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AMPLITUDES MOVING THROUGH SUPERSONIC OR SUBSONIC
STEADY FLOWS

By Robvert V. Hess
SUMMARY

A study of unsteady flow disturbances of large and small amplitudes
moving through supersonic or subsonic steady flows is presented in three
parts.

In part I a point-by—point method i1s developed for the calculation
of unsteady flows through tubes with variable cross section under the
assumption of constant flow velocity at a given cross section. The
paper extends the work done previously by giving a detailed treatment
of the interaction of strong shocks and large temperature contact
discontinuities and by presenting the shock calculations and the calcu—
lations of flows with initial entropy gradients in a form convenient
for computation by use of computing machines., Under certain as8umptions
the formulas established may also be used for the calculation of flows
with continuous heat addition over a large space.

In part II calculations are made of the flow pattern created by
the bursting into a vacuum of a diaphragm at ths minimum section of a
supersonic nozzle without a second throat. The transition time from
the starting of the flow tc the attainment of approximately steady
flow conditions is sufficiently short to permit the use of very—short—
duration tests. The transition time for the specific nozzle is
presented in such a form that a "similarity rule" can be esteblished
concerning the transition time for nozzles of different size but of the
same or affine shape.

In part IIT integral relationships invariant with respect to time
are developed which describe as a whole the behavior of unsteady flow
disturbances of large and small amplitudes. The invariant integrals
are the conservation laws for the mass, energy, potential, and pulse
area. For the special case of disturbances of small amplitude and
small length traveling through tubes with small cross—sectional
gradient (short disturbances), growth and reflection of mass,
energy, and pulse area of a disturbance traveling through a steady
flow in variable cross section can be separated and presented as a
function of the steady—flow Mach number. The calculations show the
interesting result that the conditioris for zero reflection of mass,
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energy, and pulse area exist at a steady—flow Mach number

Mo = \/7 £ (vhich equals |5 for air), where 7 1is the ratio of

specific heats, rather than at Mo = 1; they also show that for practi-

cal purposes for the range of Mach number from 1 to 5 (for air) the
reflections are small enough so that the mass, energy, and pulse
area of the original disturbance may be considered constant. At
low subsonic and at high supersonic Mach numbers, -however, the
reflections may not be neglected.

INTRODUCTION

The study of unsteady—flow problems has recently achieved new
significance in aeronautics, partly because of the possibilities of
using unsteady—flow phenomena for the improvement of the performance
of high-speed internal-flow systems and wind tunnels and partly because
of the greater understanding of the basic nature of flow phenomsena
such a study has to offer.

A few of the unsteady-flow problems that are useful to the _
aeronautical engineer are indicated. The study of the stabllity of
shocks in diffusers involves a whole series of problems. One such
problem is concerned with the stability of a normal shock with respect
to disturbances moving upstream; such disturbances may be produced,
for example, by the fluctuations in a burner of s Jet airplane or by
other types of fluctuations occurring in the operation of a Jet airplane
or of a wind tunnel. Still another type of stability problem deals with
the two possible equilibrium positions of & shock in front or inside of
a diffuser; the possible "Jumping" of the shock from one equilibrium
position to the other in steady—flow terminology is actually an unsteady—
flow phenomsnon.

Aside from these stability problems a series of problems involving
flow discontinuities other than shock waves are of interest. One type
of discontinuity is the temperature contact discontinuity created by
the sudden pressure increase in a fluid such as occurs, for example, by
bursting a diaphragm, detonation, or the crossing of two unequally strong
shocks. Other types of discontinuities are the flame front moving through
a combustible gas or the condensation front produced in & wind tunnel.
Aside from the problems of discontinuous heat addition, there also exist
problems of continuous heat addition over a large space (for example,
those due to combustion). Naturally, both cases, the discontinuous flame
front and the continuous heat addition over a large space, are only
idealized models of the combustion process (though often very useful).
Finally, for stability problems and related problems the study of small
or infinitesimal disturbances moving through the subsonic or supersonic
portion of a wind tunnel or through the internal—flow system of a jet
airplane is of importance. .
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The present paper is presented in three parts. Part I may be
consldered a manual in the procedure for the construction of unsteady—
flow patterns involving strong shocks and large temperatureé contact
discontinuities under the assumption of constant flow velocity at a
given cross section (one—dimensional flow). The flow variables are
given 1n simple expressions in a form convenient for computation by use
of computing machines. The emphasis in part I is on the method of
performing the calculations, rather than on the elucidation of all their
physical and mathematical meanings. The method is an extension of the
methods developed in references 1 to L. '

In part IT an example is calculated for the motion of a disturbance
of large amplitude through a tube with variable cross section. The
large—emplitude disturbance is produced by the bursting into a vacuum
of a diaphragm at the minimwm section of a supersonic nozzle without a
second throat. Thé unsteady—flow pattern thus created is calculated up
to the time that conditions very close to steady flow are approached in
the nozzle (the actual approach 1s asymptotic). The transition time
from the starting of the flow to the attainment of approximately steady—

"flow conditions for the specific nozzle is presented in such a form that
a "similarity rule" can be established concerning the transition time
for nozzles of different size but of the same or affine shape.

In part III integral relationships are developed to describe as a
whole the behavior of unsteady flow disturbances of large and small
amplitudes traveling in steady subsonic or supersonic flows through tubes
with variable cross section. The development of such relationships is
possible, in spite of the fact that, because of the inclined walls, a
very complicated pattern of deformations, reflections, and re-reflections
may occur within the disturbance, since integrals over the whole distur—
bance exist which are independent of time. First, one such integral
relation is derived that represents the conservation of the velocity
potential of an isentropic disturbance. Since the expression for the
potential contains the first power of the velocity, it is obviously
related to the momentum, which, in contrast to the tube with constant
cross section, is not conserved because of unknown pressures at the
inclined walls. The other two conservation laws for mass and energy
can be used directly. The value of such invariant integrals is doubtful
as long as the original disturbance, its reflections, and re-reflections
still belong to the integrand. Therefore, as a first step for the sepa—
rating of the original disturbances and their reflections, the concept of
pulse area is introduced. The reason for the usefulness of the pulse
areas 1s that they have as amplitudes certain linear combinations of
the flow variables, that is, the parameters of the families of character—
istics, which are assoclated with disturbances traveling with the speed
of sound to the right and to the left relative to the fluid. The final
step in separating the original disturbance and its reflection is
achieved by restricting the length and the amplitude of the original
disturbance and the inclination of the tube walls to small values
(short disturbance). The investigations in part IIT are an
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extension and an elucidation of the studies made in references 5 and 6.
In reference 5, the concept of pulse area for short disturbances is
introduced without relating it to the potential and the momentum of
disturbances of large and small amplitudes. The calculations are
restricted to a short disturbance moving upstream in a subsonic diffuser
in the proximity of a steady—flow Mach number of 1.0, and the result is
obtained that, although the shape of the original pulse degenerates,
its area is constant within the accuracy of the approximation used in
reference 5. When the disappearing inclination of the walls is
considered, this result can be misinterpreted to signify that the area
of the short original pulse has a constant value near the minimum cross
section of the nozzle. In part ITI, however, the area of the original
pulse is shown to have finite and unique values as a function of the
steady—flow Mach numbers with a finite derivative of the Mach number
function at the Mach number of 1.0. Reference 6 presents the laws for
the conservation of mass and energy (but not of the potential and the
pulse area) for disturbances of large and small amplitudes in terms

of the parameters of the characteristic families but is not extended

to the case of short disturbances. The present analysis has the
advantage of offering a clearer idea of the principal effects occurring
in the motion of small disturbances.

SYMBOLS
a : velocity of sound
t o time
T ' temperature
y distance along tube axis; in example of part TI y is

referred to \[Fmin

F cross—sectional area of tube; in example of part II
F is referred to TFpip

M Mach number

v flow velocity

Au speed of shock wave relative to flow

u absolute speed of shbck wave ‘ }
OAv velocity increment through shock

g ‘ entropy |

P pressure
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IT : ) total pressure recovery ratio
o] ‘ denéity

gtream function

- =

potential
V4 ratio of specific heats

parameters of characteristic families; used as
quantities for measuring amplitudes of

YT disturbances of large and small amplitudes
0; moving in steady flow or in gas at rest. Also
P. Q used as mere labels for distinction between

3

two groups of characteristic disturbances.
The expressions "disturbance" and "pulse" are used
interchangeably in present paper,

dp, 4Q | amplitudes of growth and reflection of small-
' amplitude disturbances

m, n slopes

D constant

a -  diameter

Subscripts:

0] | reference conditions

1 condition ahead of shock

2 ' condition behind shock

o steady—flow values

A B,C at points A,B,C

I.— A METHOD OF CALCULATING. UNSTEADY FLOWS CONTAINING STRONG SHOCKS
- AND LARGE TEMPERATURE DISCONTINUITIES IN TUBES OF

VARIABLE CROSS SECTION
GENERAL CONSIDERATIONS

A point-by—point method is developed for the calculation of unsteady
flow disturbances of large amplitudes moving through tubes with variable
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cross gection under the assumption of constant flow velocity at a given
crogss section., The method used in this part is based on the method of
characteristics for steady rotational supersonic three—dimensional flows
with axial symmetry developed in reference 1 and modified in refer—
ences 2 and 3. The steady—flow method was applied to unsteady flow
through tubes with variable cross section in reference 4,

The present paper extends the work reported in reference 4 by
giving a detailed treatment of the interaction of strong shocks and
large temperature contact discontinuities and by presenting the shock
calculations in a form convenient for computation by use of computing
machines. In the course of the analysis, expressions are also given
for the effect of the entropy gradient behiﬁd a shock created by the
varying energy losses in the motion of the shock with varying speed
on disturbances traveling through this entropy gradient.

In the literature, problems of discontinuous heat addition in a
flame front and problems of continuous heat addition over a large space
have also been treated. . The problem of discontinuous heat addition
in the flame front (or condensatlon front) which has a nature similar
to other discontinuity problems as, for example, the motion of a
temperature discontinuity discussed in case C of part I has been
treated, for example, in references 7 and 8. The problem of continuous

" heat addition over a large space has been treated in reference 9. The

calculations in the present paper may be eagily modified to include the
cage of continuous heat addition over a large space by treating the
effects of heat addition and the compressibility effects separately.
Since the energy eguation (see, for example, equation (3) of reference 9)
indicates that the effects of heat addition are independent of the
compresgibility effects for the case of small amounts of heat added

at constant volume, the continuous heat addition over a large space

may be substituted by the distribution in space of small amounts of
heat added suddenly (at constant volume). During the time intervals
between these sudden heat additions, the entropy along the time
histories of the fluid particles is assumed furthermore to be constant,
The scheme of sudden heat additions also permits & simple inclusion

of further additions like those of fuel mass.

A few remarks seem pertinent at this point concerning the
applicability to practical cases of the two previously mentioned
combustion models, that of discontinuous heat addition in a flame
front and that of continuous heat addition over a large space. The
firet model applies to problems of combustion for which one or several
separate flame fronts exist or where the length of the burner is small
enough relative to the entire length of the internal flow system to
permit the continuous heat addition being averaged by a single flame
front without essentially changing the unsteady—flow pattern as a
whole. The choice of proper combustion model or models for the
analysis of the cycle of a pulse jet or of the instabilities of a
steady—flow ram Jet depends on the merits of the individual case.
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The method of calculation given in part I is mainly based on the
presentation ‘in the form of difference equations of the variation in
convenient linear combinations of the flow variables along the time .
higtory of disturbances traveling with the speed of sound relative to
the fluid (compression and expansion waves). In mathematics, the time
histories of the disturbances which do not exceed the order of magnitude
of discontinuities in the velocity gradient across the time histories
are called the families of characteristics.. The characteristics have
furthermore the significance that they also exist when no disturbances
are moving along them. The characteristics represent thus, in effect,
the "characteristics" of the flow structure. The families of charac—
teristics are hereinafter called for brevity the "time histories of the
disturbances"” in contrast to "the time history of the shock" (or strong -
shock) for which the discontinuity occurs in the velocity itself. The
linear combinations of the flow variables are called "the parameters of
the characteristics." They are used as quantities for measuring amplitudes
of disturbances of large and small amplitudes moving in steady flow or in
a gas at rest. They represent also mere labels for distinction between
the two groups of characteristic disturbances. The labels of the charac—
teristic disturbances refer to two different reference systems, one for
the subsonic case and one for the supersonic case. The reason for the
difference in reference systems for the characteristic parameters in the
subsonic and supersonic cases lies in the following: For the subsonic
case (v < a) the fluid velocity may change between down—tube or up—tube
direction; whereas for the supersonic case (v > a) the fluid velocity
may have only one direction. (The down—tube and up—tube directions or
positive and negative y—directions may be arbitrarily designated in the
upstream or downstream directlons.) Thus, for the subsonic case the
proper reference system for the distinction between the two groupa of
characteristic disturbances is one at rest with respect to the tube;
whereas for the supersonic case the proper réference system is one
moving with the fluild velocity v. In most literature on the subject
of unsteady flow these parameters are represented, with the use of
different signs, by the pair of symbols A and M, P and Q, or r
and 8. In part I the symbols A and H are used in agreement with
reference 4. As well as being identified with the motion of a small
disturbance, the characteristic barameters have the significance that
they remain constant along the time histories of the disturbances for .
isentropic flow through constant cross section. For the general case of
unsteady flow through varisble cross section with entropy gradient and with
or without gradual heat addition, the time histories of the disturbances
moving relative to the fluid (compression and expangion waves) are not the
only characteristic families of the flow. Since the entropy is integrable
or constant along the time histories of the fluid particles, these time
histories form a third family of characteristics.,

METHODS OF CALCULATIONS
General Remarks

Unsteady—flow problems through a tube deal with the variation of
the flow variables ?for example, thse velocity of flow v and the velocity
of sound a) along the length of the tube with time. - Tn order that the
unsteady—flow phenomena may be determined as a function of time, the
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flow conditions along the tube must be known for a given time (initial
conditions). ' In addition, the changes in flow boundaries, including
flow changes at ends of the tube (boundary conditions), must also be
known as a function of time. In most problems considered, the cross
section does not vary with time and, thus, the boundary conditions
apply only to the ends of the tube.

The calculations are applied to the problem of one—dimensional
unsteady flows through tubes of variable cross section. The assumption
of one-dimensional flow is made on the basis that the rate of change
of cross—sectional area with respect to distance is small and that the
flow velocity at a given cross section can be assumed constant, The
tube cross section is assumed not to vary with time. As in previously
developed methods, the effects of friction and heat transfer have been
neglected. (The physical nature of these effects does not permit
treatment with the theories dealing with wave propagation.)

By application of the method of characteristics to the three basic
flow equations, the equations of the characteristic families and of the
variation of the most significant combination of the flow variables
along them are established., For the case under consideration, the
characteristic families consist of the two families of the possible
time histories of the disturbances propagated with the speed of sound
relative to the fluid and the single family of time histories of
convective variations in entropy transported with the velocity of the
fluid particles., Since the purpose of the calculations is partly to
determine the equations of the time histories of the disturbances and
the convective entropy variations, naturally these equations cannot
be given in advance, The slopes of the unknown time histories, at any
point of the flow field, are the velocities of the disturbances and of
the convective variations in entropy (or of the fluid particles). The
particle velocity at a given time t expressed in the convenient
y,aot coordinate system is given by

1 dy v (1)
ap dt ag

The velocity 6f a downstream-moving disturbance at a given time t is
given by

&y _ v + 8 ' (2)

1
a0 4t a0

The velocity of an upstreammoving disturbance at a given time t ié
given by

l dy v -—a
a0 1t , | (3)

O

The variation of the most significant combination of flow variables
along the three families of characteristics is given next. For the
single family of time histories of convective variations in entropy,
the entropy itself is naturally the significant combination of the flow
variables. For the families of the time histories of ths disturbances
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traveling relative to the fluid, the most significant combination of the
flow variables is represented by the parameters )\ and p, where

~

2 a v : -
X'7—1@6f9+56 S (4)
and
- 2 (a8 _ - X |
“‘7—1(&0 l> a0 (5)

The method of calculation is developed and applied to the following
three cases:

Case A — Unsteady flow with an entropy gradient in a tube of
variable cross section

Case B — Unsteady flow containing a strong shock through a tube
of variable cross section

Case C — Unsteady flow containing a strong shock and a large
entropy or temperature contact discontinuity through a tube of variable
cross section

General Formulas

Guderley (reference 4) resolves the problems of unsteady flow into
one of Integration of a system of three partial-differential equations
by means of the method of characteristice. The three equations are:
the equation of motion

S

op v O¢ av =0

+

19
P dy By Y

.

the continuity equation

v o0 av %  ,41logF _
"y ity Tt Ty 70

and the energy equation

ds as _
v By 3t
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Since Guderley only calculates the cases for which an entropy gradient
exists behind a shock due to varying energy losses  in the shock, the .
energy equation states that the entropy is constant during the time
hlstory of a fluld particle.

By application of the method of characteristics to the three basic
flow equations, the variation of the paremeters A and p along the
time histories of disturbances moving in an entropy gradient produced
behind a shock because of varying energy losses in the shock is obtained
as (see references 4 and 10)

ldr_ _a vy &1lgF o gs ' '

ag dt ©  agag dy * IR dt (6)
and

1 _ _a ydlogT a4ds - (6v)

a0 dt 20 29 dy YR dt

or in terms of the stream function V and the total pressure ‘
recovery II

=Y

1 d) a v dlogF 1,a\71 _ 41T

S gA _ &8 v =° 95 - l/a 7 &L=

agdt = 8 8  dy 7 @) av (7)

and .
: 27

1dr_ _a v dlogF 1,8\t dIx (‘7o)
8o dt 80 8 dy 7(%) dy

From equations (6) and (7), the parameters A and g can be seen
to have the added significance that they remain constant along the time
histories of disturbances for isentropic flow through tubes with constant
cross section. (See also reference 8.) The physical significance of
this constancy is that if one chooses the characteristic parameters
as the amplitudes of the disturbances, the amplitudes of disturbances
moving downstream and upstream through tubes with constant cross section
do not interfere with each other.
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The stream function V is defined at each point C of the
diagram of y against apt by the line integral

C

- oV ov
¥ = O<aydy+atdt>

C .
P 2]
0

Equations (6) and (7) differ by the factor Fo from the
corresponding equations of reference 4, This difference is due to
the fact that Guderley uses for the stream function the dimension of
.8 length as is frequently done for the calculation of steady supersonic
flows. For the present calculations, using a volume as the dimension of
the stream function seemed more convenient; the factor Fo was thus
eliminated. The parameters II and V¥ are both constant along the time
history of a particle between the shocks. The parameter II for the
total pressure recovery of the shock is given by

2
-1

T = <3_2> 4
a1

The quantity p/py appearing in the expression for V¥ (equation (8))
is consequently related to II by

P2
o1 . (9)

—2_

71
)
= = TI/&
po (&O (10)

For the purpose of setting up the computational equations, the

: 2
- 7-1 ‘
ities L & Y+a v-—-a a v dlogF .. lig p 4II
entities o’ 30’ @ ’ & & 8 dy 7(%) ay
may be expressed in terms of the parameters A and u as follows:

Yo_A-w _ “(11)
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ga =1+ Z;ﬁLl(k + n) - ' (12)
vV +a _ y+1, 3-7%
a0 - 1+ L A A n
v—a _ _,_2+1 " 3—17%
a v d logF _ oy =1 A — u1aF\
5 5.6.——-—(1‘Y = [1 + T (n + u)]( > F E) _ (15)
and
27 £
1o\~ Fd_I;;;[l 7=10 ]7"F@
reo) Tay Ty W] Tgs 8

In order to calculate the flow field, equations (7a) and (7b) are
evaluated in difference form; this evaluation permits the construction
of’ the unsteady flow field by means of a point—by—point method in the
following manner: '

The flow variables v/ao and a/ao are known for two locations
in the tube y, and yp at two known times agt, and agty (see

fig. 1). From this information, the flow variables are calculated at
a third location in the tube yr at a corresponding time agtc. The

location Yo the corresponding time agto, and the values of the flow
variables at C are determined by the intersection of the time-history

curves of the waves through A and B and the lmowledge of the variation

of the flow variables along these time—history curves. Since the
curvature of the time histories, however, depends on the variation of
the flow variables-along them, an iteration process was used in
references 4 and 10 for the simultaneous determination of Yo, aOtC:

and the .-flow variables VC/aO and ag/ag.

In reference 4 the known time—history curves of disturbances
traveling through constant cross-section were used as a first approxi-—
mation. (The curvature is due to interference of the two families of
time histories of disturbances.) Since, however, the curvature of
time histories of the waves traveling through a tube of variable cross -

(13)



NACA TN No. 1878 . 13

section is still unknown, the use of the curvature for constant cross
section as a first approximation introduces unnecessary complications.

The method of the present study is based on the substitution of
the very slightly curved time histories through the points A - and B
by the tangents at these points as a first approximation. In this
first approximation, the point C obtained by the intersection of
the tangents is used for the calculation of the flow variables., Within
the order of accuracy of the calculations, the point C€ obtained by
intersection of the tangents is identical with the point obtained by
the intersection of the time—history curves in the first approximation
of reference 4. The second approximation consists in using the
arithmetic mean between apfeq and ac/ag, vp/ag and vp/ag, ap/ag

and ac/ap, and vB/ap and vg/ap for determining new time histories
between A and C' and B and C', respectively. The values ag'/ag

and vC'/aO for the second approximation are found by integrating along
the newly found time~history curves.

It should be emphesized at this point that the use of a second
approximation does not imply the use of very large steps. in the
construction of the net of time histories, since, for the success of
the second iteration, terms of the second order must be small. If
small steps are used initially, however, the use of a second approximation
may be unimportant by engineering standards. Also, for the use of more
elaborate computing machines such as the Bell Telephone Labora—
tories X—66Th4 relay computer in use at the langley Laboratory, the
first approximation used with many very small steps may prove more
advantageous.

In developing the present method, the possibility of directly
obtaining more exact values at C was also considered. These values
could be obtained by intersecting lines AC and BC (fig. 1) glven
by the average directions between A and C and B and C,
respectively. Furthermore, the average conditions between the flow
variables at A and C and B and C, respectively, could also
- be taken into account. The use of average conditions, however,
results in cubic or quartic equations for the unknowns instead of the
linear equations. The solution of these higher—order equations would
iteself require’ an iteration process.

Case A — Unsteady Flow with Entropy Gradient in a
Tube with Variable Cross Section
The purpose of the following calculations is to determine the

effect -of unsteady flow disturbances produced isentropically. by

compression or expansion on the’change of the flow variables with
tims as the disturbance travels in a tube with variable cross section
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through the entropy gradient behind a shock. With the aid of assumptions
stated in the section entitled "General Considerations,” the expressions
lend themselves also to the calculation of problems of continuous heat
addition over a large space. The calculations are presented conveniently
in the following manner (see fig. 1):

Two points in a tube with given variation of cross section F = f(y)

Alantr, 5, F EEA TA-SA IT,, ¥
0“As JAs TA> dyA’ 8‘0-’ a'O, As YA

dfg vp ag
B<aOtB: yBs Fn, dyB’ B B HB: WB)
are given., .The pdint

& F dFC VC &C )
C &.o 'ol) yc: ok dwy_C, EB: a_o: IIC’ WC
is to be determined. -

The intersection of the tangents to the time—history curves
through points A and B results in

B0%c = T
and

yc = Zaotc + d

where the constants in terms of A and u (equations (4) and (5)) are

‘Z _ (v + a)
"a
o XF0

]
=
+
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X = (x.:_§>
ao B

7 + 1 3—7 .
1Tl 32

oY
L

= —ZaotA + yA

e = —kaOtB + yB

The gquantity yc determines Fg and dFc/dyc since the shape of the

tube is given. The next step is to express equations (7a) and (7b) in
difference form, Based on the first approximation of tangency, Ao

and po are given in the following form:

2 WC _ "’A a'OAtCA . (17)

m— L YB8B(1 dFp 3 dFg
= ug — = — —=(= = t
ke HB 2 a9 &o(FB dyB + FC dyC 50A CB

2y

+ 'l<3§)7_l o + Fp o — Ty aght ' ( 18)
7\&o 2 Vo ~— Vp CB .

The flow variables vgp/ap and ac/ap are determined from Ac and g
by means of equations (4) and (5).
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'

A1l quantities on the right-hand side of equations (17) and (18)
are now known, except IIC and WC which way be obtained by assuming a

linear variation of the values of II and ¥ from A to B. Since II
and V¥ are constant along the time-history curve of a particle, and
because the time~history curve of the particle is here substituted for
the tangent, the condition of linear variation of II and ¢ along AB
yields

g - Iz ¥ - Vg ‘
IIo =TIy VYo =V,

The fact that IIy and V¥ are subtracted in the numerator is
necessitated by the physical condition that the velocities of particles
flowing through BC have to be of the same sign as the velocities of
the particles flowing through CA., Since the tangent to the time~history
curve of the particle bisects the angle formed by the tangents to the time—
history curves of the disturbances at C, the ratio c1/co is equivalent
to the ratio b/a. (See fig. 1.) The quantities Tl and V¥, are

then given by ths following formulas:

TTIga + II,b

_ A

Tl = a+ b

v _WB&+WAb
C~ Ta+m

where

o
]

‘ 5 2
\l(aotc = agty) + (J¢c — ¥a)

o
]

' 5 "
V(aotc ~ 2otB) * (¢~ Ip)
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Finally, a brief note is made concerning the scheme of sudden heat
additions (at constant volume) distributed over a large space. The
sudden additions of heat are made at the intersections of the net of
time histories of the disturbances. During the time intervals between
these sudden heat additions, the entropy of the fluid along the time
histories of the fluid particles is assumed furthermore to be constant.
Ag is shown in figure 1, the time interval between the sudden additions
of heat is the time it takes a particle to move along its time history
from the connecting line of the two former net points to the new point,
The variations of A and p along the time histories of the downstream
and upstream moving disturbances are calculated by the use of
equations (6a) and (6b) in difference form.

Case B — Unsteady Flow Containing a Strong Shock through
a Tube with Veriable Cross Section

The purpose of the calculations in this section i1s to determine the
effect of a strong shock on the change of the flow variables with time
as the shock travels in a tube with variable cross section through a
steady isentropic flow or through a gas at rest. The more cémplicated
cage of a shock crossing an unsteady isentropic flow is not developed
herein, A method very similar to that used for the "interweaving" into
the flow of a temperature contact discontinuity (see case C) can,
however, be used in that case.

The expressions for the flow variables are developed for the case
of a shock moving upstream through a steady isentropic flow in a tube
with variable cross section. The presentation of the flow problem is
given in figure 2. A steady flow is assumed to exist in the direction
of the negative y—axis and a shock is assumed to be produced traveling
in the direction of the postive y—axis (through decreasing cross section).
The production of a shock of given strength is identical with the :
condition that the following values are knmown: AuA/aAl, ANA/aAl,

and aAE/aAl' These values in turn are used to determine the absolute
speed of the shock uA/aO and the conditions behind the shock VAQ/aO

and aAQ/ao by the following fundamental relationships:

s YA, Sup
8.0 8.0 &O

where VAl/aO is negative and AuA/ao is positive

vA2 _ vAl ANA
an —&O +8.0
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where Avyfag is positive, and, finally,

o B B
80 &, 80

The quantities Aup/ap and Avp/ag are obtained by multiplying Aup/afy
and ‘AVA/aAl, respectively, by aAllao.

In order to find the changes in the behavior of the'shock as it
travels in the positive y—direction, a tangent to the time—history
curve at B is drawn and brought to an intersection with up/ap at

point C. The position of the point B in the diagram of ¥
agalnst apgt is known, as well as the flow variables vp/ap end aB/ao

at B. The point B may, generally, be assumed to lie on ths time—
history curve of a disturbance of previous construction. In this
particular case, which presents the initial calculations for ths shock
movement in a diffuser, the point B is assumed to lie on the time—
history curve of the particle VAQ/&O-

The calculations of the flow variables at the point C are based
on the knowledge of their variation during the time history AC of the
shock and the time history BC of the disturbance. The variation of
the flow variables during the time history BC of the disturbance is
given by equation (17) since the small disturbance is moving down tube,
the flow is subsonic, and the parameter A 1is chosen to be associated
with the down—tube direction. The variation of the flow variables
during the time history of the shock is developed as follows:

Two points

dFy YAy Thp 841 %p wy
. A(aotA, Yar Fao Gy,2 55 2 By ? Bg ? By ? By’ [lAr VA

and

dFp vp a
13(&0‘6]3, B> Fm, g’ 3_]3’ ;]g, Iy, 11’3)

are given. The point

S dFs 'Cp VG BCy %C, wp
Clant s Jrs Fa, ’ s g} I3 s B Ilc: WC
07°C> 7C2» 7C’ dy¢® ag ” a0 ’ &9 ’ 89 ’ &g
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is to be determined. In the present method, the location of point C 1in
the agt,y plane is given by

H
|
o

aotc = $—¢
and
where
Ua *
b =2
ap
d:(l’_i_&.)
ag B
7 + 1 3—-7
=1 + Ap — u
y B y B
e = —bagty + yp
and
f=—daotB+yB

The location of point C, given by yg, determines F, and dFg /dyc
from the shape of the tube; furthermore, if Yo 1s known, the quanti-
ties VCl/aO and acllao are determined since a given steady flow

exists in the tube. Only the determination of chjaO: aczlao,

and uc/ag thus remains.
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In order to relate the values of the flow variables at A and C,

a relation is set up between the shock parameters Av/ay and ap/ay;-

the relation is obtained with the aid of the shock equations (refer—
ence 11). Thus,

A\ 2 (A o §
o= - 2) (19)

and

SN OB O I

A plot of a/a; against Av/a; is given for air (7 = 1.4) in
figure 3 and more extensive values are presented in table I,

For the determination of the change of the flow variables along
the time—history curve of the shock, the variation of the shock
parameters Av/a; and lafay (where fa = a5 — &) is assumed to be

linear. Thus,

JAY:} Na NV Lv
aCC _ aAA = mA(%CC-_ aAA> (21)
1 1 1 1
Since
Lay  BAy
a.Al - a.Al
and
acl'" ac,

equation.(21) may be written as

& _ aAQ -m AVC _ AVA (22)
&Cl &Al &Cl aAl
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The change of the flow varisbles during the time history of the shock
may be conveniently expressed in the form

acg ch
g - MAag t Constant

This expression is obtained By miltiplying equation (22) by aCl/ao. The

following equation results:

C
ag = mp ag - R (23)
where ’
R = my VCl + aCl my AVA — &A2
ao ag 8‘Al aAl

For the special case of a shock moving through variable cross section

VA Ve
with air at rest in front of it GMH-= ac; = 8o and EBL = 36l = 0},
equation (23) becomes

8.02 VC2
36— = mp Ea— —_— Rl (2&)
where
VAo  &pp
LTME Ta

The linearization in the shock equations is equivalent to substituting
for the curve in figure 3 a tangent with the direction m for a point

with the coordinates Aw/él and ae/al. For the purpose of determining

accurate values for m, an analytic expression for m which was
developed from equations (19) and (20) is given in appendix A,

A plot of m against Av/a; for air (7 ='1.4) is presented in
figure 4 with more extensive values given in table II. The error
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involved in the linearization can be seen from table II to be small for
small steps. The lower limit of m 18 identical with the value of m
obtained from the laws for isentropic disturbances

82 _2r=-1N™
8y = 5 8y + 1

for air (7 = 1.4)

d v\ T 0.2
a

whereas the upper limit is reached asymtotically as Am/hl approaches

infinity. The upper limit given in reference 11 is VZKZE:;El (0.52915 for

air). This upper limit, however, is reached asymtotically only for a few
practical cases, since 7 may vary greatly across the shock.

The variation of the flow variables during the time history BC of
| the disturbance can be expressed in terms of the same two unknowns vcelao

and acglao. From equation (17) and equation (4), the Pollowing expression
is obtained:

a v .
7-1ay "ag 7-1lag ag 2 agao\ls &yp & Fc dyg/ O OB
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Finally, WC and IIC have to be expressed in terms of known

quantities. For the purpose of expressing wc, ve — Vg 1is written
in the form Yo — V¥, + (b -~ ¥g). In accordance with equation (8)

Yo — ¥p =

Fp + Fg PA; + 0Cy VA + Vo
: -— : 26
> Zpg  \VAC Pag  20Atac - (26)

and- ¥y and ¥p are known from previous calculations, For the special
case of a shock moving into a gas at rest

FA+FC
Vo — Vp = ‘“‘5‘——'AWAC

The only value which still must be expressed in terms of known
quantities is TIIg. If a linear relation is assumed, therefore,

between TIIp and aAE/aAl’ and TIIc and acglacl, then

Co 85 :

where n 1is the slope of the curve II = f(ep/aj) for aAQ/&Al

and TIIn. The derivation of the formila for the slope n 1is given
in appendix B. A plot of II = f(ag/al) is given in figure 5 and the

values are given in table I. A plot of the slope d(ggIal) =n is

given in figure 6, and the variation of n with ap/a] for a shock
is given more completely in table ITI.
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and

Case C — Unsteady Flow Confaining a Strong Shock and a Large
Eﬁﬁropy or Temperature Contact Discontinuity .
through a Tube with Variable Cross Section

The purpose of the calculations is to determine the interasction of
a strong shock and a large entropy contact discontinuity or temperature
contact discontinuity as they travel through a tube with variable cross
section. Such temperature contact discontinuities are, for example,
produced by bursting of a diaphragm in a tube. The bursting causes
a shock and "centered" expansion disturbances, due to instantaneous
expansion, to travel in the tube. The strength of the shock and the
extent of the expansion are determined by the condition that equal
pressures and velocities establish themselves in the flow between
the shock and the expansion. A temperature contact discontinuity
occurs because the expansion lowers the temperature; whereas the shock
raises the temperature and, thus, causes two flow fields of different
temperatures to be in contact. In figure 7 the results of bursting a
diaphragm are presented in a diagram of y against agt.

In the calculations presented for case A, relations had to be
established for the variation of the flow variables along the time—
history curves of the disturbances moving upstream and downstream. In the
calculation of the temperature discontinuity, the variation of the flow
variables along the time history of the discontinuity muet also be
known, For this purpose the condition that the entropy is constant
during the time history of a fluid particle must be considered.

As a result of this condition, the ratio of the sound velocities
on both sides (1 and 1'; see fig. 7) of the temperature contact
discontinuity is constant along the time-~history curve. The variation
of the flow variables along the time-history curve of the temperature
contact discontinuity is, thus, given by:

' v
1 _ Y1
ErRiE=Ne) (29)
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and

a1'/ap
=D 0
al/ao (30)
where D 1is a constant. The ratilo :i}ago is determined by the shock

strength and the extent of the centered expansion disturbances. The
relations may also be conveniently expressed in terms of A and u
(equations (4) and (5)):

MU= (31)

1+ Z-I—l(xl' + 1)
D= - (32)
14 22 L+ m)

The flow variables along the time-history curve of the temperature
contact discontinuity can now be calculated. (See fig. 8 in which the
shock and the centered expansion waves at t = O are shown by dashed
lines.) The following points are known from previous construction:

ar v a
Point 1 (aotl, Y15 Fis a—i, ag .a% 1T, ‘l’
along the time history of the temperature discontinuity (also indicated

is situated somewhere

dF v
in fig. 7). Point 2 (aotz, Yos Fo, dyg, E% :%, IL,, ) 18 situated either

on the shock (see fig. 8) or along a disturbance traveling in the direction
- . . dF7 V7 a7

of the positive y—axis., ' Points 7 (aot7, I7s F7, @7, 5'6 2y’ 7, \Lr..()

and 9 (agtg, ¥yg, F F9 T % Vo) are situated on the time—
0t9s 395 ¥9: F5o» Bo* ag* o0 Y9

history curve of a disturbance traveling in the direction of the negative

ar
y—axis. Points 4 <éoth’ Iy ¥y, dyt’ g% :g Iy, Wh)

dF5 v5 5 ’ .
and 5 aOtS’ Y55 5, o’ 8y’ By’ II5, w%), lying on either side of the
ays .

time—history curve of the temperature discontinuity, are to be calculated.
The values of apt, y, and F for point 4 are identical to those of

point 5.
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The first operation in the calculation is concerned with the inter—
section of the tangent of the time-history curve of the disturbance at
point 2 (traveling in the negative y—direction) with the tangent of the
time—history curve of the temperature K discontimuity at point 1, The
intersection results in

aoty = =%
and
Jy = pagty + T
where
p=t-H
2
vV — 8a 7 + 1 3=-7
= -1~ + A
4 <ao )2 y 2 b2
‘r = paot + ¥y
and

8 = —qaot2 + Jo

The values of aoth and Yy are identical with the values of aot5
and Y55 respectively.
Use is then made of the fact that the tangent to the time—history

curve of a disturbance moving in the direction of the positive y—exis must
satisfy the following conditions: .

ar
The quantities aot3, 73, F3, E}i’ X3, and H3 must assume values
3

such that the tangent to the time-history curve of the disturbance in the



28

NACA TN No. 1878

positive y-direction at point 3 will pass through the previously détérmined

point 5; thus,

v +a\ _ y+1l, . 3-=7
(‘%—)3-“ i R T

__ Y5773
- -aot5 - aot3 )

(33)

- Equation (33) contains four unknowns. Three additional equations for the

quantities agts, ¥3, X3, and u3 are obtained by assuming linear

relationships between the quantities y, A, n, and apt at the

points 7, 9, and 3. Thus,
k3 = kagty + 4 o

H3 = Zaot3 + e

-’

where
Jg — ¥
me—2 9T
a0t9 —_ a.ot7
k = MM
aot9 - aot7
b = —maot7 + ¥
d = —kaot7A+ k7
and

8 = —zaot-? -+ Ll7

(34)
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Substituting the values for 735 X3, and Ha from equations (34) into
equation (33) yields the following expression for agty

—H + \F? — bk

.egty = 2G
where
L
7y + 1 7 + 1 3 -7 3=7
H——l+ ll- k&ot5—"—h—d— )4 Zaot5+ )4 e + m
and
1 -
X = aot5 + 7+ aot5d —~ Y5 + b — 3 4 aot5e

The quantities X, w,, A5, and ug5 can now be obtained with the aid of

the relations for the changes of the flow variables along the time history
of the wayes 3,5, 5:5, and the temperature contact discontinuity 1,4,

The variations of the flow variables along the time—history curves
of the downstream and upstream waves are given by equations (17) and (18)
Equations (31) and (32), that is, the variation along the time-history
curve of the temperature contact discontinuity, are written more
conveniently as

A5 T = hy -y

7 -1

1+ L (X5+p.5)‘=D[l+7;l()»h+uh):l
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The following equations are thus obtained for the two remaining unknowns:

2 D_1/ 4
My D+ 1 M = D + 1<} s “h> (35a)

D—1f & D
u5——2——<7_1+lh)+—g—luu (35b)

The quantity II5 is on the expansion side of the temperature contact
discontinuity and, hence, is equal to one; in this case WS = 0. The

quantity II) 1is constant during the time history of the temperature

contact discontinuity (particle) and, hence, has the value corresponding
to the shock which was inltially produced by the bursting of the diaphragm;
in this case V) = O,

IT.— STUDY OF THE FLOW PRODUCED BY THE BURSTING INTO A
VACUUM OF A DIAPHRAGM AT THE MINIMUM CROSS

SECTION OF A SU?ERSONIC NOZZLE
GENERAL CONSIDERATIONS

As an introduction to the case of the bursting of a diaphragm in
a nozzle, that is, a tube with variable cross section, the nature of
the simpler problem of bursting a diaphragm in a tube with constant
crogs section is briefly discussed. A thorough account of this problem is
given in reference 12; a statement is also made therein that seems &
good introduction to the problem of bursting:

On first thought, one might be led to believe that at the instance
of bursting the diaphragm the total pressure jump across the diaphragm
would be propagated toward the low-pressure side as shock wave. However,
this is not possible, for then the entire air mass on the high-pressure
side of the dlaphragm would have to be suddenly accelerated to the speed

of the mass of air behind the shock.

The gradual acceleration of the mass of air on the high—pressure
side is accomplished by the fact that the total-pressure jump across
the diaphragm produces not only a shock traveling into the low—pressure
side but also a sudden expansion spreading gradually into the high-
pressure side.
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In setting up the calculations for the present investigation of a
nozzle for high supersonic Mach numbers, an infinite pressure ratio
across the diaphragm was chosen. This is equivalent to having a vacuum
on the low-pressure side of the diaphragm. Furthermore, the assumption
was made that the high—pressure tank is sufficiently large to keep the
pressure constant in it. The choice of a vacuum appears to be of
considerable advantage since conditions for the existence of a shock are
not fulfilled for that case, and thus, only the effect of the spreading
of an isentropic sudden expansion of large amplitude into a tube with
variable cross section must be calculated.

Figure 9 gives a presentation in the plot of v (distance along the

‘tube) against apt of the sudden expansion into a vacuum for a tube with

constant cross section. The plot of y against apt 18 a modification
of the length-against—time diagram which is convenient because it

presents the velocities of the disturbances and the fluid elements in non—
dimensional form. The lines radiating from the coordinate origin

(Vaf a lineé> in figure 9 and the curved line, substituting for a group
0

of parallel lines, Xag—g lines) represent the two groups of character—

istics. Since initially the sudden expansion has the nature of a flow
through constant cross section, only the radiating characteristics are
carriers of disturbances. The group of curved parallel characteristics
are not carriers of disturbances; however, they are necessary for the
analysis of the flow structure. Since this problem is one of unsteady
flow through constant cross section, one of the parameters A and "

of the characteristic families has to be constant. In this particular
case A will be constant since it is the down—tube characteristic which
cuts across the infinity of radiating characteristics carrying the small
disturbances which build up the finite-amplitude disturbance. Thus,

A indicates the variation of the flow variables in the finite-amplitude
disturbance. If the expansion starts from air at rest and the increase
of fluid velocities in the plot of y againet agt 1is assumed to be

positive, the slope of the time histories of fluid particles increases
as indicated by the v/ao line in figure 9; furthermore, for the case
of the expansion starting from air at rest A is equal to zero through-

out the expansion. The flow variables are then related as follows (see
equation (4)):

A = —2 (E%—l)JrE%:o

or

2-1-171 ¢ (36)
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The speed of the disturbances traveling along the radiating
characteristics, and therewith the slope of these time histories,
is given by

L

&le
<
|
o

It may be seen from equations (36) and (37) that the slope of the
2

radiating time histories of disturbances varies from —1 to

(which equals 5 for air); for v = a the slope of the time history is
zero. (Fig. 9, representing the initial flow conditions, is drawn in
the scale of 2:5 in agreement with the final steady—flow pattern,

fig. 13; the final flow pattern had to be drawn in that scale to avoid
crowding the characteristic lines.,) Aside from giving the limits
indicated, equations (36) and (37) show that, in the subsonic domain

of the expansion, the disturbances travel "up-tube" and in the supersonic
domain they travel "down—tube"; whereas relative to the fluid they always
travel upstream. The difference in behavior between the subsonic and
the supersonic domain of the unsteady expansion can also be brought out
well by observing its variation with time for two: cross sections, one
located at a negative y—value and the other at a positive y—value. At
the negative y—-value (subsonic domain) the expansion will cause a/ag

(and thus the pressure) to decrease; whereas at the positive y—values
(supersonic domain) the expansion will cause the pressure to increase.

characteristicslcarries zero disturbances for the

The group of

case of a single large-emplitude expansion through constant cross
section, (The same is true for the analogous problem of a single
expansion — Prandtl-Msyer — for two—dimensional steady supersonic flow.)
For the case of flow through variable cross section, however,

the 'Vag 2 lines represent time histories of disturbances participating
in the flow development due to the inclination of tube walls; these
disturbances are often called reflected disturbances.

Since it is desirable to anticipate at least some of the results,
a discussion of the physical nature of the problem precedes - -the detailed
investigation of the calculations for the unsteady flow through variable
cross section (nozzle). So far in this paper the behavior of the
disturbance of large amplitude has been discussed from a consideration
of the microscopic elements; that is, the behavior of small (characteristic)
disturbances (the elements of a large—amplitude disturbance) moving along
the characteristic families has been under scrutiny. While the combination
of these microscopic elements is simple for the case of a large—amplitude
disturbance traveling through constant cross section and, thus, permits
the gaining of a thorough understanding of the physical aspects for. this
cage, for the motion through variable cross section not much insight
can be gained without making the actual calculations. The reason lies
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in the fact that for the case of variable cross section within the large—
amplitude disturbance as 1t moves past the inclined tube walls, many
local reflections and re-reflections are created which interfere .with
each other as they travel along different families of characteristics.
The determination of the deformation of the large—samplitude disturbance
consequently requires a point—-by—point integration process and an
iteration procedure. For the case of constant cross section, however,
the correlation between the microscopic and macroscopic behavior will
be simple since no reflections are created within the disturbance.

It is thus necessary to look to viewpoints other than the microscopic
in order to anticipate the results of the calculation.

A lead on some other physical aspect of the motion of an unsteady
large disturbance may be easily obtained from consideration of the
fact that, for the case of bursting a diaphragm in a supersonic nozzle,
the central problem is concerned with the process of reaching steady
flow. The problem of balance between unsteady and steady flow energy
is the basic problem for the motion of large unsteady disturbances in
general and not Just for the speclial case discussed herein. The
anticipated flow pattern in this special case is thus the steady—flow
pattern given by Bernoulli's equation for one—dimensional flow.

In order to find the proper basis for comparison with the pattern
of characteristics (time histories) of figure 9, representing the
initial conditions, the final steady flow has also to be interpreted
from consideration of the time histories of small (characteristic)
disturbances moving through it in the downstream or in the upstream
direction with the speeds v + a and v — a, respectively. The non—
dimensional form of these speeds is easily obtained from Bernoulli's
equation. For ideal gases Bernoulli's equation cen be written in the
form:

2
2 —1%
;% = J - ao) (38)
or
a
& " - (39)
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and.
Yo Mo
8,
0 dl+7glM02 ' ‘
then
— -1 '
W.’ana'():V MO ()-I-l)
\11+ 7;1M02
and»
Vo + 8 _ My +1 ' (42)

&O [

For the nozzle shape used in this paper and for air as a medium,
the time histories of small disturbances, used to correlate the
steady flow with the unsteady flow conditions, are given in figure 10.
In figure 10 only three time histories are drawn, two of these are the
time histories of emall disturbances moving upstream with the speed Vo = &g
in the subsonic and supersonic steady flow. The third is representative of
the time histories of small disturbances moving downstream with the

speed Vo + 85

For the anticipation of the results of the calculations it is further
useful to present the transition from unsteady to steady flow in a plot
which simply demonstrates the deviations of the flow varisbles from the
steady and the unsteady state. Such a plot is one with the coordi-
nates afag and v/ap (fig. 11). In this plot the sudden unsteady

expansion into the vacuum for a tube with constant cross section (initial
condition) is represented by a straight line given by equation (36)

& _1_2=-1x+v
a0 2 &
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Bernoulli's equation for steady flow is represented by an ellipse with
the equation

It is importent for the further discussion of transition from unsteédy'

. PRI T ) v v—a
to steady flow to determine the limiting conditions for 26’ —55_'f

and ngJi. From equation (36) the.following values are obtained:
maximm velocity for unsteady flow through constant cross section,

which equals \[5 for air. Since for the maximum velocity the velocity
of sound a 18 zero, the maximum of the velocity is the same as that

of v — 8 and’ vV 4+ 8
a0 a0

. TFurther values of importance are those of the

critical velocities. For unsteady flow through constant crose section,
the critical velocity 1is

which equals 0.833 for air and for steady flow

vo_ [ 2

aO=\7+l

which equals 0.,9129- for air,-
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The velue of ——2 corresponding to the critical velocity is zero
&0

in both cases. Thus in the plot of y against agt the "eritical®
expansion wave coincides with the apgt axis.

Two useful properties of the presentation of the transition problem
in the coordinate system of a/ap against v/ap or the related

system JEE against v are now discussed. One of these useful
properties is that the Mach numbers are represented by straight lines
radiating from the center of the coordinate system., The other useful
property concerns the geometric presentations of the spsed of the waves

for arbitrary gases as intersects of the é% axis. In one presentation
(fig. 11) the intersects are obtained by subtending from the abscissa v/ag

of the point A (Eva’ 38‘5 the length of the ordinate a/ap in the
positive direction or in the negative direction depending on whether

one desires to obtain ths values of Va; & or that of Vg; 2 at the

point A. In the other presentation (fig. 12) the speeds of the waves
for arbitrary gases are obtained by presenting the steady—flow ellipse
with the equation ]

21 + v° = 21, (4h)

where 1 1is the enthalpy, as a circle with the radius Jﬁio in the

coordinate system of VQi against v. The intersects along the v-axis
are made for this presentation by the normals to the character—

istica A = f(é%) + é% and p = f(é%) - £%° The latter presentation
was first given by Busemann (reference 13); it can also be extended

to the presentation of the speed of shock waves in this coordinate
system, Ths exact expressions for A and p for arbitrary gases

are given in reference I4.

The reason for the simple geometrical picture of the speed of the
waves lies in the following facts: The characteristic theory for
arbitrary as well as for ideal gases is based on the fact that in the
vicinity of each point of the flow field, the flow may be linearized
(reference 14), Furthermore, use is made of the fact that the motion
of the wave may be expressed in terms of a coordinate system moving
with the wave. In such a coordinate system, the wave will stand still,
but the fluid will be moving with a velocity v —a or v + a. Since
the steady flow is expreassed by a circle in this diagram, the variation of
the velocity of the locally superposed steady flow is given by the motion
of the center of ths circle along the v—axis.



NACA TN No. 1878 37

METHOD OF CALCULATIONS

Design of Nozzle

The shape of the nozzle is given by a simple analytic exdression
that approximates the shape of a conventional wind tunnel designed to
give a steady—flow Mach number of 5 in the teat section, With the area
ratio thus given as 25, the length and the shape of the nozzle still
had to be determined. The length was determined such as to give the
shortest nozzle for the given Mach number and was calculated to

be 16‘5887\ﬁ;dn. or 16.5887 %?dein' The shape of the nozzle was

given by two analytic expressions. For lack of a more exact criterion,
the subsonic part was chosen on the basis of ths reasonable criterion
that ths maximum gradient of cross section of the nozzle presented as
a one-dimensional flow should not be larger than the gradient of
surface area of half a spherical wave traveling into a gas at rest.
Thus, if ¥ and y are made nondimensional by referring them

to Fpin, and mins respectively, the variation in cross—sectional
area 1s given by the parabola

F=2 +1

The supersonic part of the nozzle was chosen to have the variation of

cross section of a parabola tangent to the cross—sectional area of the
test section and to the parabola F = 2ny2 + 1 continued to positive

y—values. The equation thus obtained was

F = -0.08843918(y2 — 33.17786342y + 275.192655279) + 25
The point of tangency of the two parabolas turned out to be
F = 1.33312388
and
y = 0.230257055

The high number of decimal places has its basis in the fact that
a smooth Junction between the two analytic expressions requires
congiderable accuracy. This increased accuracy offers no difficulty
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to the Bell computer since it uses a high number of decimal places
in all computations.

Flow Calculations

As previously mentioned in the section "Gensral Considerations,"
the calculations are concerned with the problem of transition from
the initial purely unsteady flow condition (fig. 9) to the final steady
flow condition., The initial conditions for the comstruction of the net

of characteristics in terms of the quantities v/ag, a/ag, A, u,

vag & vaa 2 and B = tan ™t véa £ are given in table IV; their

magnitudes are obtained from equation (36). In the last columns

of ths table. the values for vag 2 or tan B multiplied by the

gcale factor of 2/5 and’ the corresponding angle tan‘l<% tan é)

are given;i As previously stated, these values had to be used in the
construction of figure 9 in order to show a basis of comparison with
the net of characteristics in figure 13, -The calculations were

gtarted at the EE:;E time history of the characteristic disturbance

0
which moves into the gas at rest (v;; 2 _ —-> by subtending from
it Ia#;é -characteristics at an interval of 0.ly. Starting with
0

thése initial conditions the flow field was calculated according to
the step-by—step process given in part I with the aid of the Bell
computer.

DISCUSSION OF RESULTS OF CALCULATTONS

The results of the calculations are presented in the plot
of y against apgt (fig. 13), as well as in the plot of a/a,

against v/ay (fig. 14). 1In the plot of y against agt (fig. 13)
ths criterion for the attainment of steady flow is given by the

condition that the ng—é and Vag 2 1ines have to become parallel

to those shown in figure 10 for steady flow. It can be seen that
this will be true for a range of higher values of ant. The relative

position of the two ngiﬁ lines and ths ng—g line of figure 10

has no significaqce. The propér comparison between figurés 10
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and 13 is obtained by comparing the —Va; & 1lines and the Vé; & 1ine
of figure 10 individually with ths corresponding lines in figure 13

by shifting them individually along the agt axis., In the diagram

of a/ap against v/ap (fig. 14) the transition from unsteady to
steady flow conditions is conveniently expressed by the variation of -
the flow variables v/ap and a/ap at various locations y at

the nozzle. Steady flow conditions are obtained when the ¥ = Constant
lines in the diagram of a/ap against v/ao reach the steady—flow
ellipse or, in terms of Mach number, when the Mach numbers along

the y = Constant 1lines reach the steady-flow Mach number corresponding
to the nozzle cross section at y. Since the plot in figure 14 does
not permit the reading of values with sufficient accuracy, the values
of v/ag, a/ay, and M for several values of y are given in

table V. The corresponding values of agt are also given in table V

to indicate the rate of change of the flow variables. The full '
transition from unsteady to steady flow is represented in the subsonic
range of the plot of a/a, against v/ag by y = Constant 1lines

starting at the point '(é% =1, é% = O), since, as may be seen from
the plot of y against agt, Y, = Constant 1lines first intersect

the disturbance zag-g = ~1. In the supersonic range, the y = Constant

0

lines will first intersect the disturbances v&g a - vag & - 5, For the

lines will start at the point (gﬁ =5, é% = O), since the y = Constant

purpose of identification of the intersections of the vas & 1lines

and the "85 £ 1ines in figure 13, the linee are denoted in the

following manner: The

va+ £ lines carry numbers ranging from —0.1

to —2.4; the numbers refer to their initial conditions on the
line vag & -1, The Vag 2 1lines carry angles B varying from -45°

to 78%1'; the angles B represent the starting angles of these lines
for ths true-scale initial conditions. (See also table IV.) The
scarcity of calculated points (see table V) near the maximum values in
the supersonic reglon has the following reason: In the region where

the maximim speed of the fluid éL =5 18 obtained, the maximum speeds
0

— a vV + a

=5a_nd ao =5
will also be obtained. They are indicated by the line denoted B = 78041°
in figure 13. (See also table IV.) Since the method of calculation is based

on the intersection of time histories of Va+ £ and va— £ disturbances,
0 0 :

of the small (characteristic) disturbances
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the size of the step of the step-by—step process will become excessive in
the region near the maximum speed unless a very fine net of characteristics
is used in this region. This fine net will also be necessary if higher
iterations than those in the present calculations are used. The use

of a not—too—fine net (used in the present calculations) will cause

the lzg—g lines and the vég & 1ines to become parallel before the
physical limit for parallelity (tan1l 5 = 78%41') is reached, namely,

at tanl 2.3558 = 67°. No efforts were made, however, to increase

the fineness of the net in this region since for the phenomenon to

be investigated it was of no particular interest; and in spite of the
use of the Bell computer, the use of an extremely fine net in every

part of the flow field would cause the time required for the calculations
to increase by factors up to 20. (The calculations of ome point required
about 6 minutes.) It should also be mentioned here that only a small
number of the calculated points are indicated in the diagram of y
against agt (fig. 13).

It appears that the statement concerning the fact that the very—
high-speed region was of no particular interest could bear a more
detailed explanation, Comparison of figure 13 with figure 10, the final
steady—flow picture, shows that most of the supersonic expansion
disturbances will take no part in forming the steady—flow picture;
they will just disappear and the steady—flow picture will be formed
without their help. The question arises now concerning ths behavior of
the reflected Va; 2 Qisturbances. Figure 13 shows that the reflected
disturbances in the supersonic region move even at a greater speed in
the same direction (+y) as the expansion disturbances. This behavior of
the expansion disturbances and their reflections is based on the previously
discussed fact that the waves are produced in a coordinate system moving
with the speed of the fluid. When the speed of the fluid is supersonic,

both the ZE:;Q and the 3;2—2 disturbances move downstream and
: 0

-

the xag—g disturbances have greater speed.
A closer investigation of figure 13 and table V also shows that
the y = Constant 1lines do not completely reach the required values
on the steady—flow ellipse. The reason lies in the following facts:
The nozzle chosen for the calculations was a typical supersonic nozzle
designed for parallel flow at the test section. In such nozzles the

large variations in cross section have to occur near the minimum
section; thus, large changes in Mach number also occur in this region.

This again means that in the region near the minimum cross section large
changes in the speed of the vég & and the ng—g disturbances also

v—a vV +a
e and -?ﬂf—_

occur, In consequence, the intersections of the lines
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Yield inaccurate results unless very small steps are taken, The fact
that steps taken too large could have such an effect was first noted

during the calculations in the results obtained for the vag & time

histories. The excessively large steps caused the Y +& 1lines beyond
those with the starting point of y = ~1 and agt = 1 <z£§‘2 line —?)

to become parallel and even to intersect. As pointed out previously
in the discussion of figure 10, parallelity of the time histories

of the disturbances would indicate that steady flow had been reached.
It was found, however, that the reaching of parallelity was premature
since the values of v/ao and a/ao attained in this region were

still far from the steady—flow values for the given nozzle shape.

A much smaller division of the Vﬁ— 28 Jines was then taken from
0

this region on until similar inaccuracies were noted again for
the L8 digturbance starting at y = -2.k (I&L&L 1ine —2.&). Since
0 0

steady flow conditions corresponding to ths shape of the nozzle had
almost been reached by then, a further reduction in step size was not
attempted. In this slightly premature stoppage of the calculations
the subsonic flow part was especially affected, since as may be seen

from figure 13 the vag & line ~2.3 still cuts through low values

of apt especially in the low-subsonic region., Inaccuracies can also

be noted in the reaching of such higher steady-flow supersonic Mach
numbers as correspond to values of y =2 and y =4, This larger
error is due to a growth of the error introduced by the rapid

. changes in cross section near the minimm section. Since the error
increased for increasing values of y, the y = Constant 1lines for
higher values of y (up to y = 16.5887) were not plotted in figure 1k,
The line M, = 5 18, however, included in figure 14 (dashed line) in

order to indicate the range of the final values for the flow through
the nozzle designed for a steady—flow Mach nimber of 5,

For lower values of y (0.5 and 1) the error introduced by rapid
variation of cross section was still small and the y = Constant 1lines
came very close to reaching the required steady—flow Mach numbers.

(See fig. 14 and table V.) The gradual approach to ths steady—flow
values (indicated in table V) is the result not only of thes approximate
nature of the calculations but also of the fact that steady flow

actually presents an asymptotic condition which it would take an infinite
time to reach. An important conclusion that can be drawn from the
calculations is that the main changes in flow variables occur very
quickly and that the remaining changes in the infinite time interval

are very small. The small number of decimal places used in table V
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compared to the high number of decimal places used in table IV is
adequate for the accuracy of the calculations based on the use of
relatively large steps. Further useful information for the transition
from unsteady to steady flow may also be obtained by observing the path
of the linss y = 0.5 and y =1 in the diagram of a/a; against v/a.

The extension of these lines into the area of the final steady—-flow ellipse
gignifies that the final steady flow at first tries to establish itself

at a similar lower speed range, that is, along a similar smaller steady—
flow ellipse, before it is boosted up to the final steady flow which has
the critical pressure corresponding to the tank pressure at the minimum
cross section of the nozzle. The boosting process is the reason for

the consequent zigzagging of the y = Constant 1ines. Another inter—
esting effect that occurs in the near—to-maximum speed region concerns

the speed of the vag & waves in this reglon; namely, that they have

to reduce their speed in the transition from unsteady to steady flow,
since the unsteady—flow maximm speed is higher (5&0) than the steady—

flow maximm spéed (\I5To) |

In order to facilitate the interpretation of figure 14, the steady-
flow Mach numbers corresponding to y values of -0.2325, 0, 0,5, 1,
and 2 were indicated by the M = Constant 1lines. This auxiliary
construction is especially useful for y = O (minimum cross section)
gince for that case both the initial unsteady flow condition and the
final steady flow lie on the M =1 1line.

Finally, the time required for the transition from unsteady to
steady flow is discussed. Table V shows that the values of agt
closest to the steady—flow Mach numbers to be reached lie roughly
around apt = h.5. From the previous discussion it can be concluded

that this value will be only very slightly too low in spite of the
fact that for an inviscid fluid steady flow is reachsed asymtotically
after an infinite time. (For the calculations the rounded—off

value apgt =5 1is used,) This behavior is in agreement with the fact

that unsteady disturbances once created in an inviscid fluid do not
disappear. From a practical viewpoint, though, after a very short
time the unsteady disturbances become sufficiently small so that thsy
are completely dissipated by viscous effects.

Since the dimsnsion of apt is the same as y, that is, a

length, it can ve conveniently expressed in terms of the diameter of -
the minimun cross section of the nozzle. For a nozzle of circular

cross section, both apt and y have to be multiplied by qn/h
gince 4 = \F/n for Fpyp = 1. An agt of 5 then corresponds

to 5 dyr/k. The time it takes to reach steady flow is given
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by dpin 5;3 h. Since ap 1s a constant, the time it takes to reach

steady flow increases with the nozzle size for a given shape. For
a dp4, of 1 foot and room temperature in the tank for exaumple, the

time it takes to reach steady flow will be 5“ second.
1116 1000

The general expression for the transition time of the flow in a
nozzle with given shape but varying size may be extended to include
nozzles of affine shapes (stretched or shortened shapes). This extension
seems easily understandable inasmuch as the length of a nozzle rather
than the diameter is the determining factor in ths calculation of: the
transition tims, since the length directly affects the running time of the
disturbances. The similarity of unsteady—-flow phenomena for nozzles with
the same or affine shape but varying size can also be said to signify
that a "similarity rule" exists for unsteady flows: through tubes with
variable cross section. This fact is of importance to the test engineer.

Through a process of affine shortening of a given nozzle shape
a shape with sudden change in cross section is finally obtained, as
indicated in figure 15. For this sudden change in cross section,
steady flow should establish itself after zero transition time, (These
considerations are based on one—-dimensional theory.) On ths basis of
such considerations, the motion of a disturbance of large amplitude
through variable cross section may be substituted by that through a
series of cylindric tubes with interspaced abrupt changes in cross
gection. Such a scheme was used in reference 15 without, however,
giving thorough explanation as to why it should be permissible to use
the scheme. The nature of the difference between the effects of
tubes with gradual changes in cross section and sudden changes is
brougnt out to some degree in figure 15. The modifications of the
original disturbance in this case consist of a weakened disturbance
continuing to move in the same direction and of a reflected disturbance
in the opposite direction. Since all the changes of the original
disturbance take place at the same location Yy, the continuing weakened
disturbance as well as the reflected disturbance may be substituted by
large sudden disturbances (group of dashed centered lines) originating
at this location. Each centered disturbance may, furthermore, be
substituted by a single line. From the discussion of the small values
of transition time it can also be surmised that the scheme here discussed
converges to the characteristic method.

Finally, a few practical aspects of the short—duration tests are
discussed. It is important to emphasize that, although practically.
steady flow conditions will be reached in these very-short—dutration .
tests, for most materials commonly used for the construction of the
- test model and the tunnel walls, conditions of temperature equilibrium
between models, walls, and air flow will not be reached. Because the
model and the walls will remain close to their initial temperature, the
amounts of heat transfer through the boundary layer will be different



Ll ' NACA TN No. 1878

from those encountered in the customary steady—flow tests. The herewith—
connected changes in boundary-layer behavior (transition and others) have
to be studied before drawing quantitative conclusions from such tests. It
should be realized that the constancy of initial temperature of the model
and the walls considered from a different viewpoint also makes it possible
to conduct tests with arbitrarily chosen model and wall temperatures at a
given steady—flow Mach number. Conclusively, it should be added that the
main difficulty of such very—short-duration tests will be the problem of
ingtrumentation. ' ,

PART ITI.— STUDY OF INVARTANT INTEGRALS OF UNSTEADY FLOW

DISTURBANCES OF LARGE AND SMATI, AMPLITUDES
GENERAL CONSIDERATIONS

In part ITI the behavior of unsteady flow disturbances is treated
from a viewpoint different from that in parts I and II where a detailed
study of the complicated pattern of local growths, reflections, and
re—reflections within the disturbance was made. In part III integrals
over the whole disturbance invariant with respect to time are developed.
The value of such invariant integrals is doubtful as long as the
disturbance, its reflections, and re-reflections belong to the integrand.
Thus, the main purpose of the present paper is to find integrands which
permit a separation of the integral effects of the growth of a disturbance
and its reflections. The logical choice of an integral for the separation
is one which uses the characteristic parametvers of the disturbance as the
integrand. These characteristic parameters consist of two sunmands, the
velocity increment due to the disturbance, and another quantity of the
dimension of a velocity which represents the pressure increment in the
disturbance. Depending on whether the sum or the difference of these
two velocity increments is used, these parameters are associated with
disturbances traveling with the speed of sound to the right and to
the left relative to the fluid. (For more detailed statement see
gection entitled "General Considerations" of part I,)

The integrals with the characteristic parameters as integrands
were introduced in reference 5 under the name of pulse areas. In the
language of the engineer and the physicist, the invariance of this
integral is also called its conservation. This word causes the question
to arise immediately as to what relation the conservation of the pulse areas
would have to one of the three conservation laws, the mass, energy,
and momentum laws, The relation can be quickly found out from the
previous definition of the characteristic parameters as a linear
combination of two velocity increments, one of them representative of
the pressure increment in the disturbance. It can be easily seen that
the sum of these two parameters P and Q (or A and -y, respectively)
will be twice the increment of the flow velocity in the disturbance.
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Since the integral contains now a velocity increment as integrand, it
is related to the conservation law for the momentum. It has to be
emphasized, though, that only a relation exists, but no identity,

since the integral of the velocity increment is actually the velocity
potential. The conservation of the potential here replaces the
conservation of the momentum which, in contrast to the tube with
constant cross section, is not conserved because of unknown pressures
at the inclined walls. Since the invariant integral for the pulse area
has played such a useful part in expreesing an invariance of an unsteady
disturbance, it is useful to express the invariant integrals for mass
and energy in terms of the pulse area. These expressions have been
given in reference 6 without introducing, however, the pulse area and
applying the restriction of the short disturbance which is necessary
for the complete separation of the growths (positive and negative)

and reflections of a disturbance. The reasons for the introduction

of the short disturbance are given subsequently.

So far the first step in the process of separating the growth
in the disturbance and the reflected disturbances has been shown which
consists in the introduction of the pulse area. This introduction,
however, still does not eliminate the re-reflections from the
integrand — it only labels them and discriminates odd and even numbers
of reflections, The final step in the separating process consists in
uncoupling the growth and the reflections of the disturbance and its
reflections by neglecting the re—reflections during the time a single
reflection is being produced. This separation (or uncoupling) of the
original disturbance and its reflection is achieved by restricting
the length and the amplitude of the original disturbance and the
inclination of the tube walls to small values (short disturbance).

ANALYSIS

Conservation of Potential

It is shown in references 10 and 14 that for a fluid assumed to
be inviscid a velocity potential exists for the motion of an unsteady
flow disturbance of large or small amplitude in a steady flow or in a
fluid at rest through variable cross section. It is also shown in
references 10 and 14 that the potential consists of two parts:

af = v dy — (L‘; + 1)@1; (45)

The next step is to show the invariance of the potential with
respect to time. This problem is conveniently investigated in the
coordinate system of y against agt (see fig. 16). For the sake
of discussion a disturbance of large amplitude is assumed to be
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produced at the time t = O in such a manner that behind the disturbance
its amplitude is zero. The potential ¢ is indicated by the area of

the cross—hatched rectangle. The height of the rectangle presents the
amplitude of the disturbance, which is, as is shown subsequently, the
velocity increment through the disturbance. The height, of course,

does not lie in the y,apt plane, but it is conveniently indicated

in the figure in this plane. The unsteady flow disturbance under
consideration ig assumed to be an isentropic expansion of an arbitrary
gas produced at t = O and to move through an increasing cross section.
In the course of its motion the amplitude and the length of the
disturbance change; at the same time reflected disturbances with given
amplitude and length are given off. In figure 16 the reflected potentials
are indicated by the long, thin cross—hatched areas; whereas the potentials
of the growing disturbance are shown by short, thick cross—hatched areas.
In order to show the invariance of the potential ¢ with respect to
time, equation (45) has to be integrated along a path which does not
~enclose the region in which the disturbance is produéed, the production
of the disturbance being an extraneous process (for example, unsteady
motion of piston, bursting of diaphragm, unsteady motion of side walls,
combustion or condensation front). The integration along such a path
is of the following form:

»§d¢=ﬂBvdy—/;Cvdy+£C<%2+i)dt—\];D("g—z-»i>dt=0 (46)

Since the disturbance is assumed to move in a steady stream, the

2

difference of the integrals with the Bernoulli constant <£o =5+ i

ag the integrand) is zero. The remaining integrals are equal to each
other. The significance of this result is as follows:

When an unsteady isentropic disturbance of large amplitude travels
in a steady flow of an arbitrary gas through variable croas section or
through a gas at rest, the potential of the growing (positively or
negatively) disturbance itself with the addition of the potential due
to all its reflections remains constant with respect to time; that ’

is, L/]v dy = Constant,

The application of this general law to the motion of strong shocks
through variable cross section seems doubtful, since when entropy
variatlions appear in the flow the potential ceases to exist. It would
gseem possible, perhaps, to enforce the existence of a potential even
for such a case by choosing a path of integration which encloses )
positive and negative gradients in entropy. .The situation is analogous
to that for vortices in steady flow where, at least for skillfully
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chosen cases (Prandtl's starting vortex), the proper path of integration
exists for the maintenance of the concept of potential,

Although the potential L/7v dy has yielded useful conservation laws

for the behavior of a large disturbance moving through variable cross
section, the information obtained from this law is incomplete since

it only concerns one flow variable and, consequently, does not permit

a separation of the integral effects of the disturbances. As indicated
in the section entitled "General Considerations " the introduction of

the pulse areas l/}P dy and L/‘Q dy 1is a flrst step toward the

‘separation. The parameters P and Q are gliven for unsteady flow
of an arbitrary gas through a variable cross section by

Pov 4 f(a)
. (472)
Q=v - ?(a)
or for an ideal gas
P=v + 2 a
7 -1
. (470)
Q=v- e a

Conservation of Pulse Areas
'A cbnservation law for the pulse areas may be obtained from the
conservation law @ = | v dy = Constant for the potential ¢ by
expressing the velocity v in terms of the amplitudes P and Q

given by equations (47). The following conservation law for the puise
areas resultas: . T

(P + Q)dy = Constant - (48a)
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fP dy +fQ dy = Constant (48b)

This conservation law for the combination of the pulse areas for the
digturbance of large amplitude, however, has no direct value for the calcu—
lation of the behavior of the large disturbance since P and Q (or 2\
and u) are interrelated by the system of two nonlinear differential equa—
tions shown, for example, by equations (6) and (7) of part I. As stated
previously, two cases exist for which the integral effects of the
disturbances can be fully separated. One case is that of short
disturbances which is discussed in other sections of part III; the other
is the case of motion of a large-amplitude disturbance in a steady flow
without Mach number gradient through constant cross section. The
gspecification "without Mach number gradient" is made to exclude the case
of constant cross section at a steady—flow Mach number around one.

or

As previously -stated, the motion of a large disturbance through
congtant cross section is characterized by the fact that P is
congtant for a disturbance with the amplitude Q, and Q is constant
for a disturbance with the amplitude P. Thus, the fact is at once
established that for a large disturbance the individual pulse areas
are conserved; that is, :

P 4y = Constant (49a)

'Q dy = Constant (49v)

In order to avoid confusion it is well to point out the difference
between the symbols P and Q used in reference 5 and the symbols A
and p used in references 4 and 10. The parameter A and u are
given for arbitrary gases by

- (50m)




NACA TN No. 1878 , | k9

or for an ideal gas by

r ' . (50b)

The equations are the same as equations (4) and (5) but are repeated
here for convenience. The difference in presentation between P and Q
(equations (47)) and A and p (equations (50)), respectively, may be
gtated directly in terms .of the flow variables & and v for ideal
gases. Expressed in terms of P and Q (reference 5)

v=Ex8 o - - (51a)

2
and
7—-1P—Q .
a =" 5 (51b)
whereas in terms of A and
v A -
wTTE B

and

a _ Yy —1A+p . : '
_ao-_ 1+ 2: -9 Do . (52b)

The convention ofwriting the velocity as. the difference of tw.
flow. parameters X and i~ is taken from steady two—dimensional
supersonic flow (see reference.16). The convention of presenting the
velocity in terms of the sum of the two flow parameters P and Q 1is

taken from reference 17.
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Finally, a few remarks seem in place concerning the statement made in
this section that only for the cases of a short disturbance and of constant
cross section can the integral effects of the disturbances be fully
separated. It is shown in reference 15 (see, also, discussion in part II)
that an approximate method of separation exists for a large—amplitude
disturbance based on substituting the continuous change in cross section
by a discontinuous change. This approximate method makes skillful use
of the behavior of a large—emplitude disturbance in constant cross
section.

Relative Growth (Positive and Negative) and Reflection of the
Amplitude of a Short Disturbance at a Given Steady—Flow Mach
Number, Due to a Given Cross—Sectional Gradient or
Mach Number Gradient

In the process of determining the growth and the reflection of the
pulse area of a disturbance the behavior of their amplitudes has to be
investigated. The equations for the behavior of the amplitudes of a
small disturbance are given in references 5 and 6. As mentioned in the
introduction, however, neither of the reference papers fully deal with
the growth and the reflection of the pulse area or the amplitude of a
short pulse. For this reason the derivation in the present paper is
started with the basic equations for the amplitudes of small disturbances
moving through a steady flow in variable cross section. The equations
for air (7 = 1.4) (see reference 5, equations (14) and (15)) are as
follows:

P + 2Q\oP P + 2Q\dv
§+ <v0+ao+3+Q)$+ (1_M)<i_;_9>._q
g PP P P — Q\dv,
+ (Mue - l)( 50vg + 2+M Q. 10 Q)# =0 (53a)

ég(_ , 2P + 39\30q <2P_+33>Ezg
St + (Vg — 8g + 5 )By + (l + Mb) 5 T

2 - o\d
- (2 - ) (B - B0 B9 - o (53)
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For the case of an arbitrary gas the multiples 2 and 3 of P and Q,
3—-7 1+ 7
2(7 - 1) 2(y = 1)’
respectively, derived from equations (5la) and (51b). The denomi—

respectively, are given by the expressions

- 2 4

nators 5, 10, and 20 are given by the expressions 7 -1’7 =1’
5 8 1.' For the sake of brevity, equations (53a) and (53b) for air
are used in the derivation; the quantity 7 is only introduced into the

-final equations. The sums QEL%—EB and EEL%_QB are equal to the sums
Vo + 8o and Vo — ap, respectively. In the case of small disturbances the
amplitudes P and Q are given by a linear combination of a velocity
increment and a pressure increment (expressed in the form of an increment
of the velocity of sound) with reapect to steady—flow conditions.

Since in the expressions for the P and Q pulse (equations (472)

and (47b)) the pressure function f(a) has opposite signs, the alternative
of compression or expansion enters into P and Q with opposite signs.
The flow velocity (the significant parameter for potential, momentum,

and pulse areas) enters into' P and Q with the same gign., For the
parameters A  and W the situation is reversed. The motion of the

P pulse is designated in the downstream direction by making the arbitrary
down—tube direction coincide with the downstream direction.

Equations (53a) and (53b) are identical with equations (14) and (15) in
reference 5, which can be derived from the equations given for the variation
of the flow variables along characteristic lines for isentropic uhsteady
disturbances of large amplitude given in part I and in references h, 5,
and 10. For the case of small-emplitude disturbances, P and Q are
small and are of the first order. Furthermore, as is indicated by
equations (53a) and (53b), the first derivatives of P and Q are
also small and of the first order. :

For these conditions the following approximations can be made:

?
(1) The term ‘EEFSQE may be considered negligible when compared

with the expression ++9& , P = q
. 2Mo

10
P4+ 2
(2) The term é—f%——g may be considered negligible when compared
with Vo + 845

2P + 39
(3) The term ———%—59 may be considered negligible when compared
with v, — a,, with certain qualifications.

The qualifications mentioned in approximation (3) are due to the

fact that as Mb approaches one, Vo — 8, approaches zero, If v_ - g

(o] o (o 14
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however, approaches zero, the term gf;%—ig may not be neglected, In

view of these conditions, the behavior of the Q pulse and its reflections
has to be investigated separately for the case of Mo = 1. The assurance

whether or not the term EE_%_QQ may be actually neglected near M, = 1
. may be obtained by comparing the results of the separate investigation

at M, = 1 with the results obtained by neglecting 31’;“—39 at M, =1,

The approximations made so far in equations (53a) and (53b) are all
a direct consequence of the use of disturbances of small amplitude. The
approximations, however, still do not simplify the simultaneous differ—
ential equations (53a) and (53b) sufficiently to make the solution easily
interpretable, For a simple solution of the simultaneous equations, a
type of uncoupling of P and Q would be desirable. More specifically,
the uncoupling would signify that in the equations (53a) and (53b) P and Q
could be alternately neglected depending on whether one is attempting to
solve for the growths of the pulse or for the reflected pulses. The
"uncoupling” process was substantially used in reference 5 without explaining
-1ts full meaning. For a clear understanding of all approximations made in
the calculations, the concept of uncoupling is explained briefly: For
example, as a Q pulse moves through a tube with variable cross gection,
its amplitude Q grows to Q + dQ and gives off a reflected pulse 4P,
The building-up process of the reflected pulse P (traveling with the
speed Vo + 8p), during its motion through the growing  Q pulse to its
full strength 4P, starts from zero immediately behind the head of the
- Q@ pulse and ends when the reflected pulse at its full strength 4P
leaves the pulse Q. Because of the bullding-up process, P 1g at first
very small compared with the average Q. The smallness of P compared
with Q can be kept forever when the Q pulse has a small length dy
and when the gradient of cross section dF/dy or, consequently,
dF = gg dy, the change in cross section of the tube occupied by the
disturbance Q, is small. A disturbance for which amplitude, length, and
cross—sectional gradient are subject to these restrictions is called a
,short disturbance (or pulse) in the present paper. For the same reason,
for the growing of the pulses to. Q + dQ, P may be neglected compared
with Q. The analogous considerations are true for P * dP and the
reflections dQ, where Q may be neglected compared with P.

_Before attempting to solve equations (53a) and (53b) for the
desired quantities, the equations are written in different form by
performing the following transformations:

. ‘ P .
_BB?P + <vo' +aq + 3—1':5—%2)%5 = (VOA+ ag + 3—;%% (54a)
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and
an 2P + 3Q\0Q 2P Q\dQ
g«E + (vo f— ao + -;*>$ = (vo - ao + +3>E (Shb)

At first equations (5ka) and (54b) are substituted in equations (53a)
and (53b); use is made of approximation (3) without qualifying

assumptions for M, = 1, that is, with neglect of gELéﬁjg compared

with vgy - a,.

Since presenting the deformation and the reflection of pulses in
terms of the variation in cross section is desirable, the following
substitution obtained from the continuity equation for steady flow is
made additionally:

dvg - Vg 1 4F

«

' The substitutions transform equations (53a) and (53b) into

P +
(vo + ao)g_yE + ég': F g[(l - M°)<§—;LQ) + (2 - 1)<P2MOQ
+ P]_g Q>:, =0 A , (56a)

and

o =i+ 4 e ) - (o - (s

dy M2 -1 5 2M,
+Pl_59>]=q » S (56V)

The fact that dy may be canceled in equations (56a) and (56b) has
the significance that the equations are independent of the scale of Y.
In other words, the equations for short disturbances may also be
interpreted to apply to small-amplitude disturbances of arbitrary length
traveling through a esmall discontinuous change in cross section., As for
the case of short disturbances no 1ntorforencg exists while the reflection
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is being produced; the lack of interference is due to the fact that the
reflection is produced in the zero length of the discontinuity and that
before and behind the small discontinuity the cross section is constant.
This last interpretation of the approximation of short disturbances
establishes a connection with the approach given in reference 15. The
behavior of a small-emplitude disturbance of arbitrary length traveling
through a small continuous variation in cross section may be obtained by
pairing small discontinuous changes together in such a manner that the
distances between them equal the lengths of the growth or the reflection
of the small disturbances. The variation of the lengths of disturbances
with Mach number is discussed in a subsequent section.

The following relations can now be determined:
dP/P represents the relative growth dP of the pulse P,

dQ/P represents the relative reflection dQ produced by the
pulse P.

dQ/Q represents the relative growth dQ of the pulse Q.

dP/Q represents the relative reflection dP produced by the
pulse Q.

The following expressions for an.arbitrary gas are obtained from
equations (56a) and (56b) by making use of equations (40) to (42) of
part II and the previously developed "uncoupling” effects, that is,
alternately neglecting P and Q:

=12
Q=_ll+ 7 o ar (57e)
P 2 (Mo + 1)2 F
=12
Q@ _ 115" %" gr
P - 2 (Mo—l)2 F (5Tb)
y—-1,2
W_ 1tk o (57¢)
7 —1 :
. 11" T Mg (574)
2 (Mo + 1)2 F
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Equations (57) reduce to the acoustic case for M, = 0. Expresslng
equations (57) also in terms of the steady—flow Mach number gradient is
useful for the remaining investigations in this paper. This is done by
the substitution of

aF 1 - M2 A

F 1+L5_;M02M0

obtained from the steady—flow continuity equation into equations (57)
The following equations result

g 1z "
1 — Yy -1 o) ‘
. _Yori_ " 7 N U (580)

dQ__Mo"’ld-Mo
Q" W, -1 (58¢)
1-2-1ye2
dP=1_MO E o dMp (584)

A closer study of equations (57) and (58) reveals firat of all the
interesting fact that the amplitudes of the relative reflections
expressed by the ratios dP/Q and dQ/P change their signs at the

which equals 5 for

supersonic steady—flow Mach number M, =

air; that is, at M, = both the P and the Q pulses give of f

no reflections. A more detailed study of equations (57) and (58) is
given subsequently.

Equation (57d) indicates that, for example, for the upstream travel
of a Q pulse in the subsonic part of a diffuser (0 < Mo < 1) the

reflected pulse dP 1is negative since it moves in the downstream
direction G%E > O) from zero (while it is being produced from zero).
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Since the factor 1 — 2;é§;£ M2 >0 for O< M <1, the sign of 4P

congisting of the product of one negative quantity and two positive
quantities, that is, the product (=)(+)(+) is negative. In order to
determine whether the reflection dP is of the expansion or compression
type if Q 1is, for example, a compression, equations (47) must be
considered. They state that P and Q are of the opposite sign. Thus,
if accordlng to equation (57d) dP has a sign opposite to Q, the
additional information of equations (47) indicates that dP and Q

are of the same type; that ie, if Q 1is a compression, 4P is a
compression also. For M, = O, this result is in agreement with the
well—known acoustic behavior. The result obtained may also be conveniently
discussed in terms of equation (584) which uses the Mach number gradient.
For 0 <M, <1, the product of signs (+)(+)(-) 1is negative (aM, < O)
which naturally agrees with the result obtained from equation (574).
Another especially interesting illustration of equations (57) and (58)
concerns the reflections d4dQ produced by a P pulse traveling down—
stream in the supersonic part of a nozzle., In this case, both the

pulse and its reflection travel down the tube since for supereonic

flow an upstream motion with the speed v, — a, 1is & down—tube motion.

The behavior of the reflections of a P pulse is described by
equations (57b) and (58b). For 1 < M, < 2 —]

product (-=)(+)(+) is negative for equation (57b) and (=) (+)(+) is
negative for equation (58b). Since P and Q are of the opposite
sign, both the original pulse and the reflection are of the same type.

For ,’7 2 1 <M, <w the sign products for (57b) and (58b) are

both (~)(=)(+) which is positive; thus, in this case the amplitude of

the original pulse and that of the reflection are of opposite types.

With the aid of the gign products the types of the growths and
reflections of the downstream—moving P pulses and the upstream—

moving Q pulses not mentioned so far may be also determined from
equations (57) and (58) with two exceptions, The two exceptions concern
the behavior of the reflection dQ produced by P (equations (57b)

and (58b)) and the growth d4Q produced by Q (equations (57c) and (58¢))
at a steady—flow Mach number of M, = 1., At that Mach number, dQ becomes

infinite with respect to both the amplitudes of the pulse P and the
vulse Q. This growth toward infinity ies in contradiction to the
assumption of small disturbances.for. which this result is obtained.
Equations (57) and (58) only hold for a range in which the order of
magnitude of "small" is not exceeded for the amplitude dQ. The range
. can be increased such as to include the closest proximity of M =

Ty choosing values close to zero for the amplitudes P and Q of the
pulses. The deterioration of - dQ at M =1 itself, however, cannot
be eliminated., Slmllar considerations apply to the gradient BQ/By.

the sign
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Another case concerning the behavior of the amplitude of a small
disturbance near a steady—flow Mach number of one concerns the steady—
flow equilibrium conditions involving a shock near M = A

discussion of the equilibrium of shocks, however, is out91de the scope
of this paper.

The discussion so far gives a.very unsatisfactory picture about
the singular behavior of a emall disturbance at M, = 1. This picture -
does not seem to show anything significant, for it does not seem
reagonable that an important quantity like the energy or the mass of
a reflected disturbance dQ produced by a downstream disturbance P
should become infinite at M, = 1. The reason for the discrepancy
between the physical expectations and the results obtained so far
lies in the fact that only amplitudes of the small disturbances have
been discussed so far and not the integrals over the whole disturbance
extension as required for the mass, energy, and pulse. area. A
discussion of these integral quantlties is given in the following
gection.

Before going into these problems, the behavior of the amplitude dQ
near M, = 1 is explained, without neglect of the term EEL%%QE

compared with v, — a5 1in equation (53b). For & short disturbance
at M, = 1, equation (53b) yields: '

aQ _ _2 3
Qe 5 —3g ¢ (59)
Vo — 8p + =

5

if P is neglected (uncoupled) with respect to Q. The neglect
(uncoupling) of Q with respect to P (equation (53b)) yields

2
Vo — 8 +

av, ' (60)

e . _2
-5 2P

5

By comparing equations (59) with equations (57c) and (58¢) and
equation (60) with equations (57b) and (58b), it may be seen that
gimilarly to equations (57c), (58¢), (57b), and (58b), equations (59)
and (60) have an infinity. mhe only difference is that the infinity
of equations (59) and (60) does not occur at M, = 1, but rather at a

Mach number corresponding to a velocity vy — ag + 32. Similar

considerations can be made for equation (61) and equations (570)

and (58b). The physical meaning of. these more exact equations is
that the growths or the reflections of the Q pulses do not actually
accumlate exactly at the minimum cross section of the nozzle.
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Conservation of Mass, Energy, and Sum of Pulse Areas
' for Short Disturbances

The conservation of mass and energy for large and small disturbances
traveling through tubes with variable cross section without the benefit
of' uncoupling between the original disturbance and its reflection is
digcussed in reference 6, For the case of short (uncoupled) disturbances
it is clear that the amount of mass, energy, and pulse area of the growth
of the original disturbance equals the amount of mass, energy, and pulse
area, respectively, traveling in ths reflected disturbance, since no
mags, energy, or pulse area can disappear by the interference between
the original and the reflected disturbance during the building—up process.
The proof of the conservation for short disturbances is given subsequently
for the simplest case of the pulse area. For the sake of conveniencs,
equation (48b) is rewritten here:

Pdy + | Q A4y = Constant

Under the assumption that the growth and the reflection of the pulse
area have the shape of a rectangle with the lengths Lyp and AyQ,

equation (48b) can be presented in the following form: :

P Ayp + Q 4yq = Constant ~ (6la)

or

.d(P Oyp + QAyQ) =0 (61b)

The differentiation in equation (61b) results in the following
equation:

dP Ayp + P dAyp + dQ AyQ + Q dAyQ =0 (62)

If one chooses, for example, to express the conservation law of
a relative growth dP/P and the relative reflection aqQ/P, for the
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cage of a short P pulse, Q starts from zero and the last term can
be neglected. The conservation law thus assumes the following form:

dP 4yp + P dfyp = —AyqdQ (63a)

4(P &yp) = ~Avgaq (630)

Equation (63b) indicates that the pulse area of the growth a(P 2yp)
equals the reflected pulse area, since P and Q are of opposite sign.
Equation (63a) may also be expressed in terms of ths relative amplitudes
given in equations (57) and (58):

P 4yp &yp P

ap  yp _ o 4q (64)

Pulse Length and Pulse Time for Short Disturbances

It was stated previously that the travel of a short disturbance
through a small continuous change in cross section is identical with
the travel of a small disturbance through a small discontinuous change
in cross section., For the case of a small discontinuous change in
cross section (see fig. 17), the pulse times Otp and Atg are equal

and the Mach number gradients are equal and opposite. These conditions
are expressed by the following equations:

Lyp = Otp(vy + &) (65)

byq = Dtg(ve — a,) (66)

It should be recalled that without the restriction to a short
disturbance, reflections and re-reflections occur which will necessitate
a step-by-step integration for the determination of the pulse lengths
and pulse times, .
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Relative Growth and Reflection of the Pulse Area of a Short.
Disturbance Due to a Given Mach Number Gradient,  as
a Function of the Steady—Flow Mach Number

The behavior of the relativé reflection d(Q AyQ)/P Ayp of the
pulse area P Ayp and of the relative growth d(Q ayq)/Q Ayq of the
pulse area Q Ayq 1is investigated first since their amplitudes were
‘shown to degenerate for My = 1, The relative reflection may be written
as follows:

2Q4vq) _agvg , g My
Ty T PNyt Ry (67)

The second term is small as Q starts at zero; therefors,

4(Q &vq) _aq g (68)

P &yp P Ayp -

The terms dQ/P and Ayq/lyp are given in terms of the Mach number,

The relative reflection dQ/P 1is sxpressed alreédy in equation (58b).
The ratio /yg/fyp 1is formed by substituting equations (42) and (k1)

of part II into equations (65) and (66), respectively, which gives

Lyp = aghtp M‘; i i > | | (692)
Vﬁ.+ > My
and
byq = sty M; — : (69v)
Vl + 5 NB

The required ratio of &yq and OAyp is then given by

AyQ _ Vo — 8¢ _ MO -1
&p Yot B0 M+ 1

(70)
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’

The value of the relative reflection is thsn

- 1 :
atyg) My 1= 5 MRy gy
P Ayp Mo-11+7;11\,,02M0+12M0
12
1 -
- - ,fl%agﬁ - (72)
1+ 25= 1 |

Thus, the magnitude (not the shape) of the relative reflection of the
pulse has no singularity at M, = 1. The relative growth d(Q Ayo)/Q &y q

may be written as follows:

d(Q 4yq) aq doy '
T R g (72)

The quantity dQ/Q in terms of Mach number is already expressed in
equation (58c). The ratio d&yQ/AyQ is obtained by logarithmic
differentiation of equation (691v) .

y -1

dAyq aM Mod M,
o =4 log Ayg = —0 - — 2 - (73)
The value of the relative growth is then
7y -1
UUq) Mo+ 1laMy  aM 5 Ml
= - + - Eand -
QA}’Q Mo-'lgMo'Mo—l 1+751M02
y —1
- - (Th)
26 1+ 7_;]_- MOQ ‘

Thus the relative growth of the pulse area has no singularity at My = 1,
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Next, the behavior of the relative reflection d(P Ayp)/Q Ayq and
of the relative growth d(P AyP)/P Ayp of ths pulse area is investigated.

The relative reflection may be written as follows:

_dp&p pdyp
g~ e &gt i (75)

For short disturbances (P neglected) the relative reflection is

4(P Ayp) 4P Ayp

Thy, "9 g (763

Equation (76) is written in terms of Mach number by substituting
equations (58a) and (70)

-1
‘d(PAyP)=1—Mol"72 M02M0+ldMQ
Q Ayq l+Mol+'7'2-1MogMo—l2Mo

7 -1

2
1 - M am

(77)

The interesting fact is indicated by equation (77) that the relative
reflection of the pulse area Q AyQ is zero at M, = Jy E which

1
equals: J%' for air but will not be zero at My = 1, in spite of the

fact that the amplitude is zero there. In reference 5 it is concluded
from the zero amplitude that the relative reflection of the pulse area
would have to be zero at M, = 1. In the next section of the present
paper a numerical evaluation of this inaccuracy is given. The relative
growth d(P AyP)/P Ayp may be written as follows:

d(P Ayp) 4P dAyp
Fayp P " Ayp (78)

Equation (78) is expressed in terms of Mach number by substituting
equation (58a) and the logarithmically differentiated form of

/8
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equation (69a). The logarithmic differentiation of equation (69a)
results in

7 -1
dAyp _aM, 5— ModMy
p - 18 &= T l+7;1M02 (19)
The relative growth then is
y -1 a
a(Payp) 1-MyaMy o am, T Ml
P Ayp 1+Ma2M 1+ M 14 2= 1 Nbe
’ 2
7 -1
_aMy T Md (80)

Thus, the relative growths of the pulse areas P Ayp (equation (80))

and Q Ayq (equation (T4)) as well as the relative reflections
(equations (77) and (71)) are ths same.

Accurmlated Growths and Reflections of the Pulse Area of a Short
Disturbance as a Function of Steady—Flow Mach Number

The accumulated growths and reflections are obtained by integrating
the relative growths and reflections, respectively. The integration of
the relative growths (P AyP)/P Ayp and 4(Q AyQ)/Q Ayq can be

performed without difficulties. The integration (accummlation) of the
relative reflections, however, cannot be presented in closed form for

the following reasons: The short disturbance during its motion through
variable cross section gives off reflections, the accumlated value of
which will soon have a length larger than that required for a short
disturbance; furthermore, within this accumlated reflection, re-reflections
wi® occur. Consequently, the integration of the reflections would ,
require Lhe use of a point—by-point method like that given in part I. The
fact that the values of the accumilated reflections cannot be represented
by an integration in clused form is not as unfortunate in the present

case as might be expected since a conservation law exists for the pulse
area which permits determination of the accumlated relative reflection
readily from the easily integrable relative growth., In the following
discussion the variation with Mach number of the accumilated relative
growths is given. The integration of the relative growthse d(Q AyQ)/Q AyQ

and d(P AwPQ/P Lyp, a8 given in equatiqns'(7h) and (80), results in
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1@ avg) _ [ a(e av)
. Qhyq . P Ayp v
or log|C L Mo (81)
([~ |1+ I5d w2
log (Q ch,z) = log(P Ayp)
y

The definite integration from a reference pulse area QOAyQO

tb Q AyQ and the substitution of the definite integral JPQ dy over the

pulse length AyQ at a given time t for Q AyQ result in

aay=cy, o

(82)
1+ 4 5

1 Nbg

The definite integration from a reference pulse ares POAyPO

- to P AyP and the substitution of the definite integral JnP dy over the

pulse length AyP at a given time t for P Ayp result in

= ool Mo
Pdy = C2Vl Lz g 1 sz (83)

Equations (82) and (83) ars formally equivalent, the dlfference in
constants of the two sxpressions is due to the 10act that the P pulse
moves with the velocity Vo + &8,, Whereas the Q pulse moves with the

velocity vg = ag. In terms of the Mach numbers appearing in
~equations (82) end (83) the meaning of this difference is that the
Mach number in one equation will have the negative value of that in the
other. The constants in egquations (82) and (83) are thus related by
the equation
8
C2 =30

The significance of the imaginary factor J in the equation is that

a real P pulse can never becoms a real Q pulss.

It mey be seen from eauatlors (62) and (83) that the accumilated
relative growths of tne Uulse areas .Q AyQ"and P Ayp have a maximum

for My = ‘/ which equals J__ for air. The accurmlated reflections

thus remain constant only for -2 which equals 5 for air,
7 -1 :
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(The relative reflection is zero.) Equations (82) and (83) permit a
numerical evaluation of the variation of the accummlated growth with
steady—flow Mach number (see table VI). Table VI indicates that the
agssumption made in reference 5 concerning the conservation of pulse

area at M, = 1 is still fairly accurate, .since f(Mb) representing

the variation with M, of the accumlated growth remains fairly constant
in the range of M, =1 to M, = 5. The main changes in f(M,) occur in
the regions of low subsonic and high supersonic Mach numbers.

Accurmlated Growths and Reflections of the Mass of a Short
Disturbance as a Function of Steady—Flow Mach Number

For reasons similar to those in the case of the pulse area only
the accumulated growths are calculated. The basis for the calculation
ig.the following definite integral over the pulse length Ay at a given

time t (see also reference 6):
foF dy (84)

The quantity p represents the excess in density compared with steady
flow at a given cross section F, The first step in the separation

of the growth and the reflection is obtained by expressing p in terms
of P and Q (see equations (47))

7 -1
2
=V — a
< 7 -1
or
P+Q=2v
L
P—-Q-= a
7 -1

The next step in the separation is obtained by the introduction of
the assumption of short disturbances. Since for the pulse area the
variations of accumulated growths of pulses P and Q gave equations
of the same form (equations (82) and (83)), the behavior of one of the
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pulses is only treated'here, For the growth of, for example, the
pulse P, Q@ 1is neglected; that is,

(P)Q___O =ev =gz f 7 & ' (85)

The quantity a 1s expressed in terms of p for a small disturbance
by the following isentroplc relation:

P __2 &
el & | (86)

o=20 p | (87)

Substituting equation (87) into equation (84) gives

PolV.
o ay = | 225 @) =2aovg P ay (88)

\

where poFvy/2 has a constant value, let us say, C3 according to the

continuity equation for steady flow. The equation (88) is written in
terms of Mach number. by substituting for v, and &, the values from

equations (40) and (39) in part IT and for L/1P dy the expression from

equﬁtion'(83). The following equation results:

ww=f{+£ (9)
a.o .

The function f(My) = V(l s 122 MOQ)% is tabulated in table VII.
. ) ’ s '
At M, ="7 = which equals J_- for air, f(M,) has a minimum, The
physical significance. of this behavior is that the accumilated growth

of the mass of a short disturbance and, consequently, the reflection .
will be zero at that Mach number. No special behavior occurs for M, = 1.

The infinity indicated in table VITI for My, = O (acoustic case) is due
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to the fact that from the point of view of the steady—flow problem,
the acoustic case has infinite cross section. The infinity at M, =

i8 due to the same reason.

Accumilated Growth and Reflections of the Energy of a Short
Disturbance as a Function of Steady—Flow Mach Number

The basis for the calculation of the accumulated growtha is the
‘following definite integral over the pulse length Ay at a given
‘ time te

f(Eo + E)(bo + P)F dy _onpoF dy

which when the eecohd—order'terms are negligible compared with first—

order terms is equal to
proE dy + fFEoo ay (90)

In the above expressions, E + E, 1is the total convective energy
gtored per unit mass of the small disturbance

¥e _
E + E5 = 5 + ch 8p
¥2 A2
=i ————— -9 1
AR Py B (92)

and Ej " 18 the contribution of the- steady flow to the convective energy
of the small disturbance
2
v,
E, = —%— + ¢, Ty — eg - (92a)

or, since E, 1is a steady—flow contribution, it may also be written in
the form '

"B, =2 — 20— ¢, _ : (92v)

The quantity eg 18 an arbitrary constant, which enters equation (91)

because the convective energy is a potential and, therefore, can be
- referred to an arbitrary level. The terms V, T, and A are the total
values of the velocity, absolute temperature, and velocity of sound,
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respectively. Neglecting the second—order terms, which are negligible when
compared with the first—order terms, in equation (91) gives

2apa
= vV 4 —
E Vov + 7(7 _ 1) (93)
The substitution of equation (85), «(87), (92b), (93), (39),
and (40) into equation (90) results in
| 1+ Z—E;; 2
| FooE dy + | FEgp dy = C3 Pay + = l)N:% C3 | Pay
% \ V4 1
| C, 1+ == M2
: 3 5
‘ —€eq - P4 (9k
| 0 a02 Mo J (94)
j The substitution of equation (83) into equation (94) gives
i y — 1 2
: 1 + Mo
FQOE dy + FEpdy:.CCe [ MO + 1 \[ 2
o 3 | Vl + 2;5;; M2 7 - U Mo
y—-1.,2
oL+ L=\ (95)

- 25 W

For reasonable values of the constant €, the accumulated growth
of the energy of a short disturbance shows & behavior similar to that of

the pulse area; namely, it has an extremum at M, =,d7 E il which

equals VE- for air and shows no special behavior at M, =

CONCLUSIONS

Part I.— The point—by—point method developed for the calculation of
unsteady flows through tubes with variable cross section permits a simple
presentation of the interaction of strong shocks and large temperature
contact discontinuities, a detailed treatment of which had not been given
go far, The point—by—point method permits furthermore a presentation of
shock calculations and calculations of flows with initial entropy gradient
in a2 form convenient for computation by use of computing machines. Under
certain assumptions the formulas established may also be used for the
calculation of flows with continuous heat addition over a large space.
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Part II.— The calculations, made of the flow pattern created by
bursting into a vacuum of a diaphragm at the minimum section of a
supersonic nozzle without a second throat, indicate the following:
The transition time from the starting of the flow to the attainment
of approximately steady flow conditions is sufficiently short to
permit the use of very—short—duration tests. The transition time for
the specific nozzle is presented in such a form that a "similarity
rule" can be established concerning the transition time for nozzles
of different size but of the same or affine shape.

Part IIT.— The restriction to short disturbances permits a
gimple presentation in terms of steady~flow Mach number of the growths
and reflection of pulse area, mass, and energy of a disturbance '
traveling through a steady flow in a tube with variable cross section.
The calculations show the interesting result that the conditions for
zero reflection of mass, energy, and pulse area exist at a steady—flow
Mach number M, = d;—gfi (which equals {5 for air), where 7 1is the

ratio of specific heats, rather than at My = 1; they also show that
for practical purposes for the rarnge of Mach number from 1 to 5 the
reflections are small enough so that the mass, energy, and pulse area
of the original disturbance may be considered constant. However, at
low subsonic and at high supersonic Mach numbers, the reflections may
not be.neglected.

3

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., January 14, 1949
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TABLE I

| VARTATION OF ae/al WITH Av/ay, fufe,

AD TITI FOR A SHOCK IN AIR

[7 = 1.&]

Av/al ag/al fufaq TI ov 8y 82/31 Lu fay II
0 1.0000 [ 1.00 | 1.00000}| 0.694% | 1.1490 | 1.50 | 0.929&
«0330 | 1.0066 | 1.02 «99990 | | 7184 | 1.1548 | 1.52 «92336
0654 | 1.0131 | 1.04 «99990 oTh22 | 1.1606 | 1.54 «91667
0972 | 1.0195 | 1.06 «99970 7658 | 1.1664 | 1.56 «90975 .
1284 | 1.0257 | 1.08 «99950 07892 [ 1.1723 | 1.58 «90253
.1591 | 1.0320 | 1.10 099890 [ | .8125| 1.178L| 1.60 «89526
«1893 1 1.038L | 1.12 «99830 08356 | 1.1840 | 1.62 .88763
<2190 | 1.04k2 | 1.1k «99721 85851 1.1899 | 1.64 87989
2483 | 1.0502 | 1.16 «99602 .8813 | 1.1958| 1.66 .87199
2771 | 1.0561 | 1.18 | .99453 <9040 | 1.2017 | 1.68 .86393
+3056 | 1.0621 | 1.20 99285 «9265 | 1.2076 | 1.70 85572
¢3336 | 1,068 | 1.22 «99069 9488 1| 1.2136{ 1.72 84731
«3613 | 1.0738 | 1.24 98834 9711 | 1.2195] 1.74 .83893
«3886 | 1.0797 | 1.26 98571 09932 | 1.2255| 1.76 .83029
4156 | 1.0855 | 1.28 9870 || 1.0152 | 1.2315| 1.78 8156
L4231 1.0913 | 1.30 «97934 | | 1.0370 | 1L.2376| 1.& .81261
U687 | 1.0971 | 1.32 97570 | | 1.0588 | 1.2436| 1.8 8379
A49k8 1 1.1028 | 1.34 9718 | | 1.080L4 | 1.2497 | 1.84 79472
«5206 | 1.1086 | 1.36 «96759 | | 1.1020 | 1.2558| 1.86 78573
5461 | 1.1144 | 1.38 96302 | | 1.1234 | 1.2619| 1.88 77658
© o5714 | 1.1201 | 1.koO 9582 | | 1.14h7 | 1.2680 | 1.9 76740
- 5965 | 1.1259 | 1.h2 «95302 | | 1.1660 | 1.2742 | 1.92 <7589
6213 | 1.1317 | 1.44 U760 || 1.1871 | 1.280L4 | 1.9k . 74884
6459 | 1.1374 | 1.46 4197 | | 1.208 | 1.2866] 1.96 «73954
6703 | 1.1432 | 1.48 93598 1.2291 | 1.2928| 1.98 «T73025
S 1.2500 | 1.2990 | 2.00 .72093

~RAE
N
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TABLE IT

d(ap/ay)
VARIATION OF ————— =m WITH Av/a}
d(av/ay)

FOR A SHOCK IN ATR

G- 2.0

d(ar/a
Av/&l 2/_.}.)_ =m

d(av/aqy)
0 0.2000
.05 - .2003
. .10 .2011
A5 .2024
.20 .2041
25 © L2062
.30 .2089
.35 - .2120
Ty . .2152
A5 .2189

.50 - 2229 .

.55 2270
.60 .2316
.65 .2363
.T0 2412
15 2462
.80 . .2514

.85 2567 .
.90 - .2620
.95 - 26Tk
. 1,00 L2729
1.05 .2839
1,10 .2890
1.15 .2948
1.20 .3008
1.25 .3073
8.00 .5106

NAGR

7
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TABLE III

VARIATION OF —3IL = n yIrE ap/a;

d(an/a1)

FOR A SHOCK IN AIR

[r = 1.4]

arIT aTT
ae/al —_—_ ag/al —_——  _ =n
d(ap/e1) Wap/a1)
0 0 1.1490 - —1.094kL
1.0066 —.0041 1.1548 -1,1347
1.0131 -.0176 1.1606 -1,1720
1.0195 -.0380 1.1664 -1,2076
1.0257 —-.0652 1.1723 =1.2413
1.0320 —.0980 1.1781 ~1,2720
1.0381 —.1367 1.1840 - -1.3015
1.0Lk2 -.1786 1.1899 -1.3286
1.,0502 —.2243 1.1958 -1.3528
1.0561 —.2724 1,2017 -1.3756
1.0621 —.325h 1.2076 ~1.3959
1.0680 - 3777 1.2136 ~1.,4145
1.0738 -.14316 1.2195 -1.4311
1.0797 —.1883 1.2255 ~1,4458
1.0855 —.5430 1.2315 -1,4583
1.0913 -.5982 1.2376 ~1.4696
1.0971 -.6537 1.2436 -~1.4785
1.1028 -.7079. 1.2497 ~1.4862
1.1086 -. 7619 1.2558 =1.4923
1.11kk -.81k45 1.2619 -1,4967
1.1201 —.8649 1.2680 -1.4993
1.1259 —-.9151 1.274k2 -1.5009
1.1317 —.9625 . 1.2804 -1,5012-
1.1374 -1.0081 1.2866 -1,5000
1.1432 -1.0522 1.2928 | —1.4977
1.2990 —=1.4940
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TABLE V

NUMERICAL RESULTS OF CALCULATIONS FOR TRANSITION FROM UNSTEADY TO STEADY FLOW

&5t agt by u v/ag | afag M =5t gt A u v/ay | a/a, M
1line line
y = —0.2325 y =0.5
-1, o Yo . 8 . . -1, o t, Yo . %
F = 1.340; My = 0.500; cot™IM, = 63°26%; i " 0.48; %" 0.976| | F = 2.107; M, = 2.255; cot™M, = 23°55'; a5 " 1.59; a " 0.703
i} {Concluded)
0.1 ---- cees | eme-- 1.2 2.hk2 .02 | 3.28 | 1.65 674 2.448
2 meee | veme | mee-- 1.3 2.639 .01 3.28 1.65 673 2,451
.3 0.49 0.951 1.h 2.835 .02 | 3,25 | 1.64 671 2.422
R .73 932 1.5 3.029 .02 3.23 1.63 679 2.400
.5 .79 .930 1.6 3.22k | .02 7| 3.26 | 1.6% 676 2.426
.6 .81 .934 1.7 3.420 .03 3.26 1.65 677 2.k37
.7 .78 .940 1.8 3.716 .04 3.26 1.65 .678 2.433
.8 275 .9u7 1.9 3.817 05 3.26 1.66 679 2,444
.9 T2 .952 2.0 4,021 .05 3.26 1.66 .679 2.4k
1.0 .69 .957 2.1 4.232 .13 | 3.26 | 1.70 .687 2474
1.1 EEEEE IESEE O 2.2 4.5 22 | 3.00 | 1.56 T2 2.191
. 1.2 EEEE A Bl i 2.3 4.681 .21 3.05 1.63 .16 2.276
1.3
1.
1.5 | ----- cmme | oo ----
L 1.6 | mme-- —--- === meme | memem | emees y =1.0
1.7 3.034 .29 .61 45 .968 468 v
1.8 3.229 .30 .60 45 .969 469 F = 3.508; M, = 2.802; cot™lM, = 19°38'; 2 = 1.75; % _ o.624
1.9 3.425 31 .60 46 .970 469 20 %0
2.0 3.621 31 59 .45 971 467
24 3.819 31 59 45 971 166 0.1 0.610 | 0.5% | 4.68 |2.61 |o0.u78 5.460
2.2 4.018 30 61 46 .969 475 .2 .801 51 k.46 2.49 503 4.950
.3 .985 47 %.30 1.92 523 3.671
. 1.165 b2 k.10 1.84 548 3.357
y=0 . .5 1.343 .39 | k.01 [ 1.8 560 3.232
.6 1.522 L34 3.96- | 1.81 .570 3.175
. a .7 1.702 30 3.92 1.81 .578 3.131
F = 1.0; My = 1.0; cot My = 45%; 2 = 0.913; 2 = 0.913 .8 1.886 .27 3.90 | 1.82 .583 3.121
20 20 .9 2.073 .25 | 3.89 | 1.8 .586 3.10%
1.0 2.263 2L 3.88 1.82 .588 3.095
0.1 0,170 0.01 1.67 0.84 0.83% 1.007 1.1 2.456 .22 3.86 1.82 .591 3.076
.2 .349 .05 1.66 .86 .839 1.025 1.2 2.653 .23 3.86 1.82 .591 3.079
.3 522 .10 | .65 .88 L8is- L 1,081 1.3 2.851 23 3.8 {18 593 3.052
A 716 .15 | 1.63 .89 .852 1.044 1.4 3.048 22 | 3.8 |1.82 .592 3.074
-5 .881 .20 [1.61 .91 .859 1.059 1.5 3.24% 23 | 3.8 {1.81 593 3.052
.6 1.058 .25 1.58 .92 .867 1.061 1.6 3.437 22 3.84 1.81 594 3.047
.7 1.230 .29 1.5% | .92 .875 1.051 1.7 3.631 20 3.83 1.82 597 3.048
.8 1.423 .32 1.52 .92 .880 1.045 1.8 3.828 .20 3.85 1.83 .595 3.075
.9 1.609 .35 | 1.kg .92 .886 1.038 1.9 b.027 19 | 3.8 [1.83 597 3.065
1.0 1.815 37 147 .92 -890 1.033 2.0 4.232 19 | 3.8+ |1.83 .597 3.065
1.1 [.2.009 .37 | 145 .91 . 1.020 2.1 4.4k1 13 | 3.8 | 1.8 .603 3.084
‘1.2 2.210 238§ 1.43 91 -895 1.016 2.2 L.671 .16 | 3.84 | 1.8 .600 3.066
1.2 2,400 .38 | 143 .91 .895 1.016 2.3 4.897 .20 | 3.67 [1.79 | .623 2.873
1ok 2.591 .3 1.k2 .90 .896 1.004
1.5 2.780 .38 1.k2 .90 .896 1.004
1.6 2.980 .39 | .42 .91 .897 1.0k 5 =2.0
1.7 3.187 39 |1 31 .90 .396 i‘gg
T, 4 3. %0 1.51 .91 .899 . _ -
ig %%lg 50 | 1.k .91 .89%9 1.012 F = 6.177; Mg = 3.398; cot™lMg = 16%24"; ;i’ = 1.86; % = 0.549
2.0 3.778 ko 1.4 .91 .899 1.012
2.1 3.982 38 1.42 .90 .896 1.00%
2.2 4.185 35 | 1.49 .92 886 1.038 0.1 0.998 | 0.75 | 5.24 [=2.25 {o.k01 5.611
. C.2 1.196 .13 | 5.07. | 2.7 420 5.166
.3 1.387 69 | k91 | 211 440 4.795
-0 Wb 1.573 65 | v.77 | 2.06 458 4,497
y=05 5 1.756 | .62 | n.ew |2.00 | a7 | weeko
.6 1.936 . k.52 1.92 .90 4.020
. 2.11 . [ 1. 501 912
F = 2.107; Mo = 2.255; cot™ Mo = 23955'; % = 1.59; ;Eol = 0.703 ‘g . 2.303 5 .‘,,3 1.35 ‘;,7 g_&s
9 2.485 .50 | 4.38 | 1.9% .512 3.
- 1.0 2,674 .48 | k.37 | 2.95 515 3.786
1.1 2.867 47 k.36 1.9% 517 3.763
0.1 0.407 0.32 4.02 1.85 0.568 3.257 1.2 3.064 A7 7] 436 1.95 .518 3.756
.2 .593 .30 3.82 1.76 .588 2.993 1.3 | ----- ---- === 1.94 .519 3.734
.3 LT .25 | 3.57 1.66 .6138 2.686 1.} 3.459 47 .3y 1.94 519 |. 3.738
R .9kg .20 3.45 1.63 .635 2.566 1.5 3.656 b7 .34 1.9% .519 3.738
.5 1.127 .15 3.38 1.62 647 2.503 . 1.6 3.850 A7 4.33 1.93 520 3.711
.6 1.306 10 3.35 1.63 .655 2.488 1.7 L.043 46 4,32 1.93 .522 3.697
N 1,488 .07 | 3.34 1.64 .659 2.488 1.8 %.238 450 )b, 1.9% 523 3.709
.8 1.67h .04 3.31 1.68 665 2.526 1.9 5.436 Ah o b32 1.94 .52k 3.702
.9 1.860 .01 3.30 1.65 .669 2.466 2.0 .61 .43 k.32 1.95 .525 3.714
1.0 2.050 0 3.29 1.65 671 2.459 2.1 5.845 .38 k.32 1.97 .530 3.727
1.1 2.245 .01 3.29 1.65 672 2.455 2.2 5.078 . 4.33 1.96 .525 3.733
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TABLE VI

7 -1

2 Mo

VARTATION WITH MACH NUMBER OF THE FUNCTION f(Mo)==V/
1+

REPRESENTATIVE OF THE ACCUMULATIVE GROWTH

OF PULSE AREAS FOR ATR

[7 = 1.4

£(M5)

oz

0
.316
543
.690
.798
.913

1.002

1.017

1.029

1.045

1.054

1.057

1.056

1.054

1.035
.976
.913
.690
.22
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TABLE VII

y=-1 .o
2 Mo

Mo
REPRESENTATIVE OF THE ACCUMULATIVE GROWTH OF MASS FOR AIR

[7= 1)

o ‘ 1+
VARIATION WITH MACH NUMBER OF THE FUNCTION f(Mb) = J

M, £(M,)
} O -

.l 3.165

.3 1.842

5 1.4hg

.7 1.252
1.0 1.095
1.4 997
1.5 983
1.6 972
1.8 957
2.0 «9L9
V5 946
2.4 Ob7
2.5 NeXTe)
3.0 «966
4o 1.025
5.0 1.095
100 1.449
10040 k473
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Figure 1.- Diagram for the construction of point C in a flow with
entropy gradient through a tube of variable cross section,
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Figure 2.- Diagfam for the construction of point C in a flow through
a tube of variable cross section containing a shock.
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Figure 5.- Variation of TI with ag/a; for a shock in air. y = 1.4,
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Figure 6.- Variation of ——————— =n with a,/a; for a shock in

air. 7 = 1.4.
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Figure 7.- Sample results of bursting of a dlaphragm presented in a
diagram of y against agt.
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Figure 8.- Diagram for the construction of a point of the time-history
curve of the temperature contact discontinuity.
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Figure 9.- Results of bursting diaphragm into vacuum for tube with
constant cross section presented in the plot of y against aot.
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Figure 12.- Presentation of disturbance velocities in the plot of \Jai
against 'v.
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Figure 15.- Large disturbance moving through sudden change in cross
section presented in the plot of y against aot.
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aot

Figure 16.- Conservation of potential presented in the plot of y against éot.
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Figure 17.- Motion of a small disturbance through a small discontinuous
change in cross section.
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