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NATIONALADVISORYCOMMIIT~ FOR AERONAUTICS 

TECBNICAL NOICE NO. 1825 

COMERESSIVEBWXLlXGOFSl3EGY- 

By Paul Seide and Manuel Stein 

Charts are presented for the analysis of the stability under 
compression of simply sup-ported rectangular plates with one, two, three, 
and an infinite number of identical equally spaced longitudinal stiffeners 
that have zero torsional stiffness. 

INTRODUCTION 

The purpose of the present paper is to supply the aircraft structural 
designer-with charts for the analysis of the stability under uniform 
compression of simply supported rectangular plates with identical equally 
spaced longitudinal stiffeners having no torsional stiffness (fig. 1). * 
Although solutions of the problem have been previously presented in 
references 1 to 4, numerical results in the form of tables or charts 
which adequately cover the practical range of stiffener spacing and 
flexural stiffness are generally unavailable. Timoshenko (reference 1) 
presents tables giving the buckling stress of plates with one and two 
stiffeners for only a few values of stiffener spacing, area, and flexural 
stiffness, whereas Barb& (references 2 and 3) snd Ratzersdorfer (refer- 
ence 4) give only values of the minimum stiffener flexural StiffneSS 
required for the plate to buckle tith no deflection of the stiffeners. 
Aclmowledgment is made to Mr. Norman Grossmsn of the Republic Aviation 
Corporation for the discovery of an error in the results of reference 3. 

Buckling charts are given in the present paper for plates with one, 
two, three, and an infinite nxn&er of longitudinal stiffeners. These 
charts indicate the relationship between the bucKLing stress coefficient 
and the plate bay aspect ratio for various values of the ratio of the 
stiffener flexural stiffness to the flexural stiffness of a plate bay 
and the ratio of the stiffener area to the area of a plate bay. 

The stability equations from which the charts were computed are 
derived in the appendix by means of the Raylei&4itz energy method. 
It is assumed in the derivation that the area and flexural stiffness of 
the stiffeners are concentrated along longitudinal lines at the middle 
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surface of the plate and, as previously mentioned, that the stiffeners 
have zero torsional stiffness. The assumption of zero stiffener 
torsional stiffness usually applies with little err* in the case of 
open*ection stiffeners. 

SYiiOLa 

=$Y coordinate axes (fig. 1) 

W plate deflection 

EP Young's modulus for plate 

CL Poisson8s ratio for plate 
I I 

t plate thiclmess 

D plate flexuralstiffness per unit width 

d I distance between stiffeners 

N number of bays 

a plate length 

B aspect ratio of each bay 
0 

f 
\ 

EI effective flexural stiffness of stiffener attached to plate 
XI , 

=- 
y dD 

A stiffener area 

6 A =- 
dt 

a cr critical compressive stress 

k buckling stress coefficient' 
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. 
. - c integer defining location of stiffener 

Q integer defining number of buckles in y-direction 

( l=< Q 5 (N - 1)) 

m integer defining number of bucties in x-direction 

nrp,s integers 

RESULTS AND DISCTJSSION 

Charts are presented for the analysis of the stability under uniform 
compression of simply supported rectangular plates with one, two, three, 
and an infinite number of identical equally spaced longitudinal stiffeners 
having no torsional stiffness (fig. 1). These charts (figs. 2 to 5) show 

the relationship between the buckling stress coeffic$ent 
acrd2t 

and the 
2D 

plate bay aspect ratio 2 for several values of Es d9J the ratio of the 

stiffener flexural stiffness of a plate bay, and A, the ratio of the at 
stiffener area to the area of a plate bay. The equations from which 
these charts were computed are derived and discussed in the appendix. 

The range of plate bay aspect ratios covered in the figures has 
been limited to values less than 8. The computations indicate that, for 
an aspect ratio greater than 8, the buck3ing stress coefficient is given 
very accurately by the smaller of the two values obtained from the 
approximate formulas 

acra2t 
= 

f12D 
(1) 

Consecutive integral values of m are substituted in equation (1) until 
a minimum value of the buckling coefficient is obtained for given values 
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of .. a = and -eh. 
d' dD' dt 

&like the unstiffened plate, a stiffened plate . 

with a bay aspect ratio of 8 may not be considered to be the equivslent 
of an infinitely long plate. 

If, in figures 2 to 5, the plate bay aspect ratio is kept constant- 
and the stiffener flexural stiffness is increased, a limiting value of 
the buckling stress which corresponds to the stress for buckling with no 
deflection of the stiffeners is reached. A further increase in stiffener 
flexural stiffness will not increase the buckling stress. 

The dashed-line curves of figures 2 to 4 indicate a change in the 
number of half--waves In the longitudinal direction. As the stiffener 
flexural stiffness increases, the plate bay aspect ratio at which the 
change occurs also increases since the tendency of the stiffener to I 
bucHe as a simply supported column in one halfeve restricts the plate 
action more and more with increasing stiffener strength. In the case 
of the plate with an infinite number of stiffeners (fig. 5) the natural 
tendency of both the plate and the stiffeners is to buckle with one 
half-wave in the direction of loading 80 that only that type of bucking 
occurs. . 

Charts for the analysis of infinitely long plates with one, two, and 
three longitudinal stiffeners are given in figure 6. In these plates the 
stiffener flexural stiffness may be increased with a corresponding increase 
in buclrling stress until a certain value of stiffness is reached. At this 
point the mode of bucH.ing changes from buckling with deflection of the 

stiffeners to buckling with a node at each of the stiffeners. A further 
increase in stiffener flexural stiffness does not increase the buckling 
stress. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va., January 18, 1949 
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APPENDIX 

DERIVATIONOFTHESTABlLITY(XWl3KCONS FORUNIFORKLYC~ 

SIMELY SUPPORTED RECTANGULAR PLATES WITH 

5 

LONGITUDINAL STIFEEZERS 

The potential energy of a buckled rectangular plate with longitudinal 
stiffeners is equal to the difference of the bending energy Vl + V2 
stored in the plate and stiffeners and the work Tl + T2 done by the 
compressive load in shortening the plate and stiffeners. The various 
components of the potential energy are given by the well-known equations 
(reference 1) 

sit2 T1= 2 

N-l 
a 

T2 = > 
%rpi 

2 
s 

0 
aw2 ax 

c=l 22 
0 pcd 

’ (Al) 

The plate is assumed to buckle in m sinusoidal half--waves in the 
x-direction. The deflection function w is therefore taken as the Fourier 
series 
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IIblX 
w=sin- a n sin x W) a n=l Nd 

. 
. 

which satisfies the simple support conditions of-zero deflectfon and 
zero moment at each edge. Substitution of equation (A2) in equation (Al) 
yfelds, after simplification, the potential energy 

The -own Pourier coefficients an are determined from the conditicn 
that the potentiel energy be a minimum. This condition yields the followkng 
set of equations 

+~m2(~2-P2k&)~ap~ 
p=l cd. 

sin F sin y (A41 

(n = 1, 2, 3, . l .I 

Equations (A&) are similar to equations encountered in the solution of the 
stability problem of reference 5 and may be solved by the method used in 
that paper. The stability criterions so obtained are 
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P2kS 
+F (A5) 

which criterions correspnd 
I and 

I’ = l’ m = 1, 

to bucking with deflection 

2,...N-1) 
2, 3, l l .) 

of the stiffeners 

which criterion corresponds to buckling with nodes at $Ll of the stiffeners. 
Equatiotis (A5) may be put into the closed form 

k= 

7 = 

w 

where 

. 

4 p-B3 
.2 m3 

sin % inne 
01 y 

+ 

CO8 II 2 - COB 8 cos K - Q - cash 6 N 1 N 2 

(87) 
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and 

m=l,2,3... 

9 =1,2,.. .M-1 

Computations made tith equations (A6) and (AT) indicate that, except 
for a small rage of values of B(B < $!) and k, the criterion corresponding 
to plate instability with one buckle in the y-direction (q=l) yields the 
highest value of the required stiffener flexural Mffness and hence the 
lowest buckling stress. For the ranges of B and k in which other 
buckling modes prevail, the difference between the highest stiffener 
flexural stiffness and the stiffener flexural stiftiss computed from the 
criterion with Q = I is negJigible. These findings contradict results 
obtained by Barb& in reference 3 in which it is stated that, for a plate 
tith two stiffeners, the criterion for the antis~trical buckling 
node R-5 

( > 
gives bucking stresses appreciably lower than the buckling 

stresses computed from the criterion for the symmetrical buckling 
node 

( 3 
f=' for some values of the aspect ratio B. I&. Norman Grossman 

of the Republic Aviation Corporation found that Barb&had made an error 
in cornwing the critical stresses for the antisymmetrical buckling mode 
with the critical stresses for the symmetrical buckling mode. The results 
of the present'paper agree with the corrected results of Barbre. 

The computations Indicate that; when the plate bay aspect ratio j3 is 
greater than 8, accurate values of the stiffener flexural stiffness may be 
found by using only the first term in the first series of equation (A?). 
The stability criterion may then be written as 

82 
-l+- 

( ) 

2 
7" 

N%12 
+ lcJ32(1 + 6) 

m2 
w 

Equation (A8), which is equivalent to equation (l), is the stabflitycriterion 
that would be obtained if the deflection function were approximated by 

w = alsin =&-lg 
a 
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FIgwe l.- Simply supported rtxtangular plate xith longitudinal stIffenera (Ii = 4). 
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(b) & = 0.2. 

Figure ?A- Continued. 
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(c) .& = 0.4. 

FQure2.-Concluded. 
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Figure 3.-c~onrpressiv~ h&llng curves for .plAes with two longitrlil stiffeners. 
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Figure 3.- Continued-. 
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(c) $ = 0.4. 

Figwx 3.-Concluded. 
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Figure 4.- Cmpreesive buck&g ourvee for plates with three longitudinal. stiffeners. 
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(b) .& = 0.2, 

Figure b.- Continued. 
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Figure 5.- Ccmpressive buckling curves for plates with au infinite number of longitudinal stiffenem. Fi 
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(b) .& f 0.2. 

Figure 5.- contlnusd. 
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(c) & = 0.4. 

Figure 5.-Concluded. 
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FIgure 6.- Cmpressi~e buckllng cmve~ for M3nitel.y long platee with longitudinal stiffeners. 


