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NATIONAL ADVISORY C(!4MITTEE FOR AERONAUTICS 

TECHNICAL NOTE NO. 1856 

ThEORETICAL STUDY OF TEE DIFFUSION CONSTANT FOR 


SELF-DIFFUSION IN METALS 

By M. Lelchter 

An expression for the diffusion constant for self-diffusion in 
metals is derived, based on the assumption that self-diffusion OCCUT8 

by the vacancy mechanism. The factors determining A in the 

expression D = Ae / , where D is the diffusion constant, Q is 
the energy of activation, B is th gas constant, arid T is the 
temperature, are found to be the characteristic frequency of vibra-
tion of the atoms, the crystal structure, the lattice constant, the 
heat of fusion, the temperature, and. the activation energy for an 
atomic jump. A comparison of the calculated values of A with the 
limited experimental data available shows that the calculated values 
are of 1the correct order of magnitude. 

INTRODUCTION 

Phenomena such as age -hardening, annealing, and order-disorder 
transformation depend on the ability of atoms to migrate through an 
atomic lattice. It is therefore of great importance to understand 
the factors that determine the rate at which such migration occurs. 
One method of determining the movements of atoms within a lattice is 
to stu&y the rate at which metals diffuse into each other under 
controfled. conditions. A special case of diffusion in metals is the 
case of self-diffusion. 

The amount of material diffusing across a surface because of a 
difference in concentrations of a material is proportional to the 
concentration gradient at the surface, to the area of the surface, 
and. to the time during which the process continues. The propo3tion-
alities can be converted to equalities by the introduction of a 
factor called the diffusion constant, which has the dimensions area 
per time. This diffusion constant D is not constant for a given 
material but depends on the temperature; the relation is given 
(reference 1) by
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D =	 (1) 

Q are 
B is the gas 
In order to 

t is desirable 
diffusion 

where the coefficient A and. the energy of activation 
practically constant for large temperature intervals; 
constant and. T Is the temperature in degrees Kelvin. 
have a better understanding of the diffusion process, I 
to know the properties of the metals that determine the 
constant and. consequently the rate of diffusion. 

A number of generally known expressions for the diffusion con-
stants for metals In the solid state exist (reference 2, p. 305). 
The Dushm'n-Langmuir expression (table I), which was derived by 
analogy with an earlier expression for the reaction-velocity con-
stant (reference 2, p. 298), Indicates that A depends on the 
lattice constant and. on the energy of activation ; Bradley's 
expression, which was derived on the basis of kinetic theory and. on 
the assumption that the dIatitbution of energies among the atoms 
was a Maxwell-Boltzmann distributionj indicates that A depends on 
the lattice constant, on the frequency of vibration of the atoms, 
on Q, and on the temperature; Cichocki's expression, which was 
derived on a probability basis and. on the assumption that the atoms 
become ionized. In the process of making a jump, indicates that A 
depends on the melting temperature and. on atomic weight ar4 volume. 
More recently, on tile basis of rate-process theory, Eyring has 
developed, an expression for D (reference 3, p. 538) in which A 
depends on atomic volume, temperature, and the Debye characteristic 
temperature. The preceding expressions were derived for the genera.]. 
case of diffusion and. as shown in table -I only the Dushman-Langnxuir 
formula yields results of the correct order of magnitude f or the 
special case of self-diffusion. The Dashman-Langmuir formula is, 
however, semiempirical, having been derived without the use of any 
assumptions as to the ixecbaniBm by which diffusion occurs and. con-
sequently it does not explicitly show the properties of the metals 
that most directly affect the diffusion constant. 

Although many expressions exist for the diffusion constant, the 
mechanism of diffusion suggested by Frenkel (reference 2, p. 293) is 
generally accepted. According to the FrenkeJ. theory, diffusion is 
the result of atoms jumping into vacant sites, or holes, in the lattice. 
A ,TØ#.aYIr. V	 It, th lattice when an atom .lumns from its a •cI.st%aa'lJ -------------------- - - - -	 - 

normal site to an interstitial position, or when an atom escapes 
from its normal site at some internal surface, without occupying 
an interstitial position. Schottky has shown (reference 4,. p. 69)
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that the first process is more likely in a lattice consisting of 
atoms whose radii differ greatly from each other; whereas the second. 
process is more likely if the atoms have approximately equal radii. 

In- a theoretical study made at the NACA Lewis laboratory, only 
self-diffusion of metals was considered. 

SYMBOLS 

The fofloving symbols are used in this report: 

A	 constant 

D	 diffusion constant 

d.	 average length of atomic jumps 

Ef heat of fusion	 - 

Eg	 heat of sublimation at 
O ic 

E0	 average energy of vacancy formation 

Et average thermal energy 

El average energy required to make one jump 

F	 fraction of atoms having energy equal to or greater than E1 

'Ta	 number of jumps per second. for atom 

maximum possible number of jumps per second for vacancy 

Jo	 number of jumps per second for vacancy 

m	 mass of atom 

N	 number of atoms per unit "cell" 

Na number of atoms per unit voluii 

N0 number of vacancies per unit volume 

energy of activation
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R	 gas conetant 

T	 temperature 

t time 

to time required for vacancy to make one jump 

V	 velocity of jumping atom 

v	 instantaneous velocity of vibrating atom 


maiimum . veloclty of vibrating atom 

W	 number of nearest neighbors in lattice 

x	 displacement of vibrating atom 

x0	 amplitude of vibrating atom 

v	 frequency of vibration

ANALYSIS 

The formation of a vacancy at an internal surface has one of two 
.possible results. The vacancy may either be reoccupied by the atom 
that has just vacated it, in which case no diffusion occurs, or it 
may be .occupied by a different neighboring atom, which leads to d.if-
fusion. It is shovr in reference 3 (p. 519) that if 3a is the 
average rate at which each atom jumps, the diffusion constant D is 
given by

D=Jad2 (2) 

where d. is the average length of the jumps, the jumps having only 
one degree of freedom. For three degrees of freedom, the equation 
becomes

J D a_ 

It will now be shown that a' can be expressed in terms of the num-
ber of vacancies per unit volume in the lattice N an the average 
number of jumps per secom5. made by each vacancy J0.

(3)'
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Only atoms adjaôent to a vacancy can make jumps. Over a long 
period, however, each atom will have had. the same number of oppor-
tunities for jumping, so that the avei ge number of jumps per second 
will be the same for all atoms • If a unit volume of the metal under 
consideration is divided into N 0 equ.al volumes, or tce1ls,tt each 
cell will, on the average, contain one vacancy. If N is the number 
of atoms in a cell, the average number of jumps for any atom in a 
given cell will be 1/N times the total number of jumps. Therefore 
the number of jumps per second for 'an atom is 1/N times the number 
of jumps per second for a vacancy. In symbol form, 

J0/N	 (4)


The number of atoms N in a cell is given by 

	

N=NaJNo ,	 (5) 

where Na Is the number of atoms per unit volume. Substitution of 
equatIon (5) into equatIon (4) and. then of equation (4) into equa-
tion (3) yields

D = 
J0N0 

d2
	

(6) 

The value of N0 depends on the number of 'atoms having suffi-
cient energy E 0 -to escape from their norma]. sites. For a lattice 
containing vacancies but no interstitial atoms, the total number of 
vacancies per wilt volume, 'when the lattice Is In equilibrium, is 
given (reference 4, pp.' 63 and 65) by 

	

N0 = Neg/2	 ' (7) 

where Eg is the energy of sublimation at absolute zero. Because it 
is desirable to know N 0 as a function of E 0 rather than as a 
function of Eg, it is necessary to find, a relation between E 0 and 
Eg.

The following diagram is a schematic representation of an 
Internal surface. A vacancy is formed whenever one of the atoms 
acquires sufficient energy to jump from its original position to some 
other equilibrium position. Some atoms, such as atom 1, are so 
located that they can reach a new equilibrium position without appre - 
clably changing their distance from their nearest neighbors. The
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energy required for such motion is equal to the heat of fusion. An 
atom such as atom 2, however, naist jump a large distance in order to 
break the bonds of its nearest neighbors. It is assumed that the 
distance atom 2 has to jump is large enough that the energy necessary 
for the jump is equal to the sublimation energy. Although a vacancy 
is more likely to form at a place 
such as the site occupied by 
atom 1 because less energy is 
required, the vacancy formed at 
such a point will be partly 
blocked by the atom that baa 
vacated the site, thus seriously 
interfering with further diffusion. 
As a first approximation, it will 
there fore be assumed that the 
average energy of vacancy formation 
E0 is the arithmetic average of 
the m4nlimun and. maxtinnm energies of 
vacancy formation. The sublimation 
energy at high temperatures is 
approximately equal to the sublimation energy at absolute zero 
(reference 5), and. therefore, Eg may be used for the maximum energy 
of vacancy formation. That is, 

= (Eg + Ef) 

Eg=2EoEf	 (8) 

Substitution of equation (8) into equation (7) yiefd.s 

N0 = Nae hIt2 e_EO/Rr	 (9) 

In the determination of J, the assumption is made that, on 
the average, an atom (providing it baa sufficient energy) begins its 
jump as soon as a neighboring atom has exceeded its noriJ. amplitude 
in the course of making a jump • Because the atoms are executing 
simple harmonic motion (in three dimensions), the equation of motion 
in the x-di.rection is

x = x0 sin 2nt 

where x is the displacement, x0 the amplitude, 	 the frequency, 
and. t the time. Differentiation of the preceding equation yields
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dx
= V = 2in., X0 005 2wt 

When t = 0, v = v; therefore

Vmax 
= 2,v	

(10) 

When a MaxweU-Boltzfl-tm distribution of energies is assumed, the 
average energy for each degree of freedom is H (reference 6). 
The total thermal energy Et Is 3 anil therefore the average 
energy for each degree of freedom Is 1/3 E.t. The maxlmnm velocity 

can then be determined as follows: 

jmv 2 = 1/3 Et 

[s)

= Ej /3m	 -	 (U) 

Substitution of equation. (U) into equation (10) yields 

Et/3m 
2itV 

Let E1 be the energy necessary to make a jump. Then the 
velocity V of the atom while it has the energy E1 can be deter-
mined from the equation

mV2 = El 

or

V = AJ2E1/m 

If It is assumed that the velocity of the atom remains constant 
while the atom is moving through the distance x 0 (x0 Is only a smell 
fraction - about 1/25 - of the entire jump), the time to required 
to t'averse the distance x 0 is
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to = x0/V 

/2Et/3m

2iP 

° - ____ 

2,tv 

If to is considered to be the time required. for the vacancy to 
me.ke one Jump, the ma.xnim number of jumps per second J 	 that 
a given vacancy can make is

1

2tv 
rrax =

	

	 (12) 
/Et/3Ei 

But a jump occurs only when one of the atoms near a vacancy has an 
amount of energy equal to or greater than E1. For a Maxwell-
Boltzinann distribution of energies, the fraction of the atoms havin€ 
energy equal to or greater than E1 is 

F= e
	

(13) 

Because at all times e_E1' of the atoms have sufficient energy 
to mike a Jump, it is also true that each atom has sufficient energy 
e 11'	 of the time. If each vacancy had one nearest neighbor, 
the number of jumps per second would. be given by FJmax. But if 
each vacancy has, for instance, W nearest neighbors, the number of 
jumps per second J0 is given very nearly by 

Jo = WFJ	 (14) 

When the values of F and	 as given by equations (13) and (12), 
respectively,are substituted into equation (14), there results 

= 2 W IE1/Et eh/	 (15) 

Substitution of equations (15) and (9) into equatIon (6) yields
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D =	 V f3Ei/Et a.2 eE2 e	 + E1)/Rr	 (16)


Consequently, from a comparison of equations (i) aM (16) 

A =	 -W 3Ei/Et a.2 
Ef/2RI	 (17) 

COMPARISON OF C.ALCDLATED AR]) E PEBIMENTPL DATA 

Al]. the data available for metals with symmetric crystal struc-
ture are for face-centered. cubic lattices. The number of nearest 
neighbors is the same for all materials of this type and. is equal 
to 12. When all the constants of equation (17) are combined, A 
becomes

A = 43.6Vd.2 ,/Ei/Et eEf/'2	 (18) 

The average length of the jumps is assumed to be equal to the lattice 
constant. Equation (18) can be applied to determine the value of A 
if 4jij/Et can be approximated, inaennich as all the other paranieters 
are known. 

On the basis of existing data (reference 2, p. 275) the maximum 
value of Q is about 60,000 calories per mole, that is, 

E 0 + E1 60,000 

Theoretically the smallest value that E 0 can have is the heat of 
fusion Ef, which for copper, gold, and. silver is approximately 
3000 calories per mole. The smallest value for E 0 yields the 
largest theoretically possible value for E1. That is, If E 0 = Ef 

Ef + E1 60,000 

60,000 - 3000 57,000 

ñjEl/Et /57,000/Et 

and

= 3RL
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The center of the temperature range in which experiments are cond.uoted 
is approximately 10000 K (for copper, gold, aM silver). At this 
temperature,_the maximum theoretically possible value for 

Ei/Et 457,000/6000 = 3.08. 

It is more reasonable to assun that 

Ej 

For this case,

2E1 60,000 

E1 30,000 

JE1/Et ='J30,000/6000 2.24 

For lead, the center of the temperature range is about 500° K and. 
is about 28,000 calories per mole. Therefore, 

E1 14,000 

and

ftJEl/Et	 /14,000/3000 = 2.16 

from the preceding considerations it can be seen that 	 Is to 
a large extent ind.epenient of material as well as of_temperature, 
having a value approximately between 2 aM 3. If JE i/Et is set 
equal to 2.5, equatIon (18) becomes 	 - 

A = 109 ''d2 ei 21	 -	 (19) 

Although equation (19) shows that A is a function of the temperature, 
the calculated value of A Is only about one and. one-half times as 
great at 750° K as it is at 1250° K. Inasmuch as the etperimental 
values of A, which are independent of temperature, show a greater 
variation, A will only be evaluated at 1000° K for gold., copper, and 
silver, and. at 500° K for lead.. 

The value of A can be calculated for the metals for which self-
diffusion data exist by using the data In table II. The experimental 
aM calculated values of A are contained in table I.
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Another comparison can be made with previous calculations. On 
the basis of the random-walk theory, Weinbaum (reference 7) has cal-
äulated that the average number of jumps per second a for the 
atoms of a silver lattice at a temperature of 1149° K (876° C) is 

6.3 x 106 . Equations (4) and (5) can also be used. to calculate the 
number of jumps per second under the aforenntioned conditions. 

- 1T 

Substituting equatIons (15) and (9) for J0 and N0 , respectively, 
and. combining constants yields 

= 324 , e1 2 e E0 + 

For silver,	 = 45,950 calories per mole (reference 8). At 
1149° K

= 5.8 x 106 

StJMMARY OF ANALYSIS 

An expression for the diffusion constant for self-diffusion 
baa been derived and has been found to give results that are of the 
right order of magnitude. The coefficient A in the expression 

D =	 where D Is the diffusion constant, Q Is the energy 
of activation, P Is the gas constant, and T Is the temperature, 
is determined by the characteristic frequency of vibrations of the 
atoms, the crystal structure, the lattice constant, the heat of 
fusion, the temperature, and the activation energy for an atomic 
jump. More data are needed, however, before definite conclusions 
can be drawn regarding the applicability of the expression. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronautics,


Cleveland, Ohio, February 2, 1949. 
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TABLE I - COMPARISON OF CALCULATED AND EXPERIMENTAL


VALUES OF A FOR. EQUATION 

D = Ae'RT 

-. Experimental Calculated values of	 A 
Metal values of	 A 

2 (cm /sec)
2i	 - cm-,sec 

______ _______ Reference (a) (b) (c) (d) (e) (f) 

Lead 5.1 2,	 p.	 27I 0.88 0.71 2.0 x io_2 37 x 10 t.2	 x 14.5	 x l0 
______ 6.66 9 

Silver 1.0 10 1.6 0.7Li.

_________ 

2.6 x 102

_________ 

6.14 x lO

__________ 

2.1 X lO

_________ 

7.8 X 

______ .895 8 .80 2.8 

Copper 11 2, p. 2714 2.0 0.78 14.2 x l02 7.3 x l0 2.5 x lO 
____ 147 9 .14tj.14 

Gold 2 9 1.5 0.88 2.6 x l02

______ 

53 x

______ 

1.7 x lO

______ 

1.2 x 
126 2,	 p.	 271i. .88 2.6 

_____ 1410 9 l.l 3.2

a A =-iE!! E1/Et d2 eEf2RT (equation (17)). 
3 

b A = _S._d2 (Dushman-Langinulr), where N Is Avogadro's number and 
h is Planck's constant. 

C A i__ pd2 (Bradley). 
6 RT 

d A = 8D d2 (van Llempt). 

e A = (V) 2/3	
(1 -	 (EIng), where V Is the gram atomic volume, 

ic Is the Boltzmann constant, and Q Is the Debye characteristic temperature. 

A = 2.143 x lO14i/(C1chockI) where M, V, and T 5 are atomic weight, 
atomic volume, an melting temperature, respectively. For values of M, V, 
and T5 , see reference 11. 	 - 
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TABLE II - PARAME7TE FOR EQ1ATI0N (19) 

Metal Ef V d. 
(cal/mole) (vibrations/eec) (cm) 

(a) (c) _______ 

Copper 3110
________________ 

b6.6x 1012 3.8]. x 10-8 
Gold. 3030 d3•8 4.07 
Silver 2700 b45 4.08 
Lead 1220 bl.8 4.94
a]ta from reference	 p. p59. 
1'Data from reference 12. 
c]ta from reference 13. 
dComputed. from V = k9/h where k is Boltz-

mann constant, h is Planck' a constant, and. 
9, the Debye temperature for gold, is 180 
(reference 5, p. 237). 
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