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NATIONAL ADVISORY COMMITTEE FOR m O N A U T I C S  

T E C m C A L  NOTE NO. 1879 

C R I T I C A L  A X I A L C O ~ S ~ I V E  STIiESS 

O F  A C& RECTANGULAR PANEL WITH A 

CENTRAL LONGITUDINAL STI lTE3lER 

By M m y  Schildcrout and Manuel Stein 

SUMMARY 

A theoret ical  solution is  presented f o r  the c r i t i c a l  axial-compressive 
s t r e s s  of a simply supported curved rectangular panel having a central  
longitudinal s t i f fener  offering no tors ional  restraint. The resu l t s  are 
presented i n  the form of computed curves and tables.  

Because a panel of moderate or large curvature buckles i n  compression 
at  a s t r e s s  lower than the theoret ical  value, a method i s  suggested t o  
a i d  i n  determining the c r i t i c a l  stress f o r  use i n  design. 

INTRODUCTION 

A s  part  of an investigation t o  determine whether the c r i t i c a l  axial- 
compressive load of a cumred rectangular panel can be increased by means 
of a central  s t i f fener ,  panels having central  chordwise s t i f feners  were 
t reated i n  reference 1. The present paper gives an analysis fo r  panels 
having a central  longitudinal s t i f fener .  By means of these two papers, 
the most effective way of reinforcing curved rectangular panels w i t h  a 
single central  s t i f fener  t o  resist ax ia l  compression can be determined. 

A theoret ical  solution, based on small-deflection theory, is  derived 
f o r  the c r i t i c a l  axial-compressive stress of a curved rectangular panel 
with a central  longitudinal s t i f fener  and theoret ical  curves present the 
axial-stress coefficient as a function of the dimensions of the panel and 
the f lexural  s t i f fness  and cross-sectional area of the s t i f fener .  Because 
unstiffened panels of aoderate or large curvature buckle i n  axial  c o w  
pression at loads below the theoretical ,  a procedure i s  presented which 
modifies the theoret ical  solution f o r  the c r i t i c a l  compressive s t r e s s  of 
st iffened curved p n e l s  and permits an approximation t o  be made f o r  the 
actual compressive s t ress  of st iffened panels. 
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SYMBOIS 

a 

b 

ax ia l  dimension of panel 

circmnferential dimension of panel 

integers k, m, 
P, q J 

r 

t 

W 

radius of curvature of panel 

thickness of panel 

displacement of point i n  median surface of panel i n  rad ia l  
direction, positive outward 

X ax ia l  coordinate of panel 

circumferential coordinate of panel Y 

A cross+iectional area of s t i f fener  

D flexural s t i f fness  of panel per u n i t  length 

E Young's modulus of e l a s t i c i ty  

I 

L 

2 

kX 

B 

Y 

effective s t i f fener  moment of i ne r t i a  

length of cylinder 

curvature parameter (3 \ i s )  rt 

(3 aspect r a t i o  of panel 

r a t i o  of f lexural  s t i f fness  of s t i f fener  t o  flexural 

(E) s t i f fness  of plate 



6 r a t i o  of cross-sectional. area of s t i f f ene r  t o  transverse 

(it) cross+ectional area of plate 
. 

P Poisson’ s rat i o  

c r i t i c a l  axial-compressive stress OX 

Dirac 6 function defined by 

where 

I 

4 v inverse of v4 defined by T d  (.“w> = w 

RESULTS AND DISCUSSION 

Theoretical c r i t i c a l  stresses.- The c r i t i c a l  uniform axial-compressive 

s t r e s s  of a simply supported curved rectangular panel w i t h  a centrally 
located longitudinal s t i f fener  having zero torsional s t i f fness  (see f ig .  1) 
is determined f r o m  the equation 

- k$D 
Ox - - 

b2t 

A theoret ical  solution giving 

panel and the f lexural  s t i f fness  and cross-sectional area of the s t i f fener  
i s  derived i n  the appendix. The resu l t s  of t h i s  solution are  plotted i n  
figure 2 t o  indicate the relationship between the s t r e s s  coefficient k, 

kx as a function of the dimensions of the 

E1 and E (the r a t i o  of the f lexural  s t i f fness  of the s t i f fener  t o  that of 

the plate)  f o r  specific values of the curvature parameter Z and 6 (the 
r a t i o  of area of s t i f fener  t o  area of plate) .  The horizontal portions of 
the curves indicate the range i n  which buckling occurs w i t h  no deflection 
of the s t i f fener  so that  an increase i n  the f lexural  s t i f fness  of the 
s t i f fener  is  not accompanied by a corresponding increase i n  the compressive- 
s t r e s s  coefficient.  
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A sharp break is found t o  ex i s t  at the lower end of ~ome of the 
curves. 
two half waves in the axial direction a t  low values of t o  one half 

wave i n  the axial direction a8 

pat tern is due t o  the increasing e f fec t  of the column action of the stiff- 
ener as compared with the plate  action of the sheet as the f lexural  s t i f f -  
ness of the s t i f f ene r  increases. Because a %Imply supported column has 
i t s  lowest c r i t i c a l  load when it .buckles in to  a single half wave, the panel 
w i l l  a l so  buckle in to  one half wave i n  the axial direction when a is  

Db 
suf f ic ien t ly  large. 
of E as the curvature parameter 2 increases, because the plate strength 

increases with curvature, and, thus, less f lexural  stiffmss of the stiff- 
ener is required t o  make column action predomimte. 

This break corresponds t o  a change in the buckle pattern from 

increases. This change i n  buckle 55 

The break i n  the curves occurs at decreasing values 

Db 

The decrease i n  the c r i t i ca l+ t r e s s  coefficient kx with increasing 

r a t i o  of s t i f fener  area t o  plate area is  also explained by the colum 
action of the s t i f f ens r  under end load, because a column buckles at a 
decreasing stress i f  the area increases while thg f lexural  s t i f fnes s  
remains constant. 

Figure 2 a l so  shows tha t  the e f fec t  of the central  longitudinal s t i f r -  
ener decreases with increasing values of the curvature paramter Z. A s  
the curvature parameter Z increases, the number of buckles i n  the cir- 
cumferential direction increases. 
additional f lexural stiffness at the center of the panel has l i t t l e  effect  
because the s t i f f ene r  remains almost s t ra ight .  

When there is more than one buckle, 

A comparison of the theoret ical  values f o r  the c r i t i c a l  axial- 
compressive-stress coefficients of unstiffened rectangular curved panels 
and the coefficients corresponding t o  buckling of the st iffened plate w i t h  
a node at the s t i f f ene r  i s  presented i n  table  1. 
i s  a measure of the effeztiveness of a central  longitudinal s t i f f ene r  i n  
reinforcing curved panels. A comparison of the results of table 1 w i t h  
the corresponding results of reference 1 indicates t ha t  a panel of moderate 
curvature ( Z  < 30) may be more effect ively reinforced t o  resist ax ia l  com- 
pression by a longitudinal s t i f f ene r  at the center than by a chordwise 
s t i f fener .  
w i s e  s t i f fener  can appreciably strengthen a panel of higher curvature 
(2 > 3 O ) .  The comparison a l so  shows tha t  whereas a central  chordwise 
s t i f f ene r  does not strengthen a panel t o  any appreciable extent when the 
r a t i o  of axial t o  circumferential dimension is  greater than 1, a central  
longitudinal stiffener may considerably strengthen such a panel. 

The percentage increass 

Neither a central  longitudinal stiffener nor a central  chord- 
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timate of desim c r i t i c a l  stresses.- Unstiffened panels of moderate 
and high curvature buckle in  ax ia l  compression at a s t r e s s  lower than the 
theoret ical  stress predicted on the basis of small-deflection theory. 
(See reference 2.) 
therefore, may also be expected t o  buckle at a stress lower than the theo- 
r e t i c a l  s t ress .  In  the absence of direct  experimsntal information, the 
following procedure, which makes allowances f o r  the f ac t  that an axial ly  
loaded stiffewr wi l l  buckle at a s t r e s s  close t o  the theoretical  s t ress ,  
i s  offered as a reasonable mthod for obtaining an estimate of the actual 
c r i t i c a l  s t r e s s  of the panel. 

Curved parwls with a central  longitudinal s t i f fener ,  

. 

From the appropriate part of figure 2, determine the difference 
between the buckiling stress of the st iffened panel and that of the unstiffened 
panel (reference 2). To t h i s  difference add e i ther  the design s t r e s s  of an 
unstiffened panel having the same value of Z and r/t, as obtained from 
figure 3 or 4, or the flat-plate buckling s t ress ,  whichever is  larger.  
The flat-plate values may be obtained from column (a)  of table 1 f o r  
If the circumferential dimension of the pans1 is greater than the ax ia l  
dimension, the design curves f o r  simply supported cylinders from figure 3, 
taken from reference 3, should be used. If the axial length is  equal t o  o r  
greater than the circumferential length, the design curves for simply sup- 
ported long curved plates from figure 4, taken fron reference 2, should be 
used. These values are  always conservative. The resul t ing s t r e s s  should 
be a fair approximation of the actual c r i t i c a l  stress of a stiffened panel. 

Z = 0. 

CORCLUSIONS 

The theoret ical  d y s i s  shows that for cer tain curvatures a curved 
rectangular plate can be appreciably strengthensdto r e s i s t  ax ia l  c o w  
pression without buckling by the we of a central  longitudinal. s t i f fener .  
The strengthening ef fec t  decreases as the curvature parameter increases. 
Semiempirical results are  presented fo r  the estima.tion of the axial- 
compressive bucuing stress t o  be used i n  the design of a curved rectangular 
plate with a central  longitudinal s t i f fener .  

Langley Aeronautical Laboratory 
National Advisory Committee fo r  Aeronautics 

Langley A i r  Force Base, Va., March 15, 1949 
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APPENDIX 

THEORETICAL SOLTJTION FOR CRITICAL AxIAIrcOMpRESSIVE 

STRESS OF A CURVED RECTANGULAR PANEL WITH A CFNTRCU; 

LONGITCTDINAL STIFFENER 

Equation of equilibrium.- The c r i t i c a l  uniform axial-compressive 

s t r e s s  of a curved rectangular panel having a central ly  located longi- 
tudinal s t i f fener  of zero torsional s t i f fness  (see f ig .  1) may be obtained 
by solving the  equation of equilibrium (reference 4) 

The equation of’ equilibrium may be represented by 

Q(w) = 0 ( 2 )  

Method of solution.- Equation (1) may be solved by the Galerkin 
method as outlined i n  references 4 and 5.  
simply supported rectangular panels, the following ser ies  expansion is  
used for  w 

A s  suggested i n  reference 4 f o r  

00 

n*Y 
b w = 1 % s i n  sin - 

m=l  n=l 
(3 )  

The coefficients 
the relationships 

% are determined by the condition tha t  they sa t i s fy  

( P  = 1, 2, 3, ... ) (4) 

(9  = 1, 2 ,  3, . . . I  

QJCY 
b s i n  E s i n  - Q(W) iiy d~ = o 



Substi tuting f o r  w from equation (3 )  i n  equation (4) and performing 
the indicated operations result i n  the following set of l inear  hmogeneous 
algebraic equations f o r  the coefficients %: 

+ 2(yp4 - IftSp2p2)sin s i n  - kfi = 0 2 k 

( P  = 1, 2, ...> 
( 9  = 1, 2, ...> 

These equations may be wri t ten as two independent sets: 

( 5 )  

(P = 1, 2 ,  3, ...) 
(a  = 1, 3, 5 ,  * . - )  

corresponding t o  buckling across the s t i f fener  and 

(P  = 1, 2, 3, ...> ( 7 )  
( 9  = 2 ,  4, 6, ...> 

corresponding t o  buckling with 

% = ( d  + 42P2)2 

Equation (6) mas be rearranged 

a node at the stiffener where 

- $P2P2 
12 z2f34,4 + -  
fi4 (3 + q*p2)‘ 

t o  yield 

( P  = 1, 2, . * * )  
( 4  = 1, 3, . . . I  
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- s-1 
Multiplication of each equation by (-1) and swmnation with respect 
t o  q give 

Dividing equation ( 9 )  by the quantity 

and solving for 7 yield 

Equation (loa) i n  different form i s  

-1 882 (lob) E1 
+ kx 2 

P 
Db= 

1 

The value of 

the maximum value of - needed t o  maintain equilibrium of the panel- 

s t i f fener  combination for given values of 

p t o  be used i n  equation (10) is  tha t  value which yields 

Db 
kx, P, 6, and 2.  

The solutions of equations (8) which correspond t o  buckllng with a 
node at the stiffener are given by 

( P  = 1, 2, ...) 
(9 = 2, 4, ...) 

%¶ = O 



or 

( 2  2 2 ) 2 + Q  z2fi4p4 - k$$2 = 0 4 2 2 2 2  
P + q P  

ll (P + s P )  

9 

(P = 1, 2, ...) 
(4  = 2, 4, ...) 
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a 
b 

- 2 
3 

1 

1.5 

2 

. 

(b 1 
Buckling 

r i t h  node at 
st iff  e m r  

17.4 
17.5 
18.1 
23.7 
70.4 

16.0 
16.2 
16.8 
22.9 
70.4 

16.0 
16.2 
16.8 
22.9 
70.8 

16.0 
16.8 
22.9 
70.3 

708 

709 

708 

708 

TABU3 1.- CRITICAL A x L A L c O M € ! E ? E S S I V E - S ~  COEFJ?ICIENTS 

' Percentage increase 
Q ? k M x  100 

(4 

269 
228 
147 

1 3  
0 
1 

300 
240 
137 
9 
0 
1 

269 
221 
134 

8 
1 
1 

300 
137 
9 
0 
1 

F A T  

FOR BUCKLING WITHOUT STIFFENER AND FOR BUCIFI;ING WITH 

z = S d S  
rt 

0 
5 

10 
30 
100 
1000 

0 
5 

10 
30 

100 
1000 

0 
5 

10 
30 
100 
1000 

0 
10 
30 
100 
1000 

NODE AT STITFEZEX OF?XRING ZEZO TORSIONKL RESI'RAW 

- 
(4 

Buckling 
without 
st if  fener 

4.70 
5.35 
7-32 
21.1 
70.2 

703 

4.00 
4.77 
7.08 
21.1 
70.3 

703 

4.34 
5.05 
7.18 
21.2 
70.2 

704 

4.00 
7.08 
21.1 
70.3 

704 
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Figure 1.- Coordinate system used in the m l y e i s .  
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16 

8 

n 0 
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Figure 2.- Critical axial-compressive-stresa coefficients for rectangular 
curved plates with a central lohgitudinal stiffener. 
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8 16 

(b) ; = 1. 

Figure 2.- Continued. 
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24 

16 

a 

0 
16 32 0 16 32 

El 
Db 

( c )  '5; a = 1.5. 

Figure 2.- Continued. 

- 
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16 

(a) a = 2. b 
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