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4 NA!.L'IONALAllVISORY COMMITTEXFOR~N~ICS 

TECENICAL NOTE ~0~ 1786 

RK!OMMEKDATIONS FOR HCMERICAL SOLUTION OF RFJX?ORCED- 

PARELANDFUSELAGE-RIRGPPDBIZM 

By N. J. Hoff and Paul A. Libby 

Procedures are recommended for solving the equation5 of equilibrium 
of reinforced panels asd isolated fueelage rings as represented by the 
external load5 and the operatiane table establiehed according to 
Southwell's method. From the solution of these equations the stress 
distribution cas be easily determined. The recommendation5 are baaed on 
the experience of the past 4 ye5r5 in applying numerical procedures to 
monocoque s-trees analysis at the Polytechnic lktitute of Broom 
Aeronautical Laboratories. The method of systematic relaxations, the 
matrix calculus method, and several other method5 applicable in special 
cases sre discussed. 

Definite recommendation5 are made for obtain- the solution of 
reinforced-panel problm which 5re generally designated ae shear lag 
problems. The procedure5 recommended are demnstrated in the analysis 
of a number of pasel-5, several of which were diecussed in previous 
PIBAL reports, whereas others are shown for the first time. 

In the case of fuselage rings it is not possible to ,ma;ke definite 
recommendation5 for the solution of the equilibrium equations for all 
ringsandlmdings. However, suggestions based on the latest experience 
are made and d emonstrated on several ring5- 

INTRODUCTION 

=_ 

The application of the indirect method5 of Hardy Cross (reference 1) 
and R. V. Southwell (reference 2) to the analysie of monocoque structures 
ha5 been shown in a series of investigation5 (references 3 to 8) c5rried 
out at the Polytechnic institute of Brooklyn Aeronautical Laboratories. 
These indirect methods are likely to lead to solution5 of problem5 in 
stress analysis that are intractable by direct analytical method5 because 
the structure is tapered, ha5 large cut-outs, it5 reFnforcing elements 
5re distributed irregularly, or the like. 

c The distorted 5hape corre5pcnding to equilibrium under the applied 
loads is determined first in the indirect methods. From it the stresses, 
force5, .snd moments required c5n be calculated without difficulty- This 
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approach is justified by the comparative ea5e with which the streeses In 
a complex structure can be determined for an individual di5placement of 
one potit and with which the final distorted shape of a complex structure 
can be represented by a sur.unatFon of such Individual dieplaceanent5. 

The complete structure is considered to be composed of appropriate 
elements and it5 degree5 of freedom are the displacement5 of the several 
reference point5 on the boundary of each element. Each of these points 
15 displaced in turn and the reactions at,the reference potit Cau58d by 
the displacement are lieted. If by suitable displacements of aI2 points 
the reaction force8 and mOments are made equal and opposite to the 
external loads at each point, the *hole structure is in equilibrium and 
its distorted 5hape 15 determined. 

In applying-the Indirect method5 to monocoque structur8s the termi- 
nology of southwell (reference 2) has been retained. Thus, the elamants 
which compose the complete structure are 'bits" and the determination 
of the force5 and moments due tu a displacement of a boundary potit of 
such units is termed the "unit problem." The magnitude5 of theee forc%s 
and moments are given by "Fnfluence coefficients." The complete effect 
of a displacement is given in an ."operations table," and the step-by- 
step proce55, which can be employed to determine the equilibrium 
distorted shape, 15 called the 'method of systematic relaxations.tl At 
each step of thi5 proce55 forces and moment5 referred to a5 '~8sidual.s" 
remain unbalanced a-h point In the 5tructureD A running account of- 
the residual5 and of the displacement5 or "operatione~' undertaken is 
kept in the 'retiat-ion table. rl 

The operations table along with the external force5 con5titutes a 
syrstem of linear equatIonis, which are equal in number to the degrees of 
freedom of the structure and which have a5 variable5 the displacemente. 
Each equation r%presents the condition ofequilibrium for the force or 
moment aesociated with one degree of freedcan. When the method of sysm- 
atic relaxations is applied &~l approximate solution -t;O this system of 
equations and accordingly an approximat% equilibrium sta-t%of the struc- 
ture are found. 

The indirect method of analy515 just-outlin%d has been applied at 
PIBAL to the reinforced-panel and ring componentsof a monocoque struc- 
ture as well as to complew circular cylinder5 with and without cut-outs. 
In references 3 and Lthe strese distribution in the sheet--and strwers 
of a reinforced panel U&B determined under loads appli%d parallel tc the 
5tringere. Fuselage r-5 tith and without internal bracing elements 
were investigated in reference ?a The determination ofthe influence 
coefficients for the ring unit problem was found to Involve considerable 
cmutational work and therefore appropriate graphs and tables are 
given in reference 6 to facilitate their calculation- In references 7 
and 8 the elements, namely, the reinforced panel and the ring, are 
combined into a circular cylinder and the stress distribution in the 
cylinder W&B investigated for the ca5e when the loading i5 a pure bending 
moment. 
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Ln the application of the indirect-stress-analysis x&hods to the 
problems mentioned the major obstacle h.as been to find an approxi&te 
solution of the system of equations with a rea5onable expenditure of 
effort. In each problem it has been readily possible to establish 
satisfactory unit5 and to combtie them to represent the complex struc- 
ture. BurIng the past 4 years considerable experience hELEl been gained 
at PIBAL in 0V8rComin@; thi5 obstacle to the wider appliCatiOn Of n?JmeriCti 
procedures in the analy515 of monocoque structures. On the basis of this 
experience 5ome recomm8ndations c8n be made as to the most expeditious 
m&hod of 5olving reinforced-panel asd Azselage-ring problems after the 
operation5 table ha5 been established a5 described in reference5 3 to 5. 

In many problems solution of the set of 1Fnear equations by mean5 of 
matrixalgebrawas found easierandless time consumFngth8nthe 
determination of the displacement5 by syetanaatic rel&xEttion5= Zn other 
1x58s special methods, such a5 the growing-unit method, proved to be 
most expeditious. 

It is assumed that the reader is famili8r with the terminology of 
Southwell's relaxation method and with the solution of the unit problem 
as well as the establishment of the operations table for both the 
reinforced-panel 8nd fuselage-ring probl8ms. Complete details of these 
5re given in reference5 3 to 6. 

This work, c8rried out at the Polytechnic Institute of Brooklyn, w&5 
5pon5ored by and conducted with the financial assistance of the National 
Advisory Ccmjrmittee for A8ronautics= Arnold 0. Ostrand contributed the 
grow--unit method for reInforced panels. The authora al50 wish to 
aclmowledge their indebtedness to the following members of the staff of 
the Polytechnic Institute of Brooklyn: Professors George B. Hoadley and 
William MacLean of the Department of Electrical Engineering for their 
work on the electric 5nalogue, Burton Erichon for carrying out the 
major portion of the computations, and Bruno A. Boley for his editorial 
advice. 

SYMBOLS 

A croes-sectional area of stringer and effective sheet 

. 

A-- & points.on a ring or a reinforced paselj group operation5 

A* effective shear 8rea of ring section 

a distance betW88n adjacent longitudinal etringers 

II b distaste between adjacent transverse stringers 

C 818CtriCti conductance 
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Young'5 modulu5 of elasticity 

tensile force in 8trin&Cj applied eXteI.%al lo5d 

ehear modulus of elasticity . 

horizontal direction 

mom8nt of inertia of cro55 58CtiOIlj electric8.l current 

group operations 

length of straight-bar or length of 83% of curved b5r 

bending moment 

moment acting on a joint 

shear flow 

radial force act- at a jointi electrical resistance 

tangential force acting on-a joint 

sheet thickness 

displacement of a joint in tangential direction 

electrical POhIlMtij P8lYbfCd direCti= 

dis@acement of a joint in radial d.imCtiOnj displacement of 
a joint in vertical dfrection 

vertical block displacement 

mtation of a join- 

magnitude of group operation to be determined 

rectangular coordinate6 

force in y-5&5 direction 

c- 

- 
. 

angle subtanded by ring segment 

58CtiOn-L3@h param8t8r (AL2/I) 

ratio of effective shear area to- tension area (A*/A) Ir 
. . . --. -- ._ -. . , _ ,. , -. 

5ummation _ 
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REINFCRCEDPAREIS 

Introduction 

In this section plsne and slightly curved reinforced panel5 are 
discussed when the load5 are applied in the plan8 of the flat panel5 or 
tangentially to the surface of the slightly curved psnels. 

lh mO5t airplane 5tIVCtIAI-85 theI% 15 a pre dominant direction in 
which the major forces act arnd in which the major reinforcing elmnti 
118. When the panel is synanetric and symmetrically loaded experience 
ha5 shown that it suffices to consider di5plac8meIIt5 and force equi- 
librium in the predominant direction only. Even when the structure or 
the loads are nonsymmetric, the displacement5 and forces in the tranS- 
ver5e direction are usually of secondary importance but they may be 
considered in a n&e refined snalysis. 

In references 3 and 4 numerical procedures for the d8t8titiOn of 
the stress dfstribution in reinforced panels subjected to axial stringer 
loads are developed asd demon5trated on several flat 5nd curved psnels 
with and without cut-outs. The results obtained by means of these 
procedure5 5re in good agreement with those of tests. 

Solution of the system of equations repr85ented by the operation5 
table and the external force5 can be found-by several methods, five of 
whLch are described herein. The various conditions of loading and 
structure which suggest the us8 of one method rather than another are 
discussed. 

Relaxation Method 

For most reinforced-panel problems the relaxation method of 
solution is the most suitable. Simple group and blockoperations lead 
to a rapid eUmlnation of the residuals and require little initiative 
on the part of the computer familiar with the sequence of step-by-step 
operations. The method, however, is not efficient in the case of 
panels with msry bays in the direction of the stringer loads or panels 
with sheet covering of large shearing rigidity, since large forces are 
then introduced into adjacent stringers when one stringer is balanced. 
These forces in turn must be liquidated in successive operations with 
the consequence that the procedure becomes time consuming. Al50 ti 
problem5 involving many loading condition5 it may be expeditious to use 
the electric-analogy method described in the section entitled 'The 
Electric Analogue," sfnce in the relaxation method each new loading 
requires new step-by-step operations. 

. JIn this section panels are difzussed which are not excluded from 
application of the relaxation method by the foregoing considerations. 
They may be classified according to the boundary conditions of the 
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stringers into four groups~. ~eccmrmendations for each group follow with 
a fifth subsection added containing suggestions for panels in which 
transverse forces and displac8ments are considered. 

(a) Psnels with boundary conditions at both end5 of atrIngers specl- 
fied in term5 of force.- The following two procedures are recommen &d for 
liquidating the residual5 on a panel of this group: 

First procedure: 

1. Consider each stringer isolatsd by cutting the sheet and the 
transverse reinforcing elements. Select the string8r for which the 
algebraic sum of the external forces is the largest; Displace the entire 
stringer a5 a rigid body (block displacement) until this sum vanishes. 

2. Balance one end. joint of the stringer by displacing the adjacent 
joint- on the same stringer. 

3. After step 2 is completed the end joint is balenced but the joint 
that wa5 moved is unbalsnced. Displace the third jotit on the same 
&ringer until the second joint is balanced. 

4. Continue the procedure until the eecond end joint ie x~ved. In 
this last step both the end joint snd the adjacent one will be approxi- 
mately balenced at the same time since the algebraic 5um of all the forces 
acting upon the stringer wa5 zero after completion of step 1 and thie 
equilibrium has been disturbed only slightly by the shear fames tran5- 
mitted by th8 Sheet during the individual op8rations. 

5. Stringer 1 is now approximately balanced. Carry out-the same 
procedure with the other stringers of the panel successively. 

6. When all the strFngem are approximately balanced, return tc the 
first-stringer and balance it again by under-W&g steps 1 to 4. Repeat 
the procedure with the other stringers until alJ the residual forces can 
be considered negligible for engineering purposes. 

Second procedure: 

1. Consider each stringer isolated by cutting the sheet and the 
transverse reinforcing elemente. Select the stringer for which the 
algebraic 5um of the external forces is the largest. Displace the entire 
stringer as a rigid body (block displacement) until thie 5um vanishee. 

2. Displace one end point of this stringer 50 as to b8Jance the 
residual thereon. 

3, Disp.&ace by equal amounts the adjacentjoint on the 5sme stringer 
snd the end joint which was balanced in step 2 so a~ to balance this 
S8COIld joint. The equilibrium of the end jorzlt will be disturbed only 
by a small amount due to shear in the sheet. 

. 

I 

. 

. 
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4. Displace by equal amounts the third joint on the fame stringer 
and the two joints that were placed IXL appromte balance by the oper- 
ation described in step 3 BO as to'balance this third joint. 

pa Continue this procedure until the joint next to the midjoint of 
the stringer is b~Janced by equal dis-placements of BU the joints 
situated between it and the end jotit first displaced. 

6. Repeat the process described In steps 2 to 5, starting from the 
other end joint of the stringer and contfnuing to the midjoint from this 
direction. After this step in completed this stringer will be $I 
approximate balesce, the only residuals being those introduced by shear 
in the sheet. 

7- Consider next the stringer on either side of the approximately 
balanced stringer. Undertake a block displacement so a~ to equilibrate 
etiex!naJly the stringer under its residual forces. 

4 
8. Start at one end joint of this stringer and apply steps 2 to 6. 

This second stringer XilI be placed in approrlmate balance thereby, 
while the balance of the first stringer till be disturbed only through 
the shear ia the sheet. 

. 
9. Either return to the first balanced stringer or proceed to the 

next atruer on the other side. Each newly considered stringer is 
first externally equilibrated under the external and residual forces by 
a block displacement. Then from each free end the residuals are 
balanced by group dis-glacements involving equal diBpLEbcemen.tB of aJl the 
jotits situated between the one in question and the free end= Continue 
to balance individual atrIngers until all are bal.Bnced. 

The relaxation tables for the panel shown in figure 1, for which 
table 1 is the operatians table, are tied to damonetrate the first 
and second procedms asd.are given as tables 2 and 3, respectively. 
It will be noticed that thie operations tab16 considers the displacements 
of only the joints on the left half of the panel. The panel is symmt- 
ricaland is symmetrically loaded. Therefore, the displacements in the 
balancing process are undertaken symmetrically and only those of the left 
Bide joints need be considered, those of the right being corre~-pondingly 
equal. Since this panelhas onlythreebayB along eacha;riaUy loaded 
stringer, the internal balancing process is undertaken from one end of 
the BtriIIg8r Ody. 

lb) Panels with boundary conditions at one end of stringers specified 
in terms of force and at other in terms of displacement=- This type of 
problem occurs, for instance, when one end of the panel is attached to a 
rigid body which is either held fixed in its position or is dis@aced a 
given amount. The recommended procedure for panels of this group is the 
same as the second procedure for panelrr in case (a) with two exceptions: 
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(1) No block displacements are needed (or possible) to equilibrate the . 
stringers externally end (2) the internal balancing process can be 
started only from the one free end of each stringer. 

The method is d emonstrated on the panel shown in figure 2. It is 
identical with the panel used for case (a) with the exception of the 
fixed lower ends of-the vertical stringers. The operations table IB 
identical with that-of the previous panel except that no block and 
no vN and vO displacements are admissible. The relaxation table is 

given as table 4. 

(c) Panels with boundary conditions at-both ends of-stringer 
specified in terms of displacement.- Experience on panels of this type 
indicates that,although no systematic process of balancing the residuals 
can be recommended, the direct relaxation process is rapidly convergent. 
By starting from the midpoint joints on a stringer and by balancing 
successive joints toward the two fixed ends, the equilibrium position 
can be approximated rapidly. A further suggestian regarding this type of 
panel is contained in the later section 'kiles Tables.. )t 

(a) Panels with irregularly specified boundary conditions.- For such 
panels a combination of the methods discussed under cases (a), (b), and 
(c) is recommended. By judicious use of block and group operations 
similar twthose of-cases (a) and (b) rapid convergence of the relsxation 
procedure will'be obtained. 

(e) Panels in which transverse displacements and forces are 
considered.- There are two general pmcedures for treating panels in 
which the transverse displacements and forces, usually considered negli- 
gible, are treated. These are described in the following pa?XgraphB: 

i 

. 

First procedure: 

The procedure discussed under cases (a) and (b) can be applied to 
panels with cut-outs. The stringers are approximately balanced in the 
direction of the major axial forces by these procedures and then the 
residuals nomnal to this direction are considered. The same step-by-step 
operations can be applied in balancing transverse stiffeners under these 
transverse axial forces. The process of first balencing the stringers 
in one direction, then balancing the stiffeners in the normal direction, 
and then returning to the originally balanced stringers will be quite 
rapidly convergent for panels with sheet of low shearing rigidity. 

Second procedure: v 

For panels with cut-outs requiring consideration of the transverse 
forces another procedure, which is demon&rat& in reference 4, can be I 
used. The panel is first considered to have cctntinuous sheet and stringers, 
as if the cut-out did not exist, and the displacements for equilibrium of 
this panel under the external.loads are determined by the usual methods. 
These displacements are then applied aa a first approximation to the 
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distorted shape of the actual panel with cut-outs. Displacements leading 
to a closer approximation are then undertaken. This procedure is found 
to be reasonaMy successful for the cases investigated in reference 4. 

Matrix Calculus Method ' 

The ope?.&ions table together with the external forces can be 
considered as a system of linear equilibrium equations with the ma&.tudes 
of the displacements as the W&EWIIB. Therefore, the methods of mEltrix 
calculus can be applied to find the solution of this aystemby direct 
mathematical means. The method described In reference 9 is recommended 
since a check on the calculations is maintained at each step In the 
process of solution. 

Matrix methods of solution have several advantages- After the 
operations table is established by trained engineering personnel, the 
solution can be obtadned by ccmputbg personnel familiar with the matrix 
calculus method. Unaer home cond%tions this economic advantage may be 
iDIports3lt l For rejnforced panels with sheet of high shearing rigidity 
the relaxation procedures are slowly convergent even when the recomnen- 
dations given In the precedbg section are observed= The matrix calculus 
method is not affected by this physical characteristic of the structure. 

When the nuuiber of equations is greater than 30 or 40, the work of 
computation becomes inconveniently large. Therefore, for panels havbg 
a sheet cover- of small shear- rigidity relaxation methods are 
recommended. When the sheet covering is very rigid in shear the matrix 
method is likely to be more advantageous because the routine operations 
of the matrix method csn always be csrried out if enough tdme is allowed- 

The equations of equilibrium for the panel shown in figure 1 are 
gdven by table 1 and are presented as follows to illustrate how the 
operations table and Me external forces can be considered as a system of 
equilibrium equations: 



- 55.2~~ t 2.00~~ + 51.2~~ = 0 - 

2.mg - lo1.6V~ + 4.00VF t 46.8vJ + 2.cQVK = 0 

51.2p-s + 4.oov, f llo.4VF + 2.00VJ + 51.QvK = 0 

46.8VE + 2.00vF - 101.6~~ + 4.00~~ + 46.8~~ + 2.00~~ =o 

2.00v'E t 51.2vF + 4.cmJ - 110.4v9 t Q.Oov* + pvo =o 

J@hJ+ 2.00vg - yl.8~~ t Q.oov, t 60 x 104 = 0 

2.9 t 51.2vg t Q.OOv, - 55-2vo + 60.X lo4 = 0 
d 
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Growing-Unit'Method 

For reinforced panels with sheet of high sheering rigidity or xith 
a-large number of bays in the direction of the axial forces, the relexation 
procedure is not rapidly convergent. In such problems either the matrix 
calculus or the growing-unit method is recommended. The latter can be 
applied only to panels the boundery conditions of which are specified in 
terms of force at least at one end of the strdngere. 

The grow?ng-unit method applied to reinforced panels is as follows= 
The joint at the free end of en arbitrarily selected Uzl'l?alanced stringer, 
called hereinafter the principal joint and the principal stringer, 
respectively, is displaced so as to liquidate the residual on this joint. 
At the same time the joints lying on adjacent parallel stringers and the 
Sara trersverse stiffener ere displaced so that the residuals that would 
be otherwise introduced by shear from the balancing of the principal 
joint as well as any external forcee applied to these joints are likewise 
LLquidated. Ih the second o-preration the next jofnt on the principal 
stringer is relaxed while the previously balanced joints on the first 
transverse stiffener and the joints on the second transverse stiffener 
are kept in balance by suitable displacements= After this second 
operation no residuals remain at the joints of the first two transverse 
stiffeners. After a sufficient number of repetitions of the procedure 
all residuals will be confined to reaction points or will be liquihtedj 
the panel will then be in equilibrium. 

Thia procedure is demonstrated on the penel shown in figure 3. The 
physical properties of the panel are the seme as those of the previously 
discussed panels except for the additional bay in the direction of the 
axial forces. Actually the convergence of the relexation method for this 
panel would be quite rapid, but for convenience the grow-unit method, 
applicable when this convergence is slow, is demonstrated thereon. 
Table 5 is the operations table for this panel and coMaIns not only the 
individual operations but also the group operations of the growing-unit 
method. Table 6 is the relaxation table in which these group operations 
are used. 

The group operations given in table 5 require 8ome ex&le.nation. In 
order to avoid introducing a yB residual when joint A is relaxed by 

application of operation (1), a vB displacement is applied, the magni- 
tude of which can be calculated frcm the equation 

- 55.2vB + 2.00 =.o 

Thus operation (9) is vB = (2/55.2) = 0.0362 and (lo) is a ~L-OIQ 
operation equal to the sum of operations (1) end (g), which liquidates 
the residual YA without Introducing a YB unbalance. 
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After operation (10) is used., unbalances exist at joints E and F, 
is, on the second transveme stlrffener. In order to balance these 

tithout~disturbing the recently established balance at A and B, two 
group operatione are developed: one permitting the balan.cFng of-E and 
one pemitting the balancing of F. The -itides of vA and vB 
required to maintain the balance of A and B when a displacement 
of vE= 1 is undertaken are given by the following equations: 

- 5CdvA + 2.00vB + 46.8 = 0 

2.009 - 55&B + 2.00 = 0 

(3) 

These are satisfied by vA = 0.921, operation (II), end vB = O-0695, 

operation (12). Operation (13) ie therefore established as the sum of 
OperationfI (3), (U), and (2). The magnitudes of vA and vB 
requiredtomaintainthe balance of AandBtiena displacecmen-tr 
of 'F = 1 ie undertaken are given by the following equations: 

- 50.8V~ + 2.00vB + 2.00 = 0 

1 

(4) 

These are satisfied by VA = 0.0758, operation (lk), and vB = 0.923, 

operation (15). 
=d (15). 

Operation (16) is the mm of operations (4), (14), 
Since group operatime (13) and (16) both introduce YE 

and YF forces, the magnitudes Xl3 ezd Xl6 of these groups 
required to liquidate the -ill-pound and -g-pound residuals at E and F, 
respectively, axe given by the following equations: 

-- - 58.3~~~ + 9*4x,6 - = = 0 

g.4x13 - 62.6~~~ - 9 = 0 

(5) 

,. 
. 
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* 0 Thus Xl3 = - 1.975 and xl6 = - O.@&. Joints E and F are baticed 
without disturbing the balance of A end B by the use of these multiples 
of operations (13) and (16). 

In eliminating the residuals at joints J and K multiples of 
operations (13) and (16) are applied since these operations permit 
displacements of E ezid F to be underteken while the balance at A end B 
is left undisturbed. When joint J is displaced a unit emount, multiples 
of operations (13) end (16), defined by the following equations, are 
used so that the balence at A, B, E, and F is maintained: 

- 58.3~~~ + g.4x16 + 46.8 = o 

(6) 

9*4y3 - 62.6~~~ + 2.00 = o 

. 

The solution to these equations is xl3 = 0.828, operation (17), and 

x16 = 0.158, operation (18). Operation (19) is the cum of operations (5), 

(17), and (18). 

In a similar manner all the individual and group displacements 
described in table 4 are found. It may be mentioned that in the present 
exemple no shearing stresses were set up in the middle bays because of 
the sy&netry of structure and loading. The original operations table 
was already established in a manner which complied with these require- 
ments of symmetry. When such is not the cese or when there is a greater 
nuuiber of stringers in the panel, displacements of principal stringer 
joints will, in general, cause residuals to appear at more joints so 
that three or mxe, rather than two, simultaneous equations have to be 
solved at each step. 

Nile6 Tables 

Ih reference 10, Al S. Nile6 demonstrates for the solution of rein- 
forced-panel problems a method which essentially parallels the previously 
described relaxation method. The Nile6 method is a procedure for 
baticing a stringer by the use of tables which give the displacements 
of each joint on the stringer required to liquidate a residual on a given 
joint of the stringer. The tables are worked out for various end 
conditions end sheet shearing rigidities. 

Since reference l-0 contains tables only for sheet of relatively low 
ahearing rigidity, the Niles method is limited in this re&pect in the 
seme way as the relaxation method. However, the tables can be employed * 
on stringers with the boundary conditions at both ends specified in 
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terms of displacementj for such probleme no step-by-step routine l ’ 
relaxation method has been recommended. Also by use of th8 tables exact 
baLance of a stringer is gained after a single displacement of each 
joint, whereas in the relaxation method, because of the shear, small 
unbalances remain after each joint is moved. 

On the other hand, the relaxation method can be applied to stringers 
with irregularly spaced joints for which no tables were set up by Niles. 

Since in reference -10 seveml examples of the procedur8are given, 
no application of the Niles method is shown herein. 

Electric Analogue 

Another conv8nient method of solving the problem of force distri- 
bution in a reinforced panel is that-in which the voltages ar8 measured 
in an electric network which is so constructed as to make it a complete- 
analogue of the reirforced panel. When suitable electric equipment is 
available, an etnalogous network can be hooked up and t86t8d with very. _. 
little work. A particuLarl.y attractive property of-the stress-analysis 
procedure by means of electric measurement is the ease with which the 
effect upon the stress distribution of changes in loading and in dimen- 
sions of the various structural elements of the reinforced penel can be 
investigated. This permits the development of an efficienmsign with 
little am%lytiC work. 

d 

The analogy between the forces transmitted through the different 
structural elements of the reinforced panel and the currents flowing 
through the various branches of the direct-current netiTork c8n be 
explained with the aid of figures 4 and 5. The problem investigated is 
the so-called 'one-dimensional shear lag.n It is assumed that the trans- 
verse stiff-eners are infinitely rigid so that the vertical, or longitu- 
dinal, displacements v alone need to be determined; The portion of 
the sheet-covering Considered effective in tansion or compression is 
added to the cross-sectional area of each stringer and the panels of 
sheet are assumed tocarry shear etresses only. A consequence of these 
ase~tions is that the shearing stress must be constant in each panel. 

The analogous direct-current network contains as msny binding posta 
aa the number of joints in the reinforced panel. Adjacent-binding posts 
are connectwd by conductors having prescribed resistances R. Rrede- 
tezmined electric c urrenta I, which correspond to the forces F 
applied to joints A and B of the reinforced panel, are introduced into 
the network at points A and B. . 

It is now recalled that in the relaxatim method.*he joints of--the 
panel are first assumed tube rigidly fixed to a rigid wall behind the 

,'paJl81. The external loads are first applied.to these rigid pegs, 
referred to as the 'constraints. H The panel is obviously in equilibrium 
under these conditions but this ertificiai equiiibriuu~ia 8ntirely 
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different from that prevailing in the actual panel, which'16 not attached 
to any rigid wall. The actual state of equilibrium is approached by the 
step-by-step procedure of the relaxation method, in 8aCh step of which 
one single constraint is removed and the corresponding joint is displaced 
until it reaches its equilibrium position in the system in which all the 
other joints are still rigidly fixed. 

For instance when joint 1 of the reinforced p8nel is mx~3. through 
a distance v in the positive direction, this displacement imposes 
forces upon all the adjacent joints nuniber8d from 2 to 9. Three typical 
fOI'C86 BJ?e &VeIl by the equations: 

where 

'8~ Fgl, F61 

E 

G 

, t 

V 
. 

(7) 

the forces acting upon joints 8, 9, and 6, respectively, 
because of the displacement of joint 1 

modulus of elasticity of stringer 

shear modulus of sheet 

thickness of sheet 

displacement of joint 1 

In the case of the analogous network it can be assumed that the 
potential of each binding post is zero at the outset. If there is no 
potential difference, no current flows between the posts. It can be 
imagin8d that the currents introduced at points A and B are taken out of 
the system by m88ns of some imaginary conduotorso However, the actual 
distribution of currents in the network prevails without the aid of the 
imaginery conductors. This actual state ten be approached also by mean8 
of a step-by-step, approximation-type CalCXIlation= For instance it can 
be assumed first that the potential of binding post 1 is elevated to the 
value V. After this change there is a potential difference between 
binding posts 1 end 8 end consequently a c urrent will flow from post 1 
to post 8. The magnitude of this current can be calculated from the 
8qUatiOn 

I81 = V/Rfjl = c83-v (10) 
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where Ral is the resistance and C81 = 1 Rol 
/ 

is the COnduCtmC8 of the 1 

conductor between posts 1 and 8. Similarly the c urrentflmingfrm 
post-1 to post g is 

Is1 
= cglv (11) 

The current- flowin@; dorm post 1 to-post 6 is 

=61 = cslv w 

cO?I@ariSOn Of 8qURtiOIl.S (7) to (9) with 8qUatiOn8 (10) to (12) 
reveala an analogy between the effects of a displacement v of joint 1 
and the raising of the voltage of binding post 1 by an a.u.Bunt V. 'I!he 
current--caused by the change in potential corresponds to the force 
caused by the displacement, provided that the conductmce of each 
conductor is made equal to the influence coefficient in the corresponding 
force equation. Hence 

EA Gbt c81 = 7 - K 

Gbt 
cgl = c 

c61 = F (15) 

(13) 

In the relaxation procedure the equilibrium state is approaclied by 
displacing individually the joints and amming the effects of each 
diBplaC8mnt. Ln exactl;ji the same way the actual dietributian of the 
currents in the network can be determined by changing individually the 
voltages of each binding post and summing the effects of thee8 changes. 
In the reinforced panel equilibrium is obtained when at each joint the 
sum of the external forces and of all the internal forces caused by the 
displacements is zero- The forces are caneridered posi%ive if they are 
directed as the positive diEIplmements. In the form of &D. eqmtlon, 

ix F =o (1Q) 1 
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An analogous equation in the direct-current network is furnished by 
Kirchhoff's first law, according to which the sum of the currents flowing 
Into my binding post must be zero* Currents in the direction of any 
binding post are considered as positive. In the form of en equation, 

> I =o 07) 
. 

Comparison of the last two equations reveals that the conditions of 
equilibrium for the reinforced panel and Kirchhoff's first law in the 
case of the dire&-current network c-let8 the analogy of the two 
systems considered. It is possible therefore to construct an electric 
network with the same configuration of binding posts as that of the joints 
of the reinforced panel. The conductences of the conductors connecting 
the binding posts must be so ‘chosen as to make them proportional to the 
corresponding influence coefficients in the operations table of the 
reinforced panel. If then currents are introduced at the binding posts 
which correspond to the joints at which external loads are applied, the 
distribution of the currents in the network will be the same as the 
distribution of the forces between the various structural elements of 
the reinforced penel. 

In the first applications of the relaxation process to reinforced 
panels each joint was displaced until equilibrium was established. It 
was noted in the section dealing with the solution of the problem by 
matrix methods that this procedure permitted rigid body dispkLcements of 
the structure. Rigid bpdy displacements ten be eliminated if one or more 
joints are considered as rigidly fixed. In the case of the reinforced 
panel of figure 4 the degree of freedom of motion of each joint is one, 
because the problem is considered as a one-dimensional sheer leg problem. 
Consequently it suffices to fix one single joint so that it is prevented 
from displacing vertically. However, if joint C, for instance, is fixed, 
the symmetry of the structure and loading requires the simultaneous 
fixation of joint D. 

In the enalogous network binding posts C end D are given predeter- 
mined values of the potentials by connecting them to the ground. It is 
customary to attribute the value zero to the potential of the ground. 
Consequently VC and VD are zero just as in the reinforced panel 
vc end vD are zero. 

It will be noticed that in figure 4 the direction of F at 
joints A and B is upward, whereas the direction of I at binding posts A 
andB infigure5is downwsxd. This corresponds to the difference in 
the sign convention in the two systems. h the penel upward forces were 
considered positive and in the network currents flowing toward the 
binding posts were given the positive sign. The directions of the forces 
end the currents at points C end D ere the same- This again corresponds 
to the correct siw required by the sign convention since the downward 
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fOrC8s at these points are negative just as the curr8n ts which flow away 
from the bInding posts are negative. E8nceth8 reinforcedpsnelis 
under the action of 8xternal tens138 forces, whereas through the network 
currents are flowing in the downward direction. 

In the case under discussion it is easy enough to introduce the two 
equa: currents at posts A and B and to-regulate their mitude by means 
of an adjustable rheostat. However, when there sre a nuniber of -reseed 
currents of different magnitude stipulated, their adjustment may become 
a lengthy trial-and-error procedure. Insuch cases it is advsntageous 
to employ a number of comn8rciaUy available electronic d8vic86, lmown 
as constant-current generators, which have the property of maintaining 
a constant current independ8ntly of the properties of the Iletwork. 

When the constructIon of the network is completed snd the required 
external currents sre introduced, the deflection of any joint of the 
reinforced panel can be obtained by measuring the pot8ntial of the 
corresponding post in the n8iXOrk tith respect to the ground. This 
qusntity multipli8d by the conversion factor is the relative displacement 
of the corresponding joint of the reinforced panel with respectitz-the 
fixed poInta C and 3. In most cases, however, the displacement quantIt& 
are of in-berest only indirectly and the maFn quantities sought are the 
forces in the strdngers and the Shear StreSS8S in the sheet. Thee8 
quantities can be obtained In a simple msnner by multiplying potential. 
differ8nces by the appropriate conductancea snd by the conversion factor. 

For Instance when the force in &ringer segm8nt i-8 is sought, the 
voltage drop between posts 1 and 8 must be measured and multiplied by 
the conductance Gel and the conversion factor. Thirr is a consequence 

of equations (7) and (10). Similarly when the shear Str8SS Fn p&%181 1689 
is required, the voltage drops in conductors l-6 snd 89 have to be 
lnsasured. From figure 4 the average displacement of stringer segm8nt 6-g 

Is (‘6 + vg)/ 2 and the aversge displacement of stringer segment l-8 

is ( v1 + v&/2. The difference of the68 two average displac~ts 
multiplied by Gtb/a is the Shear force transmitted from the pan81 
to str-er segment 6-g. Consequently the SIR?I ofth8 displacement dlffer- 
ences 

3 - v1 and v9 - va multiplied by the Influence coefficient- l-6 
is the shear force sought. h other words the sum of the Voltage drop6 
from post 1 to-post 6 and from posti to post g'multiplied by the 
conductance C& end the conversion factor is the shear force in- question. 
This shear force divided by the length b giv8s the average shear flow in 
pan811@9 end this shear flow divided by the thickness of the sheet is 
the ave'rage shear stress. 

With the cooperation of the Department of Electrical &gineerlng a 
network was constructed at the Polytechnic Institute of Bmklyn which 
was th8 analogue of the reinforced panel inV8Stigated earlier at BIML 
both experimentally and by relaxation methods. The results of these 
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c investigations are described in reference 3= The constant currents were 
introduced by means of constant-current generators. In the electrical 
system the unit of the potential was chosen as 1 volt and that of the 
current as ICC milli~eres. Then the unit of the conductance had to be 
a m.illLmho and that of the resistance, a kilohm. In the mechanical 
system the unit displacement was 10 -4 inch and the unit force, 1 pound. 
Consequently in this problem the voltage differences had to be multiplied 
by the conversion factor 10m4 inch per volt in order to obtain displace- 
ments. The factor converting currents into forces was 10 pounds per 
sqpere l The results of the measurements were in excellent agreement with 
the results quoted in reference 3. 

Similar experiments were carried out by R. E. Newton and M. E. Engle 
at the Curtiss-Wright Corporation, Airplane Division, in St. Louis and 
are described in two reports listed as references ll snd 12. Newton '6 
approach to the problem is fundaslentally the same as the argument given 
herein- However, his electric network is slightly simpler since it does 
not contain the conductors arranged diagonally in the system shown in 
figure 5. 'The network of figure 5 was chosen in this report in prefer- 
ence to Newton's simpler network since by this presentation the iden- 
tity of the conductsnces of the network and the influence coefficients 
used in the other parts of this report could be established. 

It should be mentioned that in many cases it is possible to construct 
a dual type of network in which the currents correaond to the displace- 
ments of the joints of the reinforced pan81 and the potential differences 
correspond to the forces in the stringers snd in the sheet covering of 
the panels. In this type of network the external loads can be introduced 
more easily as impressed potential differences. However, the network 
described herein is more advantageous.since it can always be constructed 
directly from the geometry of the reinforced panel. 

The usefulness of the snalogue with the direct-current network 
bre& down when the influence coefficient in equation (7) becomes 
negative. In such a case the conductance snd consequently the resistance 
of the corresponding branch of the network should be negativej this is 
obviously impossible. However, the situation csn be usually remedied in 
the case of one-dimensional shear lag problems. The Fundamental assump- 
tions of the problem are not changed if a ntier of additional horizontal 
bracing elements are introduced in the panel since all of them are assumed 
to be infinitely rigid. If, however, the psnel length b is reduced 
to one-half its original value, then the negative term in the influence 
coefficient appearing in equation (7) is halved and the positive term is 
doubled. in most cases this will suffice to change the sign of the 
influence coefficient. When such is not the case distance b can be 
reduced in cry other suitable ratio. 

Negative influence coefficients csn be realized if the analogous 
network is fed by an alternating current. The quantity corresponding in 
an alternating-current circuit to the resistance of the direct-current 
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Circuit iS the impedance9 In the impedance the inductance retsrds the 
phase of the current and the capacitance advsnoes it so that-the two 
have opposite 8ff8CtS. If one is designated as positive, the other is 
negative. 3owever, no inductance is entirely free of resistance and for 
this reason the accuracy of a complicated alternating-currentnetwork 
may not- be sufficient for the solution of some of the problems encoun- 
tered in practice. 

- 

The use of the electric a%logue for solution of- shear lag problems 
is recommended when several similar panels with many loading conditions 
are to be analyzed. For such a case the ccmstruction of the snal..ogouS 
network, the variation of the loading by varying the impressed curr8nt6, 
and the determina tion of the potentials at the binding posts would be 
simpler thsn any analytic method of solution. 

Introduction 

In reference 5 n%i?.G?ical procedures for the determination of the 
bending-moment-distribution in fuselage rings are developed and demon- 
strated on S8V8rd. sim@e and internally braced fuselage rings0 The 
nuniber of redundant internal bracing elements increases litt-le the work 
involved in establishing the operations table for the r$ng and affecw 
not at all the amount of numerical work in the solution ofthe operations 
table. This nonsensitivity to the number of redundances constitutes the 
advantage of this method in the analysis of fuselage rings* 

The methods suggested for the solution of-the system of equations 
represented by the operations table and the external forces sre three: 
relaxation, matrix calculus, and growing-unit. The lattertwumaybe 
COnsid8red as direct mathematical methods and as in reinforced-panel 
problems require only computing personnel. For the andysia 0.f isolaterd 
fuselage ring6 of complex shape the use of these direct methods is 
recommended since an accurate solution is assured Fn'a reasonable length 
of time, Whereas the relaxation method may notlead to--sufficiecntly 
accurate results even after conSiderable effort has been expended- Eow- 
ever, for sirgQy shaped rings and for problems of stress distribution in 
Sheet;-stringer, and ring CoItibinationS, application ofthe relaxation 
misthod to fuselage rings is advantageous. For this reason the relaxation 
method for fuselage-ring problems is presented and new, more rapidly 
convergent procedures are developed. 

It has not-bean found possible to m&e concrete raommmendations for 
relaxation procedures which are rapidly convergent for all types of ring 
and loading. HowBver, satisfactory procedures for Several distinct ,types 
of ring and loading are. demon&rated and explain8d in some detail. It is 
felt that consideration of these examples will suggest-to the analyst 
meana of solving more rapidly other ring and cylinder problems which are 
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L not efficiently attacked by direct mathemEltical means. The procedures, 
which involve essentially appropriate combined operations, are demon- 
strated on two rings solved in reference 5 by the usual relaxation 
methods and on a new internally braced rFng. Application of the growing- 
unit and matrix calculusmethods to the latter problem is made to demon- 
strate these methods and to verify the results of the relaxation 
procedure. 

Torsion of a Circular RFng 

. 

In reference 5 the bending-moment distribution for a simple 
circular ring with sntisymmetric loading consisting of COnC8ntE3t8d 
forces snd distributed and constant shear flow is determined by appli- 
cation of numerical methods. The dimensions and loading for this ring 
are shown in figure 6 and the operations table is given as table 7. 
Relsxation methods are applied to the solution of this ring problem Fn 
reference 5- By a process of increasing all the r8SidualE in such a 
proportion that one key operation would liquidate them all to withIn 
the desired degree of accuracy, the residuals were reduced to within 
2 percent of the msxiEnn applied load in I.2 operations. 

In the present report combined Operations which inCr8aS8 the 
rate of convergence are demonstrated. Tangential and angular die- 
placements of A and C balance these points in four operatians and place 
all rmaining residuals at B. Since no tangential forces exist at 
A and C, the force residual at B must be vertical snd the moment 
residual, equsll to the couple of the vertical forces. Suppose the 
residual moment at B is liquidated by a rotation of that joint while 
the balance of A and C is preS8rv8d by Suitable diepLacements of A snd C. 
Then from equilibrium considerations the residual forces at B must also 
b8 liquidated. Thus in five operations balance till be obtained. This 
procedure is used and proves to be satisfactory. 

In order to balsnce the r8SidI.IalS at A two combined operations 
sre developed. The first CODlbineS a unit fXQ@ar displacement wA 
with a tangential displacement uA such that no tsngential force at A 
results when the two individual operations are 65JmiLtaneously applied. 
The forces and moments introduced by the individual operations as well 
as by the coriMna.tlon are given in the fono- table: 

I . 



The second operation conibinee a unit targentlal displacement uA wlt.h an allgacr rotation WA 
such that at A no mm& arises fkm the dined operation. The forcea and msmnts idmh0ea 
bytbe Fndiviaaal operatim ~~3n~bythe combined apemti0nare given in the folloxlng 
tdh3: 

Forma and 
"A TA ?T3 I$ ?e % Tc 

UA = ,.0-3 ia. -49.079 -52.296 64.675 -22.441 51.516 0 0 

WA = XL17407 x lo-3 radian 49.079 8.343 5.21.62 0.&3$ "Il.258 0 0 

lx + Operation B = 1 0 -439753 @JM -2~617 40.25a 0 0 

. . 



. , 
I . 

Thus byuaingthe necessarg amxmta of the combined operatlone A andB joine A ia balaucsd 
In txo operations. Two similar operation8 are found for joint C end em givaa 88 follow tith- 
out explanation: 

33 % ?B % TC 

WC = lO'3raaim 0 0 56.512 a.842 6.632 -157*&9 -1.563 

UC = -4.8540 x W3 in. 0 0 -j2-1$2 -2.935 -0.3325C 7.5868 1.563 

-p operation c = 
1 

1 0 0 244.320 6.2985 6.2995 -15Q.31 0 

‘A TA % %I %I % TC 

UC = 10-3 In. 0 0 6.632 0.524 OJ-5 -1.563 a.322 

WC = -o.oogag~ x 10-j IFLalml 0 0 4.55939 -o.o$F -0.0656 1,563 0.01547 

> + CperationD =l 0 0 6.0726 ’ 0.43648 0.0029 0 0.30653 

In order to balance the residuala at B without disturbing the balmce at A and C obtained by 
uee of operatime A to D, conibine8 operatiom involv.iq tangential and angular diepLEIcemente of 
A and C and a unit rotation of B are developeaO If joint A is to remaininbakmce wFhena rotation 
GfB ia mdertakm, joint Am&be rotatedend displaced in suchammner that the tangential 
force and the mment introduced at A by this rotation of B are~equilibrated~ Sirme the angular 
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displacement introduces tangential forcee at A, and the tangential 
displacement introduceE1 moments, two simultaneous equations must be 
solved for the unknown tangential and angular displacements. The 
equations for A are: 

- 281-wwA - 4p.079uA - 29.966 x IDS3 = 0 

- 49.o7wA - 52.296uA + 64.675 x IDS3 = 0 

The solution to these equations is wA = - 0.38434-x 10'3 radia-n and 

UA = 1.5974 x lo-3 inch. A unit rotation of B and tangential and 
angular displacementa of C are combined in equations (19) EIO that the 
tangential force and moment-introduced at C by the combined operations 
are zero. 

- 157*899wc - 1.563% + 56.5117 x m-3 = o 

- 1.563~~ - 0.322~~ + 6.632 x lo-3 = o 

09) 

The solution to these equations is WC = 0.16180 x 10e3 radian and 

UC =. 19.811 x 3.C3 inch. * 

If the forces end moments introduced by the three Bets of- 
di~lacements (unit rotation of B, the tengential and en&tar dis- 
placement8 qf A, and the tangential and angular displacements of C) 
are combined, a combined operation is obtained such that only forces 
and momenta at B and radial forces at A and C are introduced. These 
latter forcels are of no interest in the relaxation procedure since 
they are equilibrated automatically by the other half of the ring. The 
combined operation from these three sets of displacementa is given in 
the following table: 



5 = lo-3 radian -29.966 64.675 

x * = -0.3843x lo-3raaian l&Q le.863 

u* = 1.5g74 x lo-3 In. -78-399 -83.538 

uc = lg.8u x 10-3 in. I 0 I 0 

lx +OperationE=l 0 0 

-439.849 

n-517 1.8191 -24.857 0 0 

103.31 -35-847 eQ.292 0 0 

9.1436 1 Lo730 1 -25.548 1 -0.25289 1 

131*3g 1.3570) -30.964 1 a-3791 

-184.4g 9.2267 9.2230 0 0 

The relexation table using these five combined qgerations, A to EC is given as table 8. The 
balancing procese WN carried put on a slide rule and after five operation.9 all the residuals were 
reduced to negligible quantities. Fromthe nq&tudes of theee group operatIoni the total individual. 
dieplacements of A, B, and C cau be found and the wnkwwn I&M& forces at A and C calculated~ 

The procedure just described involves essentially the development of group operatians 80 that 
fuJ.ladvantage of the egmnetryproperties of tie ringmayberealized. Thismethcd.ie srpplicable 
to other rings. The internally braced circular ring subjected to antitlymmetric loads and analyzed 
in reference 5 canbetreated inthe aameway as this sI~@~rlng~ If these r&y hadbeen eym- 
metrically loaded, the force reeiduale at B, after A and C had bean balanced by sllnple radial 
diQdacemente,woulclhave ahorizcmtalresultant. BgcombinIngradialandtangaUtlaldIf3plac~tt3 
of Aend C euchthatthe resultant force Introduced atB is horizontal and euchthatA a&C remain 
inbalance, the horizcmtalremiI.tantatB couldbe liqtidatxd.byapplIcationof such aco~&ined 
operation. The moment residual at B is not necessarily elimlnated when the force residual at B ie 
balanced. Joint Bmustbe mtatedwhile AandC are dle-placedradieJJy BO tktatthevt atB is 
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liquidated and joints A and C are kept in balance. u the process of 
liquidating first-the residual force and then the moment at B, preserving 
in each operation the balance at-A and C, is not rmd3.y convergenq-two 
equations for the equilibrium of B ten be established and solved for the 
required amounts of the combined operati&s. 

. ..I 

Thus the foregoing procedures fpr both the symmetrical and anti- 
symmetrical loading can be applied to-any ring singly symmetrical with 
only one joint between the center line of symmetry Joints. 1-b w, 
therefore, be advantageous in some ring problems to combine several bars, 
as in the method of the grow- unit, such that only one joint between 
the boundary joints has independent degrees of freedom. This will permit 
use of:the foregoing procedure. 

Sufficient accuracy for most engineering Durposes can be obtaFned 
in the computations of thfs procedure by the use of a slide rule through- 
out. Although the combined operations shown herein were obtained by 
the use of a computing machine carrying five significant figures, the 
procedure was first demonstrated with the use ofa slide rule for all 
calculations. The results ofthe two sets of calculations are in good 
agreement, thus indicating the sufficiency of slide-rule accuracy- 

Egg-Shaped Ring 

Figure 7 shows the dlmeneions of, and loading on, a ring which is 
analyzed in reference 5. The operations table for t&La ring is given 
as table 9. In this r3ng there are two points B and C between the center 
line of symmetry points A end D. By making the degrees offreedcm of 
either point B or C dependent on the other and on the adjacent oenter 
line of the symmetry point, one point with independent degrees of free- 
dom is established between A and D and the method Uscussed previously 
can be used. 

However, in order to demonstrate the simplicity and effectiveness 
of group operati.ons, another approach is used= The centers of 
symmetry points A end D ere balanced by simple radial dis$acements of 
AendD. The midpoint of bar BC is assumed restraIned tangentially so 
that only equal and opposite tangential displacements of B and C are 
undertaken. Because of the large extensional stiffness of her BC as 
compared with the bending rigidity of the circular se@ents end because 
the ring is almost symmetric&& about a horizontal. axis, such dis- 
placements of B and C.liquidate app zmxima~ly equal--&d opposite 
tangential residual forces at B end C, such as those which will be 
obtained at these points when the residuals associated with the other 
degrees of freedom are small. 

. 

If the balance at A end D is preserved by appropriate ccmbinations 
of the radial displacements of-a and D with the required displacements 
of B and C and if -the tangential residuals at B andC are notTo.nsidered 
until the foregoing operation till lic&date them both, main attention 
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is focused on the radial force and manent residuals at B and C. In 
order to balance these, no specific lnethod of convergence is used but 
the state of the residuals after each step is considered before the 
next operation is selected. fh this problan of egg-shaped rings and 
many other rings and in the complete cylinder problems this approach, 
utilizing physical properti,es of-the system end e LL&nata or reducing 
extraneous forces and moments at each step in the relaxation process, 
mey be the most satisfactory method of solution. . 

Table 10 is the relaxa.tion table for the ring in question. The 
first two operations involve only radial displacements which balance 
the WO-pound forces a.t A and D. The largest residual then is the 
radial force of 451 pounds at C. If point C is displaced radially so 
as to balance this residual, a large moment and a large radial force 
are introduced at B. In order to reduce these extraneous forces and 
moments and to keep joints A and D balanced, radial displacements of 
A, B, end D and a rotation of B are combined as shown by the followlng 
operations: 

- 2.34833~~ + 8.922% - 2.69614~~ = o 

8.p2216vA - 327.86% + l0697vB + 8.10267 X lO-4 = Cl 
(20) 

- 2.69614~~ + UI-~~~ - 4.00991~~ + o&61+ x lo-4 = 0 

The solution of this system of equations is: vA = - 0.26384 x 10 -4 inch, 

YE3 = 0.03279 x lO-4 radias, vB_= 0.43618 x lO-4 inch,. and 

VD = - 6.9024 x W4 inch. 

The forces and moments introduced by each of the individual operations 
and by the combination are given in the following table: 



28 NACA TN No. 1786 

)-+O$&ation F = 1 -1.8636 . -0.3379 0.04697 0 

The use of combined operation F is desirable in balancing the~radial 
residual force'at- C, since it also reduces the nument residual at C and 
adjusts the tangential residuati at B and C in the desired manner. 

The residual considered after use of operatlon F is BB = 402 pounds. 
k order to balance it by a displacement vB while the balance at A 

is preserved, a vA displacement mustibe undertaken as weU. If 

vB = 10 -4 inch, then VA = a= - 0.80522 x lO-4 inch. The 
. 
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forces and moanants IntxXiuced by these individual opeW&ma as xell 88 by the coniblnatlom axe 
given Fn the foIlowIng table: 

Consider the effect of elklnating the I$ residual by we of opemtion G. The mommxt 
re~ldual I$ would also be reduced by muglily loo0 inch-pounds, t&e TB residual would be 
brought in cloeer a@mmut with the TC residual, an RG reeidwil. of about 30 percent of the 
previous RC residual of 451 pounds would be introduced, md a large NC residual would be 
introduced. The bt two effects are undesimb~~ However, by uee of operation B‘ win, the 
Rc residual cau be belauced without introducing a new s residual. The large EC residual is 
not BO easily balanced unless a new combination involving jointa A, B, E& D,ls evolved. 

Suppose, therefore, that a rotation of C and a radial dieplacement of D are combined 80 that 
a mmnt at C can be euminated and EO that the bakmce of D is preserved by uee of the ccmiblnatlon~ 
The individual. operation end the conibinaticm are given in the foU.uvIng table: 
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Forces and 
llmnenta 

Operation 

I= 

wC = lo-4 radian 

"D = 15.9294 x lo-4 in. 

i 

0 0 43.595 6.639 6.1517 7.35e4 

-8.lo~ 0 -244.yq'2 3.67788 c 0.99508 o 

Ifoparatians GadHare combtidsothatthe~~~~~nt atC introdncedbyt~ combination 
b zero, the resulting forma andmmmnte aregiven in the follodngtable: 

Use of operation I results in liqtidation of the s reeldual, in reduction in the 
NJj maiaaal, inedjusmt ofthe 9& and TC reeiduals toward the b3ired. eqp3Jlty, and in 
introdutim of m ~c IWMUSI of 138 POIUUIB. The latter can be balanced by the use of 
operation P, which will preserve the balance of A end D ad Ww not affect the s and I$ 
lY38iduale. 

, 
1 I 
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After this fifth operation the TB and- TC residuals exe approxi- 
mately equal and opposite as desired. Therefore, a group operation, 
involving equal and opposite tangential displacements of B and C end 
sufficient radial displacements of A and D so that the latter remain 
balanced, is developed in the followin& table: 

Use of operation J liquidates the TB end TC residuals and + 
affects little the balance in the other degrees of freedom. The remaining 
residuals are considered negligibly small, the moment of 309 inch-pounds 
being approximately 3 percent of the maximum moment in the ring. As in 
the previous problem the individual displacements can be determined from 
the magitudes of the group opera-tions aSa thus the bwn moments and 
tangential forces &t A and D calculated. 
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Although the calculations of the group operations shown herein have 
bm carried out on a computing; machine with five significant figures 
maintained wherever possible, sufficient-accuracy for en&neering 
purposes ten be obtained by the use of a slide rule. ln developing this 
procedure a slide rule was used for all computations end the results 
agreed satisfactorily with those shown herein. 

Oval-Shaped Ring with Internal BracFng 

The ring shown in figure 8 is used as a third emle of the new 
relaxation procedures. As a check on the results of this procedixre the 
system of-equations given by the operations table and-external-forces 
is also solved by the exact mathematical methods of m&xix calculus and 
of-the growing-unit method. In order that the charts and tables of 
reference 6 could be used in determining the influence coefficients, 

- - 

the follow- physical characteristics of the elements ofthe rFng are 
assumed: 

Segments AR end EF: . 

AL2 y=y+o 

B = 450 

EI = ID6 lb-in.2 

L = 18.85 in. 

Segmepts BC, CD, and DE: 
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EiI = 106 lb-h.2 

L = 18.85 in. 

AL2 . y=T=b 

XI= 105 lb-in.2 

L= 16.97 in. 

Because of the symmetry about a line through AGF only one-half of the 
ring need be considered. Joints A, G, and F exe then restrained from 
rotating or displacing tang&ntiaUy and cannot be subjected to radiaL 
forces. The assumed positive directions of the displacements and of 
the forces and mumenta at each joint are shown in figure 8.. From the 
foregoing assumptions, the Fnfluence coefficients and the operations 
table given In table ll are determined. 

The horizontal external forces of 1000 pounds at C and D are 
resolved into their tangential and radial components. Thus the 
external forces are: 

. 
Tc = - 258.82 1% 

%= - *5=93 1% 

TD = * 258.82 III 



34 NACA TN No. 1786 t 

The matrix calculus solutlcm of the system of equations given by 
these external forces and by the operations table is first obtained so 
that the equilibrium of the ring as given by this solution will provide 
a check on the whole setup. Joint G is considered fixed so that a 
unique solution to this system of equations is obtainedj thus there are 
14 degrees of freedom to be considered. The 14 unlmowns are found by 
the method ofreference 9 to be: 

VA = - 605.73 x 10-3 in. 
7 

% =4.0.825x lo-3 radian 
.I 

VB = 35.144 x lo-3 Fn. 

1$=- 300.b6 x 1.0-3 a. 

WC = - Il.445 x10-3 radian 

vC = 664.55 x lo-3 is. ' 

UC=- 72.282 x 10'3 in. 

WD = - 22.975 x lo-3 radian 

vD = - SW734 x 10-3 h. 

y) = 90.130 x lo-3 In. 

WE = 6.2337 x U-3 radian 

vx = - 42.621 x 10'3 in. 

FE = 32.513 X 10m3 in= 

vF = - a.648 x10-3 in. 
. J 

These displacements give the following values of the unlmown momenta 
and tangential reactions at A, F, and G on the bars rather-than on the 
joint5 : 
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NA = - 3118.8 in.-lb 1 
TA = 402.51 lb 

% = 105.43 Ins-lb - 

TF = - x82.57 Ib 

NG = - 371.06 in--lb 

% = 0.43 lb 

(23) 

TG = 584.98 lb J 

Figure 9 is the bending-mment diagram for the Hng with these reactions 
applied. 

By examining the equilibrium of one-half the ring under these 
reacticms and the external forces, the accurwy of the operations table 
is established. Since RA and + are zero, the summation of forces 
in the vertical direction is 5i~qd.y: 

t ..Fv = + = 0.43 lb - 

The summation of forces in the horizontal direction is: 

(24) 

(25) 

. The summation of moments about point G is: 
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X2 
o-70711 

+ 24(0.70711) 1 
+ NG + NF + TF(24)(1 - O-70711) - 1000(2 x 36 x 0.25882) (26) 

= - 3118.91 + 402.4g(y-941) - 371.06 + 105.43 

- 182.56(7.o2g4) - 18635.04 

= 17.45 in.-Ib 

The equilibrium conditia for the half ring are approximately 
satisfied, the msximum percent error being a moment of less than 0.1 per- 
cent of the applied couple of 18,635 inch-pounds. It is considered that 
the accuracy of the operations table is established by this equilibrium 
check. 

Approximately 20 man-hours by an unekilled coruputFn@:-machine 
operator were required to solve this system of 14 equations. It is 
estimated that a skilled operator familiar with the Grout method would 
require about 10 man-hours. 

In applying the Grout method to this problem the coefficients of 
the linear equations .are assumed to be mathematically exact and, there- 
fore, as many figures as could be carried on the lo-bank computing 
machine are used throughout the computation. In this way an accurate 
solution is obtained and the additional computing work is not great. 
Afterward the values of the mown5 can be rounded off to the physically 
correct number of significant figures. 

Use of the growing-unit method of solution an this ring is demon- 
strated as follows. This method is described Fn detail on pages 39 to 46 
of reference 5. It is demonstrated on this new ring as an application of 
the procedure to=& ring with many intermediate joints between the center 
line of symmetry points. In applying the growing-unit method to this 
ring the units a;re combined into bars of increasing length until dis- 
placements of all points are known such that the only unbalanced forces 
remaining act in the radial direction at A and F when unit radial die- 
placements are undertaken at A and F. Then these forces at A and F can 
be eliminated by appropriate radial displacements of A and F and the 
final distorted shape determined. 

The first units trbe combined sre AB and BC. In order to effect 
this combination, the displacements of B required to maintain the balance 
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of B during a unit radial displacement of A and,unit radial, tangential, 
and rotational displacements of C must be determined. The displacements 
of B required to maintain the balance of B while point A is displaced 
radially lo-3 inch are given by the equations: 

a= - 454.34~~ + 6.7238~ - 78.4I-h~ + 5.9020 x lo-3 = o 

I$= 6=7238w, - 
: 

==ogjvB + 0.556% - 4.5778 x 10-j = 0 (27) 

TB = - 78.4~~~ + 0.5569)~~ - 84.51% + 14.662 x 1~)'~ = 0 
J 

The solution to these equations is: WB = - 0.026434 ;< 10'3 radian, 

VB = - 0.38424 x lo-3 inch, end % = 0.19549 x 10-j inch. 

If the forces and moments at points A and C due to a displacement 
VA = lo-3 inch and due to the foregoing displacements %=R, vB, end uB 
are summed, the following equatione are obtained: 

RA = - 2.6618 lb 

NC = 10.699 in.-lb 

Rc =. - 1.8871 lb 

TC = 3.2614 lb 

(28) 

$3, %I and TB are zero since that is the condition satisfied by 
equations (27). 

. The displacements of B required to maintain balance at B during 
unit rotational, radial, or tangential displacements of C are determined 
in a similar manner and ere collected in table 12. 

The forces and moments given in the last seven rows of this table 
constitute the influence coefficients for a new unit of the ring, nanaely, 
the segment m. This unit is not a-bar, the center line of which is an 
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arc Of a CirCb, but rather one CO111p088d of two arc6 Of c~J?C~S. This 
combining of wits, extended until the entire ring is one segment, is 
the main principle of the growing-unit method. 

Each column of table 12 represents a group dieplacement made up 
of individual displac~nts of points A, B, and C. Let thee8 group 
displacements be identified by the Rcrlnan numeral given at the head of 
each column. For example, group II ie made up of the displacements 

wC = 10-3 radian, % = - 0.21631 x lo-3 radim, VB = - 0.23971 X.10-3 inch, 

FB = o-74197 x lo-3 inch, eJld VA = Vc c&-J so. The moment at C, for 
instance, caused by the application of xu: units of the group dis- 

placement II is then 

- 

I NC = - 389.56x,: (29) 

With a similar notation for all other forces end group dierplacements, 
8quatioIlEt (30) may be eet up representing the requirementa for equilibrium 
of joint C under the external forces acting at that-point; balance of B 
befog maintained= 

NC = - 389-56~~~ - ~.w3xIII - 53mhm = 0 

%= - 10 l o93xI, - 6. wg~,, - 10.61% + 965.93 = o 

TC = - 53q71xIr - 10~615~~~ - 54~99~~ - 258.82 = o 

The solution to this system is ~11 = 1.0476, XI-I = 217.61, and 
"rv = - 48.436, md the following forces and moments are introduced at- 
AandD: 

RA = - 557.43 lb 

ND = - 2666.6 in.-lb 

RD = 184.66 lb 

Q = 626.46 lb 1 (31)' 
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The forces and moments at D are added to the external forces applied to 
the ring at D and 8re balanced after the unit problem for the se@;msnt 
at A%% is established. The RA force IS not balanced until the cOmpl8te 
ring is one segment and until the RA and I$ residuals can be balanced 
together. 

The.neti unit to be considered is the combination of the ABC seeplent 
with bar CD into the segm8nt ABCD. The problem is to find the forces 8nd 
moments at A, D, and E due (1) to a unit radial displacement of A with 
joint D fiXed and (2) to unit radial, tangential, and rotational dis- 
placements of D with A and E fixed. Joints B and C'at-8 free to displace 
so as to maintain the balSZK8 .at B and C in each of the88 four ~8.~88~ 
By d8t8rmiIbIg the mitudes of XII, XIII, and xm required to 
baknC8 C in each of these four cases, the required displacements of 
both B and C ar8 im$licitly determined and the unit problem for se@nent 
iii% solved. 

The ma@itudes of the XII, XIII, and xm Op8ratiOnS required to 

balance joint C when A is displaced radially 10m3 inch and B permitted 
to displace so as to remain in balance are given by the following 
equations: 

NC = - 3%. 56xII - 10 l og3xIII - 53.771~~ + lo.699 = o - 

%= - 1o.og3XII - 6.752gxIII - 10.615~~ - 1.8871 = o (32) 

T C= - 53-771~~ - 10~615~~~ - 54.1ggxm + 3.2615 = o J 

The forces and mOm8ntS at C to b8 balanced are given in group I in 
table 12. The solution to these equations is XII = 0.021497, 

XIII = - 0.53843, and xN = 0.14430. Use of these multiples of 
operations II, III, and IV and of a unit amount of group I results 
in the followin@; forces and moments at A and D: 

RA = - 0.94505 lb 

ND = 6.7928 in.-lb 

RD = - 0.74924.17, 

TD = 0.7@@ lb 

(33) 
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The forces and moments given by groups V, VI, VII, and VIII in 
table 13 are the influence coefficients for segment m- For example, 
the for&s and moments introduced at A, D, and E due ta a unit radial 
displacement of D with A and E fixed and with B and C in balance sze 
given by VII. With these sets of coefficients i-6 possible to 
balance joint D while the balance of B and C is preserved. The forces 
and moments to be balanced at D are (1) the external forces on the 
ring at D and (2) the forces and moments which are introduced at D by 
the balancing of C and which are given by equations (31). The 
reelduals to be balanced &t-D are thus: 

ND = - 2666.6 in.-lb 

RD = - g65eg3 + 184.66 = - 781.27 lb 

TD = - 258.82 + 626.46 = 367.64 lb 

. 

(34) 

The equations which condition the balancing of join-t-D, from con- 
sideration of groups VI, VII, and VIII, are seen to be: 

ND = - 346.88qI - r6.6g7xnI - 43.745qIII - 2666.6 = 0-l 

to= - 16.697% - 5.6500%~ - 12~458%,, - 781.27 = o 

i 

(35) 

TD = - 43.745~~~ - l2-458xvII - 50-817~~111 + 367.64 = 0 J 
The solution to these equations is xv1 = - 3.3100, -II = - 328.09, 
and xvIII = 90.518, which give the following forces and momenta: 

RA = 293.71lb 

NE = 4889.4 in.-lb 

(36) 

RE = - ya6g lb 

%= - 149.69 lb 
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. As in the balancing of C, a tangential force and moment axe introduced 
at A by this balancing of D, but because of symnetry the equilibrium 
of A is not disturbed by these. The RA forces will be balanced later 
and the residuals at E will be balanced when the inf'luence coefficients 
for 68glIl8nt ABCDE haV8 been determined. 

In order to find the influence coefficients for bar ABCDE, the 
forces and moments at A and E due to a radial displacement of A with E 
fixed and at A, E, and F due to unit radial, tangential, and rotational 
displacements of E with A and F fixed must be determined. By determining 
the ma~itudes of groups VI, VII, and VIII required to balance D in each 
of these four cases, the required diSplaC8mentS of B, C, and D aud the 
required forces and mments exe determined. 

The m8gnitudes of the groups VI, VII, and VIII reqUir8d to balance D 

when joint A is mOV8d radially 10B3 inch are given by the following 
equations: 

ND = - 34-6.08~~ - 16.697~~~ - 43'745xvIII + 6.7928 = o 
. 

-1 x 

%=- 16.6975 - 5.6500%~ - 12.45~~ - O-74924 = 0 (37) 

TD = - 43.745%, - ~29458%~ - 50.817~ + o=m4g = o J 
The forces and moments at D to b8 balanced by groups VI, VII, and VIII 
are given by V in tab18 13 and are the constant t8Ims in equation 

Lo 
37b 

The solution of these equations is XVI = 0.028O42, xvn: = - 0.426 , 
and XPIII = 0 .og5744. The sumnation of forces .snd moments due to a 

unit magnitude of group V and the foregoing titipl8S of groups VI, VI& 
andVIII are: 

RA = - 0.36050 lb 

NE = 4.1055 in.-lb 

%= - 0.31703 lb 

TE = o.lgrz6 III 

1 (38) 
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In a similar manner the complete set of influence coefficients for . 
_ .- -. 

se@nent ABCDE is aetermine~ .-and is-&iv, in tab18 T&F iO&i&iD.I$, the 
.- 

forces and moments in group XI are the forces and momsnts introduced 
at-A, E, F, and G by a unit radial displacement .of E with AJ F, and G 
fixed and with points 3, C, and D free to displace so as toremain in 
8qUilibriUmo With these influence coefficients joint E can be balenced 
while the balance of B, C, and D is preserved. 

The forces and mnts to be balanced at joint E are those introduced 
by th8 balancing of joint D with groups VI, 
by equation (36). 

VII, and VIII and are given 

The equations in xy, xm, and %I balancing joint E under these- 

lOdEI a;re: 

NE = - 533*9=j( - 38=099* - 29-579x,, + 4889.4 = 0 1 
FE= - 38.ogg% - 49.295% - 53.43~~ - 522.6g = o 

I 

(39) 

TE = - 29*579Xx - 53*43%x - 76.322~~ - 149.69 = o 

The solution to these equations is xx = 11.184, XXI = - 51.518, and 

xxII = 29.771 and the forces at A, F, and G introduced by this 

balancingofEare: 

RA = 67-974 lb 

RF = - 266.68lb Pa 

k = 70.668 lb 

The tangential forces and the moments introduced at A, F, and G are not 
considered in this balancing of the half ring, since these ar8 
equilibrated by the forces and moments from the Other half of. the ring. 

. 

The final combination of unit-s will be the combination of bar EF I 
.---. - 

with the unit ABCDE. When this union is effected, the-influence. coef- -' 
- 

ficients for the half ring as a unit will have been determined end the 
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radial forces at A aud F can be balanced simulta;neously. The radial 
forces at jolnts A and F due to a unit radial displacement of A with F 
fixed end to a unit radial displacement of F with A fixed must be 
determined. In both cases joints B, C, D, and E are displaced so as to 
remain balanced. 

The equations giving the IM.gnitUd8S'of groups X, XI, and XII 
required to baliam8 joints B, C, D, and E when joint A is displaced 
radially as in group Ix are: 

NE = - 533-92~~ - 38.0ggxn - 2gmgxnI + 4J-055 = 0 
-I 

RE = - 38.099~~ - 49.295x= - 53-43!2~1 - o-31-7o3 = 0 (41) 

TE = - 29 l 579Xx - 53.432x, - 76.322~~~ + O. 19226 = 0 

The solution to these equations is XX = OaOOg43g8, XXI = - 0.051804, and 

%I1 = 0.035128 and the forces introduced by a unit magnitude of Ix and 
by these multiples of groups X, XI, and XII are: 

RA = - 0.2g857 lb 

*=- o-33361 Ib 

~c = 0-035176 lb 
J 

(42) 

The equations giving the IUagnitUd8S of groups X, XI, and XII required 
to balance joints B, C, D, and E when jog-k F is displaced radially 
lCl'3 inch -8: 

NE= , - 533.92x, - 38.099~~ - 29.579xxII .- 5.9020 = 0 

FE= - 38.0ggxx - 4g.2g5xxI - 53-432xnI - 4*5778 = 0 (43) 

TE = - 29*579Xx - 53-432~~ - 76.322~~ - 14.662 9 o 
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The solution to the68 equations is xx = - 0.017182, xa = 0.50354, and 

%I1= - 0.53797 and the forces introduced at-A, F, and G by a radial 

displacement of F of 10'3 inch 8.n.d by the foregoing multiples of-- 
groups x, a, and =I aJ?8: 

RA = - 0.33361lb 

%? = - l&-j'0 lb 
1 

(44) 

~0 = 1.1156 lb J 
The forces given by equations (42) and (44) represent the influence 

coefficients for the entire half ring and are labeled groups XIII and 
m, r8Sp8CtiV8l.y. These forces permit calculation of the multiples of 
groups XIII and XIV P8quir8d to balZ33X8 the radial forces at A and F. 
These forces are the total forces remaining from the balancing of C D, 
md Ej RA IEI given by the SW of the RA fOl"C86 of equations (3lj, 
(36), and (40) and IS: 

RA = - 557.43 e 293.71 + 67.974 = - 195-75 lb 

The + force is the force introduced by the balancing of E alOn 
and is given by equation (40). It 1~: i 

RF = - 266.68 lb 

The 8qUatiOuS giving the magnitudes of groups XIII and XIV required 
to balance joints A and F under those loads SX8: 

RA = - o*29857xniI - 0.33361~~ - lg5*75 = o 

-I 

(45) 
RF= - 0~33361~,,, - 1J1-470~~~ - 266.68 = o 

The solution to these equations is XXI = - 605.73 and 

xm =-A 44.646. The radial force at G introduced by this balancing 
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IS - 71.ll4 pomds, but the BG force given by equation (4.0) in the . 
balancing of E is 70.668 pounds. The differance between the two, 
- o -446 pound, is considered negligibly smaJ2 compared to the applied 
loads of Lo00 pounds. 

With the balancing of joints A and F and the substantiation of the 
balance at G, the entire half ring is balanced. The total deflectiqns 
in each degree of freedom can now be calculated and used to d8t8me 
the unknown bending moments and tangential forces at A, F, and G. In 
TIY$ t0 CalCtit8 the68 deflections the balancing 8qUatiOnS (30), (35), 

asla (45) give the magnitudes of the group operations involved 
whil; the 8quatiOnS determining the grol,Q inflU8nC8 CO8ffiCi8IltS giV8 
the individual operations Involved in 8aCh group- 

Table 15 gives the ma@itude of all group dlsplac8m8n.ts from 1 
to XIV implied in a unit application of any one group- For example, 
row X in this tab18 indicates that a unit magnitude of group X 

$ 
that 

1) is equivalent to the sum of the effects of XnII = 2.1 85, 
is, 

xx = 

%I = - 4.6760, XVI = - O.l6186, and wE = 10'3 radian, or the sum of 

the effects of EN = 2.9219, XIII = l-7552, XII = - o.lg736, 

YE = m-3 radian, wB = - 0.16186 X 10 -3 radian, vD = i 4.6760 x low3 inch, 

and uB = 2.1885 x lo-3 inch. During the solution Of the problem the 
magnitude of group X which was explicitly used W&B 11.184, as given in 
the last column of table 15* 

From table 15 the total magnitudes of each grow operation may be 
found. For 8xaznpl8, the total magnitude of group VI is: 

qI = (l)(- 3.3100) + (0.028042)(o) + (- 0.16186)(11.184) 

+ (o-037474)(- 51-518) + (- o.oo22427)(2g.771) 

+ (0.024494) (- 605-73) + (0 -022857) (- 44.646) w 

= - 22.975 

The total displac8m8nt wB 16: 

we = (XVI) X lo-3 = - 22.g’j’5 x lo-3 radian (4-W 

Similarly the displacements of all points except point B may be 
calculated from table 15 and are given in the last row of that table. 



46 XACA TN NO. 1786 . 

Pofnt B w displaced during the application of groups I, II, III, 
and IV, and therefore the magnikude of its displacement must be cal$u- 
ht8d as indicated in the PolLowkg example: 

s = (- 0.026434s lo-3)(- 601.73) + (- 0.21631~ io-3)(- 11.444) 

l + (6-035554 x lo-3)(664.55) + (0.017847 x x1-3)(- 72.286) (47) 
= 40.825 x 10-j inch . 

where the first-nmib8r in each product is the magnitude of q involved 
in each unit application of groups I, II, III,'and IV, respect2vely. 

The total'displac8m8nts used axe assetiled in equations (47a). 

VA = - 605.73 x lo-3 in. 

YES= 40.825-x m-3 radian 

VB = 35*144 x 10-3 in. 

Its=- 300.06 x lo-3 in. 

WC = - ll.444xlO-3 radian 

vc = 664.55 x 10-3 in. 

UC=- 72.286 x 10-s in. 

WD = - 22.975 x 10-3 radim 

vD = 
- 94-731X 10m3 in. 

u,=gO.127xm-3in. 

wE = 6.2331 x 10-3 radian 

VE = - 42.620 x lo-3 in. 

% = 32.5ll x lo-3 in. .- 

v-j' = .- 44.646 x.m-3 .in. .; 
2 

(474 
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These total displacements constitute the unknowns of the system of 
equations given by the operations table and the external fO%eBj 

co~arison between this growing-unit and the matrix calculus solutions 
given by 8qL@iOIlS (&?a) and (B), r8Sp8CtiV8ly, indiCat8S good S@?88m8nt 
for the diSplaC8m8ntS. In fact, the forces and llloments given by the two 
methods differ by less th8n 1 percent and therefore are given only for 
the matrix method (equation (23)). 

Several general remarks are made about the growing-unit method: 

(a) In determining the iIlflU8nC8 CO8ffiCi8ntS and in balancing the 
external forces and moments, sets of equations with the sam8 
left-hand sides but with different constant terms are US8d 
several tim8s. This SimJIlifi86 Solution Of the equations 
and reduces the computational work considerably. 

(b) In order to obtain sufficient accuracy of solution for rings 
with many joints, cd.ctit~ machine6 must be usedj five 
Significant figures W8r8 carried throughout the calcu- 
lations. However, on the SiI?IJ?ler rings such as the circul8r 
ring and the egg-shaped ring discussed pr8viously, Slide- 
X'Ld8 accuracy for determining the dlsplacem8nts in a 
combined operation is probably sufficient for engineering 
pUrpOS8S l 

(c) A check on the influence coefficients for composite bars is 
obtained by applying Maxwell's theorem of reciprocal 
d8fleCtiOIlS. This is a valuable device for assuring 
S&CuraCy at each Stag8. 

Ln applying the new relaxation procedures to this ring, it would 
have been possible to.use the general method described for the egg- 
shaped ring, that is, to consider the residuals after 8aCh operation and 
develop a satisfactory combined operation to r8dUCe as many r8SidUal.S as 
possible. B.OW8VBr, the nunib8r Of degrees of freedom inVOlV8d in this 
ring is large and, therefore, the number of residuals to be considered 
in testing the efficacy of a particular operation is large. 

The loading on the ring provides a clue to overcoming this difficulty. 
No external loads are applied at A, B, E, F, and Gj moreover, A, F, snd G 
are points along the center line of symmetry. Therefore, if in balancing 
D and E the balSnC8 at the other joints is preserved by suitable 
displ..ac8m8nts, attention is fixed on the two joints D and E asd the pro- 
cedure described for the egg-shaped ring can be used effectively. It 
will be recognized that this procedure is essentially a combination of 
growing-unit and relaxation lnethods of solution. 

lil executing the prOpOS8d method the bar ABCD, free only to displace 
radially at A and fixed at D, is considered first. The equations giving 
the displacements of A and B required to maintain balance of these points . 
while joint C is rotated through 10-j radian are: 



_ - 

RA = - 7'1310vA + 5~902ovg - 4.57789, + 14.66% = 0 

?!3= 14.662rA - 78'4llt9 + 0.5y6govB - 84.510% + 45.876 x 10-3 IO 
I 

$3 = 5.90~~~ - 4544.341~ + 6.7238~~ - 78.4% - 3&4@ x 1o-3 =. 

(48) 
s = - 4*577&rA + 6.723% - 12.093vB + 0.55% - 1.8576 x 10-3 =o 

The SOlUtiOn to these eqU8tiOnS ii3 VA = 4.0195 X m-3 inch, qx, = - 0.32255 x 10'3 rrrdlan, 
VB = - l.@I.S,X 10m3 Inch, ad 1$ = l-5277 X 10-3 inch. These displacmts canbInd with the 
tit mtatlm of c yield: 

No = - 3 
‘16 

.$i in.-lb 

l?c = - 17.678 lb 

TC = - 40.663 lb 

1 (49) : 
RD = 1.8576 lb 

TD = 45.876 lb 
J 

The moment and tawpntial force Fntmduced at A are not coneider& until the balancing of the 
rhg is coqlet2. 

. . 
‘ . 

..’ , I 
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. In a similar mmner the forces snd mments for unit radial and 
tangential displacements of C are determined, as shown in table 16. The 
forces and moments given by groups XV, XVI, and XVII constitute the 
iufluence coefficients for the displacements of C with A and D fixed and 
with joints A and B balanced. Use of these coefficients permits focusing 
of attention on C and D, the joints at which the external forces are 
applied when C is being balanced. 

The forces snd mments introduced at C and D when D is displaced a 
unit amount in each degree of freedom and when E, I?, end G are displace& 
so as to maintain the balance thereof are calculated and shown in 
table 17. , 

Table 18 is &~1 operations table consisting of unit maguitudas of 
p,oup operations XV to XX. Table 19 is &he relaxation table for this 
ring which uses these group operations. The external forces applied 
at C and D are given in the first row of table lg* 

. A discussion of each step in the relaxation process is given as 
follows l 

Step l.- Because of the antisymmetry of the loading and of the 
quasisymmetry of the ring about a horizontal exis operations xm = 1 
and Xxrx' -1 me applied ss a first approximation to the deflected 
&ape* The forces and moments introduced are as given in the following 
table: 

(XVI) =1 

(XIX) = -1 

>.+Operation K = 1 

IyC Rc TC ND 

-17.678 I -5.4150 -zag28 -1.8576 I I 

-1.8576 2.2277 13.781 -11.535 

-19-536 -3.1873 0.853 -13.393 

-2.2277 

6.2441 

4.0164 

TD I 

13.781 -4 -12.706 ' 

1*0751 

Operation K is used to balance the RC residual; the same operation 

reduces the other force residuals but introduces large NC exid 
ND =~iduEils. . 

Step 2.- In order to reduce these mment residuals sn e.ntieymetrical 
cotiination cf WC md WD is made, as shown as group operation L: 
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Forces and 
NC % 'Cc 'D RD TD 

(xv) =l -346.56 -17.678 -40.662 -38.489 1.8576 45.876 

(XVIII) = 1 -38.48g -1.8576 45.876 -392.46 U-535 -42.305 

, s->.~peration L = +385.04 ,-w-536 I 5.214,-430+5 f13m I 3-57~ 

Rowever, use of operation L by itself would reintrodde large Rc' and 
RD residuals, and therefore operations K and L are combined so that-the 
Rc residual will-be smaller md the 5 residual eliminated, as shown 

in the following table: 

Forces and 

NC Rc* TC IJD %I TD 

OperationL =l -385.04 -19.536 5.214 430.g5 13.393 3.571 

-3* 3346 x Operatim K 65.145 10.628 -2.844 44.660 -13e393 -3.5846 

x-*Operation M = 1 -3lg.gO , -8.g08 2.370 -386.29 0 -0*0137 

The new force residuals introduced by operation M are less than 30 percent 
of the original residuals end, therefore, the rate 
to be adequate. 

of converg0nce is felt 

Step 3.- The radial residuals at C and D have the same sign and, 
therefore, SymdX?iCal displacements vc &pd vD are undertaken= It is 
seen that such a combination would introduce large tangential residuaZs 
at C and D. Therefore, a tangential displacmnent of C (D could have been 
chosen instead) such as to elimihate the TC and TD fcrces is under- 
taken. The forces and mcments introduced by the individual displacements 
and by the combination am denoted as operation N. 

. 

. 
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Forces snd 

NC RC TC ND % TD 

(XVI)=1 -17.678 -5.4150 -12.928 -1.8576 -2:2277 13.781 

(XIX) =l ~8576 -2.2277 -13*781 11.535 -6.2441 12.706 

-0.53201 x (XVII) 21.632 6.8773 26.709 -24.406 7.3316 -26.587 

2_ -->Operation'ti = 1 5.811 -0.7653 o -14.730 -1.14uO '-0.100 

The use of operation N reduces substantially all the residuals except NC. 

Step 4.- In order to reduce NG and at the same time keep the TG 
and TD residuals small, a combination of groups XV and XX is made. 
Group XX is included since a force increasing the residual TD would be 
introduced by the use'of XV alone. 

. 

Steps 5 and F- After operation 0 is used, the Largest force residual 
is approximately percent of the applied forces and the moment residuals . 
are small. It was considered desirable to reduce further the force 
residuals. Therefore, operatian I was used again so as to reduce RD 
the largest force residual, and then XVII was used so as to reduce the 
resulting TG residual. After this sixth step the largest residual of 
4 percent of t&e external force is 00~iaerea t3md3. enough. 

A check table using the total displacements IB used as a check on 
. the accuracy of the canibined operations and on the relaxation table.-- The 

total individual displacements are calculated as discussed in the previous 
two exsmples and are as follows: 
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VA = - 596.18 x 10-3 in. 

wB = 36.779 x 10 -3 mai= 

vB= O-22394 X 10e3 in. 

s = - 304.69 x lo-3’in. 

W c=- 14.32 x lo-3 radian 

vfj = 561.66 x 10-3 in. 

UC=- 114.61 x 10-3 in. 

WD = - 18.4 x 10-3 mai= 

v,-j = - 133.66 x lo-3 in. __ 

uD = 3.7242 x 10-3 in. 

wE = 7b4813 x 10-3 mai= 

% = 30.507 x 10-3 in. 

YE=- 41.708 x lo-3 in. 

vF = 5g=g7g x 10'3 in. 

. (50) 

VG = 114.52 x 10'3 in. 
2 

It is pointed out thatmrtain of these displacements differ 
considerably from those given by the exact solutioru-of the matrix 
calculus and grating-unit methods, mainly because the relaxatim solution 
is approximate and in it Joint G is permitted to-displace radially. 

are: 
The LXIIQIOWII reactions given by the foregoixq relaxatim procedure 
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NA = - 2851.1 in. -lb 

TA = 3Eb.21 lb 

xF = 140.16 in--n 

TF = - 224.09 lb 

NG = - 440.45 in=-lb 

'cc = 648.18 lb 

Consideration of the equilibium of the half ring gives: 

> FE -_ - = 38o.u + 224.09 - 648.18 = 

> *v = 0 . 

- 43.88 lb -I 
lx% .= : 2851.1 + 38oa(57.g4ij - 44b.45 + 140.16 > (52) 

8 

- 224.09(7.02g4) - 18,635 

= -1331.8 in.-111 J . 
The moment equilibrium unbalance is approximately 7 percent of the 
applied moment and iB considered satisfactory for engineering purposes- 
If a more accurate representation of the fkel deflected Bhape and 
consequently of the bending-moment diagram is desired, several more 
operations in the relaxatioq table could be undertaken ana the residuals 
at C end D further reduced. 

. 
The bendkig-moment diagram given by the reactions of equatim (51) 

is shown in figure 9 along with that of the exact Bolutions. The 
external un~alauced moment of 1331.8 inch-pounds is applied linearly 
along the ring aB a distributed morcent. If this unbalance is not 
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di&ribUted in this manner, it would be concentrated at either joint A 
or joint F, depending on the direction Fn which the bending moments are 
calculated, and would lead to large errors In the bendine; mment in the 
neighborhood of that joint. It is seen from figure 9 that the agreement 
between the eXWt and l?daXiStiO?l BOlUtiOXlB iB good. 

It is pointed out that+y slightly modifying the determhatim of 
the influence coefficlat for joint-D when E is fixed and F and G free 
to displace radially, a table sfmilar to table 17 could be established 
end solved by matrix calculus methods. The slight modification is to 
make vG = 0 in the equations corresponding to table 17= Such a 
solution is essentially the growing-unit method, except that the ring is 
combined from joints C and D to A and F, respectively, rather than from 
A to F. The total disphxments in each degree of freedom will be the 
fame in eachwproach. 

CONCUJSIONS 

This report contains recommendations as to t% choice of the most 
expeditious method of solutlan of the simultsneo~ linear equations 
represented by the operations table and the external loads. The 
operations table is first established Fn accordance with Southwell's 
suggestions and, together with the external loads, defines completely 
the problem of stress distribution in a reinforced panel or of the 
moment distribution in a fuselage ring. Eowever, the fol.lowFng 
generalized suggestions can be made: 

10 Inmost reinforcedpanelproblemsthe use of the relaxation 
procedure is advantageous. 

. 
2. Solution of-the equatiane defir& a re%nforced panel problem 

by means of the electric analogue is advisable when many closely related 
problems have to be investigated. 

3. Ring problems are best solved by matrix methods. 

4. In very complicated rLcg problems a combination of matrix methods 
with the growing-unit end remtion metho@ may be.c-e.advisable. 

Polytechnic Institute of Brooklyn 
Brooklyn, N. Y., June 25, 1947 
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TABLEi 2.- RELAXATIONTABLEFORRERV3D~EDPAI‘G!L-pRocEDuRE1 

c Cycles of operations shown should be repeated until residuala me 
-co~~ide~~d negligibly ~nrall. Forces a;re inlbj 

displacemente, in in. x 10-q 

VBlock 1 = -2=5 I 
lo 

vE = 2.35 

vJ = 4.65 I 
0 
0 

I 0 
vm = 7.33 0 

I 15 
VK = 1.385 0 

15 
vO = 2.81 0 

I 15 
VBlock 1 = '*' -4 

I 
11 

VE = -0.235 -ll 
0 

VJ = -1.025 0 

I 0 
VN = -2.65 0 

I 0 

'B 1 'E 1 'F 1 'J 1 'K YN YO 

60 960 
-lo 1 20 1 -20 20 -20 10 -10 

-10 20 -20 20 -20 70 50 
5 -238 g uo 5 0 0 

-5 -218 -SL 130 -15 2% 50 
0 218 g -473 19 9 

-5 0 -2 4 
0 0 0 14 

0 
-$ 28 

-2 
-28 2: 

18 
-20 

-19 28 -30 28 -10 
19 1 -41 1 19 

0 29 -71 29 9 
0 3 71 5 -153 

0 32 0 34 -14-4 
0 0 0 5 14-4 

209 
-372 ?Z 

-I- 
-z 73 

-14 
I 
I 

-70 59 
0 I 0 

I 
I 

-70 
3 I ;? 

I 
I 

-67 I 130 
5 -156 

-62 -26 
-4 4 

+ 
-66 -22 

0 0 

4 2 20 
0 

2: 
lo4 

-f :g -22 
-2 

4 0 5 I24 4 -XL4 -24 
0 0 0 -124 -5 135 -5 

4 0 5 0 -1 2l --29 
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TABLE 3.- RELAXATIONTABLEFORR?~~XKXWDPA.NEL -pRow2 

C Forces are in lbj dislphcwts, in tn. x 10-y 

yA 'B 'E 'F 'J 'K 'N , '0 

External forces -320 60 60 
VBlock 1 = -2*5 10 -ID 20 -20 20 -20 10 -10 

-llo -lo -20 20 -20 70 50 
vA = -2.l65 133 -493 iz.3 -4.3 0 0 0 0 

;*9 
-14.3 -81.3 -24.3 20 -20 70 '~0 

(1) = -1.482 -5*9 81.3 -8-g -69.4. -3.0 o o 

5*g -20.2 
(2) = -O.gol 3.6 -3.6 ye2 

-33-2 -49.4 -23.0 70 50 
-7.2 49.4 -5.4 -42.2 -1.8 

9.5 -23.8 7.2 -40.4 0 -28.4 27.8 48.2 
vBlock 2 = -1.850 -794 7.4 -14.8 14.8 -14.8 l4.8 -7.4 7.4 

2.1 -16.4 -7.6 -14.8 -13.6 20.4 55.6 
VB = -0.297 -0.6 16.4 -0.6 

-25-6 
-15.2 o o 0 0 

1*5 0 
f-f . -4x&$ . -t$f . a;-; - . 

20.4 55.6 
(3) = -0.689 -2.8 2.8 o 0 

-1.3 2.8 -12.3 o -16.2 -48.9 20.4 55.6 
(4) = -0.825 -3.3 3.3 -6.6 6.6 -5.0 48.9 -1.6 -42.3 

Block1 -1:08 -;o; -;a; 
-18.9 6.6 -21.2 0 18.8 13.3 

G = . . 8.6 -8.6 8.6 -8.6 4.3 -4.3 

-0.3 1.8 -10.3 -2.0 -12.6 -8.6 23.1 9.0 
(1) = -0.188 0.8 -0.8 10*3 -1.1 -8.8 -0.4 0 0 

3 . -2 . 
O -3d -21.4 -9.0 23.1 9.0 

(2) = -Ow390 3.1 -3.1 21.4 -2.3 -18.3 -0.8 

2.1 -0.6 3.1 -6.2 o -11.3 4.8 8.2 
vBb& 2 = -0.412 -1.6 1.6 -3.3 3.3 -3.3 3.3 -1.6 1.6 

0.5 1.0 -0.2 -2.9 -3.3 -8.0 3.2 6.6 
(4) = -0.135 -0.5 0.5 -1.1 1.1 -0.8 8.0 -0.3 -6.9 

0 1'5, -1.3 -1.8 -4.1 0 2.9 -0.3 

s 

I 

- -1 
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TABIE 4.- RELAXATION TAB& FOR REINFORCED PANEL - FIXED EM>s 

c Forces axe In lbj displacements,. in in. x 10-q 
2 

-4.0 

-4.0 
-10.3 

-14*3 

-14.3 
42.3 

-56.6 
56.6 

0 

0 
0.2 

0.2 
-0.3 

4.1 

-0.1 
13-6 

13.5 
-13.5 

0 

YF yA YB YE 

-94.4 

-2:: . 

0 

0 
-1.7 

-1.7 
-597 

-7.4 

-s . 

-1.6 
1.6 

0 

0 
0.5 

0.5 
1.4 

l-9 

External forces VA = -2.36 1 -120 120 1 -4.7 I-110.6 -4.7 

(1) = -2.02 ( "8.1 ( :k: I -iii:: 
-4.7 

-12.1 

-16.8 
-13.8 (2) = -19 723 ( ::,' I-2:; 1 z.8 

(3) = -0.83 1 :;:z 1 ;.4 1 t;:o, 
I-- 

-80.6 
t 

-3-4 
-1.9 -49.1 

0 
7.6 

7.6 
0.3 

7=9 
0.7 

(2) = -0.0292 ( -z 1 -,“:o, 1 E.2 
0.6 

-0.2 
-82.5 

I 
-52.5 

-1.4 -0.1 

8.4 
7*3 

-83.9 

I 

-52.6 

(3) = 0.265 1 ",:i 1 -"1.1 1 ",:z 
15.7 

-15.7 
-83.9 -52.6 

I ~~~ 

(4) = 0.228 . I ,1:; ( 1,‘:; 1 ‘,I:, 
0 

-1.8 
-83.9 -52.6 

0.5 I 11.7 

p.o.9 -83-4 

v 

-1.8 



(1) = 1 * VA -9.8 2 46.8 2 
(2) = 1 vjj 2 -55.2 2 51.2 
(3) = 1 VJJ 46.8 2 -101.6 4 46.8 2 
(4) = 1 VF 2 51.2 4 -llo.4 2 51.2 
(5) = 1 vJ 46.8 2 -101.6 4 46.8 2 
(6) = 1 vK 2 51.2 4 -110.4 2 51.2 
(7) = 1 vm 46.8 2 -101.6 4 46.8 2 
(8) = 1 v. 2 51.2 4 -llo.4 2 51.2 

(9) 0.0362 x (2) 0.07 -2 
(l(J) (1) + (9) -50.7 0 

4g7 1.86 
3.8 

(U 0.91 x (1) 1.85 43.2 
w o-0695 x (2) 

-4&g l-85 

0.1 -3.8 03) (3) + w + 0.2) 0 J::: 46.8 2 
(14) 0.0793 x (1) 4.9 

;:z 

15) 
3-5 

I 
0.923 x (2) 1.6 

16) .(4) + (14) + (15) 
-5::: 1.85 4;:: 

0 0 -62.6 

la 1 1 ) ) 0.828.x 0.19 x I 13) 16) 

51.2 

(19) (5) + (17):+ 
4%'; 1.5 4.; . 3i.8 

0 
(20) 0.170 x I 13) 

(18) 
“.$ 1.6 

“:i 
81:: 

13.8 46.8 2 

(=I 0.95 x 16) . 
(=2) (6) + (20) + W> 

-52.8 ’ 1.7 4;:: 
0 0 2 

(23) O-79 x (19) 
13.7 -66.9 51.2 

t 
24) 0.19 x (22) 

-49.4 lo.9 37.0 l-59 
2.6 

25) 
0.38 

(7) + (23) + (244) 
42.7 g-83 

0 
(26) 0.2~:~ (19) ai.1 

44.2 15.4 46.8 2 
9.8. 0. 

( 
‘E; 

) 0.81x (22) ILL.1 1.61 f 
(2 > (8) + (26) * Pi9 0 15.4 -::8 2 51.2 

. . . . 

. 

. , 
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TABLE 6.- RlU.XATIONTABKEFORREIKWRCEDPAlfEL -GtR0~G-UKfTMk!ZELOD 

1 x 1 'A 1 'B 1 YE ( 'F 1 'J 1 'K 1 'N / '0 1 'R 1 '6 j 

0 -Ill 
-w75 x (13) u5.2 
-0.444 x (16) -4.2 

-1.45 x (25) 
-0.925 x (28) 

-9 

-3.8 92.5 -4.0 
-0.9 -22.7 

0 
-3.3 

-37.9 

0 0 

0 0 -69.7 -50.3 



(1) w* = lo-3 radiml a81.gg -49-079 -29.966 -4.733 64.675 

(2) UA = lo-3 in. -49.079 -52.296 64.675 -22.441 51.5fi 

(3) WB = lo-3 radian -29.966 

I I 

644.675 

(4) iB r lo-3 in. -4.733 -22.441 31.443 -12.338 20.14 

(5) s slo-3 in. 64.675 

(6) wc Em-3raalatl 

(7) UC = lo-3 in. 

(i2lb) 

-439.@&9 I 31*443 130-Q@ 

-50-e 20.14 -52.6~3 

6.632 0.524 0.06& 

56.5~7 6.632 

8.842 0.524 

6.632 O.O@ 

-157*%!3 -1.563 

-1.563 -0.~2 

. 
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TABLE 8.- -m TAEXE FCR CIRCULAR RIE 

Rtemal Forces -1.84 -8.75 -55.0 59.5 38.1 -53.1 
-0.00778 x (A) 1.84 0 0.7 -0.1 4.1 0 

0 a.75 
-0.2x @) 0 8.75 I;;-; . 594': . $.; . 

-53-l 
0 

0 0 -68.3 30.0 -53.1 
-0-353 x (cl 0 0 -8.6 

63.7 
-2.2 -2.2 53.1 

0 0 -76.9 61.5 0 
-77.8 x (D) 0 0 -472 -34.0 2.28 . 0 

0 0 
-2.98 x (El 0 0 -2; -2:; -2:; 

0 
0 

Check-table 
I-33lltB . 

0 0 0 0 0.1 0 

0.0171 o.oojo 0.5095 a.0043 -0.053 -0.0726 

3 -23.9 
0 

-23.9 
0 

--i 
-23.9 

0 

-23.9 
23.9 

3 0 
0 

0 

==I -0.0121 



(3) p8 =ld+ In. 

(4) 5 -lcJ~ In. 

(5) v - lo-9 radcsn 

(6) vc I u) in. -4 

(7) UC -lo-k in. 

(2-n) 

W=6 

-327.866 

-l3.1014- 

-61.242 

UKI~$ 

0 

-2.6$& 

“Jp 

-4.ccgpl 

3.4352 

4-W 

0.66158 

0 

3Ml-P 

-13.lolh 

3.4352 

-3wM 

0 

0 

26.~158 

(2la) 

-61.242 

-8.lm67 

0 

-288.367 

-2.pg-Q2 

-5-M-i 

-7.3524 

. 

8.1026-f 

O.&q58 

0 

-2.95-c&2 

-l.gowJ 

-0JW9 

-l-Up3 

2, 

-7.3524 

-l.llgoo 

-1.075 

-1Alal 

L 
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TABLE Xi.- CZW'OERATIOlilsINGB3WING-UNITMEXB3DFoRELEGMWC~ 

I$ = -454.349 + 6~7238v, - 

[ 

78&1.+, - (R.H.s. in nR epdia) = o 
I$ = 6.723% - =*wBB + 0*556901$ - (R.H.s. in I$ eqmtim) = 0 

Q = -78.41~~ + 0.55691~3, - 84.51.0~ - (R.H.s. in Q equation) = 0 1 Gmlxp I II III Iv 

VA P lo-3 I& WC = lo-3 Iaaim vc = lo-3 In. UC = lo-3 in. 
w,=~,=~=o v,=VC=~=o ~A=wC=~'o VA = WC = TC = 0 

(-103) x right-m 
side in equaticm 
for: N&,, in.-lb 5.m -38.489 1.8576 45.876 

$3, lb -4.5778 -1.8576 -2.2277 13.781 
?B, lb 14.662 454’6 -13.781 49.974 

(lo3) x dlrrplac~tfj 
of joint B: 

'KS> raaiau 4.026434 -0.2J.631 0.035554 0.017&7 
%I in' a.38424 -0.23971 -0.17353 1.1763 
%I, in. O-19549 0.74197 -0.19720 fm3253 

Remltant 
forces and mmmta 

RA, lb -2.6618 ~439 -1.e8p 3.2615 
NC,, IL-lb 10.699 -389.56 -10.093 -53.771 
% XI -1.8871 -lo.ogj -6.7529 -10.615 
Tc, la 3.2615 -53-771 -10.615 -5449 
ND, in.-lb 0 -38.48g -1.8576 W3’6 

0 1J-576 -2.2q7 -13.781 
0 454’6 13.781 49.974 

.iqgayYy 



TAJ3IZ 13,- CBdOUPOPEFWIOES~C&KMBS~~D~R~~ g: 

-389**= -~.wNp - 53.771xm - (R.H.S. inlVc) = 0 
-l~.og~~ - 6.7529~~ - l0.615~~ - (R.H.S. In %) = 0 

I -53,77- - lo&l= - $.1%x-~-~ - (R.H.S. In Tc) = 0 

Gmup 

T 

(-1) x right-hand 
6iae in eptdh 
for: pIc, i&-lb 

% lb 

=Iv 
Porces ala Iltmmts: 

RA, lb 
HD, in.“Ib 
% lb 
%, lb 
I!&& in.-lb 
$3, lb 
TE, lb 

V VI VII VIII 

(1) = 1 v,=lo-3ramm lo-3 In. lo-3 in. 
UD = v,=lq)=o (I) = VD = UD = 0 (I;"==r, a un = 0 $I=% z VD = 0 

L 

lo*699 -38.489 l-8576 45@6 
-1.8!$7L -1.8576 -2.m 13.781 
3.2615 WW -13.781 9.974 

0.02l.4~ -9.25291 0.046327 -0 JwsQl9 
a-53&3 -2.3436 O.lOp2l 0.85346 
0.144;0 1*55@ a-32084 0.76472 

a.94505 6.7928 -0.74924 
6.7928 -346.88 46.6g 

-0.7494 46.6g -5.m 
0-77-749 43.745 -12.458 
0 -38.489 -18.576 
0 1.8576 -2.2277 
0 45.876 13.781 

0*77749 
-43.745 
-l2*49 
9.817 
45.876 

-13.781 
49m974 



. .a I 

TABLF: 14.- CWOUP opiawI!Im m CWWINt3-TIAITmDFORWABCIX& 

[ % 9 !FJ = = = -43.745% -346.88~ -16.6g7~ - - - 16&g 5.65mmI m458xm xvrI - - - 43.745~~~~ 12.4*~~ 50.817~~ - - - (ILLS. (R.H.s. (R.H.s. in in in %E) %) Q) = = = o 0 0 1 GmTJ Ix X XI (VI =1 % =lO-3rradiea VE = 10-3 in. lo-3 In. 
%'VE'QE"O (v)=v,=15,=0 (v)=li&=g=o $Y=k&=vE'o 

(-1) x right-lmui 
siae in equfltian 
for: NE, i&-lb 697928 --38.489 1.8576 45.876 

?E, lb -0.74924 -1.8576 -2.2Tqy 13.781 
TE, lb o-77749 4976 -13.781 49.974 

l&qpituaes of VI, 
VII, SIlavuI: 

xvr 0.028042 -0.16186 0.037474 -0.co22427 
-9.42660 -4.6760 0.35713 0.59436 

=VII1 o.ogpA 2.1ee5 +39locJ 0.83963 
Foroes ana 3rmEm.ts 

2 Lib 4936v 4.1055 -533.9 4-1055 -38.099 a.31703 -29 0.19226 l 579 

?E, lb -0.31703 -38.099 -49.295 -53*432. 
TE, lb 0.19226 -29.579 -53.49 -76.322 
RF, nJ 0 :5.9020 -4.5778 -l4.662 
%, lb 0 l66.025 J-93355 -1-3355 

v 



l , 

-4 
0 

, . 
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I 

. . 

-7.lmA + 5-m - 4.5776~ + 14.6&9 - (R.H.s. in RA) = 0 

5.90~~ - 454.349 + 6.7236~ - ~76.41$, - (R.H.s. in ~g) = 

.t 6.7238, - mop% + 0.556919 - (R.H.S. ti F&) = 0 
A 78.4U~ + - 0.5% - 84.5% (R.H.S. - in s) = 

o I 
0 

0 
-38.4% 
-1.8976 
45.876 

4.0195 
-0.32255 
-1.7842 
wm 

-346.56 

1.8y76 
4076 

0 0 
1.8576 45.876 

-2.f22n 13.781 
-13.781 499.974 

-o.P@95 1.2253 
cw493 4.034p4O 
b.opBB8e 0.70554 

-0.33579 o.eeQ5 

-17.678 40.662 
-5.4150 -ET?+28 

-12.928 30.203 
-1.8576 45.876 
-e.!B77 -13.781 
13.781 49+74 -1 

I-J 
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TAl3LEl8.-GRXlP-OPERA!PIOl!'S!PAECE~R REIAXUTONMEtWD 

~mces and numnts at joints A, B, E, F, and G are zero f& CU. operatians] 

c 

(xv)=1 

@VI)=1 

(XVII)=1 

(xvIII)=l 

(XIX)=1 

(xx) = 1 

(h-?lb) 

-346.45 

-17.678 

-40.652 

-38.489 

1.8576 

4546 

(In%) 

-17.678 -40.662 -38.489 lJ3576 45JW 

-5.4lgo -12.928 -1.8576 -2.2277 13.781 

-12.928 -54J*a3 45J$6 -13.781 4!w74 

-1.8576 W%‘6 -392.46 11.535 -42.305 

-2.2277 -13.781 U-535 -6.2441 12.706 

13.781 4!w74 -42.305 12.706 9.259 



1 

Bamml- 
1 3D4x @I s 3 

ege 
2 a.4 x (n) 

3 ax ix) 3i 

2 

er 
al. 

El h6 
4 4.08 x (0) 5.5 .O 

46 
3 ST.1 x w:) -2 -17 

0 
6 a.76 x (-==I lo -3 

l . . 



NEGA !I’N No. 1786 75 

0 
Y 

120 lb I20 lb 

Figure 1. - Reinforced panel with conditions at both ends specified in 
terms of force. 
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Figure 2.- Reinforced panel with conditions at ona end specified in terms 
of force and at the other in terms of displacements. 
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NACA TN NO. 1786 

120 lb 
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tiigure 3.- 
- 

Reinforced panel with 12 bays. 

F F 

Ngure 4.- Forces transmitted through Figure 5. - Currents flowing through 
structural elements of reinforced branches pf direct-current network 
panel. analagous to reinforced panel of 

figure 4. 



NACA TN No. 1786 

Section D- D 

Figure 0.- Circular ring with antisymmetric loads. 
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Figure 7.- Egg-shaped ring with symmetric loads. 
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NACA TN No. 1786 

. 

1000 lb 

Figure 8. - Oval-shaped ring with positive directions of forces and 
moments shown. 
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I Matrix and growingvlit solutions 
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I I 
&it& bending 

I 
moment decreases curvature 
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Figure 9, - Bending -moment dbgram for oval-shaped ring with internal bmcin@;. 


