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STUDY BY THE PRANDTL-GLAUERT METHOD OF COMPRESSIBILITY
EFFECTS AND CRITICAL MACH NUMEBER FCOR ELLIPSOIDS OF
VARTOUS ASPECT RATIOS AND THICKNESS RATIOS

By Robert V. Hess and Clifford S. Gardner
SUMMARY

By the use of a form of the Prandtl-Glauert method that is valid
for three-dimensional flow problems, the value of the maximum incremental
velocity for campressible flow about thin ellipsolds at zero angle of
attack is calculated as a function of the Mach number for various aspect
ratios and thickness ratios. The critical Mach numbers (within the
accuracy of the Prandtl-Glauert method) of the various ellipsolds are
also determined. The results Indicate an increase in critical Mach
number with decrease 1n aspect ratio which is large enough to explain
experimental results on low-aspect-ratio wings at zero 1lift.

INTRODUCTION

Recent tests (references 1 and 2) have shown that an appreciable
increase in the critical Mach mumber, together with other improvements
of the aerodynamic characteristics at supercritical Mach numbers, results
from the use of wings of very low aspect ratio. These improved ‘charac-
teristics have been somewhat qualitatively ascribed to "three-dimensional
relief," although no quantitative theoretical discussion has yet been
provided.

In the present paper an effort is made to provide such a study by
consldering the flow, at zero angle of attack, about a series of thin
ellipsoids of varlous aspect ratlos and thickness ratios. FElllpsoids
were chosen because they are amenable to calculation. Although they
differ appreciably from the wings of reference 1, which had an NACA
0012 airfoil section and rectangular plan form, ellipsoids should never-
theless show simllar aspect-ratio effects. The calculations were made
for ellipsolds of thickness ratios 0.10, 0-15, and 0.20, and for the
entire range of aspect ratios from the elliptic cylinder to the
ellipsold of revolution.

The compressibility effects were computed by the use of a form of
the Prandtl-Glauert method that 1s velid for three-dimenslional flow
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problems. The method has been given by Gbthert (reference 3) without,
however, very explicit mathematical proof. Another correct statement

of the three-dimensional form of the Prandtl-Glauert method was given
earlier by A. Busemann 1n reference 4, where, however, no formulas were
given. Since the methods that have been commonly used (see, for example,
references 5, 6, and T) are applicable only to two-dimensional problems,
a detailled proof of the method correct for three-dimensional flow 1is
included in the appendix. A brief discussion of the accuracy of the
Prandtl-Glauert method, as applied to ellipsoids, is.also glven. This
work was completed in April 1946.

SYMBOIS
U free-stream veloclty
C veloclty of sound in free stream
M free-stream Mach number (T/C)
4 ratio of specific heats (7 = 1.4t for air)
B=\1-m
X, ¥, 2 rectangular coordinates
B thin body
) 7 velocity potential
u, v, w x-, y-, and z-camponents of Incremental
velocity for campressible flow about B
B! body obtained by stretching B in direction
of x-axis by the factor l/B
', v', v x-, y-, and z-components of incremental
: velocity for incampressible flow about B'
a . maximm semichor(i of ellipsoid
b gemispan of ellipsoid
c maximm semithickness of ellipsold
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A aspect ratlo <A = (ev) = E 1—)>
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-  Upax
U= —

U
a(M) value of U when the Mach number is equal to M
u(0) value of u for incampressible flow (M = 0)
. Thickness

6 thickness ratio ——

Chord
%(E,M) value of ratio of incremental velocity to

free-stream velocity for ccmpressible
flow having Mach number M &bout a body
having thickness ratio ¢

%(6,0) value of ratio of incremental velocity to free-
) stream velocity for incampressible flow about
a body having thickness ratio ¢
Subscript:

max maximm value
METHODS OF CALCULATION

The Prandtl-Glauert method for three-dimensional flow.- The
Prandtl-Glauert method is used in the present paper in the following
form:

The incremental velocities at a point P of a three-dimensional
compressible flow field about a thin body B may be obtained in three
steps:

(1) The x-coordinates of all points of B are increased by

the factor 1/B, where
B= \1-M

and where the x-axis 1s in the stream direction. This transformation
takes B into a stretched body B'.

e e e e 1= o ST e e e e e ——— = e ———— e
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(2) The incremental velocities wu', v', w', in the direction of
the x-, y-, and z-axes, respectively, at the point P' in the flow
field of B' corresponding to the point P 1in the flow field of B
are calculated as though B' were in an incompressible flow having the
same free-stream velocity as the original campressible flow.

(3) The values u, v, and w of the incremental velocities at the
point P i1in the campressible flow field of the original unstretched
body are then found by the equations

w=< g
B2
l I
v==v
B
1
W==w
B

A derivation of this form of the Prandtl-Glauert method 1s given
in the appendix. The method in essentially this form has been given by
GSthert (reference 3) without, however, a very clear proof. (GSthert
prefers to shrink the lateral coordinates of the body by the factor B
rather than to expand the coordinate in the stream direction by the
factor 1/B; obviously the two procedures lead to the same result.)
Prandtl (reference 5) and Von Kedrmen (reference 6) state the method in
a form that 1s valid for two-dimensional flows but in gemeral is incorrect
for three-dimensional flows. Goldstein and Young (reference 7) also give
a discussion leading to results that are correct only for two dimensions.
A discussion of the reasons for the fallure of these cammonly used
methods for three-dimensional flow problems is included in the appendix.

Calculation of incremental velocity for compressible flow about
ellipsoids.- In order to determine, by the Prandtl-Glauert method, the
incremental velocity on the surface of an ellipsold having semiaxes a,
b, and ¢ (where a -is the length of the semlaxils in the stream direc-
tion), the incremental velocity is calculated for a stretched ellipsoid

having semiaxes a', b, and c¢ (where a' = %- in an incampressible

flow having the same stream velocity) and the result is multiplied

by 1/32. For incompressible flow about the stretched ellipsoid, the
velocity potential on the surface of the ellipsoid is given by

%o
o = Ux

2 - a,
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(See, for example, reference 8.) The incremental velocity at x = O
(half-chord line on the stretched ellipsoid in incompressible flow) is
then given by

This value is the maximum value of u' (reference 8) and evidently
is the same at all polnts on the haif-chord line. The Incremental
velocity at the half-chord line for the compressible flow about the
original unstretched ellipsoid is gliven by

= (1)
pe BE 2 - ag ?

Various formulas are necessary for the evaluation of the integral a,
when a'>b>c, b>a'>c, ar a'>b =c (ellipsoid of revolution).

For a'> b> c, the value of «, 1s given by the formula

o = 2a'be (F - E) (2)

(2 ) VhE -2

wvhere F and E are Incomplete ellliptic integrals of the first and
second kind, respectively, deflned as follows:

? av
T =
\/(‘) \/l-k251n21.]r

Q
B = \/1 - X2 gin?¥ 4y
0

f
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where

and
gln @ = ———

For b>a'>c, the value of a, 1s given by the formula

2a'be 'b2 a'_ ¢ )| - 202 (3)
(b _a,2)<,2_ 2) Q12 _ o2

where F and E are defined by

b2 -02
b

sin ¢

i

Equation (2) is derived from the first equation given in equa-
tions (5.13) of reference 8 by substituting a' for a and by using
the expression for k in terms of a', b, and c. Equation (3) is
derived from the second equation given in equations (5.13) of reference
by interchanging a and b, substituting a' for a, and using the
expression for k in terms of a', b, and c.

For a'> b =c¢ (ellipsoild of revolution), a, is given by the
equation -

ar

o (o727 )

a l'be

o = &
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which resolves into

where

If this value for a, 1s substituted in equation (1), the incremental
veloclity at the half-chord line for the ellipsold of revolution is found
to be

The limiting case of infinite aspect ratio (elliptic cylinder) was
treated by the use of formulas for the ellipse 1In two-dimensional flow
(reference 9).

Calculation of the critical Mach number.- For flow about a two-
dimensional body, the free-stream Mach number for which sonic speed is
first reached at same polnt on the surface 1s called the critical Mach
number, because of the develomment of a sghock and the accompanying
deterioration of the aerodynamic characteristics shortly after this
Mach number is exceeded. If an extension of the definition of the
critical Mach number to the gemneral three-dimensional body is desired,
the definition appears, at first sight, to require some revision, since
for the general three-dimensional case the shock formation on parts of
the body may occur along lines yawed with respect to the free-stream
velocity (reference 10). The boundary lines of the supersonic regions
(sonic lines) must, however, always contain a portion that is normal
to the free-stream velocity and thus the definition of the critical
Mach number for the two-dimensional case (infinité unyawed cylinder)
may be extended without modification to the general three-dimensional
case. For the special three-dimensional case of the infinite yawed
cylinder, the portions of “the boundary lines of the supersonic regions
that are normel to the free-stream velocity are represented by two
polnts at infinity, only one of which (at the downstreem end) has the
necessary qualities for accumulating disturbances, that 1s, for shock
formation. It can be seen that for the general three-dimensional body
the critical Mach number, although still defined in the same manner as
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for the two-dimensional body, largely loses 1ts critical significance,
since the shock may begin to form over only a very small part of the
surface, so that its occurrence does not necessarily imply an Imminent
deterloration of the aerodynamic characteristics of the body.

For the speclal case of the unyawed ellipsoid considered 1n the
present paper, however, no appreclable analysis of shock formation or
shock extent along the lines Just Indicated seems to be required. As
is shown 1n the section "Calcu,'l_ation of the Incremental Velocity for
Compressible Flow about EJ_'Lipsoid.s", the maximm velocity for an unyawed
ellipsoid is in the stream direction and occurs simultaneocusly at all
points along the half-chord line. Sonic velocity is thus reached
simltaneously along a line that extends across the entlire span of the
body and is normal to the stream direction. These conditions also
exist in the case of the unyawed infinite cylinder, that is, the two-
dimensional body-

The critical Mach number of the ellipsold, withln the accuracy of
the Prandtl-Glavert method, was accordingly determined by solving

graphically the equation

S o
1
‘—-I

u(M) =

where u(M) 1s the ratio of the incremental velocity at the half-chord
line to the streem veloclity at the Mach number M.

Accuracy of the Prandtl-Glauert method.- The Prandtl-Glauert method
is based on the assumption of small perturbations. Consequently, near
the nose of the ellipsoids discussed in the present paper, where the
assumption of small perturbations is violated, the results given by the
Prandtl-Glauert method cannot be expected to be reliable. More reliable
values, however, should be obtained for the maximum Incremental velocilty,
which occurs at the half-chord line. The accuracy of the Prandtl-Glauert
approximation for the maximum incremental veloclty may be estimated by
camparison with more exact solutions of the compressible flow problem.
An iteration method in which the Prandtl-Glauert method is used as the
first approximation has been proposed by Busemann (reference 11). The
first and second approximations have been calculated by Hantzsche and
Wendt for the elliptic cylinder (reference 12) and by Schmieden and
Kawalki for the ellipsoid of revolution (reference 13). Calculation
of the maximum incremental velocity for the elliptic cylinder having
thickness ratio 0.20 by a formula for the second approximation given
in reference 11 shows that the value given by the Prandtl-Glauert method
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at a Mach number of 0.8 is almost 20 percent lower than the value given
by the second approximation. For the ellipsold of revolution, however,
the value of the maximum incremental velocity given by the Prandtl-Glauert
method agreed with the value given by the second approximation to within

5 percent at a Mach number of 0.8 for thickness ratios up to 0.30. Although
the second approximation is not the exact solution, 1t 1ndicates that the
error involved in using-the Prandtl-Glauert method to estlmate the maximm
incremental velocity for ellipsoids having a given thickness ratio is
greatest for the limiting case of the elliptic cylinder (A = =) and
very small for the ellipsold of revolution, which has a very low aspect
ratio. The error may be expected to be Intermediate in magnitude for o
intermediate valugs of the aspect ratio and to decrease with aspect ratio.
The reduction of error of the Prandtl-Glauert method with a decrease in
aspect ratio was to be expscted, as the Incremental velocities are smaller
for ellipsoids having low aspect ratio.

RESULTS AND DISCUSSION

Results.- Figures 1 to 3 show the value of the veloclty

ratio U = ug_@; at the half-chord line plotted against the Mach number

for ellipsolds at zero angle of attack for varlous aspect ratios and sec-
tlon thickness ratios equal to 0.10, 0.15, and 0.20. In the same figures
the sonlc velocity boundary having the equation

-1
+72 M2
- 1
LY Y + 1 -1
2

18 plotted for air. The abscissa of the intersection of this bowmdary line
wilth the curve of U plotted agalnst M for any aspect ratio is the
critical Mach number (within the accuracy of the Prandtl-Glauert method) .
In order to show the effect of campressibility more directly, the

ratio g%%% of maximum incremental velocity for compressible flow to

the maximum incremental veloclty for incampressible flow for the same
free-stream velocity 1s plotted against the Mach number in figures L

to 6 for the pame aspect ratios and thickness ratios. Similar curves

for the ellipsold of revolution, which is a special case of the ellipsold
having three unequal axes, are plotted for the same thickness ratios

in figures 1 to 6. Figure T presents curves of critical Mach number
against aspect ratio for thickmess ratios of 0.10, 0.15, and 0.20.

Three-dimensional relief.- It may be seen from figures 1 to 3 that
the three-dimensional rellef, that is, the difference between the veloclty
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on the ellipsold and the veloclity on the corresponding ellipsold of infinite
aspect ratio (elliptic cylinder), increases with a decrease in the aspect
ratio. This Increase has two causes:

(1) For a flow at emell velues of M (incampressible flow), the
rellef effect increases with a decrease in the aspect ratio.

(2) For larger values of M (compressible flow), an additional
relief effect occurs with a decrease in the aspect-ratio because of the
fact that the campresslbility effect (increase of incremental velocity
with an increase in the Mach number) decreases with a decrease in the
aspect ratio. (See figs. 4 to 6.) It may be seen that this additional
three-dimensional relief increases most rapidly at high Mach numbers.

Figures 1 to 6 show that the compressibility effect on the maximum
incremental velocity is greatest for A equal to infinity (infinite
elliptic cylinder) and is smallest faor the ellipsoid of revolution. The
campressibllity effect on the maximum incremental veloclty for the elliptic

31
Vi-»
usual form of the Prandtl-Glauert method in two dimensions. The com-
mressibility effect on the maximm incremental velocity for the ellipsoid
of revolution 1s small in camparison with that of the elliptic cylinder.
In fact, as the thickness ratio of any type of body of revolution °
approaches zero, the campressibility correctlion factor approaches unity,
for in this limit the lncremental velocity in incampressible flow is
proportional to the square of the thickness ratio, so that the effect of
stretching the body (first step of Prandtl-Glauert method, see appendix)
is exactly compensated for by the multiplication of the incremental

velocities by 1/B° (third step of the Prandtl-Glauert method). For
ellipsolds of practical thickness ratios, however, the incremental
velocity varies more slowly than the square of the thickness ratio. |
The campressibility effect for the ellipsold of revolution (figs. 4 to 6)
is thus appreciable at high Mach numbers. For example, for a thickness
ratio of 0.20 and at a Mach number of 0.8, the campressibility effect
amounts to about 30 percent of the incremental velocity in incampressible
flow.

cylinder is proportional to , which 1s in agreement with the

The effect of the thickness ratio on the three-dimensional relief
may be seen by a camparison of figures 1, 2, and 3. Fram figure 1 1t
may be seen that, for a thickmess ratio of 0.10, at a Mach number of 0.75,
the meximum incremental velocity for A =2 1is T6 percent of the maximum
incremental velocity for A =<«. From flgure 3, on the other hand, it
may be seen that, for a thickness ratio of 0.20, at a Mach number of 0.75,
the maximum incremental velocity for A =2 1s 75 percent of the maximum
incremental velocity for A = ». Thus, an increase in the thickness ratio
causes only a very small increase in the three-dimensional relief.



NACA TN No. 1792 11

Critical Mach mumber. Figures 1, 2, 3, and T indicate that an increase
in the critical Mach number of an ellipsoid at zero 1ift may be obtalned
by decreasing the aspect ratio. For example, for-ellipsoids having a
thickness ratio of 0.10, a decrease in the aspect ratio fram <« to 2
cauges the critical Mach mmber to increase fram 0.827 to 0.857 (a Mach
number increase of 0.03). For a thickness ratio of 0. 20, a decrease in
the aspect ratio fram o« to 2 causes the critical Mach number to increase
from 0.T41 to 0.783 (about 0.04). Although ellipsoids having greater
thickness ratio have lower critical Mach mumbers, a decrease in the
aspect ratio is slightly more effective in increasing the critical Mach
mmbers for ellipsoids of greater thickness ratlo. Figure T indicates
that only a large reduction in aspect ratio will cause a significant rise
of the critical Mach number.

Camparison with test results on low aspect ratio wings.- Figure 6
of reference 1 shows the minimm drag coefficient (CD for zero lifﬁ)

plotted against the Mach number for wings having an NACA 0012 section
and various aspect ratios. The critical Mach number for any aspect
ratio may be estimated roughly as the Mach number for which the drag
coefficient first begins to rise. The rough estimate of the critical
Mach mummbers obtainable by this consideration is not sufficiently accurate
to warrant comparison of the numerical values with the numerical values
of the critical Mach number obtained in the present paper for thin
ellipsoids. Comparison of the mumerical results is, moreover, not
warranted lnasmich as the wings of reference 1 did not have an elliptic
section and furthermore had a rectangular plan form. A qualitative
camparison may be made, however, between the results of the present
paper and those of reference 1. The increase in critical Mach number
with decrease in aspect ratio indicated in figures 1, 2, 3, and 7 of
the present paper is considered sufficiently large to explain the
corresponding effect indicated in figure 6, reference 1.

It is mentioned in reference 1 that the Mach number for a significant
rise In the drag coefficient is approximately 0.1 higher for an aspect
ratio of 2 than for an infinite aspect ratlio. This value is appreciably
higher than'the increase 1n critical Mach number due to a decrease in the
aspect ratio. Since, for low-aspect-ratio wings, the drag coefficient
increases only gradually after the critical Mach number 1s reached, the
critical Mach mumber far & wing having low aspect ratio does not indicate
so critical a change in the flow phenamena as the critical Math number
for a wing having high aspect ratio. It is thought that the smaller rate
of increase of the drag coefficient for wings having low aspect ratio is
due to the fact that, at the critical Mach mumber, the rate of increase
with Mach number of the incremental velocity is less than for high aspect
ratios, as may be seen fram figures 1 to 3.
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CONCLUSIONS

A study by the Prandtl-Glauert method of compressibility effects
and critical Mach number for ellipsoids of varlious aspect ratios and
thickness ratlios indicated the following conclusions:

1. The flow about the unyawed ellipsold 1s analogous to that about
the infinite unyawed cylinder in that sonlc velocity is reached simul-
taneously along a line.that extends across the entire span of the body
and is normal to the stream direction.

2. The critical Mach number for a thin ellipsold may be predicted
with good accuracy by means of the Prandtl-Glauert method, and the
accuracy lncreases with decrease 1n aspect ratio.

3. The compressibility effect on the flow about an ellipsold decreases
as the aspect ratio decreases.

4. The three-dimensional relief for ellipsoids 1s essentially
independent of the thickness ratio, for thickness ratios from 0.10 to 0.20.

5. For ellipsolds of thickness ratlo 0.20, the critical Mach number
increases by about 0.04 when the aspect ratio is changed from o to 23
for ellipsoids of thickness ratio 0.10 the increase 1s 0.03.

6. The calculated increases in critical Mach number are sufficlently
large to explain the experimentally observed increases in the Mach number
at which the drag first begins to rise.

T. The experimentally indicated reduced rate of drag rise for low-
aspect-ratio wings at zero 1lift as campared wilth that for wings having
infinite aspect ratio may be explained qualitatively on the basis of the
results obtained for the three-dimensional relief for ellipsolds.

Langley Asronauticel Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., April 23, 1946
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APPENDIX
THE PRANDIL-GLAUERT METHOD FOR THREE-DIMENSIONAL FLOW

A derivation of the Prandtl-Glauert method fdr three-dimensional flow.-
A brief derivation of a form of the Prandtl-Glauert method correct for
three dimensions may be given as follows: A first-order approximation to

the subsonic compressible flow about a thin body B, the surface of which
has the equation

S(x, y, z) =0

may be obtained by finding a solution of the linearized differential
equation for the potential ¢ of the incremental velocities,

2 —

BOyy + Oyy + 9, = O (1)
where the x-axis 1s in the stream directlon and the incremental
velocities @, @y,/and ¢, are amall compared with the streem

velocity U. At all points on the surface of B, the potential ¢ must
satisfy the boundary condition

(U + ) 8, + 98, + 9,5 =0 (a2)

which states that the flow is tangential to B. Since B is assumed
thin, Sy 1s small-campared with Sy and S,; consequently the second-

order term q&sx may be neglected, and the boundary condition becomes
Usy + RSy + PpS, = O

In order to solve the boundary-value problem glven by equations (Al)

and (A2) in terms of incompressible fiow, the following transformation of
variables is used:

a

X
x! ==
B

(a3)
?' = Bo
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With this transformation equations (Al) and (A2) became, respectively,
x'x

o', :+q)'W+q:'zz=o . (ak)

(45)

i
(@)

t 1
st' e ysy +e zSz

Equations (A4) and (A5) are, respectively, the differential equation and
boundary condition for the potential @' of the incremental velocities

of an incompressible flow with free-stream velocity ' U, in the x', y, z .
space, &bout a thin body B', the surface of which has the equation

s(px', y, z) =0

The incremental velocities in the compressible flow are thus
given by

1l 1
u:%:géq)x[_ﬁﬁu
S -1
v—qny—quy—Bv'. (a6)
Lo =L
W=, = E-Q 2 5 W

where u, v, and w and u', v', and w' are the incremental
velocities at corresponding points in the compressible flow about B
and the incompressible flow about B', respectively.

The foregolng analysis establishes the Prandtl-Glauert method
for three-dimensional flow in the following form: The incremental
velocities at-a polnt P of a three-dimensional compressible flow
field about a thin body B may be obtained in three steps:

(1) The x-coordinates of all points of B are increased by the

factor l/B, where )
B=\11-M2

and where the x-axis i1s in the stream direction. This transformation
takes B into a stretched body B'.

(2) The incremental velocities u', v', w', in the direction of
the x-, y-, and z-axes, respectively, at the point P' 1in the flow
field of B' corresponding to the point P in the flow field of B
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are calculated as though B' were in an incompressible flow having the
seme free-stream veloclty as the original campressible flow.

(3) The values u, v, and w of the incremental velocities at the
point P 1n the campressible flow field of the original unstretched
body are then found by the following equations:

= L
u = 2 u
v = %; v!
w = %?'w'

Thus far it has been shown that, through the transformation given
in this paper, a compressible flow that satisfies the boundary conditions
for the body B 1s transformed into an incampressible flow satisfying
the boundary conditions for the stretched body B'. It can be shown
further that the stream lines of the campressible flow about B are
transformed into stream lines of the incompressible flow about B'.
Because of thils fact, the method has been referred to in the literature
(for example, reference L) as the "streamline-analogy' method.

The proof is obtained simply by applying the transformations (A3)
and (A6) to the equations for the streamlines of the incompressible
flow about the stretched body B'

A A (a7)

The applicationrof the transformations results in the equation of
the streamlines for the compressible flow about the body B

=3z (28)

Fallure for three-dimensional flow problems of the commonly stated
forms of the Prandtl-Glauert method.- According to the form of the
Prandtl-Glavert method given by Prandtl (reference 5) and Von KérmAn
(reference 6), the incremental velocities for a compressible flow about
a thin body B are the same as the incremental velocities of corresponding
points for incampressible flow having the same free-stream velocity about
a body obtained by expanding B in the directions normal to the free-
stream direction by the factor l/B That is, for bodies of revolution,
or two-dimensional bodies,

o me e - — - e e - - - - - e e e e e e~ < = e -
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u u/l
T (5: M) —U<B€:9

According to Gothert's method, however,

£ (e, M) = B— 5 (Be, 0) (A9)

/ v
Thus, Prandtl's and Von KermAn's method is valid only if

nfl Ll
E(EE’ 0) = # T (Be, 0)

that is, if and only if the incremental velocity for incampressible

flow about the bodies under consideration is proportional to the thickness
ratio. This relation 1s approximately valid for thin two- dimensional
bodies, so that the method of Prandtl and Von Kérmén may be expected

to be valid for two-dlmensional flows. The relation is not true in
general for three-dimensional bodies; for example, for a very thin

body of revolution the incremental velocity 1s more nearly proporticnal
to the square of the thickmess ratio than to the first power.

Von Kérmén approaches the problem by making the transformation

= By
z! = Bz
?' =0

Under this transformation the linearized equation of compressible

flow goes into Laplace's equation; however, the transformed boundary
condition is not satisfied on the surface of the transformed (contracted)
body but on the surface of. an expanded body. Thus, the boundary condi-
tion is not satisfiled on the boundary but at polnts near the boundary.
This procedure is applicable to two-dimensional problems (as, for example,
in the thin-wing theory, reference 14), because the velocity increments
induced by the equivalent line distribution of singularities vary only
slowly in the meighborhood of the line of singularitiles. For a body

of revolution, however, the veloclty lincrements induced by a line of
slngularities go to infinity at the line of singuliarities; for such
bodies, accordingly, the location of the point at which the boundary
condition is satisfied is important.

According to Goldstein and Young (reference T), "in compressible
flow the pressure lncrease at any point of the body is l/B times the
pressure increase in incompressible flow at the same point. That 1is,
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Comparison of this relation with equation (A9) shows that the Goldstein-
Young method 1s also valld for two-dlimensional problems but gives an
incorrect result for three-dimensional problems.
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