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SUMMARY

Procedures are recommended for solving the equations of equilibrium
of reinforced panels and isolated fuselage rings as represented by the
external loads and the operations table establlshed according to
Southwell's method. From the solution of these equations the stress
distribution can be easlly determined. The recommendations are based on
the experience of the past 4 years in applying numerical procedures to
monocoque stress analysls at the Polytechnic Imstitute of Brookiyn
Asronauticel Laboratories. The method of systematic relaxations, the
matrlix calculus method, and several other methods applicable in special
cases are discussed.

Definite recomendations are made for obtaining the solution of
reinforced -panel problems which are generally desligneted as shear lsg
problems. The procedures recommended are demonstrated in the analysis
of & number of panels, several of which were discussed in previous
PIBAL reports, whereas others are shown for the first time.

In the case of fuselage rings 1t 1s not possible to maske definite
recommendations for the solution of the equilibrivm equatlions for all
rings and loadings. However, suggestlions based on the latest experilence
are made and demonstrated on several rings.

INTRODUCTION

The application of the indirect methods of Hardy Cross (reference 1)
and R. V. Southwell (reference 2) to the analysis of monocoque structures
has been shown in a series of investigations (references 3 to 8) carried
out at the Polytechnic Imnstitute of Brooklyn Asronsutlical Laboratories.
These indirect methods ars likely to lead to solutions of problems in
stress analysis that are intracteble by direct analytical methods because
the structure is tapered, has large cut-outs, 1ts reinforcing elements
are distributed irregularly, or the like.

The distorted shape corresponding to equilibrium under the applied
loads is determined first in the Iindirect methods. From it the stresses,
forces, end moments required can be calculated without difficulty. This
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approach is Justified by the comparative ease with which the stresses in
. & complex structure can be determined for an individusl displacement of -
one point and with which the final distorted shape of a complex structure
cen be represented by a summation of such Individual displacements.

The complete structure is considered to be composed of appropriate
elements and 1ts degrees of freedom are the digplacements of the several
reference polnts on the boundary of each element: Tach of these points
is dlsplaced in turn and the reactlons at the reference points caused by
the displacement are listed. If by sultable displacements of all polnts
the reaction forces and momente are made equal and opposlte to the
external loads at each polnt, the whole structure is in equilibrium and
ite distorted shape 1is determined.

In spplying the indirect methode to monocoque structures the termi-
nology of Southwell (reference 2) has been retained. Thus, the elements
which compose the complete structure are "units" and the determination
of the forces and moments due to a displacement of a boundary point of
such units is termed the 'hnit problem.” The magnitudes of these forces
and moments are glven by influence coefficients.” The complete effect
of a displacement is given in an 'operations teble,” and the step-by-
step process, which can be employed to determine the equilibrium
dlstorted shape 1s called the 'method of systematic relaxations.”" At
each step of this process forces and moments referred to as '"residuals'
remain unbslenced at each polnt in the structure. A running account of-
the residuals and of the displacements or 'operations" undertaken is
kept in the 'relaxation table."”

The operations table along with the external forces comstitutes a
system of linear equations, which are equal in number to the degrees of
freedom of the structure and which have as variables the dlsplacements.
Bach equatlon represents the condition of-equilibrium for the force or
moment assoclated with one degree of freedom. When the method of system-
atic relaxations 1s applied an epproximaste s€olutlon to this system of
equations and accordingly an approximate equillbrium state of the struc-
ture are found.

The indirect method of analysis Just—outlined has been applied at
PIBAL to the reinforced-panel and ring componenty 6f a monocoque struc-
ture as well as to complets clrcular cylinders with and without cut-outs.
In references 3 and k-the stress distridbution in the sheetand stringers
of a relnforced panel was determined under loads applied parallel to the
stringers. Fuselage rings with and without Internal bracing elements
wore investigated 1n reference 5. The determination of-the influence
coefficlents for the ring unit problem was found to Involve considerable
computational work and therefores appropriate graphs and tables are
glven in reference 6 to facilitate their calculation. In references 7
end 8 the elements, nemely, the reinforced panel and the ring, are
combined ints & circular cylinder and the stress distribution in the
cylinder was investigated for the case when the loading ls & pure bending

moment .

A
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In the applicatlion of the indlrect-stress-analysis msthods to the
problems mentioned the major obstacle has been to find an spproximate
solution of the system of equations wlth a reasonable expenditure of
effort. In each problem it has been readily possible to establish
satisfactory units and to combine them to represent the complex struc-
ture. During the past 4 years considerable experience has been gained
at PIBAL in overcoming this obstacle to the wider spplication of numerical
procedures 1n the snalysis of monocoque structures. On the basis of this
experience scme recommendations can be made as to the most expeditilous
method of solving reinforced-panel and fuselage-ring problems after the
operatlons table has been established as described 1n references 3 to 5.

In many problems solution of the set of linear equations by means of
matrix algebra was found eagler and less time consuming than the
determination of the displacements by systematic relaxations. In other
cages speclal methods, such as the growlng-unit mesthod, proved to be
most expeditious.

It is assumed that the reader 1ls familiar with the terminology of
Southwell's relaxastion method and with the solution of the unit problem
as well as the establishment of the operations teable for both the
reinforced-panel and fuselage-ring problems. Complete details of these
are glven in references 3 to 6.

This work, carried out at the Polytechnlc Imgtitute of Brooklyn, was
sponsored by and conducted wlth the flnanclal assistance of the Natlional
Advigory Committee for Aercnautics. Arnold 0. Ostrand contributed the
growing-unit method for reinforced panels. The authors also wilsh to
acknowledge thelr indebtednsss to the following members of the staff of
the Polytechnic Imstitute of Brooklyn: Professors George B. Hoadley and
William Maclean of the Department of Electrical Englneering for their
work on the electric amalogue, Burton Erickson for carrying out the
major portion of the computations, and Bruno A. Boley for his editorlal
advice.

SYMBOLS
A cross-gectlonal area of stringer and effective shset
A - Q points.on a ring or a reinforced pansl; group operations
A¥* effective shear aresa of ring sectlion
a distance between adlacent longlitudinal stringers
b distance between adjacent transverse stringers

c electrical conductance
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Young ‘s modulus of elasticity

tensile force in stringer; applied external load
shear modulus of elasticity

horizontal direction

moment of inertla of cross sectionj electrlcal current
group operatlons

length of straight-bar or length of arc of curved bar
bending moment

moment acting on a Joint

shear flow

radial force acting at a Jointj electrical resistance
tangential force acting on a Joint

sheet thickness

displacemsnt of a Joint in tangential direction
electrical potentialj vertical dlrection

displacement of a Joint in radial directlon; dlsplacement of-
a Joint in vertical direction

vertlical block displacement

rotation of a Joint—

magnitude of group operation to be determined
rectangular coordinates

force in y-axis direction

engle subtended by ring segment
gection-length parsmeter (ALQ/I)

ratio of effective shear area t¢ temslon area (A%/A)

éummgtion

>~
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RETNFORCED PANELS

Introduction

In this section plane and slightly curved relnforced panels are
discussed when the loads are applled in the plane of the flat panels or
tangentially to the surface of the slightly curved panels.

In most airplane structures there 1s a predominant direction in
which the maJjor forces act and 1In which the major reinforcing elements
lie. When the panel is symmetric and symmetrically loaded experience
has shown that i1t sufflces to consider displacements and force equi-
1ibrium in the predominsnt direction only. FEven when the structure or
the loads are nonsymmetric, the displacements and forces in the trans-
verse direction are usually of secondary lmportance but they ma.y be
considered in & mors refined analysis.

In rei’erences 3 and 4 numerical procedures for the determination of
the stress distribution in relnforced panels subJected to axial stringer
loads are developed and demonstrated on several flat and curved panels
with and without cut-outs. The results obtained by means of these
procedures are in good agreement with those of tests.

Solution of the system of equations represented by the operations
table and the external forces can be found by several methods, five of
wvhiich are described herein. The various condlitions of loading and
structure which suggest the use of one method rather than another are
discussed.

Relaxation Msthod

For most reinforced-panel problems the relaxation method of
solution 1s the most suitable. Slmple group and block. operations lead
to a rapid elimination of the residuals and require little inltiative
on. the part of the computer famlliar with the sequence of step-by-step
operations. The method, however, is not efficliemt in the case of
panels with many bays in the directlom of the stringer loads or panels
with sheet covering of large shearing rigldity, since large forces are
then 1ntroduced 1nto adjacent stringers when one stringer 1s balanced.
These forces in turn must be liquldated 1n successive operations with
the consequence that the procedure becomes time consuming. Also in
Problems Involving many loading conditlions it may be expeditlous to use
the electric-analogy method described in the section entitled 'The
Electric Analogue, " since in the relaxation method each new loading
requires new step-by-step operations.

In this sectlion panels are discussed which are not excluded from
application of the relaxation msthod by the foregoing considerations.
They may be classified according to the boundary conditions of the
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stringers into four groups. Recommendations for each group follow with
a Tifth subsectlion added contalning suggestions for panels in which
transverse forces and displacements are considered.

(2) Panels with boundary conditions at both ends of stringers speci-
fled in terms of force.- The following two procedures are recommended for
liguidating the residuals on & penel of this group:

First procedurs:

1. Consider each stringer isolated by cutting the sheet and the
transverse reinforcing elements. Select the stringer for which the
algebralc sum of the external Foxrces 1s the largest. Displace the enbtire
stringer as a rigld body (block dilsplacement) untll this sum vanishes.

2. Balance cne end Joint of the stringer by displacing the adjacent
Joint on the same stringer.

3. After step 2 1s completed the end Joint 1s balanced but the Joint
that was moved is unbalanced. Disgplace the third Jolnt on the same
stringer untll the secdénd Joint 1g balanced.

4. Continue the procedure until the second end Joint is mqved. In
thlsg last step both the end Joint and the adjacent one wlll be approxi-
mately balanced at the same time since the algebralc sum of all the forces
acting upon the stringer was zero after completion of step 1 end this
equllibrium has been disturbed only slightly by the shear forces trans-
mitted by the sheet during the individual operations.

5. Stringer 1 is now approximately balanced. Carry out the same
procedure with the other stringers of the panel successlively.

6. When a&ll the stringers are approximately balanced, return to the
. first-stringer and balance it agaln by undertaking steps 1 to 4. Repeat
the procedure wilth the other stringers until all the residual forces can
be consgldered negligible for engineering purposes.

Second procedurs:

1. Consider each stringer 1solated by cutting the sheet and the
transverse reinforcing elements. Select the stringer for which the
algebraic sum of the external forces 1s the largest. Displace the enitlre
stringer as a rigld body (block displacement) until this sum veanishes.

2. Displace one end point of this stringer so as to balance the
residual thereon. - - R : :

3. Displace by equal emounts the adJacent—Jolnt on the same stringer
and the end Joint which was balanced in stsp 2 so as to balance this
second Joint. The equilibrium of the end Joint will be disturbed only
by B small amount due to shear in the sheet. . ’
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4. Displace by equal amounts the third Joint on the same stringer
and the two Joints that were placed in approximate balance by the oper-
atlon described in step 3 so as to 'balance this third Joint.

5. Continue this procedure until the Joint next to the midjoint of
the stringer i1s balanced by equal displacements of all the Joints
sltuated between 1t and the end Joint first displaced.

6. Ropeat the process described in steps 2 to 5, starting from the
other end Joint of the sitringer and continuing to the mldjoint from this
direction. After this step 1s completed this stringer will be in
approximate balance, the only reslduals being those Introduced 'by shear
in the sheet.

7. Consider next the stringer oﬁ either slde of the approximately
balanced stringer. Undertake a block displacement so as to equilibrate
externally the stringer under its residual forces.

8. Start at one end Joint of this stringer and apply steps 2 to 6.
This second stringer will be placed In spproximate balance thereby,
while the balance of the first stringer will be disturbed only through
the shear in the sheet.

9. Elther return to the first balanced stringer or proceed to the
next gtringer on the other side. IXach newly consldered stringer is
Pirst externally equilibrated under the extermal and resildual forces by
a block displacement. Then from each free end the residuals are
balanced by group displacements Iinvolving equal dlsplacements of all the
Jolnts situated between the one in question and the free end. Continue
to balance individual stringers until all are balenced.

The relaxation ta.'bles for the pamel shown in figure 1, for which
table 1 is the operations table, are used to demonstrate 'bhe first
and second procedures and are given as tables 2 and 3, respectively.
It will be noticed that thls operations table considers the displacements
of only the Jjoints on the left half of the pamel. The panel 1s symmet-
rical and is symmetrically loaded. Therefors, the dlsplacements in the
balancing process are undertaken symmetrically and only those of the left
glde Joints need be comsldered, those of the right being correspondingly
equal. BSince this panel has only three bays along each axislly loaded
stringer, the internal balancing process is undertaken from one end of

the stringer only.

(b) Panels with boundery conditions at one end of stringers specified
in terms of force and at other in terms of displacement.- This type of
problem occurs, for instance, when one end of the panel is attached to a
rigid body which is either held fixed in 1ts position or 1s displaced a
given amount. The recommended procedure for panels of thils group is the
seme ag the second procedure for panels in case (a) with two exceptioms:
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(1) No block displacements are needed (or possible) to equilibrate the
stringers externally and (2) the internal balancing process can be
started only from the one free end of each stringer.

The method 1s demonstrated on the panel shown in figure 2. It is
identical with the panel used for case (a) wlth the exception of the
fixed lower ends of._the vertical stringers. The operations taeble is
identical wilth thatof the previous panel except that no block and
no vy and A7) displacements are admissible. The relaxation table is

given as table 4.

(c) Panels with boundary conditions at-both ends of stringer
specified in terms of displacement.- Experience on panels of this type
indicates that;  although no systematic process of balancing the residuals
can be recommended, the dlrect relaxatlon process is rapidly convergent.
By starting from the midpoint Joints on & stringer and by balancing
successive Jolnts toward the two fixed ends, the equilibrium position
can be approximeted rapidly. A further suggestion regarding this type of
panel 1s contalned in the later sectlon 'Niles Tables. "

(4) Panels with irregulariy specified boundary conditions.- For such
panels a comblnation of the methods discussed umder cases (a), (b), and
(¢) is recommended. By judicious use of block and group operatlions
similar to-those of cases (a) and (b) rapid convergence of the relaxation
procedure will'be obtained.

(e) Panels in which transverse displacements and forces are
congidered.- There are two gemeral procedures for treating panels in
which the transverse displacements end forces, usually cansidered negli-
glble, are treated. These are described in the following paragraphs:

First procedure:

The procedure discussed under cases (a) and (b) can be applled to
panels with cut-outs. The stringers are approximately balanced in the
directlon of the major axial forces by these procedures and then the
reslduals normal to this direction are consldered. The same step-by-step
operatlions can be gpplied in balancing transverse stiffeners under these
trangverse axial forces. The process of first balancing the stringers
in one directlon, then balancing the stiffeners in the normal direction,
and then returning to the originally balsnced stringers will be quite
rapidly convergent for panels with sheet of low shearing rigldity.

Second procedure:

For panels with cut-outes requiring consideration of the transversec
forces another procedure, which is demonstrated in reference 4%, can be
uged. The panel ls first consldered to have contlimuous sheet and stringers,
as 1f the cut-out 4ld not exist, and the dlsplacements for equilibrium of
this panel under the external loade are determined by the usual methods.
These displacements are then applied as a first approximation to the
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distorted shape of the actual pa-.nel with cut-outs. Displacements lsading
to a closer gpproximation are then undertaken. This procedure 1s found
to be reasconably successful for the cases investigated in reference u4.

Matrix Calculus Method

The operations table together with the external forces can be
considered as a system of linear equilibrium equations with the magnitudes
of the displacements as the unknowns. Therefore, the methods of matrix
calculus can be applled to find the solution of this system by direct
mathematical meeans. The method described in reference 9 is recommended
s8ince a check on the calculstions ls maintalned st each step in the
process of solution.

Matrix methods of solution have several advantages. After the
operations table 1s established by trained engineering persommel, the
solution can be obtained by computing personnel familisr with the matrix
calculus method. TUnder some conditions this economic advantage may be
important. For reinforced panels with sheet of high shearing rigidity
the relaxation procedures are slowly convergent even when the recommen-
dations given in the preceding section are observed. The matrix calculus
method 1s not affected by this physical characteristic of the structure.

When the number of equatlions is greater than 30 or 40 , the work of
computabion becomes inconveniently large. Therefore, for panels having
a sheet covering of small shearing rigldity relaxatlon methods are
recommended. When the sheet covering is very rigid in shear the matrix
method is likely to be more advantageous because the routine operations
of the matrix method can always be carried out 1f enough tims is allowed.

The equatlons of equilibrium for the panel shown In figure 1 are
given by table 1 and are presented as follows to 1llustrate how the
operations table and the extermal forces can be considered as a system of
equilibrium equations:



- -
- 55.2vB + E.OOV'E + 51.2vF =0

2.00vy - 101.6‘VE + 1;.007F + l]-6.8vJ + 2.00vg =0

SL.2v + lL.OOvE - ll().lwF + 2.00v; + 512w =0
h6.8vE + 2.00vy - 101.6vy + h-OOVK + l;6.8vn + 2.00v, =0 >
E-OOYE + 51-27F + #-OOVJ - llO-IWK + 2-OOVN + 5.1-2\?0 =0

46.87; + 2.00v - 50.8vy + 2.007, + 60 x 10% = 0

In consldering the operations table and the externnl forces as a sysbem of equilibrium
equations, care must be taken to restrain emough Joints so that the positlon of the penel as
a rigid body 1s fixed. In the present case v, and vy are assumed to be zero, amd since

only dlsplacements in the y-direction are congidered 1n this problem, this restraint ia
gufficient.

(1)

01

9BLT "ON NI YOVN




NACA TN No. 1786 ' } 11

Growing-Unit 'Method

For relnforced panels with sheet of high shearing rigidity or with
a large number of bays in the directlon of the axlal forces, the relaxation
procedure is not rapidly convergent. In such problems elther the matrix
calculus or the growlng-unit method is recommended. The latter cen be
applied only to panels the boundary conditions of which are specified in
terms of force at least at one end of the stringers.

The growling-unlt method epplied to reinforced panels 1s as follows.
The Joint at the free end of an arbitrarily selected unbalanced stringer,
called hereinafter the principal Joint and the principal stringer,
respectively, 1s displaced so as to liguldate the resldual on this Joint.
At the same tlme the Jolnts lying on adjacent paraliel stringers and the
same transverse stlffener are displaced so that the residuals that would
be otherwlise introduced by shear from the balanclng of the principal .
Joint as well as any external forces applied to these Joints are likewlse
liquidated- In the second operatian the next Joint on the principal
stringer is relaxed while the previously balanced Joints on the first
transverse stiffener and the Joints on the second tramsverse stiffener
are kept 1n balance by sultable displacements. After this second
operation no residuals .remein at the Joints of the first two transverse
gtiffeners. After a sufficlent number of repetitions of the procedure
all residuals wlll be confined to reaction polnts or will be liquidated;
the panel will then be In equllibrium.

This procedure is demonstrated on the panel shown in figure 3. The

physical properties of the panel are the same as those of the previously
discussed panels except for the addltional bay in the dirsction of the
axlal forces. Actually the convergence of the relaxation method for this
panel would be quite rapid, but for convenience the growing-unit method,
applicable when this convergence is slow, 1ls demonstrated thereon.
Table 5 1s the operatlions table for this panel and contalns not only the
individual operations but also the group operations of the growing-unit
meothod. Table 6 is the relaxation table in which these group operations
are used.

The group operations given in table 5 require some explanation. Im
order to avoild introducing a ?B residual when Joint A is relaxed by

application of operatiom (1), a vp displacement is applied, the magni-
tude of which can be calculated from the equatlion

- 55.2v5 + 2.00 = O (2)

Thus operation (9) is vy = (2/55.2) = 0.0362 and (10) is a group

operation equal to the sum of operations (1) and (9), which liguidates
the resldual YA without introducing a YB unbalance-
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After operation (10) is used, unbalences exist at Joints E and F,
that is, on the second transverse stliffener. In order to balance these
without disturbing the recently established balance at A and B, two
group operatione are developed: ome permitting the balancing of-E and
one permitting the balancing of F. The magnitudes of Va and v

requlred to maintain the balance of A and B when a displacement
of Vg = 1 1s undertaken are given by the following equations:

I
o

- 50.8v, + 2.00vy + 46.8

(3)
E-OOVA - 55-27:8 + 2.00

]
o

These are satisfled by v, = 0-921, operation (11), end g = 0.0695,

operation (12). Operation (13) is therefore established as the sum of
operations (3), (11), and (12). The magnitudes of v, and vy

required to maintain the balance of A and B when a dlsplacement—

of Vg = 1 1is undertaken are given by the followling eguations:

I
o

-~ 50.8v, + 2.00vg + 2.00 =
(%)

1]
(o]

2-OOVA - 5502VB + 51.2

These are satisfied by v, = 0.0758, operation (1), amd vy = 0.923,

operation (15). Operation (16) 1s the sum of operations (&), (14),
and (15). Since group operations (13) and (16) both introduce Yy

and YF forces, the magnltudes xl3 and X1 of these groups

required to liquildate the -1lll-pound and -9-pound residuals at E and F,
respectively, are given by the followlng equations:

- 58'3x13 + 9.hxl6 - 111 =0

(5)
9.hx), - 62.6x)0 - 9 =0
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Thus X3 = - 1.975 and x¢ = - 0.44k. Joints E and F are balanced
without disturbing the balance of A and B by the use of These miltiples
of operations (13) and (16).

In eliminating the residuals at Jolnts J and K multiples of
operations (13) and (16) are applied since these operations permit
displacements of E and F to be undertaken while the balance at A and B
ls left undisturbed. When Jolnt J 1s displaced & unlt amount, multiples
of operations (13) and (16), defined by the following equations, are
used so that the balance at A, B, E, and F is malntained:

i
(@]

- 58-3x,

3 * 9.ll-xl6 + 46.8

(6)

9.)+xl3 - 62.6xl6 + 2.00

[l
O

The solution to these equations 1s x;3 = 0.828, operation (17), and
Xi¢ = 0.158, operation (18). Operation (19) is the sum of operations (5),
(17), and (18). '

In a similar manner all the individual and group displacements
described in table 4 are found. It may be mentioned that in the present
example no shearing stresses were set up in the middle bays because of
the symmetry of structure and loading. The original operations table
was already esteblished in a manner which complied with these regquire-
ments of symmebtry. When such is not the case or when there is a greater
number of stringers in the panel, displacements of principal stringer
Joints will, in general, cause residuals to appear at more Joints so
that three or more, rather than two, simultaneous equations have to be
golved at each step.

Niles Tables

In reference 10, A. S. Nlles demonstrates for the solution of reln-
forced~-panel problems a method which essentially parallels the previously
described relaxation method. The Niles method is a procedure for
balancing a stringer by the use of tables which give the dlsplacements
of each Joint on the stringer requlred to liquidate a residual on a glven
Joint of the stringer. The tables are worked out for various end
conditions and sheet shearing rigidities.

Since reference 10 contalns tables only for sheet of relatively low
shearing rigidity, the Niles method is limited in this respect 1n the
gseme way as the relaxation method. However, the tables can be employed
on stringers with the boundary conditlions at both ends specified in
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terms of displacement; for such problems no step-by-step routine
reolaxatlion method has been recommended. Also by use of the tables exact
balance of a stringer 1s gained after a single displacement of each
Joint, whereas I1n the relaxation method, because of the shear, small
unbalances remain after each Joint ls moved.

On the other hand, thé relaxation method can be applied to stringers
with irregularly spaced Joints for which no tables were sBet up by Niles.

Since in reference 10 several examples of the procedure _are given,
no application of the Niles method 1s shown herein.

Electric Analogue

Another convenlent method of solving the problem of force distri-
butlon 1n a reinforced panel is that-in which the voltages are measured
in an electric network which is so constructed as to make 1t a complete —
analogue of the reinforced panel. When sultable electric equipment is
evallable, an analogous network cam be hooked up and tested with very.
1ittle work- A particularly attractive property of- the stress-analysis
procedure by means of elsctric measurement 1s the ease wlth which the
effect upon the stress distribution of changes in loading and in dimen-
gione of the various structural elements of the reinforced panel can be
Investigated. Thlsg permits the development of an efficient—design with
little eanalytic work.

The aenslogy between the forces transmitted through the differemt
gtructural elements of the reinforced panel and the currents flowing
through the various branches of the direct-current network can be
explained with the aid of figures 4 and 5. The problem investlgated 1s
the so-called 'one-dimensional shear lag." It is assumed that the trans-
verse stiffeners are infinitely rigld so that the ver%ical, or longltu-
dinal, displacements v alone need to be determined. The portion of
the sheet covering considered effectlve 1n tension or compression is
aedded to the crogs-sectional area of each stringer and the panels of
sheet are agsumed to carry shear stresses only. A conseguence of these
essumptions is that the shearing stress must be constant In each panel.

The analogous dlrect-current network contalins as many binding posts
as the number of Joints in the reinforced panel. AdJacent bindling posts
are connected by conductors having presc¢ribed reslstances R. Prede-
termined electric currents I, which correspond to the forces F
eapplied to Joints A and B of the reinforced panel, are introduced into
the network at points A and B. .

It is now recalled that in the relaxastion method the Joints of the
panel are first assumed to be rigidly fixed to & rigid wall behind the
‘panel. The external loads are first applied to these rigid pegs,
referred to as the "comstraints."” The panel is obviougly in equ;librium
under these conditions but this artificial equilibrium is eutirely
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different from that prevalling in the actual panel, which is not attached
to any rigid wall. The actual state of equilibrium is approached by the
step-by-step procedure of the relaxatlon method, in each step of which
one single comnstraint is removed and the corresponding Joint is displaced
wntll 1t reaches its equilibrium position in the system in which all the
other Joints are still rigidly fixed.

For lnstence when Joint 1 of the reinforced panel 1s moved through
a dlstence v I1n the positive direction, this dlsplacement imposes
forces upon all the adjacent Joints numbered from 2 toc 9. Three typlcal
forces are given by the equations:

EA @bt (1)
= v%’-:.t- (8)

where

Fg1» Fgys Fgy the forces acting upon Jolnts 8, 9, and 6, respectively,
because of the displacement of Joint 1

modulus of elasticity of stringer
G shear modulus of sheet

thickness of sheet
v displacement of Joint 1

In the case of the analogous network 1t can be assumed that the
potential of each binding post is zero at the outset. If there is no
potentlal difference, no current flows between the posts. It can be
Imagined that the currents introduced at points A and B sre taken out of
the system by means of some imeginsery conductors. However, the actual
distribution of currents in the network prevails without the aid of the
imaginary conductors. This actuel state can be approached also DY means
of a step-by-step, approximation-type calculation. For instance 1t can
be egeumed first that the potential of binding post 1 is elevated to the
value V. After this change there is a potential difference between
binding posts 1 and 8 and consequently & current will flow from post 1
to post 8. The magnitude of this current can be calculated from the
equation

Igy = V/Bgy = CgyV (10)
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where 381 is the reslistance and 081 = 1/381 is the conductance of the

conductor between posts 1 and 8. Similarly the current flowing from
post—1 to post 9 is

191 = CgiV ' ) (11)

The current flowing from post 1 topost 6 is

I. =C

61 v (12)

61

Comparison of equations (7) to (9) with equations (10) to (12)
reveals an analogy between the effects of a displacement v of Joint 1
and the raising of the voltage of binding post 1 by an amount V. The
current caused by the change in potentlal corresponds to the force
caused by the displacement, provided that the conductance of each
conductor 1s made equal to the influence coefficlent in the corresponding
force equation. Hence

on - B - 22 &
- -
091 v (1h4)

In the relaxation procedure the equilibrium state is approached by
displacing Individually the Joints and summing the effectas of each
displacement. In exactly the same way the actual distribution of the
currents 1in the network can be determined by changing individually the
voltages of each binding post and summing the effects of these changes.
In the reinforced panel equilibrium is obtained when at each Jolnt the
sum of the extermal forces and of all the internal forces caused by the
displacements 1s zero. The forces are considered positive if they are
directed as the positive displacements. In the form of an equation,

> F=0 i N (16)
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An analogous equatlon in the dirsct-current network is furnished by
Kirchhoff's first law, according to which the sum of the currents flowing
into any binding post must be zero. Currents in the direction of any
binding post are consldered as positive. In the form of an equation,

St=0 (17)

14

Comparison of the last two equations reveals that the conditions of
equilibrium for the reinforced panel and Kirchhoff's first law in the
cagse of the direct-current network ccmplete the analogy of the two
systems considered. It is possible therefore to construct an electric
network with the same conflguration of blnding posts as that of the Joints
of the relnforced pamel. The conductances of the conductors connecting
the binding posts must be so chosen as to make them proportional to the
corresponding influence coefficients in the operations table of the
reinforced panel. If then currents are introduced at the binding posts
which correspond to the Joints at which external loads are applied, the
distribution of the currents in the network will be the same as the
distribution of the forces between the various structural elements of
the reinforced pamel.

In the first applications of the relaxation process to reinforced
panels sach Joint was displaced until equilibrium was established. It
was noted in the sectlon dealing with the solution of the problem by
metrix methods that this procedure permitted rigid body displecements of
the structure. Rigld body displacements can be eliminated if one or more
Joints are considered as rigidly fixed. In the case of the relnforced
pansel of figure 4 the degree of freedom of motion of each Joint is onse,
because the problem ls considered as a ons-dimensional shear lag problem.
Consequently it suffices to fix one single Joint so that it is prevented
from displacing vertically. However, 1f Joint C, for imstance, is fixed,
the symmetry of the structure and loading requlres the simultaneous
fixation of Joint D. :

In the analogous network blnding posts C and D are glven predster-
mined values of the potentials by commecting them to the ground. It is
customary to attribute the value zero to the potentlial of the ground.
Consequently Vi and Vp are zero Just as In the reinforced panel

Vo and. vp @are zero.

It will be noticed that in figure 4 the direction of F at
Joints A and B is upward, whereas the direction of I at binding posts A
end B in figure 5 is downward. This corresponds to the difference in
the sign conventlon in the two systems. In the panel upward forces were
consldered positive and in the network currents flowing toward the
binding posts were given the positive sign. The directions of the forces
and the currents at points C and D are the same. This again corresponds
to the correct signs required by the sign convention since the downward
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forces at these polnts are negative Just as the currents which flow away
from the bindling posts are negative. Hence the reinforced panel is
under the action of external tensile forces, whereas through the network
currente are flowlng in the downward directlon.

In the case under discussion 1t 1s easy enough to introduce the two
equal currents at posts A and B and to regulate their magnitude by means
of an adjustable rheostat. However, when there are a number of impressed
currents of different magnitude stipulated, thelr adJustment may become
a lengthy trial-and-error procedure. In such cases 1t 1s advantageous
to employ a number of commercilally avallable electronic devices, known
as congtant-current generstors, which have the property of maintalning
& constent current independently of the properties of the network.

When the construction of the network is completed and the required
external currents are Introduced, the deflection of any Joint of the
reinforced panel can be obtained by meassuring the potential of the
corresponding post In the network with respect to the groumnd. This
quantity multiplied by the conversion factor 1s the relative displacement
of the corresponding Joint of the reinforced paenel with respect—to-the
fixed points C and B. In most cases, however, the displacement quantities
are of interest only iIndirectly and the mein quantitles sought are the
forces in the stringers and the shear stresses in the sheet. These
quantities can be obtained in a simple menner by multiplying potential
differences by the appropriate comductances and by the conversion factor.

For instance when the force in stringer segment 1-8 is sought, the
voltage drop between posts 1 and 8 must be measured and multiplied by
the conductance C81 and the comversion factor. This is & consegquence

of squations (7) end (10). Similarly when the shear stress in panel 1689
is required, the voltage drops in conductors 1-6 and 8-9 have to be
measured. From figure L the average displacement of stringer segment 6-9

is ('f6 + vg) /2 and the average displacement of stringer segment 1-8

is (vl + 78) /2. The difference of these two average displacements

multiplied by Gtb /a ig the shear force transmitted from the panel
to gtringer segment 6-9. Consequently the sum of—the displacement differ-
ences Vg - vy and v9 - Vg multiplied by the influence coefficlent-1-6

ls the shear force sought. In other words the sum of the voltage drops
from post 1 topost 6 and from post 8 to post 9 multiplied by the
conductance Cg; and the converslion factor is the shear force 1n guestion.

This shear force divided by the length b gives the average shear flow in

panel 1689 and this shear flow divided by the thickness of the sheet is
the aveérage shear stress.

With the cooperation of the Department of Electrical Engineering a
network wae constructed at the Polytechnic Inmstitute of Brooklyn which
was the analogue of the reinforced panel investigated earlier at PIBAL
both experimentally and by relaxation methods. The results of these
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investigations are described in reference 3. The constant currents were
introduced by means of constant-current generators. In the electrical
system the unlt of the potential was chosen as 1 volt and that of the
current as 100 mllliemperes. Then the unit of the conductance had to be
a millimho and that of the resistance, a kllohm. In the mechanical

system the unit displacemsnt was l()")+ inch and the unit force, 1 pound.
Consequently in thls problem the voltege differences had to be multiplied

by the conversion factor 10'4 inch per volt in order to obtain displace-
ments. The factor converting currents into forces was 10 pounds per
empere. The results of the measurements were in excellent agreement with
the resulte quoted in reference 3.

Similer experiments were carried out by R. E. Newion and M. E. Engle
at the Curtiss-Wright Corporation, Airplane Division, in St. Louls and
are described In two reports listed as references 11 and 12. Newton's
approach to the problem is fundementelly the same as the argument given
herein. However, hls electric network 1s slightly simpler since it does
not contain the conductors arranged diagonally in the system shown in
figure 5. ' The network of figure 5 was chosen in this report in prefer-
ence to Newton's simpler network since by this presentation the iden-
tity of the conductances of the network and the influence coefficlents
used in the other parts of thls report could be estgblished.

It should be mentioned that in masny cases it 1s possible to construct
a dual type of network in which the currents correspond to the displace-
ments of the Joints of the reinforced panel and the potential differences
correspond to the forces 1n the stringers and in the sheet covering of
the panels. In this type of network the external loads can be introduced
more easily as Impressed potentlal differences. However, the network
described herein is more advantageous .since it can always be constructed
directly from the geometry of the reinforced panel.

The usefulness of the analogue with the dirsct-current network
breaks down when the influence coefficlent in equation (7) becomes
negetive. In such & case the conductance and consequently the resistance
of the corresponding branch of the network should be negative; this is
obviously imposslble. However, the situation can be usually remedied in
the case of one-dlmensional shear lag problems. The fundasmental assump-
tions of the problem are not changed 1f a number of additional horizontal
bracing elements are introduced in the panel since all of them are assumed
to be infinitely rigld. If, however, the panel length b 1is reduced
to one-half its original value, then the negative term in the influence
coefficient appearing in equation (7) is halved and the positive term is
doubled. In most cases this wlll suffice to change the sign of the
influence coefficient. When such 1s not the case distance b can be
reduced In any other sultebles ratio.

Negative influence coefficlents can be realized if the anslogous
network is fed by an alternating current. The quantity correspcnding in
an alternating-current circuit to the resistance of the direct-current
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circult is the impedance. In the Impedance the inductance retards the
phase of the current and the capacitance advances it go that-the two
have opposite effects. If ome is designated as positive, the other is
negative. However, no inductance is entirely free of resistance and for.
this reason the accuracy of & complicated alternmating-current network
may not be sufficlent for the solution of some of the problems encoun-
tered 1ln practice.

The use of the electric analogue for solution of shear lag problems
1lg recommended when several simlilar panels with many loading conditions
are to be analyzed. For such & casse the canstructlon of the analogous
network, the variation of the loading by varying the impressed currents,
and the determination of the potentials at the binding posts would be
simpler than any enalytic method of solutiom.

FUSELAGE RINGS

Introduction

In reference 5 nimerical procedures for the determination of the
bending-moment—distributlon in fuselsge rings are developed and demon-
strated on several simple and internally braced fuselage rings. The
number of redundant intesrnal bracing elementes increases little the work
involyed in establishlng the operations table for the ring and affects
not at g}l the amount of numerical work in the solutlon of-the cperations
table. This nonsensitivity to the number of redundances constitutes the
advantage of this method in the analysis of fuselage rings.

The methods suggested for the solution of the systesm of equations
represented by the operations table and the external forces are three:
relaxation, matrix calculus, and growlng-unit. The latter two may be
consldered as direct mathematical methods and as in reinforced-panel
problems require only computing persomnnel. For the analysis of isclated
fuselage rings of complex shape the use of these direct methods is
recommended since an accurate solution is assured in a reasonaeble length
of time, whereas the relaxation method may not lead to sufficiemtly
accurate results even after considerable effort has been expended. How-
ever, for simply shaped rings and for problems of stregs distribution in
sheet gtringer, and ring combinations, application of the relaxation
method to fuselage rings is advantageous For this reason the relaxation
method for fuselage-ring problems is presented and new, more repldly
convergent procedures are developed.

It has not been found possible to meke concrete reommmendations for
relaxation procedures which are rapldly convergent for all types of ring
and loading. However, satisfactory procedures for several dlgtinct types
of ring and loading are demonsgtrated and explained in some detail. It is
felt that consideration of these examples will suggest to the analyst
means of solving more rspidly other ring and cylinder problems which are
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not efficlently attacked by dlirect mathemstical means. The procedures,
which involve essentlally appropriate combined operations, are demon-
strated on two rings solved in reference 5 by the usual relaxation
methods and on a new internally braced ring. Application of the growing-
unit and matrix calculus methods to the latter problem is made to demon-
strate these methods and to verify the results of the relaxation
procedurs.

Torsion of a Clrcular Ring

In reference 5 the bending-moment distribution for a simple
circular ring with antisymmetric loading consisting of concentrated
forces and dlstributed and constant shear flow is determined by applii-
cation of numerical methods. The dimensiong and loading for this ring
are shown in figure 6 and the operations table is glven as table 7.
Relaxstlon methods are applied to the solution of this ring problem in
reference 5. By a process of increasing all the residusls in such a
proportion that one key operatlon would liquidate them all to within
the desired degree of accuracy, the residuals were reduced to within
2 percent of the maximum applied load in 12 operations.

In the present report combined operations which Increase the
rate of convergence are demonstrated. Tangential and angular dis-
placements of A and C balance these polints in four operations and place
all remaining residuals at B. Since no tangential forces exist at
A end C, the force residual at B must be vertical and the moment
residual, equal to the couple of the vertical forces. Suppose the
residual moment at B 1s liquidated by a rotation of that Joint whille
the balance of A and C 1s preserved by sultable dlsplacemsnts of A and C.
Then from equllibrium considerations the residusl forces at B must also
be liquldated. Thus in five operations balance wlll be obtained. This
procedure is used and proves to be satisfactory. .

In order to balence the residuals at A two comblined operatlions
are developed. The first combines a unit engular displacement wy

with a tangential displacement u, such that no tangential force at A

results when the two individual operatlions are simultaneously applied.
The forces and moments introduced by the individual operations as well
ag by the combination are given in the following teble:



Forces and
T Ty Ta By %5 T3 5% | T
W, = 1073 radian -281.95 49.079 | -29.966 | -k.733 6L.675| 0 | 0O
u, = -0.93848 x 1073 1n. 46.060 | 49.079 | -60.696 | 21.060 | -48.3k7| 0 | O
> —>Operation A =1 -235.89 0 -90.662 | 16.327 16.328 . 0 0

The second operation combines & wmlt tangential displacement Uy with an apgular rotation LY

such that at A no moment arises from the combined operatlon. The forces and moments lntroduced
by the individval operatlions as well as by the comblned operatlon are given 1n the following

table:

Forcea =nd .
moments LI Ty L5 By Tp Ry | To
Operation

uy = 1073 1n. 459,079 | -52.296 | 6h.675 | -22.4k1 51.516 | O 0

) = 0-17407 x 1073 redtan | U9.079 | 8.5432 | 5.2162 | o0.8e387 | -1.258 | 0 | ©

> -» Operation B = 1 0 43.753 | 60.801 | -21.617 w.ess | o | o

&
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Thus by using the necessary amounts of the combined operaticme A and B Joint A is balanced
in two operations. Two simllar operations are found for Jolnt C end are glven as follows with-

out explanation:

Forces and
operabion Homente s B T Yo Te
W = 1073 radian 56.512 8.842 6.632 -157.899 | -1.563
uy = ~b.8540 x 1073 in. -32.192 | -2.5435 | -0.332%0 7-5868 [ 1.563
> —> Operation C = 1 2h.320 | 6.2985 | 6.2995 | -150.31 0
Forces and
Operabiom—asTete % B T No To
uy = 1073 in. 6,632 0.524 0.0685 -1.563 | -0.322
g = -0.0098987 x 10°3 radien 0.55939 | -0.08752 | -0.0656 1.563 | 0.01547
> - Operation D = 1 6.0726 0.43648 | 0.0029 0 -0.30653

In order to balance the reaiduals at B without disturbing the balance at A and C obtalned by

use of operations A to D, combined operations involving tangemntial and engular displacementa of

A and C and a wnit rotation of B are developed.

If Joint A is to remain in balance when a rotation

of B 18 undertaken, Joint A must be rotated and displaced in such & manmer that the tapgentlal
Bince the angular

force and the moment introduced at A by this rotation of B are equilibrated.

9QLT "ON NI VOVN
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displacement introduces tangentlal forces at A, and the tangential
displacement Introduces moments, two simultaneous equations must be
golved for the wmknown tengential and aengular displacements. The

eguations for A are: .
0
(18)

The solution to these equatlions is wA = « 0.3843k % 10~3 radian and

- 281.95w, - 49.079u, - 29.966 x 1073

|
(@)

- 49.079w, = 52.296u, + 64.675 x 1073 =

ug = 1. 5074 X 10~3 inch. A

= AT i & A un
a.ngu.la.r displa.cemsnts of C are combined in equations (19) so that the
tangential force and moment -introduced at C by the combined operations
are zero.

"
(@]

- 157‘899“C - 1.563uC + 56.5117 X 1073
(19)

|
Qo

- 1.563wg - 0.322u; + 6.632 x 1073 =

The solution to these equations is wy = 0.16180 x 10™3 radian and
ug = 19.811 x 1073 inch.

If the forces and moments Introduced by the three sets of—
displacements (unit rotation of B, the tangential and angular dis-
Placements of A, and the tangentia,l and sngular displacements of C)
are combined, a combined operation 1s obtalned such that only forces
and moments at B and radial forces at A and C are introduced. These
latter forces are of no interest in the relaxation procedure since
they are equilibrated automatically by the other half of the ring. Thse
combined operation from these three sets of d.isplacemen’cs is given in
the following table:



Forces and
operation Ioments N, Ta L Ry Tg o To

W = 1073 redien 29.966 | 64.675 | 439.849 | 31.443 | -s0.642 | s56.5117 | 6.632
W, = -0.3843 x 1073 radtan | 108.37 | 18.863 [ 11.517 | 1.8191|-2k.857 | o 0

uy = 1.597k x 1073 in. -78.399 |-83.538 | 103.31 (-35.847 | Be.292 | O 0

wg = 0-16180 x 1073 redien | © 0 9.1436 | 1.%306| 1.0730| -25.548 | -0.25289
ﬁc = 19.811 x 1073 1n. 0 0 131.39 10.381 1.3570 | -30.96% | -6.3791
> —>Operation ¥ = 1 mc; 0 -18k.49 9-2267 9';230. ﬁo—‘t 0

The relaxation teble uging these five combined operations, A to E, 1s given ag table 8. The
balsncing process was carried put on a slide rule and after flve operations all the reslduals were

reduced to negligible quantitiea.

From the magnitudes of these group operatlons the totel individual

displacements of A, B, and C can be found and the wunknown radlal forces at A and C calculated.

The procedurs Just described involves essentially the development of group operations so that
full advantege of the symmetry properties of the ring may be realized. This method 1s applicable

to other rings.

The internally braced circular ring subjected to antisymmetric loads and analyzed

in reference 5 can be treated in the same way as this simple ring. If these rings had been sym-
metrically loaded, the force reslduals at B, after A and C bad been balanced by simple radial

displacements, would have a horizontal resulbant.
of A and C such that the reaultant forece introduced at B is horizontal and such that A and C remein

By combining rasdlal and tungentiel displacements

in balence, the horizantal resultant at B could be liguidated by epplication of such a conbined
operation. The moment residusl et B ia not necessarily eliminated when the force residual at B is

balanced.

Joint B must be rotated whils A end C are dlgplaced radially so that the moment &t B 1is

9BLT oK HI VDVN
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liquidated and Jolnts A eand C are kept in balance. If the process of
liquidating first—the residual force and then the moment at B, preserving
In each operation the balance at—A and C, 1is not rapidly convergen‘c— two
equations for the equilibrium of B can be es'ba.'blished. and solved for the
required amounts of the combined operations.

Thus the foregoing procedures for both the symmetrical and anti-
symuetrical loading can be applied to any ring singly symmetrical with
only one Jolnt between the center line of symmetry Jolnts. It may,
therefore, be advantageous in some ring problems to combine several bars,
ag in the method of the growing unit, such that only one Joint betwsen
the boundary Joints has independent degrees of freedom. This will permit
use of the foregoing procedure.

Sufficlient accuracy for most engineering purposes can be obtained
in the computations of this procedure by the use of a2 slide rule through-
out. Although the combined operations shown herein were obtained by
the use of & compubting machine carrying five significant figures, the
procedure was flrst demonstrated with the use of a slide rule for all
calculations. The results ofthe two sets of calculations are in good
agreement, thus Indicating the sufflclency of slide-rule accuracy.

Egg-Shaped Ring

Figure 7 shows the ¢imensions of, and loading on, a ring which 1is
analyzed in reference 5. The operations table for this ring is given
ag table 9. In this ring there are two points B and C between the center
line of symmetry points A and D. By msking the degrees of freedom of
elther point B or ¢ dependent on the other and on the adjacent center
line of the symmetry point, one point with independent degrees of free-
dom 1ls established between A and D and the method discussed previously
can be used.

However, In order to demonstrate the simpliclty and effectiveness
of group operation.s , @nother approach 1s used. The center lines of
symuetry points A and D are balanced by simple radiel displacemsnts of
A and D. The midpolnt of bar BC is assumed restrained tangentlally so
that only equal and opposite tangentlial displacements of B and C are
underteken. Because of the large extensional stiffness of bar BC as
compared with the bending rigidity of the circular segments and because
the ring is almost symmetrical about & horizontal axis, such dis-
placements of B and C liquidate approximately equal and opposite
tangential residusl forces at B and C, such as those which will be
obtalned at these points when the residuals aggoclated with the other
degrees of freedom are small. .

If the balance at A and D is preserved by appropriate comblinations
of the radilel dilsplacements of-A and D with the required dilsplacements
of B and C and 1f the tangential residuals at B and C are not—considered
until the foregolng operation will liguldate them both, maln attention
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is focused on the radial Fforce and moment residusls at B and C. In
order to balance these, no speclfic method of convergence is used butb
the state of the residuals after each step 1s consldered before the
next operatlion is selected. Im thls problem of egg-shaped rings and
many other rings and in the complete cylinder problems this approach,
utilizing physical properties of the system and eliminating or reducing
extraneous forces and moments at each step in the relaxatlon process,
may be the most satisfactory method of solution. .

Table 10 is the relaxation table for the ring in question. The
first two operations linvolve only radial displacements whlch balance
the 500-pound forces at A and D. The largest residual then is the
radial force of 451 pounds at C. If point C is displaced radially so
as to balance this residusl, a large moment and a large radlal force
are introduced at B. - In order to reduce these extraneous forces and
moments and to keep Joints A and D balanced, radial displacements of
A, B, and D and a rotatlon of B are combined as shown by the followlng
operations:

~

|
o

- ;.34833vA + 8.92216w; - 2.6961kvy =

|
O

8.92216v, - 327.866wy + 11.469Tvy + 8.10267 x 107+ =
> (20)

- 2.6961hv, + 11.469Tw; - 4.00991vy + 0.66158 x 107% = 0

- 12-21;007]) - 1.131900 X lO'l“ =0
-/
The solution of this system of equations is: Vo= - 0.26384 x 10'1" inch,
wg = 0.03279 X lO'h' radian, vg = 0.43618 x lO'lI' inch,. and
vy = - 0.902% x 10™¥ 1inch.

The forces and moments Iintroduced by each of the indivlidual operatlions
and by the combination are given 1n the followlng table:
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g B | & R, I
Opexration .
vo = 107% 1n, . 0 8.10267 | 0.66158 | o
v, = ao.2638h x 107% 1n. | 0.88343 -2.3540 0.71136 | -1.0468
wy = 0.03279 x 10™% redtan 0.29258 | -10.751 0.37612 | -0.42963
vg = 0.43618 x 107* 1n. -1.1760 5.0028 | -1.7h91 | 1.ko8h
Vp = —0.9024? x 107¥ 1n. 0 0 0 0
> —>OperationF =1 | © 0 0 0.0219
Force;eggg No Re Tc Rp
Operatlion
vg = 1074 1n. -2.95622 | -1.90205 | -0.88929 | -1.1190
v, =--0.2638k x 107* in. 0 0 0 0
Wy = 0.03279 X 107* radian | -2.0082 0.26570 | © 0
vy = 0.43618 x 10 1n. | -3.5342 0.28857 | © 0
v, = ~0.9024k2 x 107% 1n. 6.6350 1.00981 0.93626 1.1190
S~ > operation F = 1 | -1.8636 | .-0.33798 | o.ou697 | ©

The use of comblned operation F is desirable in balancing the radial
residual force at C, since it also reduces the moment residual at C and
adjusts the tangentlial residusls at B gnd € in the desired manner.

The residual considered.after uge of operation F is Ry = 402 pounds.
In order to balance 1t by a displacement Vg while the balance at A
is preserved, a Va displacement mist-be undertaken as well. If

b inch. The

vg = 107% inch, then v, = —2:606Lk I = - 0-80522 x 10°
-3-34833 x 10



forces and moments introduced by these Individual cperations as well as by the combinatlons are
glven iIn the following table: _

Forces and
moments Ry 8 By Ty No B | Tc | Bp
Operation
vy = 107 i, 2.69614 | 11-4697 | 4.00991. | 3.4352 |-B.10267 | 0.66158 | 0 | o
v, = -0.80522 x 107 1g. 2.696L | ~7.1843 | 2.1710 |-3.1945 | O 0 0] o
> - Operation G = 1 0 4.285) | -1.83801 | 0.2403 |-B.10267}0.66158 | 0 | ©

Conslder the effect of eliminating the Ry residual by use of operation G- The momemt
residual NB would algo be reduced by roughly 1000 inch-pounds, the TZB regldual would be
brought in closer egreement with the Ty residual, an Ry reeldual of about 30 percemt of the
previous R, residual of 45."!. pounds would be introduced, and a large N, residual would be

introduced. The last two effects are imdesirable. However, by use of operation F egain, the
Ry residual can be balenced without introducing & new Ry resldusl. The large Ny resldual 1s

not so easily balanced unless a new combination Involving Jolnts A, B, and D,is evolved.

Suppose, therefore, that s rotation of C and & radial dlsplecement of D are cambined so that

& moment at C can be eliminated and so that the balance of D 1s preserved by use of the combination.

The individual operations and the combinations are given in the following table:

98LT °ON NI VOVN



Foroes and
Opepation ——LCments Ry ¥y Bg | Tp B X Te Bp
Wy = 0% redtan 0 |[-61.202|-8.20267 | 0 | -288.367 | -2.95622 | -5.24667 | -7.352k
w = -5.929% x 107% 1. ] o 0 0 0 43.505 | 6.63500 | 6.1517 | 7.350k%
?—ml 0 |-6L.2s2|-8.1027 | 0 |-2hh.772| 3.6788 p 0.90508 | O o

If operations G and H are combined so that the moment at C Introduced by the combination
1s zero, the resulting forces and momente are given in the followlng table:

Forces and ]
voments ( By | Fp 5 B 8o K To Ry,
Operstion
1x (G) 0 | b.2654 | -1.83601 | 0.2403 | -B.,10267 | 0.66158 0 0
~0.033103 X (H) 0 | 2.0273 | 0.26822 | 0 8.10267 | -0.12178 -0.02996 | O
> —>Operstion I =1 | 0 | 6.3127 | -L.5707 | 0.2403 0 0.53980 | -0.02996] 0

TUse of operation I results in liquidation of the RB residual, in reduction in the
U regidual, in adjustment of the Ty and Tg reglduals toward the degired equality, and in
introduction of an Ry residual of 138 pounds. The latter can be balanced by the use of
operation F, which will preserve the balance of A and D and will not affect the Ny and Ry

realduals.

ot
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After this fifth operation the Tg and Tc reslduals are approxi-

mately equal and opposite as desired. Therefore, a group operation,
Involving equal and opposite tangentlal displacements of B and C and
gufficlent radlal displacements of A and D so that the latter rema.in
balanced, 1s developed in the following table:

Forces and

Operation moments Ry R Rg Ig Ne
ug = 10°% in. 3.96771[-13.101% | 3.14352|-30.9566 | O
g = -107% 1n. 0 0. 0 -26.2058 | 5.2L667
v, = 1.1850 x 107 1n. -3.9677 | 10.573 |-3.194%9 | k.7017{ O
v, = 0.83669 x 1074 1n. | 0 0 0 0 -6.1517
> —>operation J =1 |O | -2.5284 | 0.2403 |-52.461 {-0.9050
Operation Forf”g;ena%g e e . "
ug = 107% 1n. 0 26.2058 | 0
Uy = -1_0‘1* in. 0.88929 | 27.0833 | 1.0375
v, = 1.1850 x 10°* 1n. |0 0 0 ”

vp = 0.83669 x 1074 1n. -0.93626 | -0.86807{-1.0375

e

> > Operation J =1 | 0.04697| 52.421 | o

Use of operation J ligquldates the Ty and Ty residuals and

affects little the balance In the other degrees of freedom. The remsining
resglduals are considered negligibly small, the moment of 309 inch-pounds
being approximately 3 percent of the maximm moment in the ring. As in
the previous problem the Individusl displacements can be determined from
the megnitudes of the group operatlons and thus the unknown moments and
tangentlgl forces at A and D calculated.
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Although the celculatlions of the group operations shown herein have
been carried out on a computing machine with five significant figures
meintained wherever possible, sufficlent-accuracy for engineering
purposes can be obtained by the use of a slide rule. In developlng this
procedure a slide rule was used for all computatlions and the results
agreed satisfactorily wlth those ghown hersin.

Oval-Shaped Ring with Intermal Bracing

The ring shown in figure 8 is used as a third example of the new
relaxation procedures. As a check on the results of this procedure the
system of-equations glven by the operations table and external forces
1is also solved by the exact mathematicel methods of matrix calculus and
of -the growing-unit method. In order that the charts and tables of
reference 6 could be used in determining the influence coefficilents,
the following physical characteristics of the elements of-the ring are
asgumed:

Segments AB and EF:

Segments BC, CD, and DE:

yre
]
%
N
o
5
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ET = 106 1p-1n.2
L = 18.85 in.
Segment EG:
7 = é%g-; koo

A
B=0
ET = 107 1b-in.2
L = 16.97 in.

Becausse of the symmetry about & line through AGE only one-half of the
ring need be consldered. Joints A, G, and F are then restralned from
rotating or displacing tangentislly and cennot be subJected to radisl
forces. The assumed poslitlive directions of the displacements and of
the forces and moments at each Joint are shown in figure 8. From the
foregoing assumptions, the influence coefflcients and the opseratlons
teble given in table 1l are determined.

The horlzontal external forces of 1000 pounds at C and D are
resolved into thelr 'ba.ngential and radial components. Thus the
external forces are:

R = 965.93 1b R
To = - 258.82 1b
s (21)
Rp = - 965-93 1b
Tp = - 258.82 1 D
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The matrix calculus solution of the system of equations given by
these external forces and by the operations table is first obtained so
that the equilibrium of the ring as given by this solubtlon will provide
a check on the whole setup. Joint G 1s considered Fixed so that a
unique solution to this system of equations is obtained; thus there are
14 degrees of freedom to be considered. The 1t unknowns are found by
the method of-reference 9 to be:

- 605.73 x 10~3 1in. _ﬁw

Vo = 40.825 x 10-3 redien

va

35.14k x 1073 in.

- 300.06 x 10-3 in.

o

Vg = - 11.445 x 1073 radian

664.55 x 10~3 in.

04
i

- 72.282 x 1073 in.

&
]
Ve

(22)
- 22.975 x 1073 radian

'W'D =
vp = - 94.734 x 1073 in.
uy = 90.130 X 103 in.
vy = 6.2337 X 10-3 redisn
Vg = - 42.621 x 1073 1n.
U.E = 32.513 X 10-3 In.
vp = - #4648 x 1073 in.
. -

These displacements give the following values of the unknown moments
and tangentlal reactions at A, F, and G on the bars rather than on the
Joints:
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N, = - 3118.8 in.-1p ™
T, = 402.51 1b

105.43 in.-1b _

o

- 1_82.57 1b } (23)
Ng = - 371.06 in.-1b

0.43 1b

&

Tg = 584.98 1b )

Figure 9 is the bendling-moment dlagram for the ring with these reactlons
applied. .
By examining the equllibrium of one-half the ring under these

reactlons and the external forces, the accuracy of the operations table
is established. Since R, and Rp are zero, the summation of forces

in the verticel direction is simply:
The sumatlion of forces in the horilzontal direction 1s:

D Fg= Ty - Tp - Tg = 0.10 1b (25)

The summetion of moments gbout point G is:
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> Mg

' 12
Ny + T, [eu S 24(0.70711)]
+ Ng + N + Tp(24) (1 - 0.70711) - 1000(2 x 36 x 0.25882) (26)

- 3118.91 + 402.49(57.941) - 371.06 + 105..43

- 182.56(7.029%) - 18635.0%

17.45 in.-1b

The equilibrium conditions for the half ring are approximatwly
satisfied, the maximum percent error beilng a moment of less than 0.l per-
cent of the applied couple of 18, 635 inch-pounds. It is considered that
the accuracy of the operations table 1s established by this equilibrium
check.

Approximately 20 man-hours by an unskilled compubting-machine
operator were required to solve this system of 14 equations. It is
estimated that a skilled operator familiar with the Crout method would
require about 10 man-hours. .

In applying the Crout method to this problem the coefficlente of
the linear equations are assumed to be mathematicelly exact and, there-
fore, as many Flgures as could be carried on the 10-bank computing
machine are used throughout the computation. In thle way an accurate
solution is obtained and the additional computing work is not great.
Afterward the values of the unknowns can be rounded off to the physically
correct number of significant figures.

Use of the growing-unit method of soclutlion on this ring 1s demon~-
strated as follows. This method 1s described in detail on pages 39 to 46
of reference 5. It 1s demonstrated on this new ring as an application of
the procedure tov—a ring with meny intermediste Joints between the center
line of symmetry points. In applying the growing-unit method to thils
ring the units are comblned into bars of Increasing length until dis-
placements of all points are known such that the only unbalanced forces
remaining act In the radisl direction at A and F when unit radial dis-
placements are undertaken at A and F. Then these forces at A and F can
be eliminated by appropriate radiasl displacements of A and F and the
Tinal distorted shape determined.

The first units to—be combined sre AB and BC. In order to effect
this combination, the displacements of B required to maintain the balance
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of B during a unit radial displacement of A and unit radlal, tangential,
and rotational displacements of C must be determined. The displacements
of B requlred to maintaln the balance of B while point A 1s dlsplaced

radially 10-3 inch are glven by the equations:

'\

Mg = - U5k.3hwg + 6.7238vg - 78.41llug + 5.9020 x 1073 = 0

Rg = 6.7238wg - 12.093vg + 0.55690ug - 4.5778 X 1073 =0 » (27)

Ty = - 78.U1llwy + 0.55690v; - 84.510uwy + 14.662 x 1073 = o_)
The solution to these equations is: wg = - 0.02643%4 x 1073 radian,
vy = - 0.38424 x 1073 inch, end wuy = 0.19549 x 1073 inch.

If the forces and moments at points A and C due to a dlsplacement
Vp = 1073 inch eand due to the foregoing displacements wg, Vg, and ug

are summed, the followlng equatlons are cbtained:

Ry = - 2.6618 1b R
Ng = 10.699 in.-1b

> (28)
Rg = - 1.8871 1b

Ng, Bg, and Ty are zero since that is the condition satlsfied by
equations (27).

The displacements of B required to maintain balance at B during
unit rotatlional, radisl, or tangentlal dlsplacements of C are determined
In a similar manner and are collected in teble 12.

The forces and moments glven in the last seven rows of this table
constltute the influence coefficients for a new untt of the ring, namely,
the segment ABC. This unit is not a bar, the center line of which is an
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arc of a circle, but rather one composed of two arcs of circles. This
combining of units, extended untll the entire ring is one segment, is
the maln principle of the growing-unit method.

Each column of table 12 represents a group displacement made up

of individual dlsplacements of points A, B, and C.

Let these group

displacements be identlified by the Roman numeral given at the head of
each column. For example, group II 1s made up of the displacements

|}

¥
uB

1073 radian, wy = - 0.21631 x 1073 redian, vy = - 0.23971 x 1073 inch,
0.74197 x 1073 inch, and v, = Vg = ug = O. The moment at C, for

ingtance, caused by the application of Xrr units of the grbup dis-

placement IT 1s then

) NC = - 389.56III

(29)

With a similar notatlion for all other forces and group displacements,
equations (30) may be set up representing the requirements for equilibrium
of Jjoint C under the external forces acting at that-polnt; balance of B -

being maintalned.

Ny = - 389.56x37 - 10.093xpyp - 53-T7ixyy

Ro

.TC

- 53.77lxyy - 10.615x777 - 5%.199xy

I
(@)

- 10.093x;; - 6'75291111 - 10.615::IV + 965.93

258.82

The solution to this system is xpp = 1.0476, xpyp = 217-61

xpy = - 48.436, and the following forces and moments

A and D:

1

- 557.43 1b
- 2666-6 in-—l-b.

18%.66 1ib

]
o

> (30)

]
o

, and

are introduced at

s (31)

626.46 1b )
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The forces and moments at D are added to the exﬁemal forces applied to
the ring at D and are balanced after the unit problem for the segment

at ABCD is established. The Ry, force 1s not balenced until the con@lete
ring is one segment and until the R, and Rp residuals can be balanced

together.

The.next unit to be considered is the combination of the ABC segment

with bar CD into the segment ABCD. The problem 1s to find the forces and
moments at A, D, and E due (1) to a unit radial displacement of A with
Joint D fj_xed. a.nd. (2) to unit radial, tangentlal, a.nd. rotational dis-
placements of D with A and E flxed. J‘oints B and C'are free to displace
80 as to maintain the balance at B and C In each of these four cases.

By determining the magnitudes of xy7, X777, @nd =xry required to
balance C in sach of these four cases, the requlred dilsplacements of
both B and C are implicitly determined and the unit problem for segment

IBCD solved.

The magnitudes of the X175 XTTTS. and xpy operatlions required to

balance Joint C when A is displaced radially 1073 inch and B permitted
to displace so as to remaln in balance are glven by the following
equations:

Ng = - 389 . 56xII - 10.093xy71 - 53-7T7ixpy + 10. 699 =0
Rg = - 10.093x17 - 6.7529%771 - 10-615xy - 1.8871 =0 (32)
TC = - 53. WlXII - 10. 615111-1 - 514-- l991Iv' + 3. 2615 =0

The forces and moments at C to be balanced are glven in group I in
table 12. The solution to these equatioms is xi; = 0.021k97,

xr77 = - 0-53843, and =xpy = 0.14430. Use of these multiples of

operations II, III, and IV and of a unlt amount of group I results
in the followlng forces and moments at A and D:

R, = - 0.94505 1b )
Np = 6.7928 in.-1b
' , (33)
Rp = - 0.74924% 1p
Tp = 0.77749 1b
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The forces and moments given by groups V, VI, VIL, and VIII in

table 13 are the influence coefficients for segment ABCD. For example,
the forces and moments Ilntroduced at A, D, and E due tv a unlt radial
displacement of D with A and E fixed and wlth B and C in balance are
glven by VII. With these sets of coefficlents it—1ls possible to
balance Joint D whille the balance of B and C is preserved. The forces
and moments to be balanced at D are (1) the external forces on the
ring at D and (2) the forces and moments which are introduced at D by
the balancing of C and which are given by equations (31). The
reslduals to be balsnced at—D are thus:

Np = - 2666.6 in.-1b )
Rp = - 965.93 + 184.66 = - 781.27 1b \ (34)
Tp = - 258.82 + 626.46 = 367.64 1b ‘)

The equations which condition the balancing of Joint D, from con-
sideration of groups VI, VII, and VIII, are seen to be:

0 )

Np = - 346.88xyy ~ 16.69Txyyr - 43.T4Sxyrry - 26666

Ry = - 16.69Txyp ~ 5-6500%y1p - 12.458xy1p - 781.27 =0 » (35)
TD = - )-I-3.7}+5XVI - lQ.h‘jBxVII - 50.817IVIII + 367.6}4- = O_/
The solutlion to these equations is Xyy = - 3.3100, Xypp = - 328.09,
and Xyppr = 90-518, which give the following forces and moments:
R, = 293.71 1b )
Ngp = 4889.4 in.-1b
F (36)
Rgp = - 522.69 1b
Tg = - 149.60 1b )

Ll
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As In the balancing of C, a tangential force and moment are introduced
at A by this balancing of D, but because of symmetry the equilibrium
of A 1s not disturbed by these. The R, <forces will be balanced later

end the residuals at E wlll be balanced when the influence coefficients
for segment ABCDE have been determined.

In order to find the Influence coefficlents for bar ABCIE, the
forces and moments at A and E due to a radlal dlsplacement of A with E
fixed and at A, E, and F due to unit radial, tangential, and rotational
displacements of E with A and F fixed must be determined. By determining
the magnitudes of groups VI, VII, and VIIT required to balance D in each
of these four cases, the required displacements of B, C, and D and the
requlred forces and moments are determined.

The magnltudes of the groups VI, VIL, and VIII required to balance D

when Jolnt A is moved radlally 10'3 inch are given by the following
equations:

ND = = 3)4-6-88IVI - l6.69‘7xVII - ]{-3-7)-I-5XVIII + 6-7928 =0 j
) Rp = - 16.69Txy; = 5.6500% 17 - 12.458x5p 1 - 0.7h92k = 0 L (37)
Tp = - 43.745xy; - 12.458x01p - 50.81Txyppp + O-TTTH9 = o_/

The forces and moments at D to be balanced by groups VI, VII, and VIII
are given by V in table 13 and are the constant terms in equation égﬂ)-
The solution of these equations is xyp = 0.028042, xypp = - 0.42660,

and Xy 0.09574L4. The summation of forces and moments due to a

unlt magnitude of group V and the foregolng multiples of groups VI, VII,
and VIIT are:

- 0.36050 1b )

b
]

Ny = 4.1055 in.-1b
f (38)

o

- 0.31703 1b_

3
]
I

. 0.19226 1b J
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In a einmllar manner the counple'be set of ini‘luence coefficients for

segment ABCDE is determined and is given in teble 14. For example the
forces and moments In group XI are the forces and moments introd.uced
at-A, E, F, and G by a unlt radlal dlsplacement of E with A, F, and G
fixed and with points B, C, and D free to displace so as t0 remain in
equilibrium. With these influence coefficients Joint E can be balenced
wvhile the balance of B, C, and D 1s preserved.

The forces and moments to be balanced at Joint E are those introduced
by the balancing of Joint D witkh groups VI, VII, and VIII and are given
by equation (36).

The equations in xy, Xy, and Xy ; balancing Joint E under these

Joads are:

Ny = - 533.92%y - 38-099%y; - 29.579xyry + 4889k = 0 )
Ry = - 38-099X-X - 49-2951'3—_'[ - 53-1+32¥ﬂ1 - 522.69 =0 » (39)
Tp = - 29.579xx - 53.432xy7 - T6.322x377 - 149.69 =0 »

The solution to these equations 1s xy = 11.184, xyr = - 51.518, and

Xyt = 29771 eand the forces at A, F, and G introduced by this
balancing of E are:

Ry = 67.97k 1b )
Rp = -~ 266.68 1b f (k0)
Rg = 70.668 1b )

The tangential forces and the moments introduced at A, F, and G are not

congidered 1n thils balancing of the half ring, since these are
equllibrated by the forces and moments from the other half of the ring.

The final combination of units wlll be the combination of- 'ba.r EF

with the unit ABCDE. When this union is effected. the influence coef-
ficients for the half ring as a unit will have been determined and the
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radial forces at A and F can bé balanced simultanecusly. The radial
forces at Joints A and F due to a unit radial displacement of A with F
fixed and to & unit radial displacement of F with A fixed must be
determined. In both cases Jolnts B, C, D, and E are displaced so as to
remain balanced.

The equatlions glving the magnitudes’ of groups X, XI, and XIT
required to balance Joints B, C, D, and E when Joint A 1s displaced
radially as In group IX are:

Ng = - 533.92zy - 38.099xz7 - 29-579%yyy + 4.1055 = 0 )
Rg = - 38.099xx - 49.295xyy - 53-432xxyp - 0.31703 = 0 » (k1)
Tgp = - 29.-579%x - 53-432xyy - 76.322xy77 + 0.19226 = 0~J

The solution to these equations is xyx = 0.0094398, xg7 = - 0.051804, and

Xyrr = 0.035128 and the forces introduced by & unlt magnitude of IX and
by these multlples of groups X, XI, and XIT are:

R, = - 0.29857 1b )
Rp = - 0.33361 b r (42)
Ry = 0.035176 1b

-/

The equations giving the magnitudes of groups X, XI, and XIT required
to balance Joints B, C, D, and E when Jolnt F is displaced radially .

1073 inch are:

Ng = - 5‘33.92xx - 3.8‘099x.'XI - 29’579xXII - 5.9020 =0 j
Ry = - 38.099xy - 49.295x¢7 - 53.h38xygry - k.5778 =0 > (43)
TE = - 29-579XX - 53-’4-32ij: - 76-322][XII - lh--662 =0 J
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The solution to these equations is xyx = - 0.017182, xxy = 0.50354, and
Xorr = - 0-53797 &and the forces introduced at—A, F, and G by a radial

displacement of F of 10-3 inch and by the foregoing multiples of——-
groups X, XI, and XII are:

Ry = - 0.33361 1b ; )
Rp = -~ 1.4470 1b > (Lh)
Ry = 1.1156 1b )

The forces given by equations (42) and (44) represent the influence
coefficlents for the entlire half ring and are labeled groups XIIT and
XIV, respectively. These forces permlt calculation of the mmltiples of
groups XITIT snd XIV required to balance the radlal forces at A and F.
These forces are the total forces remeining from the balancing of C
end E; R, 1s given by the sum of the R, forces of equations (31},

(36), and (40) and is:

D’

Ry = - 557.43 + 293.71 + 67.974 = ~ 195.75 1b

The Ry force 1s the force 1lntroduced by the balancing of E alone

and 1s given by equation (40). It is: ;

Ry = - 266.68 1b

The equations giving the magnitudes of groups XIIT and XIV requlred
to balance Jolntes A and F under those loads are:

Ry = ~ 0.2985Txyyty - 0.3336lxyyy - 195.75 = O
(&5)
RF = - 0-3336113:[11 - l')'IJ"?OJ[XIV - 266.68 = 0
The solution to these equations 1s Xyyry = - 605.73 and

Xypy = = 44.646. The radial force at G imtroduced by this balancing
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is - T1.11% pounds, but the R; force given by equation (40) in the

balancing of E is 70.668 pounds. The difference between the two,
- 0.446 pound, 1is consldered negligibly small compared to the applied
loads of 1000 pounds.

With the balancing of Joints A and F and the substantiatlion of the
balance at G, the entire half ring is balanced. The total deflectiqns
in each degree of freedom can now be calculated and used to determine
the unknown bendling moments and tangentlal forces at A, F, and G. In
order to calculate these deflections the balancing equations (30), (35),
(39), and (45) give the magnitudes of the group operations involved
while the equatlions determining the group influence coefficlents give
the individual operatlions involved In each group.

Table 15 gives the magnitude of all group displacements from I
to XIV implied in a unit application of any one group. For example,
row X in this table Indlcates that a unit msgnitude of group X (that is,
= 1) is equivalent to the sum of the effects of Xy = 2. X 85,

XVII = - 4.6760, X;; = - 0.16186, and wy = 10 -3 radian, or the sum of
the effects of Xpy = 2.9219, Xy = 1.7552, Xpp = - 0.19736,
g = 1073 radien, wp = - 0.16186 x 1073 radien, vp = - 4.6760 x 1073 inch,

and up = 2.1885 x 1073 inch. During the solution of the problem the

magnitude of group X which was explicltly used was ll.18h, as given in
the last column of table 15.

From table 15 the total magnitudes of each group operatlon may be
found. For example, the total magnitude of group VI 1s:

xrr = (1)(- 3.3100) + (0.028042)(0) + (- 0.16186)(11.18L)

+ (0.037474) (- 51.518) + (- 0.0022427)(29.771)
+ (0.0244ok) (- 605.73) + (0.022857) (- 4k.646) (46)

- 22.975

The total displacement wp 1s:

W = (xVI) x 1073 = - 22.975 X iO'3 radian (462)

Similarly the displacements of all pointe except point B may be
calculated from table 15 and are given in the last row of that table.
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. Point B was dlsplaced during the applicatlion of groups I, I1, I1I,
and IV, and therefore the magnitude of ite displacement must be calcu-
lated as indlcated in the following example: N

wy = (- 0.026434x 1073) (- 605.73) + (- 0.21631 x 10-3)(- 11.44k)

* + (0.03555h x 1073)(664.55) + (0.017847 x 1073)(- 72.286) (A7)

10.825 x 1073 inch

where the first number in each product is the magnitude of wvp involved
in each unit application of groups I, II, III,' and IV, respectlvely.

The total'displacements used asre assembled in equations (L47a).

vy = - 605.73 x 10-3 1in. M
wg = 40.825 x 10°3 radian
vg = 35.14k x 1073 1n.
ug = - 300.06 x 1073 in.
Vi = - 11. 444 x 1073 radian
Vo = 664.55 x 1073 in.
ug = - 72.286 x 1073 in.
> (478)
Wy = - 22.975 X 1073 radlen
vy = - 94731 x 1073 in.
up = 90.127 x 1073 in.
wg = 6.2331 X 1073 radian
vg = - 42.620 x 1073 in.
ug = 32.511 x 1073 in.
vp = - 4b.646 x 1073 1n. | Y,
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These total displacements constitute the unknowns of the system of
equations glven by the operations table and the extermal forces;
comparison between this growing-unit and the matrlx caliculus solutlons
given by equations (47a) and (22), respectively, indicates good agreement
for the displacements. In fact, the forces and moments glven by the two
methods differ by less than 1 percent and therefore are given only for
the matrix method (equation (23)).

Several genseral remsrks sre made sbout the growing-imit method:

(a) In determining the influence coefficients and in balancing the
external forces and moments, sets of equatlions wlth the sams
left-hand sldes but wlth different constant terms are used
geveral times. This gimplifies solution of the equations
and reduces the computational work considersbly.

(b) In order to obtain sufficient accuracy of solution for rings
wlth many Jolnts, calculating machines must be used; five
significant Tigures were carried throughout the calcu-
lations. However, on the simpler rings such as the circular
ring end the egg-shaped ring discussed previocusly, slide-
ruls accuracy for determining the displacéments In a
combined operation is probebly sufflcient for englneering
purposes.

(¢c) A check on the influence coefficlemts for composite bars is
obtained by applying Mexwell's theorem of reciprocal
deflectiong. This is a valusble device for assuring
accuracy at each stage-.

In epplying the new relaxation procedures to this ring, it would
have been possible to.use the general method described for the egg-
shaped ring, that is, to conslder the reslduals after each operation and
develop a satisfactory combined operation to reduce as many residuals as
possible. However, the number of degrees of freedom involved in this
ring is large and, therefore, the number of residuals to be considered
In testing the efficacy of a particular operation is large.

The loading on the ring provlides & clue to overcoming this difficulty.
No external loads are applied at A, B, E, F, and Gj; moreover, A, F, and G
are points along the center line of symmetry. Therefore, 1f in balancing
D and E the balance at the other Jolnts is preserved by sultable
displacements, attention 1s flxed on the two Jolnts D and E and the pro-
cedure described for the egg-shaped ring cen be used effectively. It
will be recognized that this procedure 1is essentiaslly a combination of
growing-unit and relaxstlon methods of solution.

In executing the proposed method the bar ABCD, free only to displace
radially at A and fixed at D, is considered first. The equations giving
the dlsplacements of A and B required to maintain balance of these points

while Joint C is rotated through 1073 radian are:



Ry = - 7-1310vy + 5.9020w - 4.5778v + Lh.66205 = 0 )
By = 5-9020v, - Ush.3bwy + 6.7238vy - 78.411ug - 38.489 x 1073 = 0
L w8)
Rg = ~ 4.5776v, + 6.7238w - 12.093w, + 0-55690u - 1.8576 x 1073 = 0
= 1h.662v, - 7B.4 . -~ 8h.510u; .8 1073 =0
Ty 2v, - 78.1410w; + 0 55690§B 8L.510uy + 45.876 x y

The solution to these equatlons 15 va = 4.0195 x 1073 inch, wp = - 0.32255 x 1073 radten,

vy = - 1.7842 x 1073 inch, and uy = 1.5277 X 1073 inch. These displacements comblned with the
unlt rotation of ¢ yisld: '

Ng = - 3&5.56 in.-1b. )
Ry = - 17.678 1b

To = - 40.663 1b

Fp = - 38.489 tn. -1b

RD = 1-8’576 Ib

T, = 45.876 1b

-/

The moment and tangential force introduced at A are not comsidered until the balancing of the
ring is camplete.

98LT *ON NT VOWN
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In & similar manner the forces and moments for unlt radlael and
tangential displacements of C are determined, as shown in table 16. The
forces and moments given by groups XV, XVI, and XVII constltute the
influence coefficlents for the displacements of C with A and D fixed and
with Joints A and B balanced. TUse of these coefficients permits focusing
of attentlon on C and D, the joints at which the external forces are
epplied when C.1is being balanced.

The forces and moments Introduced at C and D when D 1s displaced a
unit amount in each degree of freedom and when E, F, and G are dlsplaced
80 as to maintain the balance thersof are calculated and shown in
table 17. ,

Table 18 is an operations taeble consisting of unit magnitudes of
group operatlions XV to XX. Table 19 is {the relaxation table for this
ring which uses these group operations. The extermal forces applied
at C and D are given in the first row of table 19.

A dlscussion of each step in the relaxation process 1s given as
follows.

Step l.- Because of the antisymmetry of the loading and of the
quaslisymmetry of the ring about a horlzontal axis operations XyyT = 1

and Xyrx = -1 are applied as a first epproximation to the deflected

ghape. The forces and momente introduced are as glven in the following
table:

Forces and
moments N T N T
Operation ¢ RC c D RD D
(XVI) = 1 -17.678 |[-5.4150|-12.928] -1.8576|-2.2277| 13.781
(XIX) = -1 -1.8576| 2.2277| 13.781}-11.535 | 6.2441(-~12.706
> ->Operation K = 1{-19.536 {-3.1873 07853 -13.393 | k.0164| 1.075

Operation K is used to balance the RC residual; the same operation

reduces the other force reslduals but introduces large Ng end
Np residuals.

Step 2.- In order to reduce these moment reslduals an entisymmetrical
combinatlion of W &and wp 1s mede, as shown as group operation I:
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Forces and
t N T N R T
Operation —— © Fo c D D D
(V) = -346.56 |-17.678 |-40.662| -38.489| 1.8576( 45.876
(XVIII) = ~38.489] -1.8576| 45.876[-392.46 |11.535 |-42.305
S ->Operation L = 1{-385.04 |-19.536 | 5.214|-430.95 |13.393 | 3.571

However, use of operation I. by 1tself would retntrodu&e large Rd and

Rp

residuale, and therefore operations K and L are combined so that the

R, residual will be smaller and the Ry residual eliminated, as shown

in the following table:

Forces and
moments Nb RC TC ND RD TD
Operation :
Operation L = 1 -385.04 |-19.536| 5.214(-430.95 | 13.393] 3.571
-3.3346 X Operation K 65.145 10.628 [-2.84k| Lh.660(-13.393 |-3.5846
> —>operation M = 1 | -319.90 | -8.908| 2.370|-386.29 | © -0.0137

The new force residuals introduced by operation M are less than 30 percent
of the orlginal reslduals and, therefore, the rate of convergence lg felt

to be adequate.

Step 3.~ The radial residusls at C and D have the same sign and,
therefore, symmetrical displacements vg

seen that such a combination would introduce large tangential resilduals

at C and D.

and vp are undertaken.

It is

Therefore, a tangentlal dlsplacement of C (D could have been

chogen instead) such as to eliminate the Tg and Tp forces is under-

taken.

end by the comblnatlon are denoted as operatlion N.

The forces and moments introduced by the individual dlsplacements
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Forces and
Operationéoments Né RC TC ND RD TD
(xvI) = 1 -17.678 |-5.4150 |-12.928| -1.8576|-2.2277| 13.761
(XIX) = 1.8576} -2.2277 {-13.781| 11.535 |-6.2441 | 12.706
-0.53201 x (XVII) 21.632 | 6.8773| 26.709|24.406 | T7-.3316|-26.587
> ->Operation’ N = 1| 5.811 |-0.7653] o -14.730 |-1.1400| -0.100

The use of operation N reduces substentlelly all the residusals except

Step k.- In order to reduce
residuals small, a combinstion of groups XV and XX is made.

and TD

NC.

No and at the same tlme keep the Tg

Group XX is Included since a force increasling the residual Tp would be
introduced by the use of XV alonse.

Forces and .
moments N T N. T
Operation c Re c D Rp D
() =1 -346.55 |-17.678|-40.6621-38.48g| 1.8576| 45.876
0.91279 x (XX) 41.875| 12.579] 45.616]-38.616(11.597 |-45.876
> —>Operation 0 = 1{-304.67 | -5.099| L.g954|~77.105}13.455 [ ©

Steps 5 and 6.~ After operation O is used, the largest force residual
1g epproximately 6 percent of the applied forces and the moment residuals

are small.
reslduals.

It was considered desirable to reduce further the force
Therefore, operation I was used agaln so as to reduce Rp

the largest force residual, and then XVII was used sc as to reduce the

resulting Ty residual.

4 percent of the extermal force is considered small enough.

A check table using the total displacements 1s used as
the accuracy of the combined operations and on the relaxation table.-

After this sixth step the largest residual of

a check on

The

total individual displacements are calculated as discussed in the previous

two examples and are as follows:
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V4 = - 596.18 x 1073 in. ' _w

wg = 36.779 X 10-3 radian

vg = 0.22394 x 1073 in.

up = - 30k.69 x 1073 1.

o = - 14.32 x 10~3 radian

Vg = 561.66 x 1073 in.

Uy = - 114.61 x 1073 in.

wp = - 18.4 x 1073 radian > (50)
vp = - 133.66 x 1073 in.

up = 3.7242 x 1073 in.

= 7.4813 x 103 radian
Vg = 30.507 x 1073 in.

up = - 41.708 x 1073 in.

Vo = 59.979 X 1073 in.

Vg = 114.52 x 1073 in. Y,

It 1s pointed out thatcertain of these displacements differ
consideraebly from those given by the exact solutions of the matrix
calculus and growing-unit methods, mainly because the relaxation solution
ls approximate and in it Joint G 1s permitted to—dlsplace radially. -

The unknown reactions given by the foregoing relaxation procedure
are: '
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N, = - 2851.1 in.-Ib )
Ty = 380.21 1b
Np = 140.16 in.-1b
- (51)
Ng = - 440.45 in.-1b
Tq = 648.18 1b _)

Consideration of the equilibrium of the half ring gives:

ZFH_ = 380.21 + 224.09 - 648.18 = - 43.88 1b )
S5
> M

li
o

- 2851.1 + 380.21(57.941) - LLO.45 + 140.16 L (52)

- 22L4.09(7.0294) - 18,635

-1331.8 in.-1b .

The moment equilibrium unbalence 1s spproximately 7 percent of the
applied moment and is considered satlsfactory for engineering purposes.
If a more accurate representaetion of the final deflected shape and
consequently of the bending-moment disgram is desired, several more
operations in the relaxation table could be underteken and the residuals
at C and D further reduced.

The bending-moment diagram given by the reactions of equation (51)
is shown In figure 9 along with thaet of the exact solutions. The
external unbalanced moment of 1331.8 inch-pounds 1s applied linearly
along the ring as a distributed moment. If this unbalance is not
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digtributed In this manner, 1t would be concentrated at either Joint A
or joint F, depending on the directlion in which the bending moments are
calculated, and would lead to large errors In the bending moment in the
nelighborhood of thaet Joint. It 1s seen from figure 9 that the agreement
botwoen the exact and relaxation solutions 1s good.

It 1s pointed out that, by slightly modlfying the determination of
the influence coeffliclent for Joint D when E is flxed and F and G free
to dlsplace radially, a table simllar to table 17 could bve esgtablished
and solved by matrix calculus methods. The slight modiflcation i to
make Vg =0 1In the equations corresponding to table 17. BSuch a

solutlon 1s essentially the growlng-unit method, except that the ring is
combined from Jolnts C and D to A and F, respectively, rather than from
A to F. The total dlsplacements In each degree of freedom will be the
game In each gpproach.

CONCLUSIONS

This report contains recommendations as to tl&e cholce of the most
expeditious method of solution of the simmltaneous linear equatlons
represented by the operstions table and the external locads. The
operations table is first established in accordance with Southwell's
suggestions and, together with the external loads, defines completely
the problem of stress distribution in a reinforced panel or of the
moment distribution in a fuselage ring. However, the following
generalized suggestlons can be made:

l. In most reinforced panel problems the use of the relaxation
procedure ls advantageous.

2. Solution of the equatlons defin:fng a reinforced panel problem
by means of the electric amalogue is adviseble when many closely related
problems heve to be Investigated.

3. Ring problems are best solved by matrlix methods.
4. In very complicated ring problems a combination of matrix methods
with the growing-unlt and relaxation methods msy become advlsable.

Polytechnlic Imstitute of Brookliyn
Brooklyn, N. Y., June 25, 1947
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TABLE 1.~ OFERATTORY TABIE FOR EXTHFORCED PANEL

[Fumes ero in 1b; displasements, in in. x M'ﬂ

Force

Operetion L9y YB - YE Yr Iﬂ' Ix Ix YO
=1 -50.8 2.00 46.8 2.00
el 2.00 -52.2 2.00 5.2
=1 35.8 2.00 -101.6 k.00 46.8 2.00
=1 2.00 51.8 %.00 ~110.4 2.00 SL.2
=1 16.8 2.00 -101.6 k.00 h6.8 £.00
Tl 2.00 K1.2 h.00 -110.4% 2.00 5.2
W=l 56.8 2.00 ~50.8 2.00
=1 2.00 51.9 2.00 . =m.2
Blook 1 = 1
.00 L.co -8.00 8.00 -8.00 8.00 -4.00 %.00
TA-'YE-‘I‘J.-T.-J.
YBlook 2 ™ *
k.00 4.00 8.00 H.00 8.00 -8.00 k.00 .00
r:B:v].-Tr_:TO:l '
(1) Ty =gl ~4.00 k.00 548 6.00 k4.8 2.00
@ vyy=g=r=1 .00 L.00 -8.00 8.00 -34.8 6.00 46.8 2.00
Blvyg=vp=1 k.00 k.00 6.00 -50.2 2.00 5.2
B vgmvgryeml k.00 -k.00 8.00 -8.00 6.00 9.2 2.00 51.2

9%
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TABLE 2.- RELAXATION TABLE FOR REINFORCED PANEL - PROCEDURE 1

E}ycles of operations shown should be repeated untll residuals are
" considered negligibly small. Forces are in 1b;

displacements, in in. x 10|

op erationForce Y A YB YE YF Y J YK YN YO

Fxternal forces | -120 60 , 60
VBlook 1 = ~2°5 10 | -10 20 | 20 20 ~20 10 -10
-110 | -10 20 | -20 20 -20 70 50

vg = 2.35 110 5 | -238 9 | 110 5 0 0
0 -5 | -218 | -11 130 ~15 70 50

vy = k.65 0 0 218 9 | -473 19 218 9
0 -5 0 -2 | -343 L | 288 59

vy = 7-33 0] 0 0 0 343 14 | -372 14
0 -5 0 -2 0 18 | -84 T3

YBlock 2 = 35 | -1k 28 | -28 28 -28 ik -1k
i | -19 28 | -30 28 -10 =70 59

vp = 0.371 1 19 1| -4l 1 19 0 o]
' 15 0 29 | -T1 29 9 -T0 59

g = 1. 385 o] o] 3 TL 5 | =153 3 T1
15 0 32 0 34 | -1k -67 130

vy = 2.81 o} 0 0 0 5 1l 5 | -156
15 0 32 0 39 0 -62 26

VBlock 1 = -0 -4 4 -8 8 -8 8 -4 4
11 4 24 8 31 8 -66 -22

g = -0.235 -11 0 24 -1 -11 0 o 0
0 by 48 T 20 8 -66 -22

vy = -1.025 0 0 -48 -2 104 -4 -48 -2
0 4 0 5 12y y | -1k -24

vy = -2.65 o} 0 o} 0 | -124 -5 135 -5
0 L4 0 5 0 -1 21 -29




-1.8
0

60
-10
50
o)
50

0

10
T0
0
¢
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60

0

2.9| -0.3

5.4 |-hk2.2

-20
-3.0
-28.
0

-20

o)

0
0]

20

-L.41-35.3

")-*--l

-33.2 |-kg9.Lk[-23.0 | 7O

-8.9|-69.4
-7.2) ko4

-20

-1.8

-7.6}-25.6 |-14.8{-13.6 | 20.4| 55.6

7-2|-40.4
-0.6|-15.2

81.3
0
7.2

20

-14.8] 14.8(-14.8} 14.

-8.2|-40.8]-14.8]-13.6 ] 20.4} 55.6

4.1} 40.8

1.3

-5-9

"20-2

-3.6
16.4

-10

-14.3) -81.3]-24.3| 20

0
2.8

O\
~

O N\
-~ O

1.5

.5]-23.8

0
5.9
5.9
3.6
9
=T 4 T4
201 "1-6-14'
.6

10
-0

-120

IN\CO
~Q

N0
O

NN

5

[@orces are In 1lb; displacements, In in. X 10‘@
-1.850

Force

Operation

lock 2 ~

TABLE 3.- RELAXATION TABLE FOR REINFORCED PANEL - PROCEDURE 2

(1) = -1.482

(2) = -0.501

Block 1 = 27

External forces

VB = -O . 297

58
VB

(3) = -0.689

(Ll-) = -0-825
(1) = -0.188

(2) = -0.390

VBlock 2

(4) = «0.135

\

TNACA -
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—

| Forces are in 1b; displacements, .in in. x 1074

—

TABLE 4.- RELAXATTON TABLE FOR REINFORCED PANEL - FIXED ENDS

NACA TN No. 1786
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51.2

-110.4
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E‘orces are In 1b; displacements, in in. X lO"ﬂ

-55.2
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51.2
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TABLE 5.~ OPERATIONS TABLE FOR REINFORCED PANEL - GROWING-UNIT METHOD

n0{791 9%
0%/%00310

Forces and
ments

1
1
1

Operation
(1) v,

(2) g =1
(ll-) VF =1
(5) VI =1
(6) g =1
(1) vy

(8) vg =1

(3) Vg

S S S S S Nt
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TABLE 6.- RELAXATION TABLE FOR REIRFORCED PANEL - GROWING-UNIT METHOD

E"orces ere in 1bj displacements, in in. X 107

. Force
Y pe Y. Y. X Y. Y p4 p4
Operation A B 'E F J K N 0 R
External loads | -120
-2.37 x (10) 120 «111 -9
0 - : -9
-1.975 % (13) 115.2 | -18.8 | 92.5 -4.0
-0.44h x (16) 4.2 -0.9 | 22.7
0 0 -93.% | 26.7
-1.657 x (19) 103.7 | 22.9 | -17-6 | -3:3
-0.7h2 x (28) -10.2 | 49.6 | -1.5 | -37.9
0 0 ~79.1 {-41.2
-1.45 x (25) 93.2 |-22.4 | 67.9
0.925 x (28) ak.2 | 63.6 | -1.8
0 0 -69.7
iz~
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TABLE T.- OPERATTONS TABLE FOR CIRCULAR RING

F“ﬁﬁimméﬁ LY\ Ta ¥p Bp Tp Ko To

Operation (in. ~1b) (1) (in.-1b) (1b) (1p) (in. -1b) {1b)

(1) w, = 1073 redien | -281.95 | -49.079 | -29.966 | -4.733 | 64.675

(2) u, = 10~3 in. -49.079 | -52.296 6h.675 | -22.441 | 51.516
(3) wg = 1073 radian | -29.966 | 64.675 | -439.849 | 31.443 | -50.6k2 56.5117 | 6.632
(k) -VB = 103 1n. 4733 | 22l | 3143 | -12.338 | 20.1k 8.8452 | 0.524
(5) vy = 103 1in. 64.675 | 51.516 | 50.642 | 20.1% | -52.618 6.632 9.0685
(6) wg = 12073 radian 56.5117 | 8.842 6-632 | -157.899 | -1.563
(7) ug = 1073 1n. 6.632 | o.5e% | 0.0685 | -1.563 |-0.322
AT

c9
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TABIE 8.- RELAXATION TABLE FOR CIRCULAR RING

Forces and -

moments Ry Tp Ry By Tp %o To
oporation (n.-1b) | () | () | () | (1) | (im-2) [ (1)
External Forces | -1.84 8.75 -55.0 59.5 38.1 -53.1 -23.9

-0.00778 % (A) 1.84 0 0.7 0.1 0.1 0 0
¥ B8.75 54,3 59.4 38.0 ~53.1 -23.9

-0.2 x (B) 0 8.75 -14.0 k.3 8.0 0 0
0 0 -68.3 63.7 30.0 -53.1 23.9

-0.353 X (C) 0 0 8.6 2.2 2.2 53.1 0
0 0 ~76.9 61.5 27.8 0 -23.9
~77.8 %X (D) 0 0 ~472 -34.0 -0.2 0 23.9

0 0 -549 27.5 27.6 0 0

2.98 x (E) 0 0 549 -27.5 -27.5 0 0

0 0 0 0 0.1 0 0

Check-table .
results 0.0171 0.0030 0.5095 -0.0043 -0.0053 -0.0726 -0.0121
MR

OGLT "ON NI VOVM

€9




TABLE Q.- OFERATIONS TABIX FOR HEGG-SHAPED RIKG

Sooments | B % %y 1 % % % Rn

Quaration (1v) (in.-Ip) (1b) (1p) (1n. -1b) (1v) (1b) (1p)
(1) v, = 10 1. -3.35833 8.92216 | -2.6961k 3.96771
(2) w, = 107 rasten | 8.92016 | -327.866 1.h6g7 | -13.00 £1.242 8.10067 | o
(3) v = 20 . -2.6961.7 114697 | H.00991 3.4352 8.10067 | 0.66158 0
() vy = :Lo"T 1a. 3.9677L | -13.100h | 34352 | -30.9566 0 0 26.2038
(5) ¥ = 107% redten 6L.2% -B8.10267 0 -288. 367 2.2 | 524667 | -7.352)
6) v = m*’:;‘ in. a.ma& o.66158‘ 0 2.95622 | -l.g0205 | -0.88929 | -1.13900
(7) yg = 10°F 1n, o 0 26.2058 5.2h667 | 0.88089 | -27.0833 | -L.0375
(8) vy = w4 1n. -7.352h -1.1900 | -1.0375 -1.2400

W9
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TABLE 10.- BEELATATION TABIE FOR EGG-SHAPED RING

9gLT *ON NI VOVM

Forces and ¢
moments | Ry 10 Ry Tn o Rg Te Bp
Operation (1b) (1n.-1p) | (1b) (1b) (in.-1b) | (1) (1) (Lb)
External forces |-500 0 0 0 0 0 0 =500
-149.2 % (1) 500 ~1330 402 -592 0 0 0 0
0 -1330 4o2 592 0 0 0 -500
-403 X (8) 0 0 0 0 2960 ks 418 500
0 -1330 4o2 -592 2960 k51 118 0
1336 x (F) 0 0 0 29 -2485 =451 63 0
0 -1330 ho2 563 475 0 481 0
256 x (1) 0 1615 ~ho2 62 0 138 -8 0
0 285 0 -501 L75 138 73 0
Log x (F) 0 0 0 9 -T60 -138 19 0
0 285 0 -ho2 -285 0 Lg2 0
9.4 x (J) 0 2h 2 493 9 0 -4g2 0
0 309 -2 1 -276 0 0 0
Check table ~0.465 | 309.971 -2.231 0.938 | -280.405 -0.202 -0.351 -0.279



K5 TABLE JUR OVAL-SHAPED ETNG

Foroes el By T ¥o Te "
Operaticn (1b) (1n. -1b) (1p) (1) (in.-1b} () () {in. -1b)
v, = 1073 1. -T.1310 5. 9020 nk. 5778 1h.662
vy = 1073 radien 5.9020 k. 3k €.7238 -78.311 -38.1489 1.8576 5,576
vy =103 m. 45778 " 6.7238 -12.093 0.55600 «1.8576 22277 13.781
up = 1073 m. k.66 -78.511 0.55690 84,510 b5.876 -13.78L b9.g7k
¥ = 1073 radten -38.489 -1.8576 ¥5.876 532,37 0 -T7-623 -38.589
g = 1073 1m. 18576 -2.2277 -13.781 0 -9.9831 0 -1. 8376
wy = 1073 sh, 3.076 13.781 %.97% -T7-623 0 -100. 3k ks.876
wp = 1073 radian —38.485. 21.8576 1%.876 432,37
vy =102 i, 1.8576 2.2277 -13.7681 o
1y w 1073 1n, k5.876 13.761 49.974 “T7-€23
- 1073 radian ' [ -38.1’-89
vg = 1073 m. 19976
1p = 10-3 in. k876
- 10-3 in,
g 1073 in.
Farces and
o B T n By %y By
Opersflon (1) {1p) {1n.-1b) (D) (1) (b) (k)
TA = 10'3 in.
¥ = 1073 radim
vp = 10-3 in.
g = 1073 1q.
Vi m‘% rodlan 1.85716 k5.876
Tg = 3073 1n. -2.2277 13.781
ug = 2073 4n. -13.761 Lo.gTh
) = 1073 radim 0 -7-623 -38.489 1.8576 b5.876
vp = 1073 in. -9.9231 o -1.976 2.8277 13.781
g = 1073 1n. 0 -100.34 b5 876 ~13.78L 49.97h
wp = 10°3 radim o L6576 45.875 —Glg.ok -18.096 -67.080 -5.5020 16.095
g = 103 1n. 2.2277 213.781 8.6 3. 957 40.333 L5778 1.33%
Tg = 10-3 in. .78 k9.o7h -§7.080 H0. 533 18637 -1h.660 -1.33%5
vy = 1073 1n. -5.5020 %9718 -14.662 ~7-1310 0
vg = 103 1. 15.02%5 1.339 “1.33% 0 -1..8385
L3 N
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TABLE 12.- GROUP OPERATIONS IN GROWING-UNIT METHOD FOR SEGMENT ABC
Fy = -U5h.3kwg + 6.7238vy - 78.411ug - (R.E.S. In Np equation) = 0

Ry = 6.7238wg - 12.093v + 0.55600ug ~ (R.H.B. in Bp equation) = 0
Ty = ~78.k1llyg + 0.55690vy - 84.510up - (R.H.S. In Tp equation) = O
Group I iI II1T Iv
Displacement | vy = 1073 in. | wy = 1073 radlan | vg = 1073 in. ug = 1073 1n.
Cperation 'Wc='7'0='l]c=0 'VA=Vc=uC=0 Yp=¥Wp=u =0 vA=w0=vc=o

(-103) x right-hand
glde in equation

for: Ng, in.-1b 5.9020 -38.189 1.8576 45.876
By, 1b 45778 -1.8576 -2.2277 13.781
T, 1b 14.662 45.876 -13.781 49.97h
(103) x displacementa
of Jolnt B:
W, radian -0.026434 -0.21631 0.035554 0.017847
vg, In. -0.38424 -0.23971 -0.17353 1.1763
ug, in. 0.19549 0.74197 ~0.19720 0.58253
Resultant
forces and moments
Ry, 1b -2.6618 10.699 -1.8871 3.2615
No, in.-Ib 10.699 -389.56 -10.093 -53.TTL
Ry, 1b -1.8871 -10.093 -6.7529 -10.615
Ta, 1b 3.2615 -53. 771 -10.615 ~5k.199
Np, in.-Ib 0 -38.489 -1.8576 45.876
Rp, 1b 0 1.8576 -2.2277 -13.761
Tp, 1b 0 4s5.876 13.7681 49.97h

NACA,

SgLT *ON NI VOVN

49

"




TABLE 13.- GROUP OPERATIONS TN GROWING-UNIT METEOD FOR SEGMERT ABCD

K; = -389.56xry ~ 10.093xrpr - 53-TTlxpy - (R.E.8. inNg) =0
Ry = -10.093xpy - 6.7529x77 - 10.615xy - (R-E.8. inRy) =0
Tc = -53. 771z ~ 10.615cr7T - 54.199xyy - (R-H.8. In Tg) = 0
Group Y VI VII VIII
Displacement (1) =1 wp = 10-3 radisn W = 10-3 1in. up = 10-3 1n.
Operation wp=Vp=tp=0 | (I)avp=uy=0 [(I)=w=up=0 [(I)=wp=75=0
(-1) x right-hand
side in equation
for: Fg, in.-Ib 10.699 -38.1489 1.8576 145.876
Ry, b -1.8871 -1.8576 -2.2277 13.781
Ty, 1b 3.2615 45.876 -13.781 49. 974
Magnitudes of II;,
(IfT), and (IV):
T 0.021497 -0.25291 0.046327 -0.0099019
XIIT -0.53843 ~2.3436 0.10521 0.85346
Ty 0.14430 1.556) -0.32084 0.764T2
Foerces and moments:
Ry, 1b -0.94505 6.7928 0. 7ho24 0.7T749
¥p, in.-1b 6.7928 -346.88 -16.697 -43.745
Rp, 1b 0. Thgek -16.697 -5+6500 -12.1458
Tp, 1b 0.TTT49 h3.745 -12.458 ~50.817
Bg, in.-1b 0 -38.480 -18.576 145.876
Bp, 1b 0 1.8576 -2.2277 -13.781
Tg, 1b 0 45.876 13.781 L9.g7h

9QLT "ON NI VOVN




TABLE 14.- GROUP OFERATIONS IN GROWING-UNIT METHOD FOR SEGMERT ABCIE

= -346.88xy7 - 16.69 xyry - 43.7WSxyirr - (R-E.S. in Bg) =0
= -16.697xyr - 5.6500xy7 - 12.458xyyrr - (R.E.S. in Rg) = 0
= -LS-TLLsxVI - lﬁolp'jaxm - 50-817:m - (RIHISI 111 IIE) = O

Group X X I XII
Displacement (V) = 1 wg = 073 redtan | vg = 1073 in. up = 1073 1n,
Operation 'WE-::VEBUiEzo (V)zTEzuEr.O (V):H‘E=1E=O I(V):'?E:VE:O
(-1) x right-hand
glde In egquatlon
for: Ng, in.-Ib 6.7928 -38.489 1.8576 15.876
By, 1b -0.Tho2l -1.8576 -2. 2277 13.781
Tg, 1b 0.T7749 45.876 -13.781 4g.97k
Magnitudes of VI,
VII, and VITI:
TyT 0.028042 -0.16186 0.037¥74 -0.0022427
Xt -0.42660 4. 6760 0.35713 0.59436
TyIT 0.095Tuk 2.1885 -0.39100 0-83963
| Forces and momenta
Rp, 1b -0.36050 4.1055 -0.31703 0.19226
¥g, in.-1b }.1055 -533.92 -38.099 -29.579
By, 1b -0.31703 -38.099 -49.295 -53.432
Tg, 1D 0.19226 -29.5T79 ~53.432 ~T6.322
By, 1b 0 ~5.9020 -4.5778 -1h. 662
g, b 0 16.025 1.3355 -1.3355
KNACA:;
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TAEIR 1%.- DETREMEATION OF TOTAL DIEFLACEMENTS IN (GROWING-URIT MEYHEDD

Ralnted teblas wy, v, sod wg from tabls 12 (Ix), (1), and (I¥) from tahles 13 or 15
Prime dlrplacement Yagnitulex of group dis-
Plasomrts explicitly
vy = 1075 . vy = 1073 matan|vg = 103 in.|og = 2073 in. | = = 1|wy = 2073 ralianiv, = 1073 1n.|uy = 2073 4n.| =sed 1o balmoing
" I I Iix w v vI VIX VI
1 1 0
o 1 1.0k76
oI 1 513.61
¥ 1 %36
v 1 0.-C21A9T -0,53043 0.15%30 1 0
¥I -0.25291L -2.3436 15364 1 -3.3100
VII 0.ch6327 0.10521 -0.32084 1 _323.09
viIx -0-0095015 0.95346 0-T6kT2 1 90.518
o 4 1 0.0063062 -0.5673R 0.39903 1 0.0208042 <0.k2660 0.0937hh 0
iI -0.1%36 1.% 2.;&;95 -0.163%-86 -k. 6760 2.% 11..51%
Q.0 -0. -0. 0.0 0. -0.39100 -=1,
m o.ﬁ 0. 70k o.ﬁ‘fgo -o.omal'[;( c-%? o.igg'j 20.771
Iy 1 0. ~0.%0331 0.h5975 1 0.02khoh 0.h5336 o.%g ﬂ-gﬁ
oV -0.0017hGR 0.64556 0. K005 0,008 ~0.0%6576 |- -0-
Total displscements -505.73 “11.kkb 66435 ~12.886 £05.73]  -e2.975 Sh.73L 90.187
Belaped tablse (VI), (VIL), 2nd (VIIL) from tables 1k or 15 (X), {II), =nd (XIT) from table 1%
Prime displacement Mgnitules of growp dﬁ;
oy =1 11-19-31‘!51!:1 1'!-10"3111. w-lo‘ai.n. ::n-l T].-m"31n. used 1n balsnning
Gromp apetations I 'z i m pinn: v
I 0
b 1.0¥
ot . 31‘3.6176
in g k36
o
¥I -3.3100
v sab.59
YIix 90.%18
Ix 1 0
X 1 11.18%
o 1 -5).518
band 1 29 TTL
bannd 1 0-000k358 -0.0%150k 0.035128 1 Eé
barg -0.017182 0.50354 -0.53797 1
Total displeoemarts -£505.73 62331 -h2. 620 32511 £05.73 k. 546

@
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TABIR 16.~ GROUP OPERATIONS IN RELAXATICN METEOD FOR SEGMERT ABCD

By = ~7.1310v4 + 5.9020m3 - L.5T78vp + 14.662ug - (R.E.8. In Ry) = 0
Fp = 5.9020v, - 4543wy + 6.7238wg -~ 78.411uy - (R.H.8. InNp) =0
Ry = ~4.5T70v, + 6.7230wg - 12.093vg + 0.55690u - (R.E.S. in Bg) = 0
Ty = 14.662v, - 78.411w; + 0.55690%; - Bh.510up - (R-E.S. 1n Tp) = 0

Group v Ivi IviT
Dlsplecemant Vo = 1073 radian Vg = 1073 in. g = 1073 in.
O'_pera‘l'.ion vc-uc"wD-ng%mO wcsuca'h‘D-YD-uD-o 'H'U=VG=‘D=TD=11D=O
(-103) x right-hand
slde In squation for:
Ry, 1b 0 0 0
HB’ i‘l’.l.--lb -38-']-89 1-8576 ,'"51876
Ry, 1b -1.8576 -2. 2277 13.7681
Tp, 1b b5.876 -13.781 h9.97h
(103) x aisplacements of
Joints A and B:
Yy, 1n. 4.0195 ~0.70895 1.2253
wp, redim -0.32055 0.054293 -0.014540
TB, i'n.o -1-73142 0.095582 0-70‘554
up, 1n. 1.5277 ~0.33579 0.82205
Yorcep and moments:
Ny, 1n.-1b -346.56 -17.678 -ho.662
Ry, 1b -17.678 ~5- 4150 -12,928
Ta, 1b ~40.662 -12.928 50,203
Np, in.-ib -38.489 -1.8576 hs.876
Rp, 1b 1.8576 -2.2277 -13.761
Tp, 1b 45.876 13.781 49,974
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TABIE 17.~- GROUZ ORERATIORS IN RELAXATTON METHOD FOR EEGNENT CTEF-G

By = -Bu49.2kwg - 18,056y - 67.080uy - 5.9020vy + 16.025v, - (R-E.8. in N) =0
By = «18.05%wy ~ 53-957%g - 40.333ng - b.5770vy + 1.335%vg - (R-E.B. In By) = 0
Ty = ~67-080w, ~ 10.533vg - 126,37, - 14.662vy - 1.3395v; - (R.H.E. In Tp) = O
Ry = -5.9020wg = A.5778vg - 14.6620g - 7.1310vy - BB8. in By} =0
By = 16.025%y + L1.3355%g - 1.33%5ug - 1.8886vg - (B-H.&: nFy) = 0
Group IVITT I j+4
Displacement vp = 1073 redian vp = 1073 in. up ~ 1073 1n.
Oparatich : o T =Ygty up=0 Wo=Vg =T =vp=up=0 Wwrig g =Y =¥p=0
(-103) x right-hand
aide in. equation:
Fp, in.-1b -38.48 -1.8%76 45,876
Hg, 1b 1.8576 2,087t -13.781
Tp, 1t hs.876 13.7681 49.974
Bp, b o 0 o
iR, 1b 0 Q Q
(103) x displacemants
of Joints X, ¥, and G*
%y, raiian -0-1703 ~0.032775 -0.008779
vy, 1o -0.40970 0. 19092 ~0.78327
Tg, 1n. 0. Thls6 0.£3168 0.75h21
vy, 1n. L1141 -0 32667 ~1.1289
Ve in. -2.2753 -0.57676 -1.1900
Forces ol moments:
Fp, in.-1b -36.48g 1.8%76 hs.876
Rg, b =1.8576 ~2.227T 13.781
Tg, Wb k5-876 -13.871 Lg.g7h
¥y, in.-1b ~392-46 11535 L2.305
Ry, Id 11..535 -6.2441 12.706
T 1D -42.305 12.706 -50.259

A}
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I:Forcea and moments at Jolnts A, B, E, ¥, and G are zero for all operatiocna:l

TABLE 18.- GROUP-OPERATIONS TABLE FOR RELAXATION METHOD

“mﬁﬁ L R Tg Tp Rp Tp

(1n.-1b) (1v) (1p) (in.-1b) (1v) (1p)

Operation _

(V) = 1 -346.45 -17.678 -40.662 -38.489 1.8576 1;5.876 _

(XVI) = 1 -17.678 -5. 1150 -12.928 -1.8576 -2.2277 13.781
(XVII) = 1 -40.662 -12,928 50,203 45.876 ~13.761 hg.g7h
(XVIIL) = 1 -38.489 -1.8576 45.876 -392.46 11.535 42,305
(X1x) = 1 1.8576 -2,2277 -13.781 11.535 -6.24h1 12.706
(Xx) = 1 45.876 13.781 49.974 -42.305 12.706 -50.259
e
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TABIZ 19.- RELAXATICON TABIE FOR GEOUP OFZRITTONE

Yoroes and
g mraeta B" ]h % TC
e Operation (1b) (tne-m) | (D) (1) (tn.-1b) (1) (1) {1n.-13)
Extarnal loads o 966 0
L 02 x (K) 5500 ~966 gg . ~h0s0
- 0 -1 k050
2 -18.% x (W} ;5”% 164 -4b 7100
0 16% 45 3050
3 &k x (M) 1245 ~16% 0 -31%0
1245 0 45 -100
& k.08 x (0) -1ek6 £1 20 =31k
0 21 2% 1k
5 -15.7 x (%) X6 0 -13 210
06 29 -38 20k
6 -0.76 x (IVLL) 3 10 38 =35
0
Cheak tabls 0.001 0.310 0.025 0.156 g.-;s 3600 -0.4%0 3.26
Forces and
Step ‘e b T:D BE T:I nr
: Opermtica (1v) {1v) (in.-Ib) (1) (1n) (1p) (1)
External loads -968 om0
1 302 x (K) 118 326
e 61
2 18k x (M) ] 0
67
3 21k x (F) ﬁ <1
8 73
b L.08 x (0) » -0
63 13
3 18,7 % (®) 63 -X7
0
5 0.76 x (X¥II) 10 -g
10 -9 .
Chock table 5.39%0 =10.6%0 -L. T3k -D.001 ~0.750 -0.003 0047

L
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Figure 1.- Reinforced panel with conditions at both ends specified in
terms of force.
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Figure 2.- Reinforced panel with conditions at one end specified in terms

of force and at the other in terms of displacements.
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Figure 3.- Reinforced panel with 12 bays,
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Figure 4.- Forces transmitted through Figure 5.- Currents flowing through
structural elements of reinforced branches of direct-current network
panel. analagous to reinforced panel of

figure 4.
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Figure 6.- Circular ring with antisymmetric loads.
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Figure 7.- Egg-shaped ring with symmetric loads.
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Figure 8.- Oval-shaped ring with positive directions of forces and
moments shown. ' '



7000 Matrix and growing-unit solutions
Al— — — ~— —Relaxation solution
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7| Positive bending moment decreases curvature
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Figure 9,- Bending -moment diagram for oval-shaped ring with internal bracing.
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