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TECHNICAL NOTE NO, 1827

MATRTX METHODS FCR CALCULATING
CANTTLEVER-BEAM DEFLECTIONS

By Stanley U. Benscoter and Myron L. Gossard
SUMMARY

The method of numerical integration for calculation of beam deflec-
tlon 1s presented 1n matrix form to give 1t the advantages which are
inherent in an influence-coefficlent method. Both the scalar method of
numerical integration and the influence-coefficlent method may be improved
by introducing weighting matrices. Only distributed loading is considered.
Examples are presented to show that the use of welghting matrices reduces
the calculation time required to obtain a desired degree of accuracy.

IRTRODUCTION

Two methods for calculating small deflections of non-uniform beams
are in general use: a method of scalar numerical integration and a method
employing influence coefficients. Elther method may be expressed in matrix
form to obtain maximm efficiency in the use of calculating machinses.

The method of scalar mmerical lntegration for obtaining deflections
glves all quantities that may be needed in stress analysis; that 1s, shears,
bending moments, section torques, curvatures, twists, slopes, and deflec-
tions. (See, for examples, references 1 and 2.) In problems such as
vibration and aerocelastlcity where only the deflections are of direct
importance, matrix methods are preferable since they provide a direct
linsar relation between loads and deflections and avoilid the intermediate
calculations required in the scalar method. The method of influence
coefficlients gives deflections due to concentrated loads through direct
linear relations but requires first the calculation of the influence
coefficients and 1s not sulted without modifications to accurate deter-
mination of deflections due to distributed loadings.

A matrix method of numerical integration incorporating weighting
matrices and especlally formulated for obtaining deflections due to
distributed bending or torsional loadings 1s a feature presented hersein.
This method is based upon an equivalence between distributed and
concentrated loading obtalned by assuming the loading curve to be a
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series of parabolic arcs. The welghting matrices for bending contain
welghting numbers introduced in reference 1 and applied in reference 2.
The weighting matrices for torsion have mot been previously published.
Welghting matrices permit the use of lower—order matrices than would be
needed in commonly used procedures to obtain a desired accuracy.

As an introduction to the welghting methods, the commonly used
methods of numerical integration and influence coefficients for distributed
loadings, based on step loading distributions, are formulated in matrix
notation. The welghting methods described include, in addition to
numerical integration, procedures for usling welghting matrices in con-
Junction with influence coefficients.

In all, four matrix methods of different degrees of accuracy &are
considered, and each method gives deflection as a linear function of
digtributed loading through an array of coefficients which mlght be called

influence coefficients for distributed loading or "transformation coeffi-
cients" to distinguish them clearly from stendard influence coefficients.

Results of the application of three of the methods to a uniform
cantilever beam are compared with exact solutions.

SYMBOLS
a segmental area beneath torsional load curve
a segmental area beneath twist curve (increment of rotation)
E Young's modulus of elasticity
G shear modulus of elasticity
I mament of Inertia of cross-sectional arsa
I, mass mament of inertia, per unit of length, about the
elastlic axis
J torsion constant
K influence function
kij influence coefficlent
L length of beam
m bending moment

P concentrated lateral load
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D distributed lateral load

Q concentrated torsional load

S static mament of mass, per unit of length, about
the elastic axis

T section torque

q distributed torslonal load

v beam shear

x spanwise coordinate

y bending deflection (translation)

a curvature

a concentrated curvature (bend)

B slope of bending deflection curve

€ Simpson's numbers

¢ torsional deflection (rotation)

6 twist (rate of rotation per unit length)

A length of a segment

[ circular freéuency of natural vibration

P mags per unit of length

£ alternate spamwlise coordinate

NUMERICAL INTEGRATION

If full advantage is to be taken of the new Procedures to be presented,
all relations between variables must be expressed in matrix form. In order
to provide a simple illustration of the formulation of the matrix equatlons,
the well-known process of numerical integration will be comsidered in same
detail. A single typical scalar equation 1s written to illustrate the
linear relationship being considered. The complete set of linear relations
are then written in expanded matrix form. The expanded matrix equations
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are written for a beam span divided Into four equal segments. The form
of the matrices will be sufficlently general, however, to indicate the
correct manner of extension to & larger number of segments. The matrix
equations are also wrltten in contracted symbolic form and may then be
considered applicable to a beam with any number of segments.

Torslon

A cantlilever beam with distributed torsional load 1s considered first

as shown in figure 1(a).

The loading curve 1s comsidered to be replaced,

for purposes of numerical Integration, by a step function as shown In
The step function is, in turn, replaced by a set of concen-
The value of the concentrated

figure 1(b).

trated torques as shown in figure 1(c).
torque 1s obtalined by multiplying the ordinate to the load diagram by the
width of the step. As a scalar example Q3 is given Dby

e

i

0

0]

0 O
2 0
0 2
0 O
(O 0]

0

-1

-

(1)

1 (2)

[

The validity of this matrix equation is immediately seen froam an applica-
tion of the row-by-column rule for metrix mmltiplication. (See reference 3.)
In contracted form this matrix equation may be written as

[ =% [&] [q)

(3)

In this eguation [Q] eand [q] are column matrices, or column vectors

and [A] is the square matrix of coefficients.

The section torques msy now be computed.
tion is a step diagram as shown in figure 1(d). As a scalar example Ty is

given by

The sectlon torque distribu-
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Ty =9t Q * (%)

The matrix equation for sectlon torques becomes

2] 1 00 0 ol o]
1 %
T, 1100 0f |9
=]t 110 0l (5)
T, 1111 ofla,
T, 11111

In this equation the matrix of coefficients may be regarded as an inte-
grating matrix or a summation matrix. Throughout the paper there will
appear, Iin various equatlons, two types of Integrating matrices. The
two Integrating matrices differ from each other in having values of zero
or unity on the principal diagonal. The two matrices are defined as
follows:

0 0 0 0O

1 0 0 0 O

[ZCJ=1100

(@

(6)

[
=
[
O
(@)

I
-
—
o
o

=
(@]
o
(@]
o

[zﬂ=11100_ (7)
11110
11 1 1 1]

Equation (5) may now be written as follows:

[+]- ) [ ®
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The section torques may be expressed ln terms of the applied load by
substituting fram equation (3) in equation (8); thus,

[=)-3 [ (4[] g

The next step in the numerical integration is to divide the sectlion
torques by the values of GJ at the corresponding stations to obtain
values of twist 6 (change of rotation per unit of length). (See
figures 1(d), 1(e), 1(f), and 1(g).) A typlcal equation for the third
segment is given by

T3
3= (10)
3
In matrix form the twlsts are given by
81 163, O 0 0 0 Tl_1
6, 0 /e, o 0 0 Tp
g 1=10 0o 1 0 0 T 11
0), 0 0 o 1/e3, © T),
05 0 0 0 0 1/c;.J5 Ts;
L L ) L

In contracted form this equation becamss,
[e] = [a/ed] =]
[GJ] -1 [T] (12)

The inversion of a diagonal matrix is discussed in reference 3. The twlsts
may be obtained in terms of the applied load by substltuting from equation (s

in equation (12); thus,

[e]- &[] [2] [2][e] (3)
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The twist distribution, as shown in figure 1(g), is a step diagram.
This diegram may be integrated to obtain rotations. In scalar form @3
is given by

B3 = 205 + 26, + 05 (14)

In matrix form the rotations are given by

11 1 1

1 [os
¢2 0111 1f|e,
¢3=x00111 63 (15)
&, 000 1 1f g,
¢5 0 00 0 1f |65

In contracted form equation (15) beccmes

(4] '] s

1
The matrix El] is the tramspose of [Z]] . The transpose of a matrix

is obtained by rotating the matrix about its principal diagonal. (See
reference 3.) Substituting from equation (13) in equation (16) glves the
final formulae for rotations as follows:

4] =§ Fl]' [od] - 4 [a]le] (17)

The square coefficlent matrices in equation (17) may be multiplied
together to obtaln a single matrix for convenience in deflection calcula-

tions. The resulting matrix [Ct] 1s dependent only upon the structural
properties of the beam and is defined as follows:

B =% B [ [ [4] a8

Substituting fram equation (18) in equation (17) gives

[#]- [ [o] =
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The elements of the matrix [?;] are coefficlents which express a linear

relationship between the rotations and the ordinates to the distributed
load curve. Since the numerical method that has been used for obtaining
equivalent concentrated loads 1s not highly accurate, a large mumber of
atations along the span must be used to obtain accurate deflections.

Bending
The calculation of bending deflections by numerical integration
involves the same procedures as those used In torsion. The matrix equations

are therefore written generally in contracted form. The diagrams of
figures 2(a), 2(b), and 2(c) show the concentrated loads P; to be related

to the distributed load ordinates p; by the equation

[]-3[:]0] =

Direct summation of the concentrated loads gives the shears according to
the following equation: ’
[*1-[=] [*] (22)

Substituting fram equation (20) in equation (21) gives

[1-2B1 [ 5] e

The diagrams of figures 2(d) and 2(e) indicate that the moment-curve
ordinates may be obtalined by direct summation of the areas bemeath the
shear curve. The moments are thus related to the shears by the equatlion

my 0 0 0 0 Of |vg
my 1 0 0 0 0O} v
myf=x11 1 0 0 0] |vg (23)
my, 1 1 1 0 O v),
_m% j.lllod a
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This equation is written in expanded form to 1llustrate the use of the
sumation matrix [Zo:l . TIn contracted form equation (23) becomes

[=]-» 4[] 2

Substitution of values fram equation (22) in equation (24) gives

(=] 2 3 [59 [4] ] 2

The moment values must now be divided by the corresponding EI values
which are 1llustrated in figure 2(f). The resulting diagram defines the
curvature of the beam. These curvatures may be considered, for purposes
of numerical integration, to be the loading on a conjugate beam (reference X4)
as shown in figure 2(g). In matrix form the curvatures are given by

[«]- [/ [a]
[ex] ™ [a] (26)

The matrix [EI] -1 is a diagonal matrix. Substituting from equation (25)

in equation (26) gives
[<]- % [ 5] [ [4][5] @

The loading on the conjJugate beam may now be converted to equivalent
concentrated loads in the same manner used for the original beam loading;

N -3 L] -

The concentrated loads a4, shown in figure 2(h), may also be regarded
as concentrated curvatures. These concentrated curvatures may be visualilzed
as bends in a broken line. Substituting from equation (27) in equation (28)

()= R[] B ] [ [T
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The slopes B;, shown in figure 2(1), are camputed by direct integration
according to the following equation:

()BT 2

Substitution from equation (29) in equation (30) gives

[6)-2 Bo] (2] [ 2 (2] [41[5] ()

The deflections, as shown in figure 2(J), are obtained by an integra-
tion of the slopes according to the following equation:

1+ [] =

Substitution of values from equation (31) in equation (32) gives

[y] =}’+£[Zl:|' [Zo]l [A] EEI]_I [Z;l [’31] [A] [P] (33)

Equation (33) may be written in the following form for convenience in
deflection calculations, as explained in the sectlion on torsion:

5]+ [ [ o

o -5 B OEPEER o

Just as 1in the torsion case, the matrix [bﬁ] defines the relation between

ordinates to a distributed load curve and the ordinates to a deflection
curve.

INFLUENCE COEFFICIENIS

When influence coefficients are avallable, they may be used to determine
deformations directly without the necessity for numerical Integration. The
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influence coefflclents may be camputed by the integration method of the
section dealing with numerical 1lntegration or they may be obtained experi-
mentally. The relationships between load and deflection are glven by very
simple matrix equations and are shown only in contracted form.

Torsion

Influence coefficlents define a linear relationship between a finite
number of concentrated loads and.a finlte number of ordinates to the
deflection curve. The matrix of torsional influence coefficients will be

indicated by [Ké]. This matrix 1s used to express the relation between
rotations and concentrated torque loads as follows:

[ [+ [<] 5o

The common method of determining equivalent concentrated loads fram a
distributed load 1s to replace the distributed-load curve by a step curve

as used previously. The equivalent of Q] fram equation (3) mey therefore
be substituted in equation (36) to obtain

-0 oo

If the influence coefficlents are to be camputed by the common method of
numerical integration, a simple matrix formula may be used for this purpose.
A comparison of equations (17) and (37) shows that the influence coeffi-
clents are given by the following formula;

] -+ [o [ oo

Equation (37), when campared with equation (19), provides a second
definition of the matrix [ct] , as follows:

[+ - 3[4 1] =

Bending

The matrix of bending influence coefflclents wlll be indicabted by E?é].

The relation between bending deflections and concentrated bending loads 1s
glven by the following equation:
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[+]- [ ] 2

The column vector of concentrated loads ls replaced by a vector of
distributed—load ordinates by substituting fram equation (20) in equa-
tion (%0); thus,

()~ [4][5] o

A comparison of equations (33) and (41) indicates that the influence
coefficients could be camputed from the followlng formula:

)00 B EPEE e

Equation (41) when compared with equation (34) provides a second definition
of the matrix [cﬂ , as follows:

RIS g
NUMERICAL INTEGRATION WITH WEIGHTING MATRICES

The matrix methods of numerical integration described in the foregoing
sections correspond to the cammonly used scalar methods. In those methods,
the manner of converting distributed loadings into concentrated loadings 1s
rather arbitrary. Such conversions usually lead to appreciable errors in
the deflections when only a small number of statlons is used.

The following sectlions show that the arbltrariness of the common
methods can be largely removed by regarding the loading curves as serles of
parabolic arcs. With such an approach, the matrix [}{] in the equatlons of
the foregoing sections is replaced by matrices which are designated

"weighting matrices. "

Torsion

Consider the distributed loading curve of figure 3(a). If, for
example, the part of the curve between ordinates g, and q) is assumed
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to be a second-degree parabola defined by ordinates g, q3, and a5 the
area &, between ordinates q, and q3 is given by

o= 35 (% + 85 - 4) (k)

The derivation of this formula i1s shown 1n appendix A. Proceeding in like
manner for the other areas permits each area to be wrltten In terms of three
ordinates, as follows:

-
ay 5 8 -1 0 O a
a, 05 8 -1 0fla
A
a3 =13 0 0 5 8 -1 q3 (45)
8 0 0 -1 8 5||qy
0 0 0 0 0 0]}]faq
| . 1 L2

In contracted form, equation (45) beccomes

[ 59 [1] z

and [?i] 1s referred to as a welghting matrix. The areas [a:] correspond

to increments 1n section torque as indicated in figure 3(b). The section
torques T at the flve deslgnated statlons are related to the increments
in section torgue by the equation

[+]- B[] o

Substitution of values from equation (46) in equation (47) gives

[+]- 53 4 [«) o

In the section on torsion dealing with numerilcal integration, a
diagonal matrix of values of l/in was introduced as shown in equation (11)

The individuel values of GJ; were assumed to be the average values within
a bay. This assumption corresponds to a replacement of the GJ diagram




1k NACA TN No. 1827

by a step dlagram as shown in figure 1(f). It 1s now necessary to make
a slight modification of the definition of the dlagonal elements of the

matrix [?é]- The elements of thils matrix must now be defined as the
values of GJy at the statlons where the rotatlions are to be determined.
These values are illustrated in figure 3(c). With this revised definition
of the matrix [GJ—J the distribution of twist (fig. 3(d)) is glven by the

equation

[o]-[+9 [ 2

or, upon substitution of values from equation (48) in equation (49), by

(] =55 [03] ™[] [ o] (50)

In figure 3(d), the areas & carrespond to increments of rotation as
indicated in figure 3(e). These areas are camputed on the assumption that
the twist curve can be represented by a serles of parabolic arcs. Tor
exemple, the area &, is found by the formula

&= (61 + &y + 50,) (51)

Equation (51) is similar to equation (44), but the order of the coefficients
is reversed. This reversal 1s not necessary but 1s used because it provides
a convenience in the matrix equations which will be derived and discussed
subsequently. The expanded form of the matrix equation relating increments
in rotation to twists is

- - _ T
ay 5 8 -1 0 O el

a, -1 8 5 0 of]e,

21 = X -

a3l =53] 0 1 8 5 0 0, (52)
Eh 0O 0 -1 8 5 6),

0 O 0 o0 o0 off|e

| L. ] L.?_
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The elements in the matrices of equation (52) can be rearranged 1n such a
manner as to provlide a convenience in the matrix equations that are to be
derived. All elements of the first two matrlices must be moved downward one
position to give the equation In the following form:

o _ R
0 0 0 0 0 of |6
&y 5 8 -1 0 of |6,
Bl=2|1 8 5 0 of|eg (53)
53 o -1 8 5 0 91'_
_ElU _o 0O -1 8 5_ _95_

Although the elements of the column matrix on the left-hand side of the
equation are out of their naturel order, application of the row-by-column
rule for multiplication reveals that all of the linear reletionships defined
by equation (52) are preserved in equation (53). In contracted form,
equation (53) is written as

I:a:l =X [wl] "[-_e] (5h4)

in which [Wi] is a weighting matrix. The double prime 1s used to

indicate a double transposition, or double rotation, of the matrix. The
matrix 1s first rotated ebout its principal diagonal in the usual manner

of transposltlion. The transposed matrix is then given a rotation about

‘the secondary diagonal. The possibility of relating the vector | @| to the

vector [Gi] by means of the matrix [?i], which has already been introduced,

arises because of the precautions that have been previously taken in making
particular arrangements of the elements within the various matrices.

Substituting fram equation (50) in equation (54) gives

[a] B ﬁe‘u [Wl] " [GJ] N l-_zo:l [Wﬂ [Q] (55)

The rotations ¢ are obtained by a summation of the increments of
rotation according to the formula

¥ £ T =
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Fraom equation (55) and equation (56) the final formula for rotations is
obtained, as follows:

()= 20 (2 [ [ ™ o) [ [ <] -

A camparison of equation (57) with equation (19) indicates that the matrix
of coefficients [Ct] may be camputed by the following formula:

o] - 3 =] 4[4 (2 [ 9
Since this formmla for [Ct:l Incorporates the welghting matrices, this

definition 1s expected to yleld more accurate solutlons than the definition
given by equation (18), which is based upon numerical integration without

weighting mumbers. In equation (58) the product [Z CZ‘ [le mey be repre-

sented by a single matrix [M]!

[ (%] ] =2

1 "
The product [Zo] [wl] can be obtailned by & double tramsposition of [M]

[ - [ [ )

The validity of equation (60) is proven in appendix B. Substitution of values
from equations (59) and (60) in equation (58) gives the following formula

for [ct] : "
o] - 3l [ 1] @

"
The matrices [M:l and [M] are standard unlversel matrices which are not

dependent upon the properties of the beam or its loading. These matrices
have therefore been camputed and are given in appendix C for systems of 5,
T, 9, and 11 stations. The form of the linear relationship between the
rotations and the ordinates to the distributed load curve remains as glven

by equation (19).
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Bending

The conversion of a distributed bending load of the type shown 1in
figure h(a) into a set of equivalent concentrated loads of the kind
illustrated in figure 4(c) may be accamplished in & manner analogous to
the conversion of a distributed torslonal load into increments of torgue.
The conversion to be used has been presented and illustrated in scalar
form in reference 2. As In the sectlion on torsion, the distribubted
loading curve is regarded as a series of second-degree parabolic arcs.
The principle used in the conversion is indicated in figure 4(b), which
shows the load applied to a set of simply supported sub-beams that react
on the cantlilever beam at the five designated stations. The reactions of
the sub-beams on the cantilever beam are the concentrated loads P. The
statical equivalence of the concentrated loading and the distributed
loading 1s restricted to bending moments at the five designated stations,
but the effects at these stations are the only effects of direct lnterest.

By appropriate integration, the following typical formwlas for the equivalent

concentrated loads are obtalned:

At end station 1
A
Py =55 (71)1 + 6p, - p3> (62)

and at the intermediate station 2

Py = 1% (PJ. + 10p, + P3> | (63)

In expanded matrix form, the complete expression of the equivalent
concentrated loads in terms of the ordinates to the distribute@ loading
curve is |

—_ - = |

— — 6 g
P, T -1 0 O pl \
P, 2 20 2 0 0| |p, “.\
A

==1]0 2 20 2 0 1 64
P3 o p3 ‘: (64)
P), 0 0 2 20 2||p |
Ps o 0 -1 6 T Pij |
. fs - .

Written in contracted form, equation (64) becomes

[#)- & [ [ e
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and Eﬁﬂ 1s referred to as a welghting matrix.

The average shears in the bays of the beam, shown graphically in
figure 4(d), are found by a summation of the concentrated loads according
to the formla

RANENR] (66

Substitution of values from equation (65) in equation (66) gives

[+]=& [ [l 2] (60

The bending moments at the five stations (fig. 4(e)) are obtained by inte-
gration of the shears with the formula

[=]- B[] @

and, upon substitution of values from equation (67), equation (68) becomes

[=]- . 2] 24 [ [2] (69)

At this point, the reader is reminded that the bending-moment diagream for
the concentrated loads 1s a broken line whereas the bending-moment diagram
for the distributed loading is a smooth curve. Both dlagreams, however, have
exactly the same set of ordinates at the five deslignated stations if the
distributed loading curve is truly a second-degree curve.

The distribution of curvatures a, shown in figure 4(g), is obtained
by dividing the true bending moments by the appropriate values of EI &t
all stations along the beam. This distribution gives a smooth curve, to
which the ordinates at the five designated stations are given by the equation

(<]~ (= ] (o

Substitution of [Fé] fram equation (69) in equation (T70) gives

: (<] 5 [ 149 [ [ [2] (m)
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According to the conjugate beam theory, the dlagrem of curvatures is
consldered to be a loading on the conjugate beam. By the use of farmulas
typified by equations (62) and (63), the distributed loading on the conjugate
beam is then converted 1nto equivalent concentrated loads & on the con-
Jugate beam as shown in figure U(h). In contracted matrix form, these
equlvalent concentrated loads are given as.

- [ [ (

Substituting from equation (T7l) in equation (T72) gives

[-%0APT (AR ) @

The average shears 1in the four bays of the conJugate beam, diagrema-
tically shown in figure 4(1), glve the average slopes of the actual beem.
They are obtained by & summation of the concentrated loads on the conjugate

beam with the formula
[+]-[a) [£] ()

Substitution from equation (73) in equation (T4) gives
A3

[¢]- 2 [ [we) [32)™ [2) [ [wa) [2] (15)

The deflections of the actual beam are equal to the bending moments in the
conjugate beam. Ordinates to the deflection curve of the actual beam,
shown in figure 4(J), are found by integration of the slopes of the actual
beam according to the formula

[5]-2[z] [#] (76

The final formula for deflections is obtained by substituting from equa-
tion (75) in equation (76) as follows:

- AR B R R E M E o

- — -
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A comparison of equation (77) with equation (34) indicates that the matrix
[cil may be defined as follows:

]- 56 B BIEACEEF] o

Since this formula for [C-b:l includes weighting matrices, it 1is expected

to yield more accurate deflectlons than the formula given by equation (35)
obtained by numerical integration without weighting matrices.

The formula for [?é] may be simplified by introducing the following
definitions:

(- £ 51 £
[ - B B o

The validity of equation (80) is proven in appendix B. Substltuting from
equations (79) and (80) in equation (78) gilves the following formula

for [cb] : b{
[0 - o] (T @

The matrices [N:] and l:ﬁ] are standard matrices which are indepsndent

of the properties of the beam or its loading. They have been camputed and
are given in appendix C for systems of 5, T, 9, and 11 stations. The form
of the linear relationship between the deflections and the ordinates to
the distributed-load curve remains as glven by equation (34).

INFLUENCE COEFFICIENTS WITH WEIGHT'ING MATRICES

The use of influence coefficients measured on the structure may be
desirable in the final stages of design as a check on preliminary calcula-
tions or in order to account for the effects of items such as large
discontinuities in structure and the restraint of warping of cross-sections.
Welghting numbers can be introduced that will increase the accuracy of
deflection calculations for distributed loading when influence coefficients
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are used. Welghting matrices involving the appropriate welghting numbers
are introduced in the followlng sections.

Torsion

In the method of numerical integration with welghting matrices, no
conslderation of concentrated torsional loads was necessary. It is therefore
necessary to develop & concept of an equivalent concentrated torsional load
for use with influence coefficients. This concept is developed in detail
in appendix A and the result is stated here. If the distributed torsional-
loading curve of figure 3(a), for example, 1s truly a second-degree curve and
if GJ 18 constant over the length of the beam, the equivalent concentrated
torsional loads are glven exactly by the formula

Q1L 7T 6 -L 0 0 94
Qo 2 20 2 0 O P
Qg =2£1+ 0 2 20 2 0f o (&)
Q o o 2 20 2|[q
A A L

In contracted form, equation (82) becomes

[]- & [2] [2] (83)

If the equivalent concentrated torsional loads [Q:] are used in conjunc-

tlon with 1nfluence coefficlients, the deflection obtailned will be exact
for a uniform beam. The rotations are obtained by substitution of values
from equation (83) in equation (36) as follows:

[#]- & [=] [l [«] (&)

Equation (84) when campared with eguation (19) provides another definition
of the matrix [ct], as follows:

[%]'é o [%] [We]Af o (8)
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This definition of [b%] involves influence coefficlents and welghting

mmbers and should prove to be more accurate than the formula given by
equation (39) which involved influence coefficilents without weighting
numbers.

Bending

When bending deflections due to a distributed load are computed with
the use of influence coefficients, the method of equivalent concentrated
loads gives more accurate results than the cammon method involving the
step-function approximation. The equivalent concentrated loads as given
by equation (65), however, are appropriate for the purpose of computing
bending mcments but not for the purpose of camputing deflections when used
with the influence coefficients. Certain advantages may consequently be
obtained if a new approach is made to the deflection problem in order to
develop weighting matrices for use in conJunction with influence coefficients.

When an analytical influence function K(x,§) is known for the
deflection at station x due to a unit load at station &, the deflection
due to a loading p(§) may be expressed by means of a definite integral
in the following form (see reference 5, p. 266):

L
y(x) =f K(x,8)p(E)ae (86)
0

Equation (86) must be replaced by a system of linear algebraic equations
by letting x and & take on a finite set of values x; and EJ corres-

ponding to equally spaced stations. The evaluation of the definite integral
can be performed accurately by using Simpson's rule. The value of y at
station x; may be indicated by y; and the value of p at station QJ

by Dy The value of K(x,E) for x =x; and & = EJ mey be indicated
as an influence coefficient kij' Simpson's numbers may be indicated

by GJ- A single scalar equation of the system is written for deflection

at station 3 as an example
T3 = K3 6Py * Koy * Ka3€3pg *+ k3 67y + K358505 (87)

From this equation the influence. coefficients may be seen to be formed into
a square matrix and the welghting nmumbers to be formed into a dlagonal
matrix in order to express the system of equations in matrix form. These
matrices appear as follows:
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kll k12 . . .
koy ko2

- [5] ®

€

0

0 0 e 0 0 |=x[w (&)
3 3 (73]

0

0

"5 |
Simpson's numbers are well known (see reference 5, p. 5) and may be used

in equation (&) to obtain

FlooooT

[wﬂ: 002 00 (90)

0 0 0001

The system of linear algebraic equations which 1s equivalent to
equation (86) may now be expressed in the following matrix form:

[]-4 ) [+][2] g

Equation (91) when campared with equation (34) provides another definition
of the matrix [Cb] as follows:

e-5 09 [ o
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Since this formula for I:Cb:l includes weighting numbers it should provide
more accurate deflections than the formula in equation (43).

APPLICATTONS TO NATURAIL VIBRATION PROBLEMS

Equetions (19) and (34) may be formally stated in a single matrix
equation, as follows:

= (93)

The submatrices [C{] and I:Cb] in equation (93) are the square matrices

relating distributed loadings to deflectlons and have been defined previously
in four ways with varying degrees of- accuracy.

The loads may be applied statically or dynemically. Natural vibration
is an example of dymamic loading, the dynamic loads being the inertia
loads which accompany the accelerations of the system during vibration.
The cantilever beam under consideration vibrates naturally in any of an
infinite number of modes with each of which 1s assoclated a frequency of
vibration. If the deflectlons are small and in the elastic range, the
vibration in each mode 1s a simple harmonic motion in which all perts of
the beam osclllate about the position of static equilibrivm in phase with
each other and with the same frequency. The dynamic or inertia loads for
any mode may be expressed in terms of the deflections and mass properties
of the beam and the frequency as follows:

q s| [
- (94)
Y S Py

In equation (9%), o is the frequency of vibration, [p] is a diagonal sub-
matrix of values of mass per unit length, [S:l is a diagonal submatrix of

static moments of mass per unit length about the elastic axis of the bean,
and Iﬂ’ is a diagonal submatrix of moments of inertia of mass per unit

length about the elastic axis of the beam. The elements of the matrix [S

are sometimes called the coupling terms, and when [S] 1s different from
zero, each natural mode contains both torsion and bending deflections.
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!

Cambining equation (94) and equation (93) gives the camplete eqlation for
natural vibrations, as follows:

|
cy, Of |In s|{#{ 1|9 :
=3 (95)
0 cbl:s;Iy o® |y

Equation (95) mey be consolidated for practical use by carrying out the
multiplication of the two square matrices on the left side. The resulting
equation may be stated iIn contracted form as follows: ‘

v = = (96)
y| o?ly .

|

The matrix l:f] depends only on the geometric, mass, and elaqtic properties

of the cantilever beam and therefore remains constant for all modes of
vibration. The solution of the vibration problem consists in finding sets

¢

of numerical values of the vector and assoclated frequency  which
y

satisfy equation (96). Iteration 1s a convenient method for obtaining the
gsolution. Attentlon is drawn to the fact that, although the actual
cantilever beam has an infinite mumber of natural modes of vibration,
equation (96) can be used to calculate only a finite number of modes
approximating with varying degrees of precision the exact modes in the
initial range of the frequency spectrum. ZEquation (96) determines n - 1
modes, n Dbelng the number of designated stations on the beam. : The precl-
sion with which equation (96) determines the exact modes is greatest for the
first mode, becoming less as the order of the mode increases. |

COMPARTSON OF METHODS

In order to provide a simple comparison of the relative merits of the
various methods of anaiysis that have been described, a uniform cantilever
beam has been analyzed for both statlic and vibrational deflectlons. Exact
values have been obtalned by solving the well-known dlfferential equations
which govern the deflections. In the static analyses the loading 1s assumed
to be of triangular shape wlth a valus of zero at the tip and a maximm value
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at the root of the beam. In the vibration analyses the mass axis 1s assumed
to coinclde wilth the elastic axis of the beam so that torslonal and bending

vibrations may be considered separately.

The four methods of deflection analysis that have been described are
as follows:

(1) Numerical integration
(2) Influence coefficients
(3) Numerical integration with weighting matrices
(4) Influence coefficients with welghting matrices

Since the first method is well kmown and is usually the least accurate of the
four methods, it has been amitted from consideration in this section.
Calculations of deflections have been made by the other three methods. The
first two natural frequencies and the static tip deflection have been
camputed for 3, 5, and 7 statlons and are recorded in table 1. The exact
values obtalned by solving the differential equations are also shown in
table 1. The torsional deflections corresponding to static loading and
vibrational motion are governsd by the following two differential equations,

respectively:

2
GJ£=-q (97)
GJ QEQ + pr%m2¢ =0 (98)
ax®

In these equations p 1s the mass per unit length of the beam, r is the
radius of gyration of the mass, and @ 1is a natural frequency. The bending
deflectlons corresponding to static loading and vibrational motion are
governed by the followling two differential equatlons, respectlvely:

BT ‘1’% -1 (99)
ax
L
T & - oy -0 (100)
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The second method of calculation involves the use of influence
coefficients. The influence coefficlents for a uniform beam can be easily
camputed from simple formulas. These formmlas constitute the influence
function, or Green's function, for the problem. The influence function
1s a solution of the hamogeneous differential equation for static deflec-
tions. It glves the deflectlions due to a unit concentrated load. Since
the function 1s discontinuous at the point of application of the loed,
1t must be defined separately for the reglons on either side of the load.
If the deflection is to be determined at station x for a unit load at
station & (see fig. 5), the influence function for torsion is defined
by the following two formulas:

(x>¢) (101)

Kt(x’ g) = é'j.

Kt(x,i) (x<¢) (102)

x
GJ

The influence function for bending is defined by the following two equations:

2

Bp(x,8) = = (3x - ) (x > &) (103)
*

Ky(x,8) = G (3¢ - x) (x <¢) (10k4)

Using the exact values, as shown in table 1, permits camputation of
the percentage error resulting from the use of each of the calculation
methods for each number of stations. Graphs of this percentage error are
shown in figures 6 to 11. In most cases the absolute value of the per-
centage error decreases with an increase in the number of stations. In
all cases the use of welghting matrices with either numerical integration
or lnfluence coefficients brings about an appreciable reduction in the
percentage error.

From practical considerations of econamy in calculation effort, these
graphs show that, for an allowable percentage error, the use of welighting
matrices permits the deflection analysis to be made with a smaller number
of stations. In order to illustrate this point an examination of the graphs
has been made to determine the number of stations required to obtain
satisfactory accuracy defined to allow the followlng percemtage errors:
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Static tip deflection .« « « « &« ¢ ¢ & ¢ ¢ ¢ o 0 0 e e e e e o o. . 1
First vibrational frequency =« « « « o « o o o o o o o s o o o ¢ o+« 1
Second vibrational frequency « « « « « « « « = ¢ s o o s s o 4 0 0 e . 2

The number of stations required to give satlsfactory accuracy, according
to the above definition, has been read from the graphs and recorded in
table 2. From an inspection of this table it 1s seen that, in five out of
six deflection analyses, the use of influence coefficlents alone would
require more than seven stations to obtaln satisfactory accuracy. When
weighting numbers are used with influence coefficlents, satisfactory
accuracy 1s obtained in five out of six of the deflection analyses with
less than seven stations. When weighting numbers are used with mumerical
integration, satisfactory accuracy is obtailned in all six deflectlion
analyses with less than seven statlons.

The example that has been used for illustration purposes is a uniform
beam and the relative percentage errors illustrated in figures 6 to 11 cannot
be considered as strictly of general applicability. This indicates clearly
the need for future research in studies of nmonuniform beams. Future research
must also deal with the development of more accurate welghting numbers and
practical methods of analysis with concentrated loads.

CONCLUDING REMARKS

The advantage of an influence coefficient method of deflectlion analysis
is that it provides a direct linear relation between the loading and the
deflection in explicit form. The seame advantage may be obtained in a numeri-
cal integration process, employing beam stiffness properties, if the analysis
is expressed in matrix form. The linear relationships for distributed
loading have been developed.

The accuracy of both the numerical integration and influence coeffi-
cient methods cen be improved by the introduction of weighting matrices.
Consequently, for a desired degree of accuracy, smaller matrices may be
used. This procedure results in an appreciable saving in calculation
time since the computing work varies as the square of the order of the
matrices.

Iangley Aeronautical Taboratory
National Advisory Committee for Aeronautics
Iangley Air Force Base, Va., December 7, 1948 -
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APPENDIX A

DERIVATIONS BASED ON THE PARABOLA

Formula for Areas

In the method of nwmerical integration with welghting matrices,
increments of sectlon torque and increments of rotation correspond,
respectively, to Ilncrements of area under the curve of distributed
torsional loading and increments of area under the curve of twists. In
the calculatlions, these curves are approximated by & series of second-
degree parabolic arcs defined by groups of three ordinates. The formula
for increments of area under a second-degree parabola are derived as
follows: 1In figure 12, the ordinates 5 fo, and f3, separated by
the distance M\, represent a typical group of three ordinates to a loading
curve or a curve of twlsts. With the coordinate system shown in figure 12,
the equation of the second-degree curve defined by the three ordinates
may be written in the form of Lagrange's interpolation formula (reference 6)
as follows: :

P = fi A -X 2\ - X N X2\ - X f3 XA~ X
B-IE VY 2% T 2% A

(A1)

The area &, between ordinates f; and fp 1is found by integrating the
function f between the limits x =0 and x = A, and the result is

A
al=fofdx=%é<5fl+8f2-f?> (A2)

Formulas for other areas may be obtained by increasing the subscripts in

equation (A2). TFor example, the formula for area a> 1in figure 12 would
have the form :

A
& = 5 <5f2 + 83 - fu) » (A3)

The area apy may also bé-éombﬁted>bj using equation (Al)-gndrintegrating
from A to 2n. The resulting formula is

ap = %5 (}fl + 8f2 + 5fé> (Ak)
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A formula of the type glven by equations (A2) or (A3) must be used at the
left end of & beam- The type of formula shown by equation (Al) must be
used at the right end of a beam. Either type of formmla may be used for
intermediate segments of the span.

Formulas for Equivalent Concentrated Torques

The concept of equivalent concentrated torques, necessary for the
use of welghting matrices with Influence coefflicients, is based on the
following condition of equivalence: In the beam shown in figure 13, the
set of rotations, at the five designated stations, due to the concentrated
loading must be identical with the set of rotations due to the distributed
loading. If this condition 1s fulfilled, the concentrated torques @Q of
figure 13(b) must produce a set of increments of rotation in the bays of
length X\ equal to those produced by the distributed torsional loading of

figure 13(a).

Consider first the increment of rotation between stations 1 and 2
produced by the distributed loading. The section torque at a distance x

from the tip is given by
x
Tx:f q dx (45)

0]

The twist at the distance x 1is given by

T X
X 1
0., = — = —— q dx (A6)
X GJ GJ-
x xk[;

The increment of rotatlon between stations 1 and 2 i1s then given by

o fl jklfx (A7)
= o dax = L q dx dx AT
12 7Jo x o %xJo

Consider next the Increment of rotation between statlons 1 and 2 pro-
duced by the concentrated loading. The section torgque between stations 1
and 2 is equal to Q;. The twist at the distance x between stations 1
and 2 is given by

X

Y .
e, = 63; (A8)
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The increment of rotatlion between statlions 1 and 2 1s

0 J; X (49)
9_ dx Q A
12 . Lr X 1 GJ.

Since the two expressions of equations (A7) and (A9) for A¢12
be equal, the following equation is obtalned

Q —_ = = q dx dx (A10)
Tdo ®x o Fx(jo

Equation (Al0) may be integrated if the values of q and GJy are given

ag functions of x. The present conslderation will be limited to the case
of constant GJ; equation (AlO) can therefore be simplified to the form

1 A x
Ql:i_ff q dx dx (All)
0 0]

Equation (All) is found to apply also when GJ 1is a step function. The
varlation of ¢ 1s assumed to be given by the second-degree parabola
defined by the ordinates 475 4o and q3- The expression for gq i1s then

are to

obtained fram equation (Al) by substituting q for f, as follows:

_Br-x2 o x q2‘§.2x -x_ 43

XA -X
5 xn Y 5 X (A22)

A

With this expression far q, equation (All) becames, after integration,

oy = =, (fay + 6qp - 1) (A13)

The expression for Qo in figure 13(b) will now be derived. It is
necessary to consider Qp as consisting of two parts; a part Q21 asso-

clated with the distributed loading between stations 1 and 2, and a
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part Q23 associated with the distributed loading between stations 2 and 3.
The sum of Qy; &and Q23 equals Qp- In figure 13(b), if the sum of Q;

and Qy, equals the total loading between stations 1 and 2 in figure 13(a),

the rotations at the five deslignated stations of the beam due to the loading
between stations 1 and 2 in figure 13(a) will be equal to the rotations
due to the loads Ql and Qpy. This conslderation provides the definition

of Qpj, as follows:
A

Qo =| adx-q (A1k)
0

The integral in equation (Al4) is the area under the gq-curve between
stations 1 ‘and 2 and in accordence with equation (A2) is given by

A
A
q d&x = = (5q, + -q (A15)
lJL 12(j 1+ 8 3)
Substituting from equations (Al3) and (A15) in equation (All) gives

% = 3 (31 + 100 - g) (A16)

The concentrated load Q23 bears the same relation to the dlistributed

loading between statlions 2 and 3 as the concentrated load Qy bears to

the distributed loading between stations 1 and 2; this relation gives that
part of the total increment of rotation between stations 2 and 3 which is
due to the distributed loading between stations 2 and 3. The defining
equation for Q23, similar to equation (All) is, as follows:

2 [x
Qo3 = %5[1: ljz q dx dx (A7)

Substitution of values fram equation (A12) in equation (AL7) gives, after
integration,

A
U3 = 5% <—ql + 10gp + 3qé> (418)
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The sum of equations (Al6) and (A18) gives

Q = ]% <q1,+ 10q, + q3> (A19)

Formulas for the equivalent concentrated loads at the other stations may

be derived by proceeding in the manner used to derive equations (A13) and
(A19).
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APPENDIX B
DOUBLE TRANSPOSITION OF MATRICES

A matrix [A:I is transposed by rotating it about its principal
dlagonal. The transposed matrix is indicated with a prime as [A]'.
If the matrix [A:ll is now rotated about the secondary diagonal the
new matrix may be lndiceted with a double prime as [A:l"- The matrix [AJ"

may be saild to be doubly transposed. These transposition processes
may be illustrated by the following three equations:

a7 8p 83
8, 8 g (B1)

831 %32 %33

4]

811 %y 831
820 830
f13 %23 %33

(B2)

— 1
s
il

R

a

833 f32
oo 8o (B3)

23 2 Ay

8,

o
l__bf_L
i
s

w

The obJect of the present appendix is to prove the validity of the
formulas for [M]" and I:N:]" as given in the main body of the paper. For

this purpose the several types of symmetry which matrices may have must
first be considered. If a matrix is equal to its transpose, the matrix

is said to be symmetrical. This condition might be referred to more
specifically as a principel symmetry. A matrix that remains unchanged
after rotation about its secondary dlagonal might be sald to have secondary
symmetry. If a matrix remains unchanged after a double transposition,
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the matrix is described as being centrosymmetrical (reference T). These
three types of symmetry may be expressed by equatlons relating the matrices

[A], I:A]" and [A]“ as Follows:

Principal symmetry:
(2] =[]

(4] -[4T o
[o]-[+] 0

A relationship showing that any matrix [A:I" can be obtained fram the
matrix [A] by simple matrix multiplicatlons is now necessary. A metrix
I:J] must be introduced according to the following definition:

(BW4)

Secondary symmetry:

Central Symmetry:

0 0 1

'[J:|= 010 (BT)
10 0

This matrix has velues of unity in its secondary diagonal and zeros else-
where. If a matrix I:A] is premultiplied by I:J:l, the procedure merely
interchanges the rows of I:A:I; thus,
831 %32 33
[7][2]= a1 a2 e (B8)
817 &2 33

If a matrix [A:] is postmultiplied by [J], the procedure merely inter-
changes the columns of { Al; thus,

8313 @12 411
[A:H:J]= 8p3 8pp &py (B9)
833 832 #31 |
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If a matrix [A] is premmltiplied by [J] and postmultiplied by I:J:l,

the procedure brings about a double rotation of the matrix about horizontal
and vertical central axes. The result ls as follows:

®33 f32 %31
[J][A][J:|= 823 8o 3 (B10)
%13 %12 %

If equation (B10) is compared with equation (B3), the expanded matrix
on the right-hand side is found to be exactly the same in both equations
and therefore

(7 =[0I )
An unusual but lmportant property of the matrix [J__I must now be noted.
The matrix 1s its own reclprocal, which may be expressed by the followlng

equatlion:
[J:F = [J] [J] = I:I] (B12)
Tn this equation [I:I 18 the ldentity matrix.

case will be considered first. According to equation (59) the matrix
is defined by the formula

Development of the desired formulas is now possible. The torsion
]

- 2 [ o

According to equation (Bll), the doubly-transposed matrix may be determined

(B e

The identlty matrix may be inserted as a factor at any polnt on either side
of an equation without changing the value of either side. Equation (B14)
may therefore be written in the followling form:

MEEEE e
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Equation (B12) may now be combined with equation (B15) to obtain

[M:]" =[le [z;' [J] [J] [wﬂ [J] (B16)

Formula (B1l) applied in equation (Bl6) glves

- s

An interesting feature of the process of double transposition can be noted
at this point. Compering equations (Bl3) and (BL7) indicates that the double
transposition of a product of matrices can be obtained by & double transposi-
tion of the 1ndividual matrices without changlng thelr order.

It must now be noted that [Zo]' 1s gymmetrical about its secondary

[zo:l ' - l:zo] " (B18)

Substitution of values fram equation (B18) in equation (BLT) gives the

R mo

This formula was previously given in the main text as equation (60).

dlagonal. Consequently,

The bending case 1s now to be consldered. According to equation (79)
the matrix I:N] 1is defined by the formula

(-3 (2] [ o

Employing the rule that has Just been developed permits both sides of
this equation to be doubly transposed to give

[E =B [ [WQ].T‘ | | (s21)

The matrices E—IC;—JI and [Zl:l' both have secondary symmetry so that
equation (B21) may be written as ‘
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I:N:ln = [Zc;l' [Ztl:ll [We:l“ (B22)

A consideration of the expanded form of the matrix [Wg:l , as shown 1in
equation (64), indicates that this matrix has central symmetryj; hence

) - (4" =

Substitution of values of equation (B23) in equation (B22) gives the

| [w]" = [5]" ] [%] (B2k)

This formula was given in the main text as equation (80).
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APPENDIX C

STANDARD MATRICES

1"
The matrices I:M:' and [M] serve to welght and integrate the
torsional loading curve and the twlst curve, respectively. The

]
matrices [N:l and [N] serve to welght and perform a double lntegra-

tion of the load curve and the curvature curve in bending, respectively.
These matrices are standard matrices which may be tabulated and used
for various cantllever-beam analyses. The matrices must be computed for
each different number of subdivisions of the span. The order of each
matrix will be one greater than the number of segments into which the
span is divided. Equation (59) gives the following farmula for the

matrix [M]

(- (24 [ o

The formula for the matrix [N], equation (79), is

[+ [ [+ @

The matrices [M]" and {N]" are obtalned from [Mj and [N] by a
double transposition. Equations (Cl) and (C2) have been used for

computing the matrices [:M] and [N}.
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The matrices of fifth order are as follows:

Fifth Order Matrices

[¥] [u]

G 0 0 o0 0] 4 15 11 13 5]
5 8 -1 0 0 -1 7 12 13 5
513 7T 21 O 0 -1 T 13 5
5 13 12 7 -1 0O 0 -1 8 5
|5 13 11 15 L4 [ 0 0 0 0 0
[x] [¥]"
O 0 0 0 O (2 24 4 88 3k
T 6 -1 0 O 0 2 21 60 25
16 32 0 0 O 0O 0 0 32 16
25 60 21 2 0 O 0 -1 6 T
34 88 hh 2u 2 | 0 0 0 0 0]

It is seen in the foregoing examples that the matrices [M]" and [lﬂ"
aré obtained fram [M] and [N] by a double transposition. Since these

examples 1llustrate the transpositlion process clearly, the higher order
matrices will not be shown in transposed form. The higher order matrices

are as follows:
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Seventh Order Matrices

0 o
5 8

5 13

> 13

5 13

5> 13
R
[0 o
7 6
16 32
25 60
3k 88
k3 116

| 52 14k

B B B B <

21

67
90

[]

0 0 O
0 0 ©
-1 0 0
7 -1 0
12 7 -1
12 12 7
12 11 15
[¥]
0 0 ©
0 0 O©
0 0 O
2 0 0
2y 2 o0
48 24 2
72 48 24

°l




ho

ol

A S N S Y Y S )

[

13
13
13
13
13
13
13

116
14k
172

200
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Ninth Order Matrices

(1]

8 F B 4
P F B B F

B

21

67
90
113

B B B B <

2y
L8
T2
96

136 120

2L
48
T2
96

0O 0 O
0O 0 O
0 0 o
0 0 0
-1 0 o0
7 -1 0
12 7 -1
115 4|

0 o o0 o0
0 0 0 O°
0o 0 0O
0O o0 0 0
2 0 0 0

2y 2 0 0

48 24 2 0

T2 48 24 2

e e
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o]
o

13
13
13
13
13
13
13
13
13

16
25

43
52

70
9
88

I\ﬂ\n\n\n\n\n\n\n\n\n

32

88
16
1y
172
200
228

256

Eleventh Order Matrices

o o
10
7 -1
12 7
12 12
12 12
12 12
12 12
12 12
12 12
12 12
o o
10
o o0
21 2
4y 24
67 48
90 T2

113 96

136 120

=

2k
48
T2
96

159 1k 120

B B B B B <

]

24
48
T2
96

18 168 1k 120

B B K <
5

(@]
(@]

0 O
2 0
2y 2

48 24

0

2

T2 48 24

0]

2

96 T2 L8 24

°|

L3
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TABLE I
NATURAL, FREQUENCIES AND STATIC TIP DEFLECTIORS
Torslion Bendj_ng
First Second Static tip First Second Static tip
frequency, | freguency, deflection, | frequency, frequency, deflection,
2 2 '
Number of IL I L L I
g 5 ul N3 N \,"L E
stations ® 6T @ a7 ¢1 L2qT ) ET ) BI J1 thr
(a) (v)
¢ Influence-coefficient method
3 1.530 3.1 0.125 3.16 13.70 0.0261
5 1.560 4.38 .156 3.42 20.54 .0316
7 1.567 k.57 .16 3.7 21.29 .0326
Welghted-influence-coefficient method
3 1.575 5-39 0.167 3.56 15.63 0.0347
5 1.571 4.73 L167 3.52 22.80 .0334
T 1.571 k.72 <167 3.52 22.08 .0334
Welghted-integration method
3 1.58 7-59 0.167 3.58 14.58 0.0347
5 1.5T3 L& .167 3.52 22.08 .0334
7 1.572 b4 167 3.52 22.26 .0334
Exact values
1.571 b 0.167 3.52 22.03 0.0333

87084 distribution triangular with intensity 4. at root.

Pload distribution triangular with intensity D, at root.

e
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STATIONS REQUIRED FOR SATISFACTCRY ACCURACY

Influence Welghted Weighted
Quantity coefficients influence integration
coefficlents
Torsion
o > 3 3
@, >7 5 5
¢ >T 3 3
Bending
®) >T 4 iy
Wy >T 1 5
b >T 5 >
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Figure I.- Torsional deflections obtained by

step functions.
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step functions.
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parabolic arcs.
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Figure4—.— Bending deflections obtained by

parabolic arcs.



}\_IACA m No. 1827 51

S

l

g —1[-\ Q=1 @) Beam with
Z ' umit torque.
7

1 .. |

= "1

/f (b) Rotation.

x
£ { P=1

) Beam with

unit force.

AN
i

T
-

(d) Translation.

Figure 5.- Deflections of a cantilever beam

with unit loads.




52

NACA TN No. 1827

4
3
Weighted
> ‘ /I_ integration
7 "Weighted
influence
1 // coefficients
Error, 54
0 ‘b'ﬁ:—.—_
percent ,,""_-
-1 7
,,
A
rd
..z ./
L,/ \_Influenpe
coefficients
-3
- 4
0 ] Z 3 4 5 o T 8

Number of stations

SR
Figure 6.- Compahison of errors in first

torsional frequencg.



NACA TN No. 1827

60
50
40
30
20

Error,
10

percen?
0
-10
-20

-30

-40

Weighted

V/ﬁ integration

/ coeff

Weighted
— influence

cients

/ Influence
/ coefficients

2 <) 4 5 S T 8

Number of stations

Figure 7.-Comparison of errors In second

torsional ‘Fréquencs .

>3




NACA TN No, 1827

lo T T T
Weighted
influence \
5 coefficients
R\
0 = \ :
4
. A L
Error, \‘Neigh'!'ed. ———// //"
~10 integration /J
percent /"\\
/ \__Influence
- / coefficients
- 20 7
/
]
- 25
-30
0 | 2 -3 4 5 6 T 8

Number of stations

Figure 8.- Comparison of errors in static

torsional +ip deflection.



55

NACA TN No. 1827
2- I [ T
) Weighted
| ,\ integration
)\\</
~
1S
0 n
Weighted
influence
- cgefficients
/d
P4
7
-2 -
Influence /
s coefficients \\ //
/
Error, \/’
-4 £
/
percen'r /
-5 J i
/
/
-6 [
)
” :
_7 ’
!
I
-8 1
{
!
-9 {
|
1o l
3 4 5 (3] i

8

2

Number of stations

Figure 9.- Compar‘ison of errors in first

bending fr‘equencg.




56 : NACA TN No. 1827

10

Weighted ~ !

influence ——x
5 coefficients

Weighted /
integration ’ e
-5 Xl -+

a ~
-
[]] -
’
-'0 4 ,L
Error, /j )(
-15 é

|
percent ' Il \—— Influence
!
T
)
]
i

coefficients
-20

~25

-30

~-35

0 ] 2 3 4 13) 6 T 8
Number of stations

~wE
Figure 10.- Comparison of errors in second

bendin9 frequencg.



8K NACA TN No. 1827

25

20

'S Weighted
influence

10 | coefficients

' Weighted
integration

5 / e
Error, k(
 —————
0]
t -="
per‘cen ”_-
_5 P
Vd
V4
- IO ,, ,
/l\\
-15 /
/ xlnfluence
/ coefficients
-20 ‘
~25
0 1 2 3 4 b 6 T
Number of stations
:NACA;
Figur‘e 1Y.- Comparison of errors in static

bending Tip deflection.




NACA TN No. 1827

o

Parabola
b
T — ]

t
I}
q5 q4 q3
9.
ql 4
| (@) Torsional
g ,
2 loading. .
A A A A
- |

stCC Qqy
— (b) Equivalent

x’%——g———&—@ conceni‘rafed

Qg Q4 Qg " Qe Q, torques,

Figure 13.~ Equivalent concentrated

torsional loading.

NACA-Langley - 8-4-64 - 128



