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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1856

THEORETICAL STUDY OF THE DIFFUSION CONSTANT FOR
SELF-DIFFUSION IN METALS

By M. leichter

SUMMARY

An expression for the diffusion constant for self-diffusion in_
metals is derived, based on the assumption that self-diffusion occurs
by the vacancy mechanism. The factors determining A 1n the

expression D = Ae¥RT, yhere D 1s the diffuslon constant, Q is
the energy of activation, R is the gas constant, and T is the
temperature, are found to be the characteristic frequency of vibra-
tion of the atoms, the crystal structure, the lattice conetant, the
‘heat of fusion, the temperature, and the activation energy for an
atomic jump. A comparison of the calculated values of A with the
limited experimental data avallable shows that the calculated values
are of ,the’ correct order of magnitude.

INTRODUCTION

Phenomena such as age-hardening, annealing, and order-disorder
transformation depend on the ability of atoms to migrate through an
atomic lattice. It 1s therefore of great importance to understand
the factors that determine the rate at which such migration occurs.
One method of determining the movements of atoms within a lattice is
- to study the rate at which metals diffuse into each other under
controlled conditions. A special case of diffusion in metals 1is the
case of self-diffusion. '

The amount of material diffusing across a surface because of a
difference in concentrations of a material is proportional to the
concentration gradient at the surface, to the area of the surface,
and to the time during which the process continues. The proportion-
alities can be converted to equalities by the introduction of a
factor called the diffusion constant, which has the dimensions area
per time. This diffusion constant D 1is not constant for a given
material but depends on the temperature, the relation is given ‘
(reference 1) by
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D = Ae~Y/RT (1)

where the coefficient A and the energy of activation Q are
practically constant for large temperature intervals; R 1is the gas
constant and T is the temperature in degrees Kelvin. In order %o
have a better understanding of the diffusion process, it is desirable
to know the properties of the metals that determine the diffusion
constant and consequently the rate of diffusion.

A mumber of generally known expressions for the diffusion con-
gtants for metals in the solid state exist (reference 2, p. 305).
The Dushman-Langmiir expression (table I), which was derived by
analogy with an earlier expression for the reaction-veloclity con-
stant (reference 2, p. 298), indicates that A depends on the
lattice constent and on the energy of activation Q; Bradley's
expression, which was derived on the basis of kinetic theory and on
the assumption that the distmdbution of energies among the atoms
was a Maxwell-Boltzmann distribution, indicates that A depends on
the lattice constant, on the frequency of vibration of the atoms,
on Q, &and on the temperature; Cichocki's expression, which was
derived on & probability basis and on the assumption that the atoms
become ionized in the process of meking a Jump, indicates that A
depends on the melting temperature and on atomic weight and volume.
More recently, on the basis of rate-process theory, Eyring has
developed an expression for D (reference 3, p. 538) in which A
depends on atomic volume, temperature, and the Debye characteristic
temperature. The preceding expressions were derived for the general
cage of diffusion and as shown in table I only the Dushman-Langmuir

. formula yields results of the correct order of magnitude for the

gspecial case of self-diffusion. The Dushman-Langmir formuila is,
however, semiempirical, having been derived without the use of any
assumptions as to the mechanism by which diffusion occurs and con-
gsequently it does not explicitly show the properties of the metals
that most directly affect the diffusion constant.

Althouéh many expressions exist for the diffusion constant, the

‘mechanism of diffusion suggested by Frenkel (reference 2, p. 293) is

generally accepted. According to the Frenkel theory, diffusion is
the result of atoms jumping into vacant sites, or holes, in the lattice.
A vacency is generated in the lattice when an atom Jumps from its

" normal site to an interstitial position, or when an atom escapes

from its normal site at some internal surface, without occupying

‘an interstitial position. Schottky has shown (reference 4,.Dp. 69)
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that the first process is more likely in a lattice consisting of
atoms whose radii differ greatly from ep.ch other; whereas the second
process is more likely if the atoms have approximately equal radii.
In. a theoretical study made at the NACA Lewis iaboratory, only
self-diffusion of metals was considered.
SYMBOLS
The following symbols are used in this report:
A constant |
D diffusion constant
d average length of atomic jumps
Ep heat of fusion -
E, heat of sublimation st 0° K
E average energy of vacancy formation
Ey average thermal energy
E1 average enei-gy required to make one Jjump
F fraction of atoms having energy equal to or greater than E;
Ja number of Jumps pér second for atém
'ma.xixmm‘possible number of jumps per second for vacancy

Jo number of jumps per second for vacancy

m mass of atom

N number of atoms per unit "cell"

Ng number of atoms per unit volume

No number of vacancies per unit volume

Q energy of activation
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R gas constant
" T temperature
t  time

to time required for vacency to make one jump

v velocity of Jumping atom

v " instantaneous velocity of vibrating atom

Vpax maximum.velocity of vibrating atom
W number of nearest neighbors in lattice
x disi)laceme‘nt of vibrating atom
X0 amplitude of vibrating atom
v frequency of vibration |
| ( : ANALYSIS

The formation of a vacancy at an internal surface has one of two
.possible results. The vacancy may either be reoccupied by the atom
that has just vacated it, in which case no diffusion occurs, or it
may be .occupied by a different neighboring atom, which leads to dif-

" fusion. It is shown in reference 3 (p. 519) that if Jg 1is the

average rate at which each atom jumps, the diffusion constant D is
given by ' : '

D = Jad ' (2)
where @ 1is the average length of the Jumps, the jumps having only

one degree of freedom., For three degrees of freedom, the equation
becomes

D= - (3)°

Tt will now be shown that J, can be expressed in terms of the num-
ber of vacancies per unit volume in the lattice 'N, and the average
number of jumps per second made by each vacancy Jg.
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Only atoms adjacent to & vacancy can make jumps. Over a long
period, however, each atom will have had the same number of oppor-
tunities for jumping, so that the average number of jumps per second
will be the same for all atoms. If a unit volume of the metal under
consideration is divided into N, equal volumes, or "cells," each
cell will, on the average, contain one vacancy. If N 1s the number
of atoms in a cell, the average number of jumps for any atom in a
given cell will be 1/N times the tobal number of jumps. Therefore
the, number of jumps per second for an atom is l/N times the number
of jumps per second for a vacancy. In symbol form,

Fg = Jo/N . (4)
The number of atoms N in a cell is given by
N = No/No : (s)

where Ng 1s the number of atoms per unit volume. Substitution of
equation (5) into equation (4) and then of equation (4) into equa-
tion (3) yields -

A_ JNo .2
D= av:-'d ) . (6)

The value of N, depends on the number of atoms having suffi-
cient energy E, -to escape from their normal sites. For a lattice
containing vacencies but no interstitial atoms, the total number of
vacancies per unit volume, when the lattice is in equilibrium, is
given (reference 4, pp. 63 and 65) by

N, = NeEg/2FT - (7)

whére Eg 'is the energy of sublimation at absolute zero. Because it
is desirable to know Ny, &s a function of E, rather than es a
function of Eg, 1t is necessary to find a relation between E, and
Egr / .

The following diagram is a schematic representation of an
internal surface. A vacency is formed whenever one of the atoms
acquires sufficient energy to Jjump from its original position to some
other equilibrium position. Some atoms, such as atom 1, are so-
located that they can reech a new equilibrium position without appre-
ciably changing their distance from their nearest neighbors. The
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energy required for such motion is equal to the heat of fusion. An
atom such as atom 2, however, must jump a large distance in order to
break the bonds of its nearest neighbors. It is assumed that the
distance atom 2 has to Jump is large enough that the energy necessary
for the jump is equal to the sublimation energy. Although a vacancy
is more likely to form at a place .
such as the site occupied by 4

atom 1 because less energy is
required, the vacancy formed at

such a point will be partly

blocked by the atom that has

vacated the site, thus seriously .
interfering with further diffusion.
As a first approximation, it will
therefore be assumed that the

average energy of vacancy formetion
Eo, 1s the arithmetic average of

the minimm and maximum energies of
vacancy formation. The sublimation
energy at high temperatures is
approximately equal to the sublimation energy at absolute zero
(reference S), and therefore, Eg may be used for the maximum energy
of vacancy formation. That is,

D

:

}2\‘/\, M 1 \1
QA A
VANVANVAN VAN VAN W)

DM AN

1
Eo = 5 (Eg + Er)

2E, - Ep (8)

!

Substitution of equation (8) into equation (7) yields -

Eg

Ny = NaeEf/zm e-Eo/m (9)

In the determination of Jo, the assumption is made that, on
the average, an atom (providing it has sufficient energy) begins its
Jump a8 soon a8 & neighboring atom has exceeded its norwal amplitude
in the course of making a jump. Because the atoms are executing
simple harmonic motion (in three dimensions), the equation of motion
in the x-direction is

x = xg 8in 2nvt

where x 1s the displacement, x; the amplitude, v the frequency,
and t the time. Differentiation of the preceding equation yields
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= v = 21tv Xy cos 2nvt

=15

When t =0, Vv = Vpay; therefore

Vmax
2nv

When a Maxwell-Boltzmenn distribution of energies is assumed, the
average energy for each degree of freedom is "RT (reference 6).
The total thermal energy Et is 3RT and therefore the average

energy for each degree of freedom 1s 1/3 Et. The maximm veloclty
Vmex can then be determined as follows:

N ' :
> mvnm:2 = 1/3 By

Vpax = \2Ey/3m . (1)

Substitution of equation (11) into equation (10) yields

\REy/3m

X0 = T2qv

Let E; be the energy necessary to make a jJump. Then the
velocity V of the atom while it has the energy E; can be deter-
mined from the equation
. 1

= mve =
ZV-El

or

V = ARE;/m

If it is assumed that the velocity of the atom remains constant
while the atom is moving through the distance x5 (x5 1is only a small
fraction - about 1/25 - of the entire jump), the time t, required
to twaverse the distance x; 1is
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t, = xo/V

l\/ZEt/Sm
21V

° " ‘V‘ZEl/m

. 1,'/3}31
o~  2nv

t

If t, 1s considered to be the time required for the vacancy to
make one jump, the maximum number of Jumps per second Jpay that
a glven vacancy can make is

Jmax =

-2
o

J _ _2nv (12)
max - -
\E¢/3E,

But a jump occurs only when one of the atoms near a vacancy has an
amount of energy equal to or greater than Ej;. For a Maxwell-
Boltzmann distribution of energies, the fraction of the atoms having
energy equal to or greater than E; 1is

e-El/RL‘ _

- (13)

Because at all times e-El/ RT of the atoms have sufficient energy
to e -a jump, it is also true that each atom has sufficient energy

e'El RT of the time. If each vacancy had one nearest neighbor,
the number of jumps per second would be given by Fipgx. But if

each vacancy has, for instance, W nearest neighbors, the number of
Jumps per second J, 1is given very nearly by

Jo = Wipay (14)

When the values of F and Jpay &8s given by equations (13) and (12),
respectively, are substituted into equation (14), there results

N

I, = 2xv W (f3E1 /By o EL/RT | | - (15)

Substitution of equations (15) and (9) into equation (6) yields



NACA TN No. 1856 ' 9

D = Z2 W \BEL /By a2 (Et/2RT -(Eo + E1)/RT (16)

Consequently, from a comparison of equations (1) and (16)

A= z—glw \3E1 /By a2 wBr/2RT (17)

-

COMPARISON OF CALCULATED AND EXPERIMENTAL DATA

All the data available for metals with symmetric crystel struc-
ture are for face-centered cubic lattices. The number of nearest
neighbors is the same for all materials of this type and is equal
to 12. When all the constants of equation (17) are combined, A
becomes

A= 43.6v&? VEL/E oEe/2RT (18)

The average length of the Jumps is assumed to be equal to the lattice
constant. Equation (18) can be applied to determine the value of A

if 'VEl/Et can be approximated, inasmuch as all the other parameters
are known. ‘

On the basis of existing data (reference 2, p. 275) the maximum
value of Q is about 60,000 calories per mole, that is,

E, + E; 60,000
Theoretically the smallest value that E, can have is the heat of
fusion Ef, which for copper, gold, and silver is approximately
3000 calories per mole. The emallest value for E, yields the
largest theoretically possible value for Ej. That is, if E, = Ef
Ep + E; = 60,000

E; = 60,000 - 3000 = 57,000

\/E1/Ey & 4/57,000/E,,

Ey = 3RT

n
3
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The center of the temperature range in which experiments are conducted
is approximately 1000° K (for copper, gold, and silver). At this
temperature, the maximum theoretically possible value for

WE1/Ey = ¥/57,000/6000 = 3.08.

It is more reasonable to assume that

E, = Ey

For this case,
2E) £ 60,000
E; = 30,000

and

\Eq /By, =4/30,000/6000 = 2.24

For lead, the center of the temperature range is about 500° K and Q
is about 28,000 calories per mole. Therefore,

Ey £ 14,000

and

NE /By Z A/14,o'oo/sooo = 2,16

From the preceding considerations it can be seen that /E1/Ey 1s to
a large extent independent of material as well as of temperature,
having a value approximately between 2 and 3. If n/El/Et ig set
equal to 2.5, equation (18) becomes

A = 109 va? ¢Ef/2RT (19)
Although equation (19) shows that A 1is a function of the temperature,
the celculated value of A is only about one end one-half times as
great at 750° K as it is at 1250° K. Inasmuch as the experimental
velues of A, which are independent of temperature, show a greater
variation, A will only be eveluated at 1000° K for gold, copper, and
gilver, and at SO0C K for lead.

The value of A can be calculated for the metals for vhich self-
diffusion data exist by using the data in table II. The experimental
and celculated velues of A are contained in table I.
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Another comparison can be made with previous calculations. On
the basis of the random-walk theory, Weinbaum (reference'7) has cal-
culated that the average number of jumps per second Jg for the
atoms of a silver lattice at a temperature of 1149° K (876° C) is
6.3 X 108, Equations (4) and (5) can also be used to calculate the
number of jumps per second under the aforementioned conditions.

INo
Na

Ja =
Substituting equations (15) and (9) for J, and No, respectively,
and combining constants ylelds ‘
Eg/2RT _-(Eo + E1)/RT

\

-~

Jg =324 ve

For silver, Q = 45,950 calories per mole (reference 8). At
1149° K .

Jg = 5.8 x 106

SUMMARY OF ANALYSIS

. An expression for the diffusion constant for self-diffusion
has been derived and has been found to give results that are of the
right order of magnitude. The coefficient A 1in the expression

D= Ae-Q/RT, where D 1is the diffusion constant, Q 1is the energy
of activation, R 318 the gas constant, and T is the temperature,
is determined by the characteristic frequency of vibrations of the
atoms, the crystal structure, the lattice constant, the heat of
fusion, the temperature, and the activation energy for an atomic
Jump. More data are needed, however, before definite conclusions
can be drawn regarding the applicability of the expression.

Lewis Flight Propulsion Laboratory, !
National Advisory Commlttee for Aeronautics,
Cleveland, Ohio, February 2, 1949.
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TABLE I - COMPARISON OF CALCULATED AND EXPERIMENTAL
VALUES OF A FOR EQUATION

D = Ae'Q/RT .
Experimental Calculated values of A
‘Metal values of A (em?/sec) ’
(cmz/sec)
Reference| (a)} (b) (c) (a) (e) (f)
Lead 5.1 2, 0. 274| 0.88{0.71|2.0 x 1072 3.7 x 107 |42 x 1072 .5 x 10°
6.66 9 .
Silver| 1.0 10 1.6 o.gh 2.6 x 1072 6.l x 1072[2.1 x 107 7.8 x 107
.895 | 8 .80(2.8
Copper| 11 2, p. 27| 2.0 078112 x 1072|7.3 x 107%|2.3 x 1072
L7 9 L. .
Gold 2 9 1.5 {0.88/2.6 x 1072|5.5 x 1072]1.7 x 1072[1.2 x 10
126 2, p. 274 .8812.6 .
Lo 9 1.2 [3.2

8 A =2_;‘_w \631/Et a2 eEf/ZRT (equation (17)).

b A= %h. 2 (Dushman-Langmuir), where N 1is Avogadro's number and

h 1s Planck's constant.

©a=118 v4® (Bragley).

6
d, - 8p 42
A= d° (van Liempt).
I
2/3
kT -38/4T
( ) (1 - ) (Eyring), where V 1s the gram atomic volume,
1s the Boltzmann constant, and © 1s the Debye characteristic temperature.

fa= 2.43 x 10"‘% /Ts (Cichockl), where M, V, and Ty are atomic weight,

atomic volume, and melting temperature, respectively. For values of M, Vv,
and T,, see reference 11, ]
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TABIE II - PARAMETERS FOR EQUATION (19)

Metal Ef v ' d
(c&l/mole) (vibrations/sec) (cm)
(a) _ (c)
Copper| 3110 be.6'x 1012 |3.61 x 10-8
. Gold 3030 3.8 4.07
Silver| 2700 bs .5 4,08
Lead 1220 1.8 4,94

a8Data from reference S5,. p. 259,

bpata from reference 12.

CData from reference 13.

dcomputed from V = k6/h where k is Boltz-
mann constant, h .is Planck's constant, and
9, the Debye temperature for gold, is 180

(reference 5, P. 237).
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