)	Solution-treate and aged	ed	75 130		,500	4	5,000	70,500	1	L7	1350 32		00	25,000	12	13		
Bar stock ^a	Solution-treate and aged	əd	75 159		,500	56,750		88,250		9.5	^a 1350	31,0 32,0	00	24,000 26,000		40		
Disc (NR_74B_F)	Forged and aged	1 13	1350		64,625			55,000	2	29	1500	1500 13,10		6,000	12	5		
Disc (NR_74B_QA)	Solution-treate and aged	ed 13	50	65,	5,750 -			46,000	2	25	1500	20,0	00	15,000	30	16		
Bar stock ^a	Solution-treate	ad 13	50	65,	65,875			57,500	2	28	^b 1500	19,0		14,000 15,500	8 23	10 25		
					Time-deformation st							lon strengths						
Form	Treatment	Temper- ature	-		100-	hr de	eformation a (psi)	strengths			1000-hr deformation strengths (psi)							
		(°F)	0.1 per	l percent 0.2 per		cent	0.5 percent	1 percent	Transition	0.1 pe	rcent 0.	2 percent	0.5 P	percent	l percent	Transition		
Disc (NR-74B-F)	Forged and aged	1500					6,500	9,000	9,300						4,000	4,200		
Disc (NR-74B-QA	Solution-treated and aged	1500	9,4	9,400 11,0		00	14,800	17,200	16,700	7,300		9,200	0 11,600		13,600	12,800		
Bar stock ^b	Solution-treated and aged	1500	10,3	10,300 13,20		200 17,300		18,700	17,600	8,	000	10,600	0,600 13,100		14,000			

COMPARATIVE PROPERTIES OF BAR STOCK AND DISCS OF S-590 ALLOY

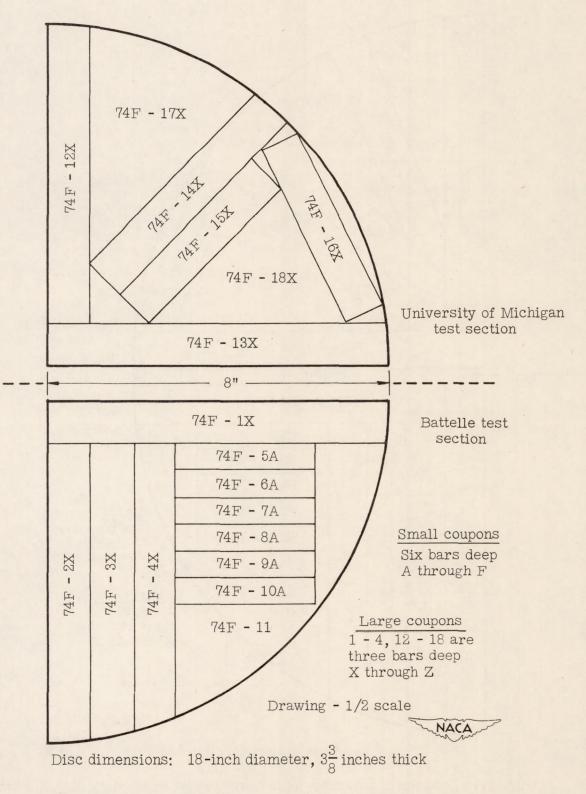
^aUnpublished data from the University of Michigan. ^bData from reference 11.

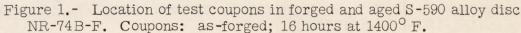
.

COMPARISON OF ROOM-TEMPERATURE AND HIGH-TEMPERATURE PROPERTIES OF SEVERAL LARGE FORGED DISCS OF 9-590 AND 3-516 ALLOYS

Test temperature, ^o F		Room te	mperature			120	00			13	50		1500			
Alloy	S	-590	Þs-	^b s-816		-590	bs-	816	S	-590	b _S	816	S590		1	°S-816
Disca	NR-74B-F	NR-74B-QA	NR-76B-F	NR-76B-Q	NR-74B-F	NR-74B-QA	NR-76B-F	NR-76B-Q	NR-74B-F	NR-74B-QA	NR-76B-F	NR-76B-Q	NR-74B-F	NR-74B-QA	NR-76B-F	NR-76B-Q
Short-time properties: Charpy impact strength, ft-lb Izod impact strength, ft-lb Tensile strength, psi 0.1-percent-offset yield strength, psi 0.2-percent-offset yield strength, psi Elongation, percent	5 6 129,050 90,000 98,250 8	9 7 130,500 63,500 70,500 17	25 18 150,000 79,000 85,000 21	19 19 144,000 70,000 76,000 30	9 88,700 66,250 71,750 15	15 81,600 46,000 49,000 27	43 120,000 63,000 67,000 16	43 106,000 56,000 58,000 12	11 64,625 50,750 55,000 29	17 65,750 43,500 46,000 25	47 88,000 56,000 59,000 23	40 83,000 52,000 55,000 28	13 43,125 31,350 35,900 25	20 44,400 35,050 37,850 18	43 59,000 46,000 49,000 17	43 60,000 49,000 51,000 17
Rupture strengths, psi: 10-hr 100-hr 1000-hr					°69,000 52,500 40,000	^c 66,000 52,000 42,000	^c 78,000 62,000 50,000	°84,000 66,000 53,000	^c 42,000 27,500 18,000	c _{41,000} 32,000 25,000	52,000 37,500 27,000	^c 53,000 39,000 29,000	°29,000 13,100 6,000	20,000	°31,000 20,500 13,700	°29,500 22,800 17,500
Rupture elongations, percent ^c : 100-hr 1000-hr					20 7	12 12	10 10	7 7	10 5	12 13	10 10	12 10	12 5	30 16	54	74
Creep strengths, psi: 0.0001 percent/hr 0.00001 percent/hr					27,500	23,000	28,000 c18,000	28,000 °16,000	10,600	16,400 12,100	19,500 13,000	19,000 10,500	°2,800	10,000 7,100	11,000 8,500	13,500 7,500
100-hr deformation strengths, psi: 0.1-percent deformation 0.2-percent deformation 0.5-percent deformation 1.0-percent deformation Transition					28,500 38,000 42,000 47,000	26,000 33,800 39,500 49,000	31,500 43,000 48,000 59,500	°19,500 34,500 46,000 52,500 °64,000	13,100 17,000 20,500 24,500	14,700 21,400 24,100 29,000	13,000 22,000 28,000 31,000 35,500	13,000 20,000 27,000 30,000 36,000	6;500 9,000 9,300	9,400 11,000 14,800 17,200 16,700	9,000 13,800 17,000 18,500 18,000	9,000 14,000 19,000 21,000 20,200
1000-hr deformation strengths, psi: 0.1-percent deformation 0.2-percent deformation 0.5-percent deformation 1.0-percent deformation Transition					22,000 32,000 34,300 39,000	^c 18,500 27,000 33,000 39,000	24,500 33,500 38,000 48,000	25,500 37,000 °43,000 52,000	^{c8,000} 13,000 15,500 14,500	8,700 17,000 20,800 22,500	^c 10,000 16,500 24,500 ^c 26,500 28,000	^c 9,000 15,000 21,500 ^c 23,500 27,000	с _{4,000} с _{4,200}	°7,300 9,200 11,600 13,600 12,800	°5,500 9,600 11,200 12,000 12,000	°5,500 10,000 °14,700 °16,000 °16,000
Residual room-temperature properties: Izod impact strength, ft-lb Tensile strength, psi 0.1-percent-offset yield strength, psi 0.2-percent-offset yield strength, psi Elongation, percent					After 127,000 85,000 94,500 6	creep test 131,000 78,000 85,000 6	ing at 120 11 139,000 79,000 87,000 8.0	5.5	After 2 110,500 76,000 85,000 1	4 132,500 72,000 79,600 3	ting at 1 7 136,500 82,000 89,000 9.0	350° F 7.8 133,500 75,500 81,000 10.7	After 105,000 71,200 80,800 1.5	creep tes 2 116,000 55,000 62,500 5	ting at 2 5.5 123,000 67,000 75,500 7.4	4.8 119,000 65,000 71,500 7.0

a Heat treatments: NR-74B-F As-forged and aged disc; 16 hr at 1400° F; air-cool.


NR-74B-QA Heat-treated and aged disc; 2300° F, $3_{\rm L}^{\rm L}$ hr; water-quenched plus 16 hr at 1400° F; air-cool.


NR-76B-F As-forged and aged disc; 16 hr at 1400° F; air-cool.

NR-76B-Q Heat-treated and aged disc; 2300° F, 21 hr; water-quenched plus 16 hr at 1400° F; air-cool.

^bS-816 disc data taken from reference 10.

CEstimated values.

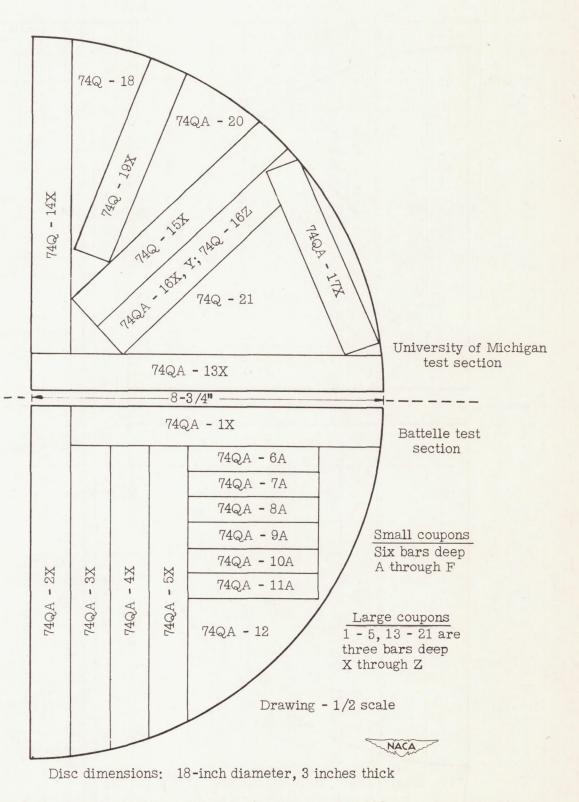


Figure 2.- Location of test coupons in heat-treated S-590 alloy disc NR-74B-Q. Coupons 74Q: 2300° F, water-quenched. Coupons 74QA: 2300° F, waterquenched; 16 hours at 1400° F.

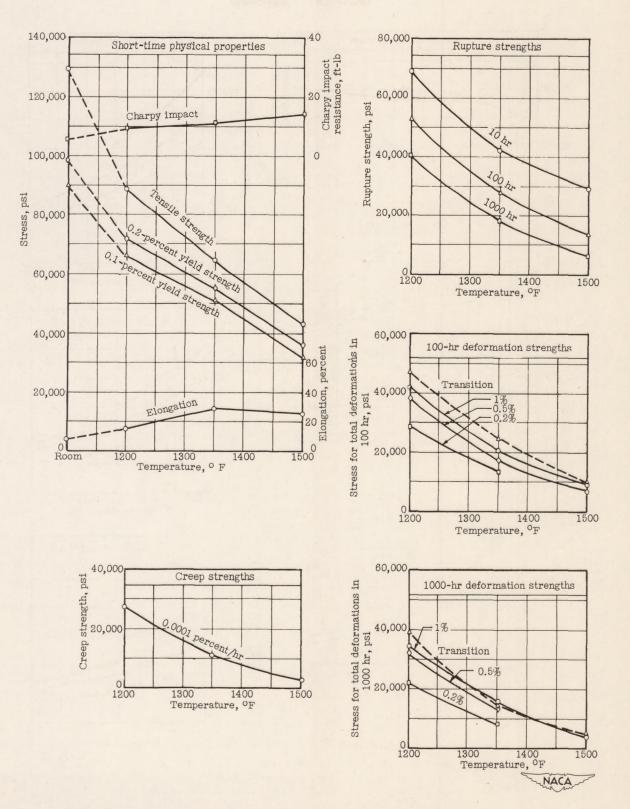


Figure 3.- Summary of properties of S-590 alloy disc NR-74B-F. Disc treatment: as-forged; 16 hours at 1400° F.

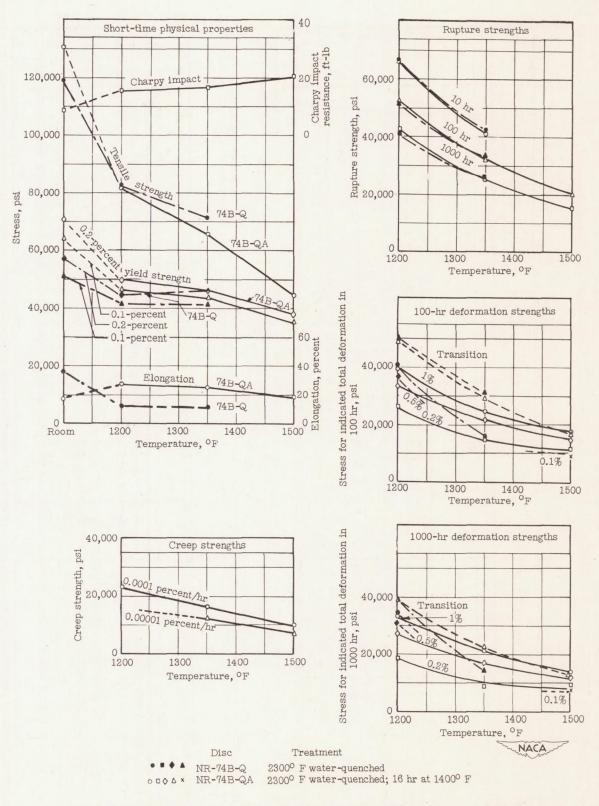


Figure 4.- Summary of properties of S-590 alloy discs NR-74B-Q and NR-74B-QA.

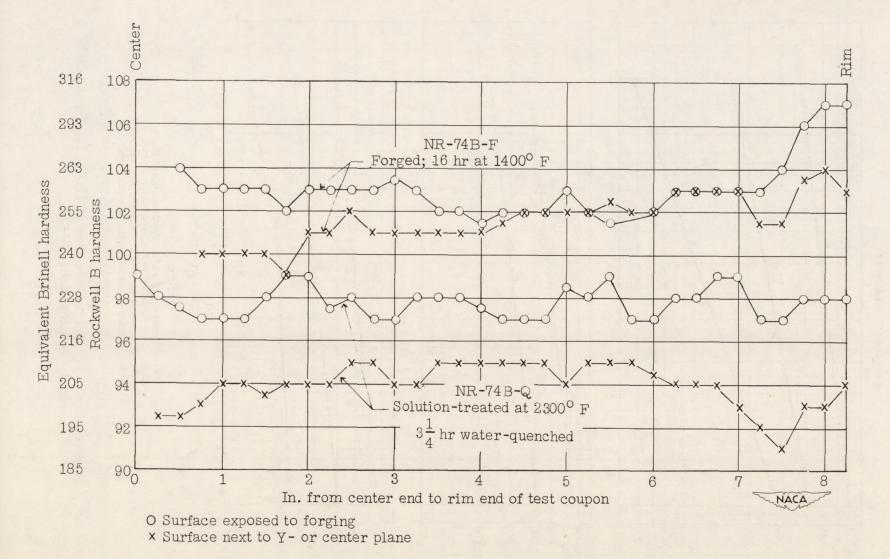
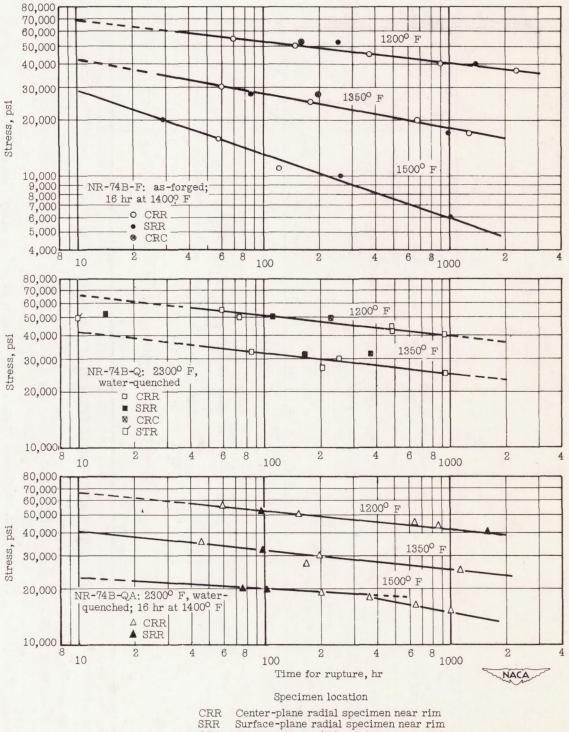
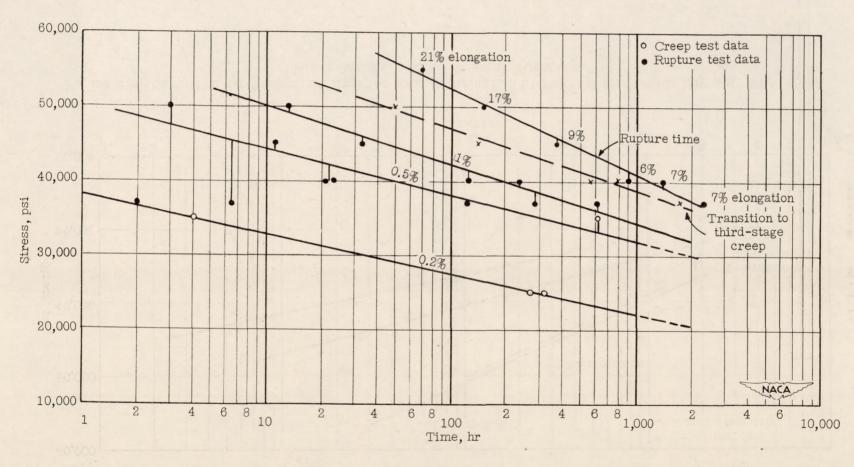



Figure 5.- Variation in hardness from center to rim of S-590 alloy discs NR-74B.

NACA TN No. 1760

33



SRR

CRC Center-plane radial specimen near center

STR Surface-plane tangential specimen near rim

Figure 6.- Curves of stress against rupture time at 1200°, 1350°, and 1500° F for S-590 alloy discs NR-74B.

.

Figure 7.- Curves of stress against time for total deformation at 1200° F for S-590 alloy disc NR-74B-F. Heat treatment: as-forged; 16 hours at 1400° F.

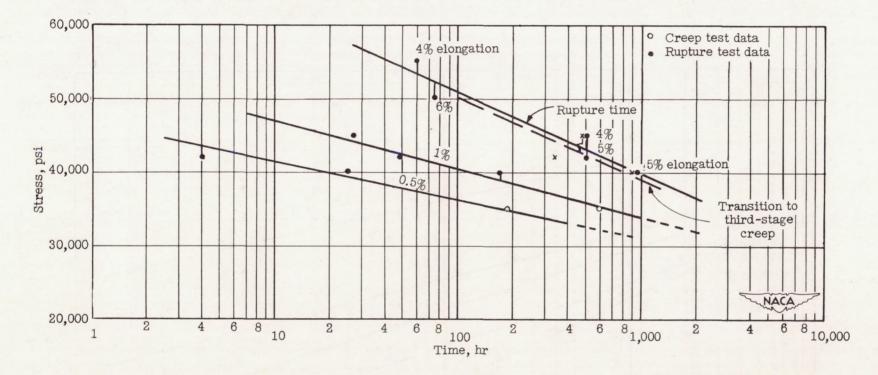


Figure 8.- Curves of stress against time for total deformation at 1200° F for S-590 alloy disc NR-74B-Q. Heat treatment: 2300° F water-quenched.

MACA TN No. 1760

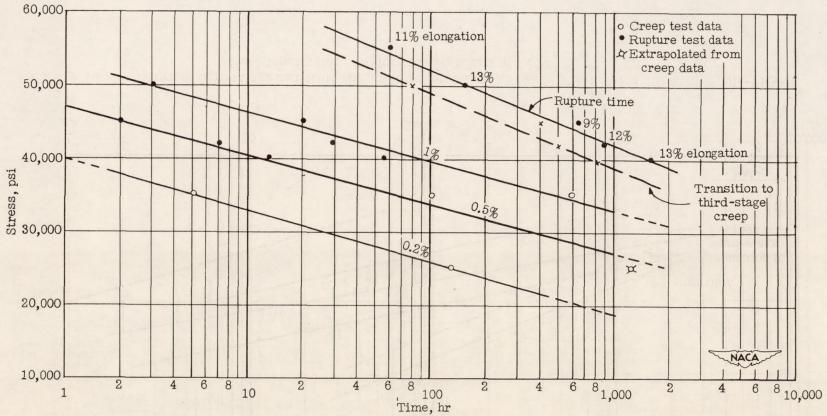


Figure 9.- Curves of stress against time for total deformation at 1200° F for S-590 alloy disc NR-74B-QA. Heat treatment: 2300° F water-quenched; 16 hours at 1400° F.

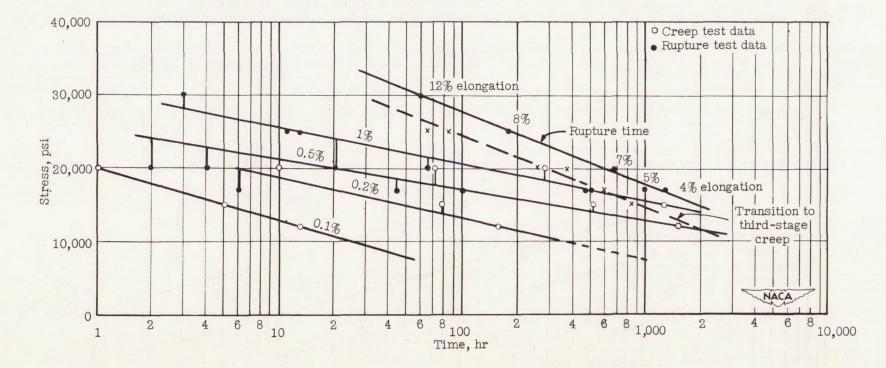


Figure 10.- Curves of stress against time for total deformation at 1350° F for S-590 alloy disc NR-74B-F. Heat treatment: as-forged; 16 hours at 1400° F.

.

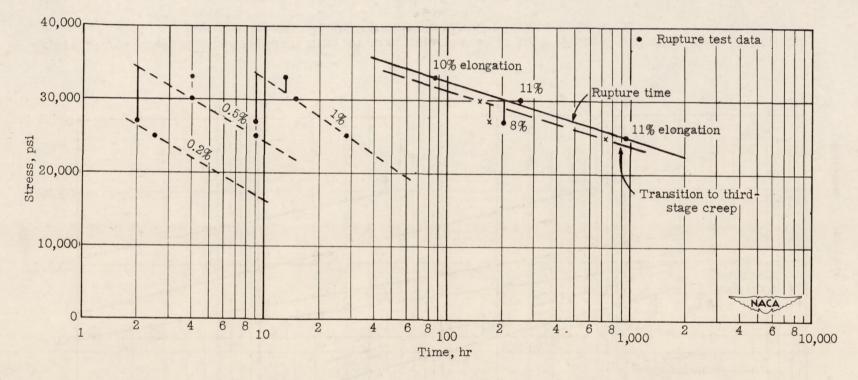


Figure 11.- Curves of stress against time for total deformation at 1350° F for S-590 alloy disc NR-74B-Q. Heat treatment: 2300° F water-quenched.

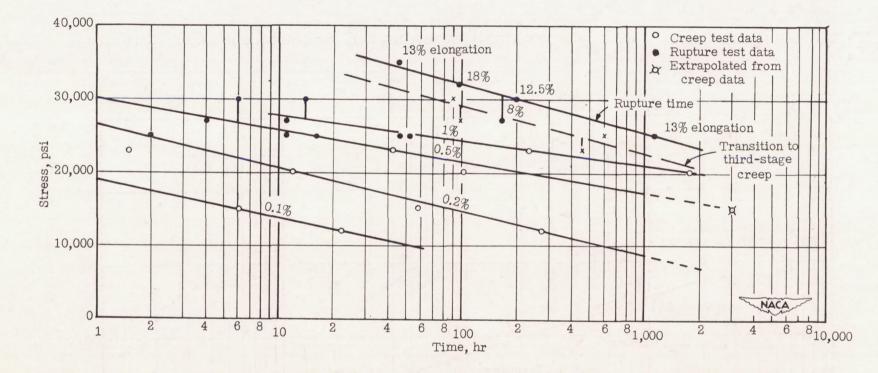


Figure 12.- Curves of stress against time for total deformation at 1350° F for S-590 alloy disc NR-74B-QA. Heat treatment: 2300° F water-quenched; 16 hours at 1400° F.

NACA TN No. 1760

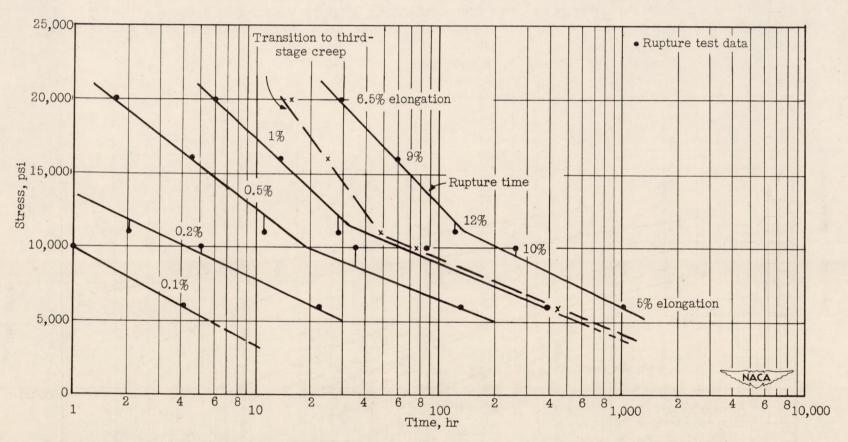


Figure 13.- Curves of stress against time for total deformation at 1500° F for S-590 alloy disc NR-74B-F. Heat treatment: as-forged; 16 hours at 1400° F.

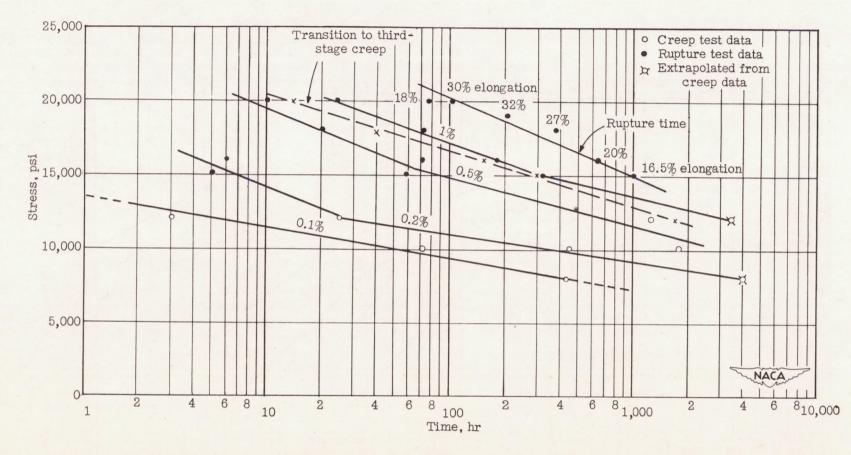
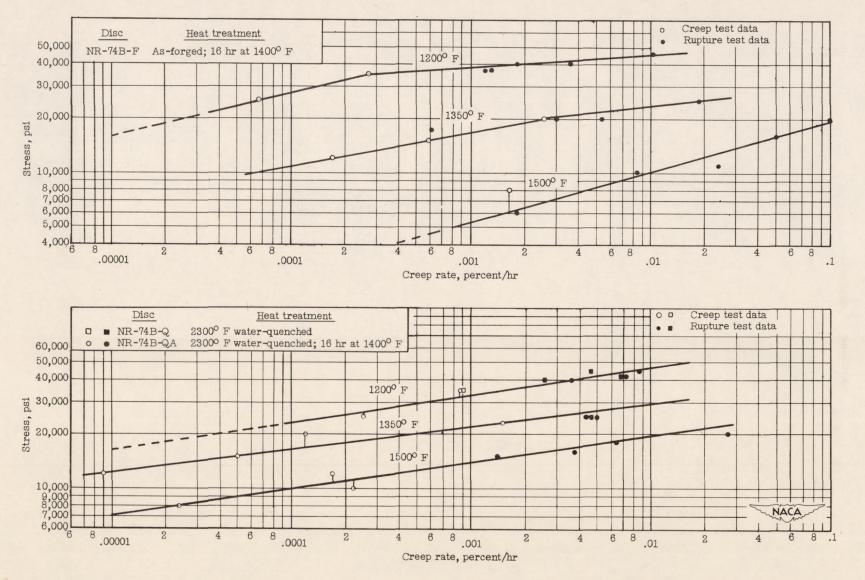
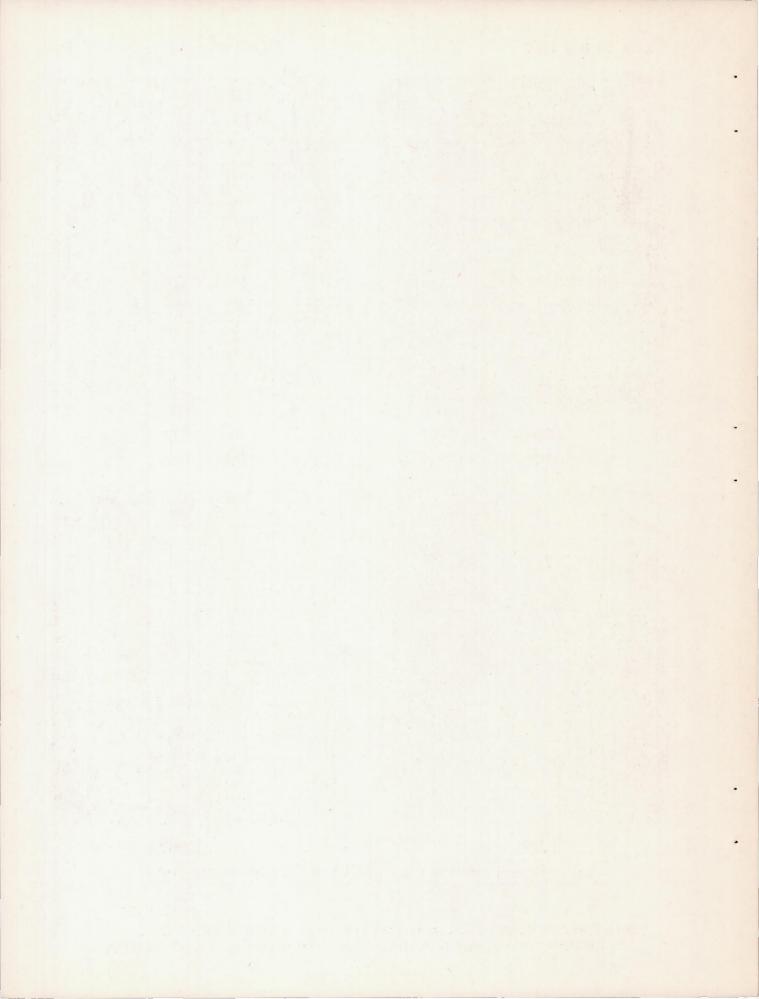
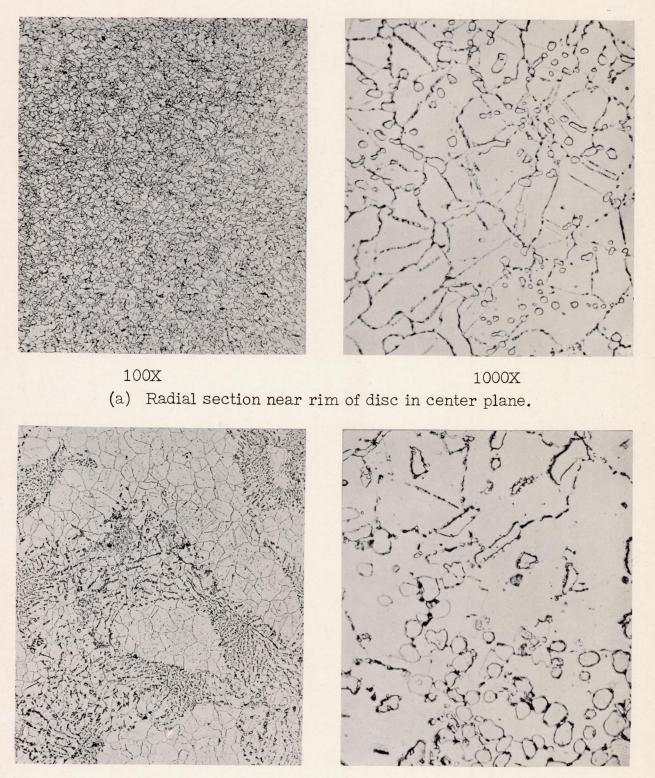



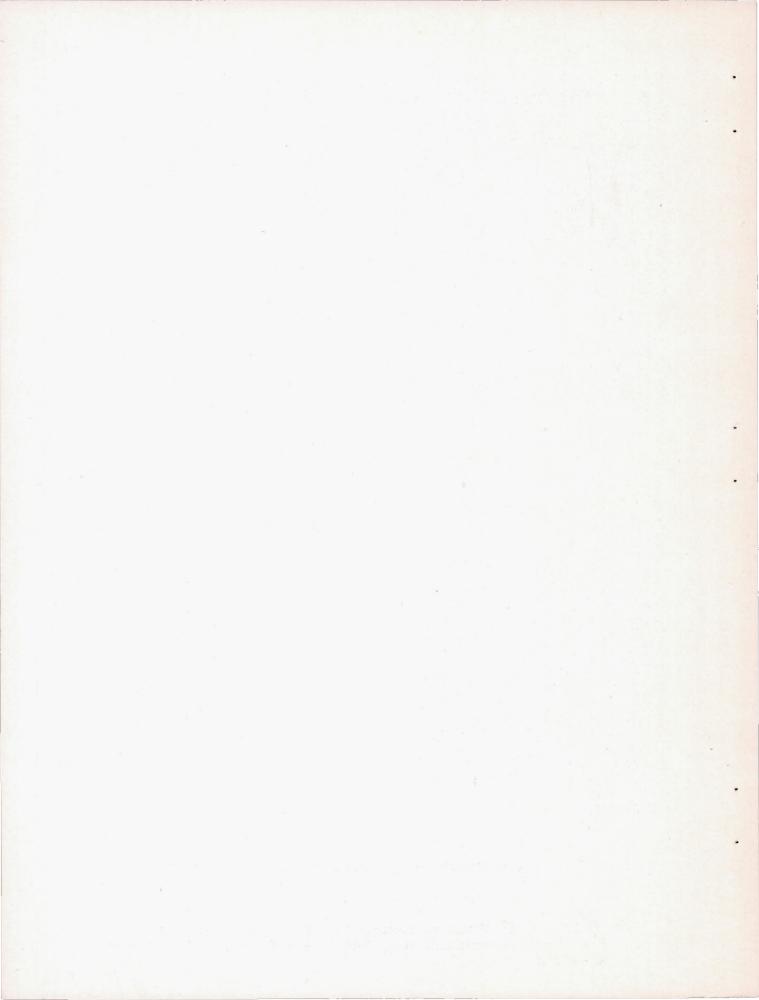
Figure 14.- Curves of stress against time for total deformation at 1500° F for S-590 alloy disc NR-74B-QA. Heat treatment: 2300° F water-quenched; 16 hours at 1400° F.

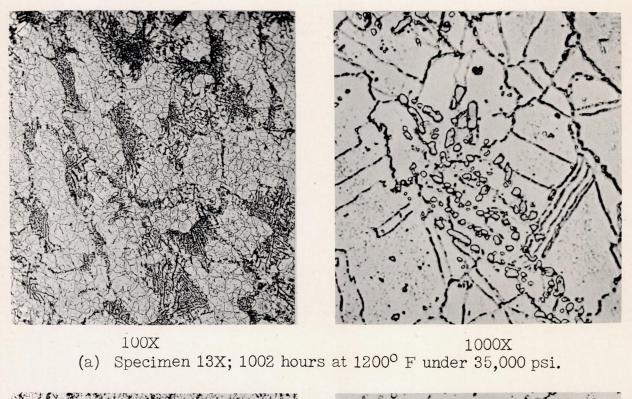

.

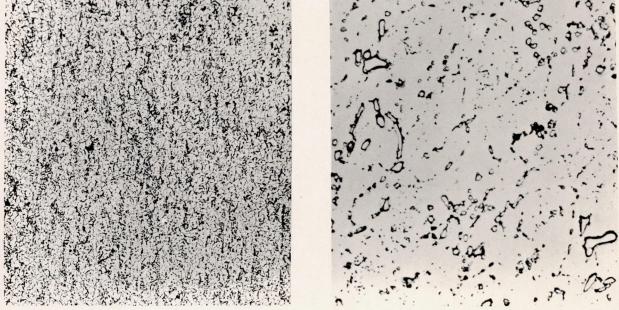


NACA TN No. 1760

43

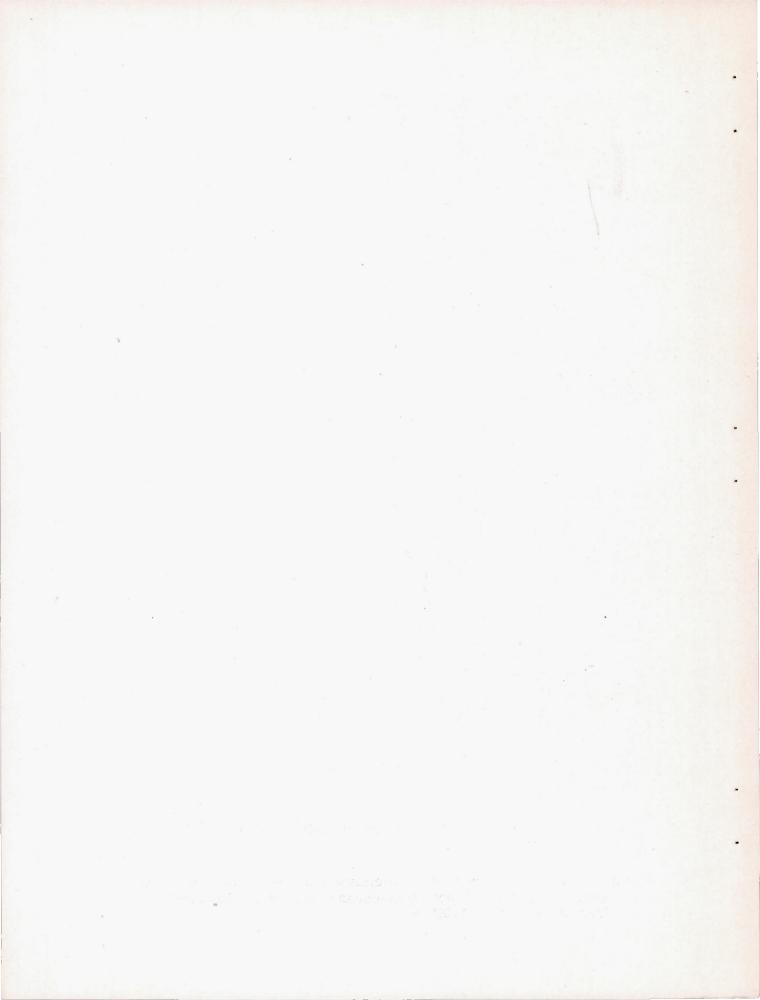

100X

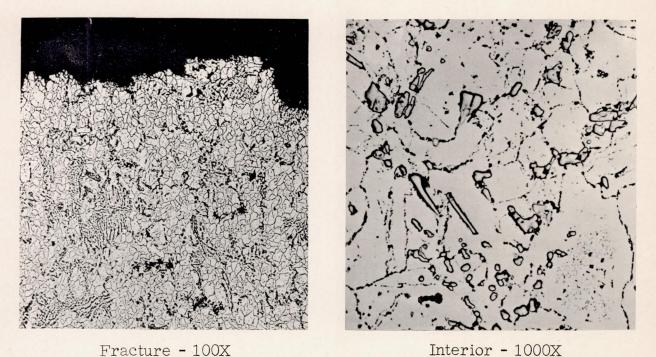

1000X


NACA

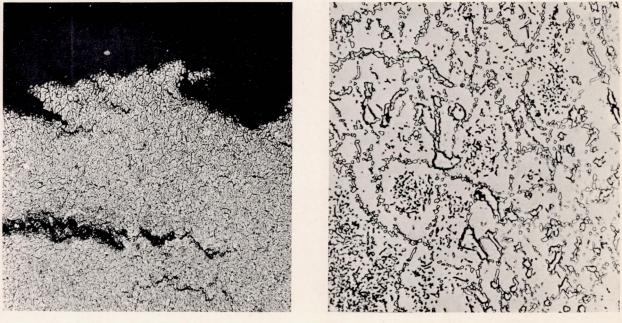
(b) Radial section near center of disc in center plane.

Figure 16.- Original microstructure of S-590 alloy disc NR-74B-F. Electrolytic chromic acid etch. Disc treatment: as-forged; 16 hours at 1400° F. 45





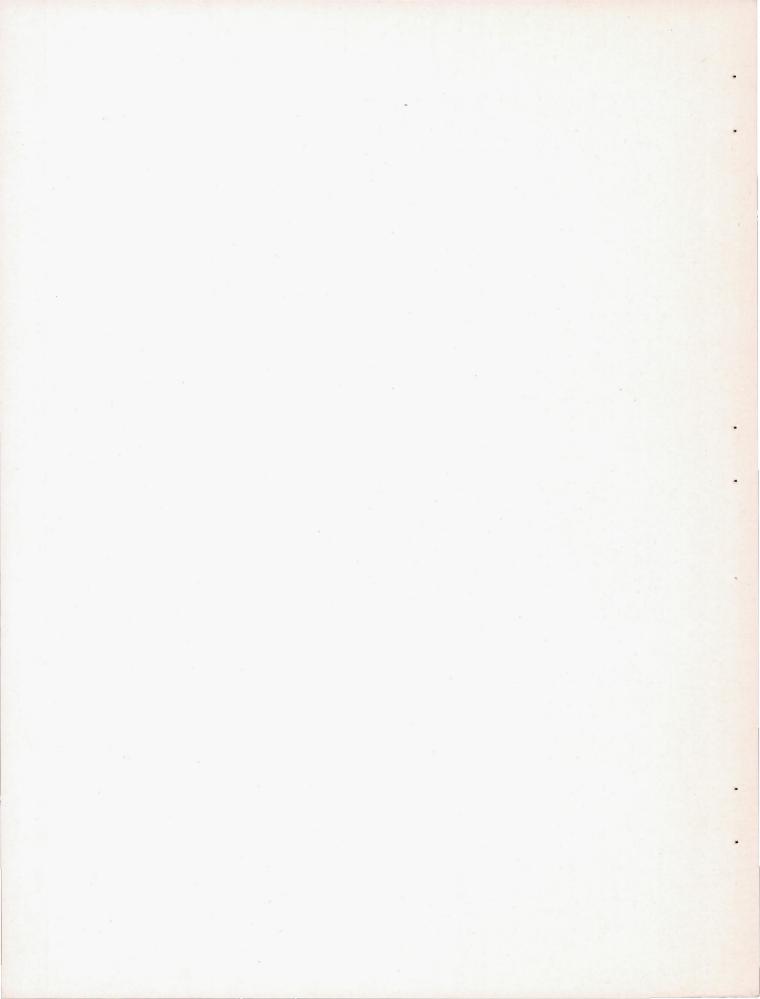
100X 1000X (b) Specimen 2X; 1872 hours at 1350⁰ F under 15,000 psi.

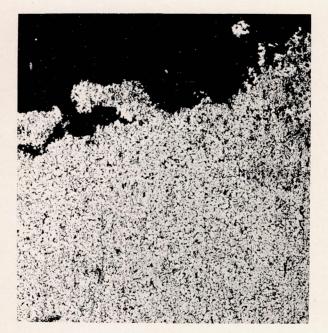

Figure 17.- Microstructure of specimens from S-590 alloy disc NR-74B-F after creep tests. Electrolytic chromic acid etch. Disc treatment: as-forged; 16 hours at 1400° F.

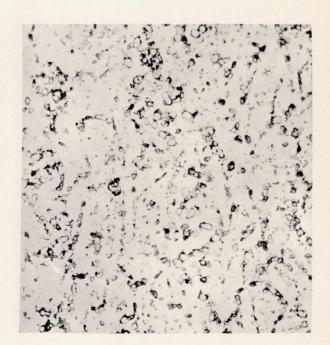
NACA

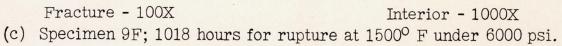
(a) Specimen 12Y; 2310 hours for rupture at 1200[°] F under 37,000 psi.

Fracture - 100X

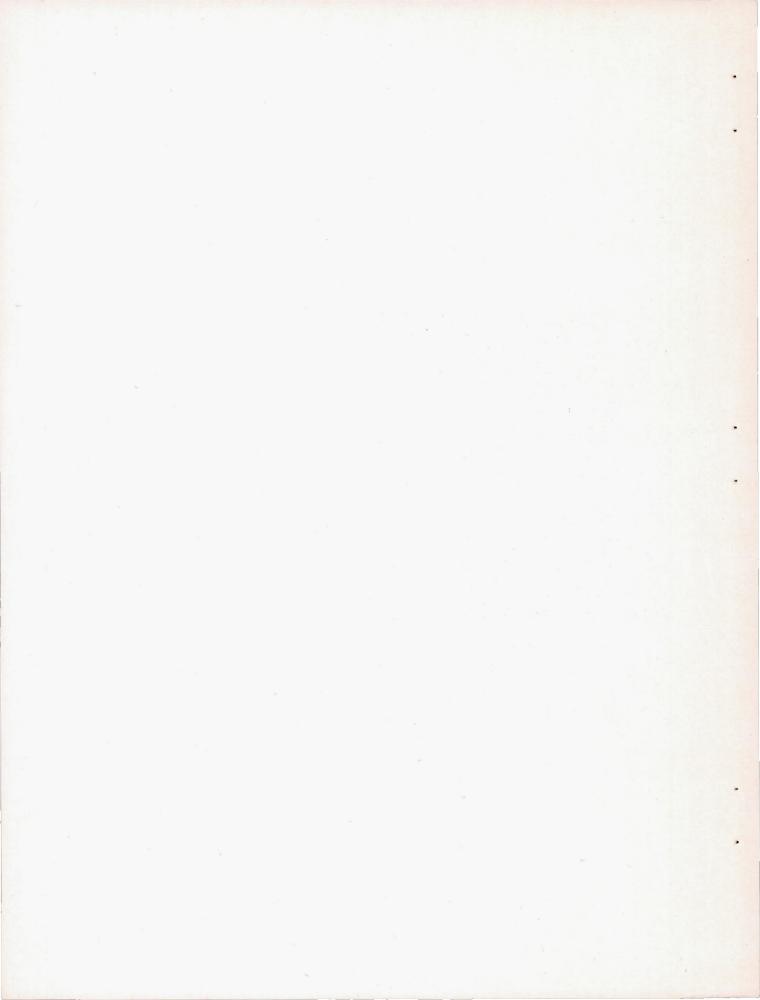

Interior - 1000X

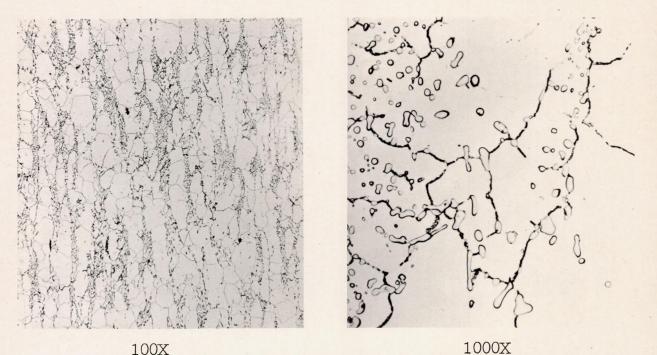

NACA


(b) Specimen 12Y; 1291 hours for rupture at 1350° F under 17,000 psi.


Figure 18.- Microstructure of specimens from S-590 alloy disc NR-74B-F after stress-rupture tests. Electrolytic chromic acid etch. Disc treatment: as-forged; 16 hours at 1400° F.

49





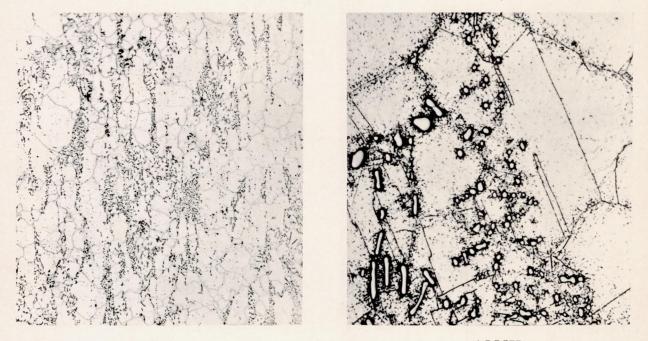
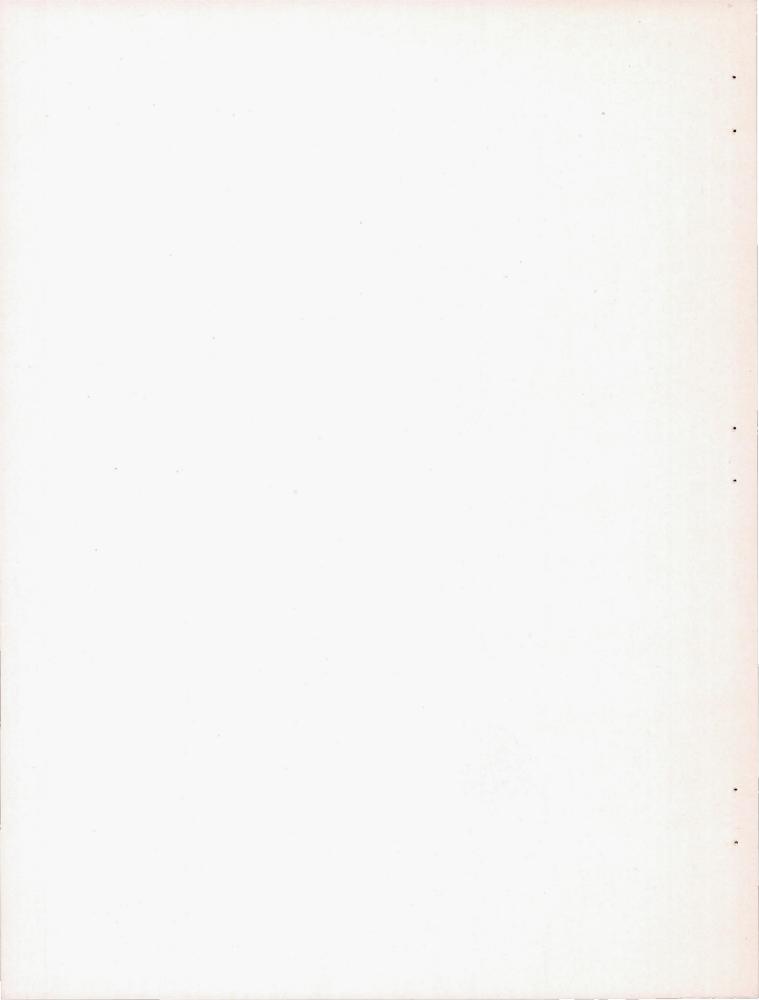
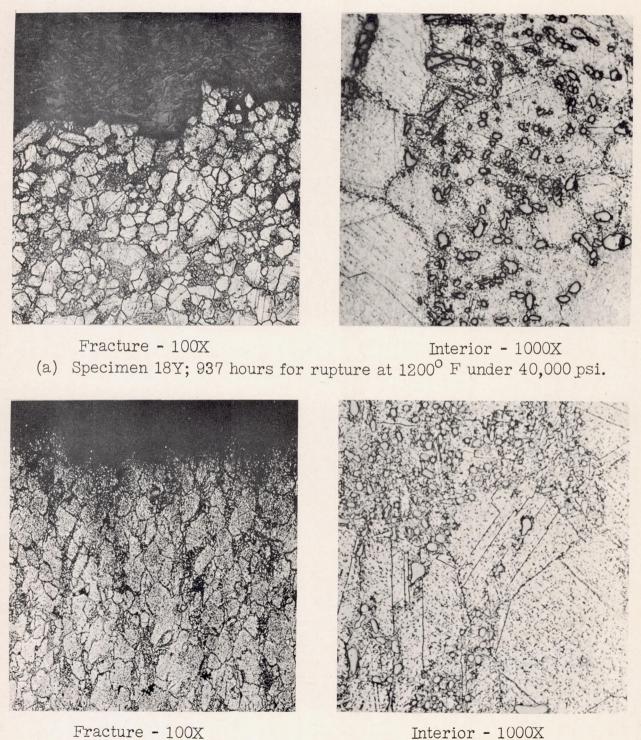

NACA

Figure 18.- Concluded.

(a) Disc NR-74B-Q; radial section near rim of disc in center plane. Electrolytic chromic acid etch. Disc treatment: 2300° F waterquenched.

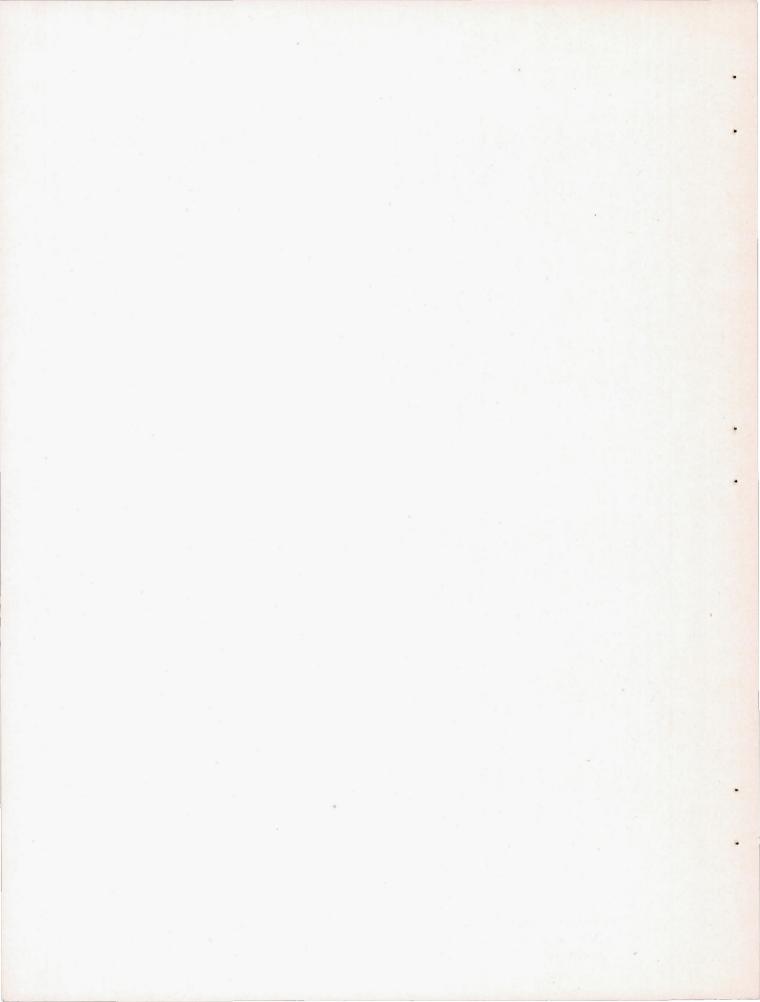


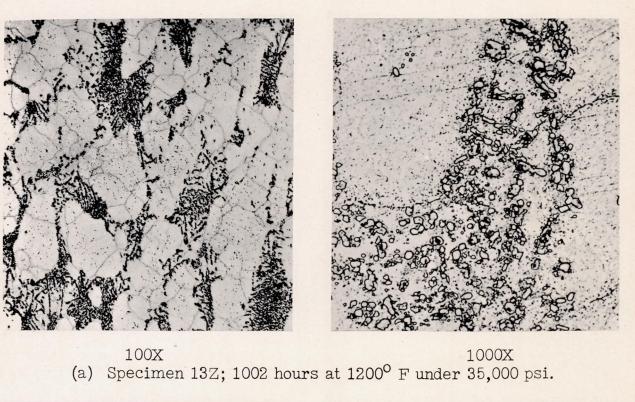

1000X

(b) Disc NR-74B-QA; radial section near rim of disc in center plane. Electrolytic sodium cyanide etch. Disc treatment: 2300° F waterquenched; 16 hours at 1400° F.

NACA

Figure 19.- Original microstructure of S-590 alloy discs NR-74B-Q and NR-74B-QA.





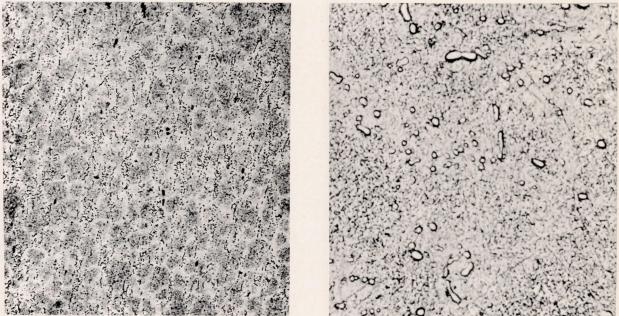
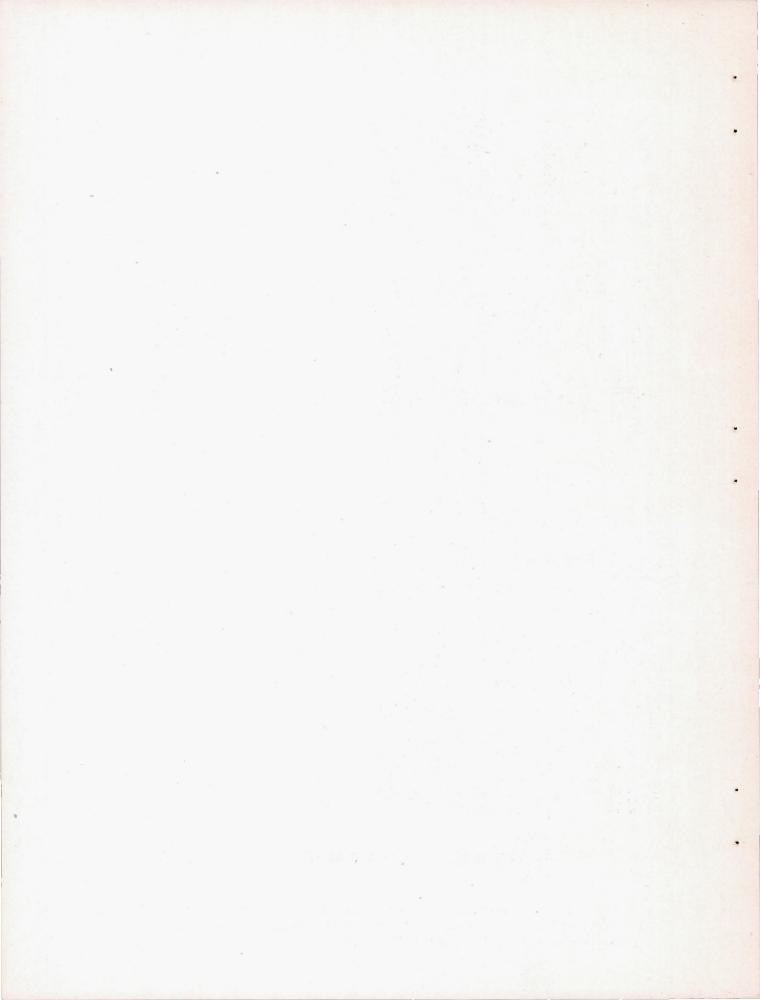

(b) Specimen 14Y; 951 hours for rupture at 1350^o F under 25,000 psi.

Figure 20.- Microstructure of specimens from S-590 alloy disc NR-74B-Q after stress-rupture tests. Electrolytic sodium cyanide etch. Disc treatment: 2300° F water-quenched.

NACA



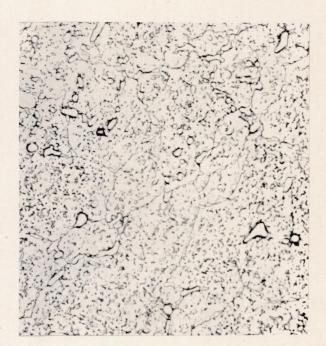

100X 1000X (b) Specimen 1X; 2282 hours at 1350[°] F under 15,000 psi.

Figure 21.- Microstructure of specimens from S-590 alloy disc NR-74B-QA after creep tests. Electrolytic chromic acid etch. Disc treatment: 2300° F water-quenched; 16 hours at 1400° F.

NACA

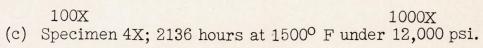
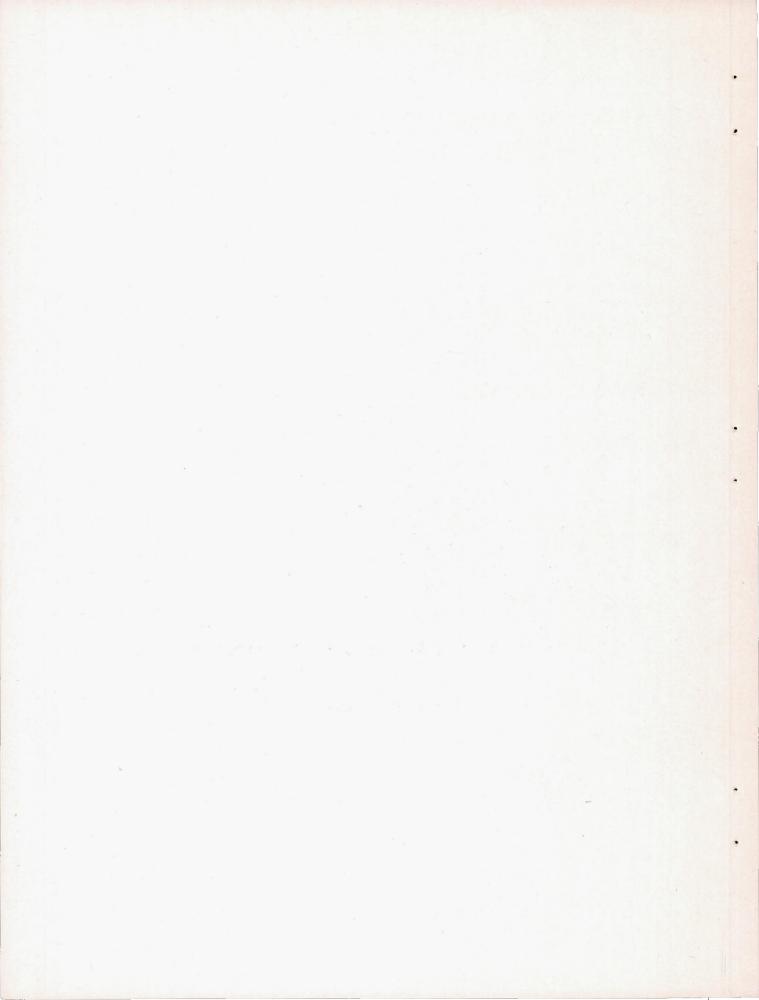
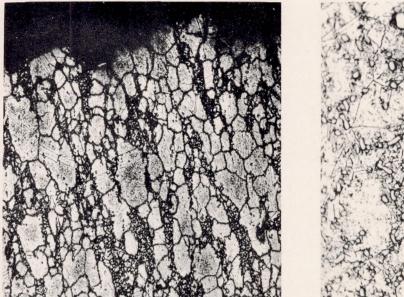
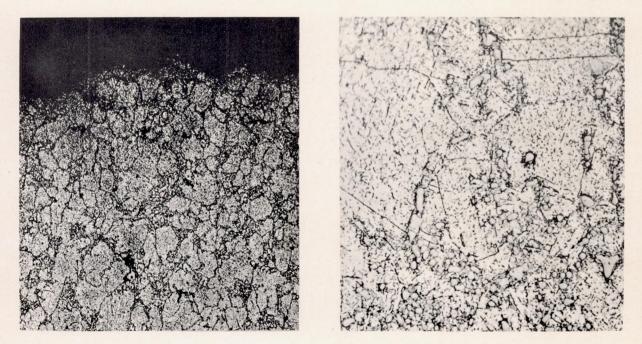
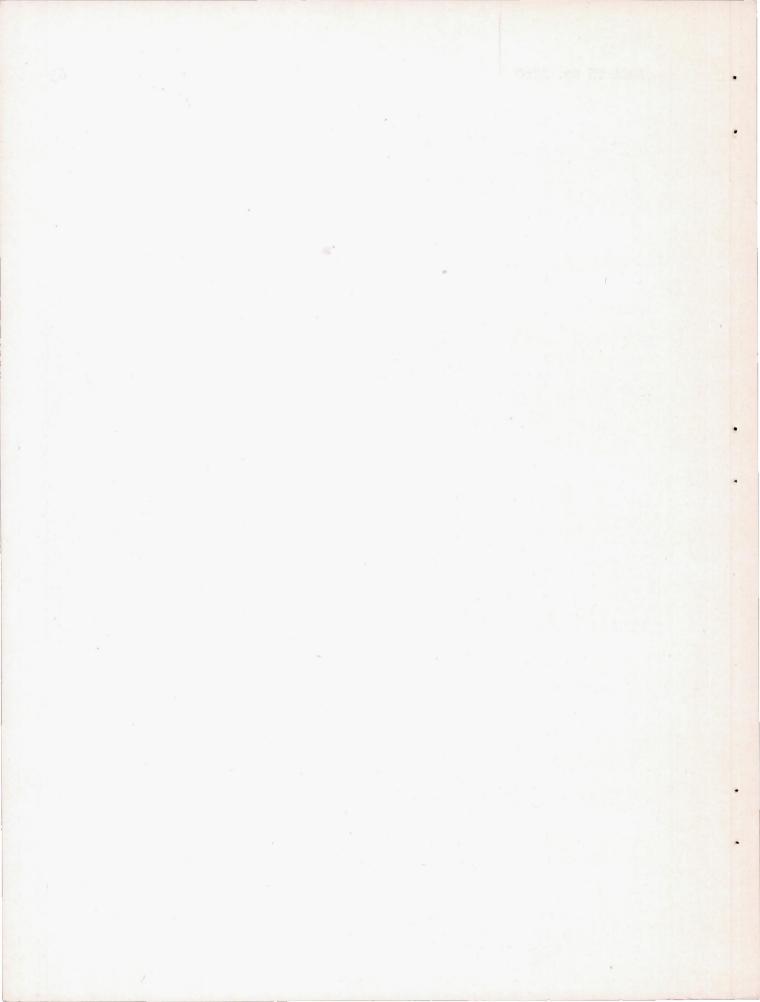
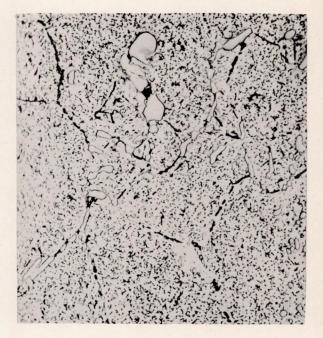




Figure 21.- Concluded.


NACA TN No. 1760


NACA

Fracture - 100X Interior - 1000X (a) Specimen 13X; 1596 hours for rupture at 1200^o F under 40,000 psi.



Fracture - 100X Interior - 1000X (b) Specimen 13Y; 1121 hours for rupture at 1350^o F under 25,000 psi.

Figure 22.- Microstructure of specimens from S-590 alloy disc NR-74B-QA after stress-rupture tests. Electrolytic chromic acid etch. Disc treatment: 2300° F water-quenched; 16 hours at 1400° F.

Fracture - 100X

Interior - 1000X

(c) Specimen 11D; 1000 hours for rupture at 1500° F under 15,000 psi.

NACA

Figure 22.- Concluded.