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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 188)4-

NOTE ON TEE ACCURACY OF A METHOD FOR RAPIDIZf CALCULATING

THE INCREME1)TS IN VELOCITY ABOUT AN AIRFOIL 

DUE TO ANGLE OF ATTACK 

By Laurence K. Loftin, Jr. 

STJNMARY 

The accuracy of the method presented in NACA Rep. No. 824for rapidly 
calculating the increment in the velocity distribution about a symmetrical 
airfoil due to angle of attack has been investigated by use of the exact 
potential-flow-theory solution of the velocity distribution about an 
arbitrary airfoil given in NACA Rep. No. 452. The analysis shows that the 
rapid method described. in NACA Rep. No. 824 evaluates the effect of angle 
of attack on the net velocity distribution at any point on a symmetrical 
airfoil with a maximum error which can be expressed as an increment in 
velocity ratio by the relation (i - cos	 where a is the angle 

of attack and	 is the velocity ratio on the airfoil at zero lift 
calculated according to the exact theory. 

• A method is describe& in reference 1 which permits the rapid esti-
mation of the pressure distribution at any lift coefficient about large 
numbers of airfoils from a rather limited amount of theoretical data. 
The method is. based on the assumption that the velocity at any point on 
an airfoil can be resolved into components which are attributable to the 
Induced. velocity on the basic thickness form at zero lift, the load 
distribution due to angle of attack, and the load distribution due to 
camber. The accuracy of the method described in reference 1 for obtaining 
and applying the increment in velocity associated with the loading due 
to angle of attack has been open to some •question. The purpose of the 
present paper Is to give an exact account of the method by means of which 
the Increment in velocity due to angle of attack is obtained and the 
inaccuracies to which the assumptions involved in the method may lead. 
The analysis Is concerned only with symmetrical airfoils and does not 
consider any possible effects of camber on the velocity increments due 
to angle of attack.
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COEFFICIEETS AND SYMBOLS 

reference length 

airfoil chord 

distance along airfoil chord 

section lift coefficient 

section normal-force coefficient 

section angle of attack 

pressure coefficient
\ q. 

free-stream total pressure 

local static pressure 

free-stream dynamic pressure 

velocity ratio for incompressible flow 
(ZV)

	 . 

local velocity at some point on the airfoil 

free-stream velocity 

increment in velocity ratio caueed by additional type loading 
due to angle of attack 

PR	 resultant, pressure coefficient; difference between local 
upper-surface and lower-surface pressure coefficients at 
the same chordwise position 

r	 circulation 

$1 
K	 parameters which are functions of airfoil geometry (reference 2) 

l'oj 

Subscripts 

U	 upper surface 

L	 lower surface 

0	 conditions calculated for airfoil at zero lift 

2

a 

C 

x 

Cl, 

cn 

ct 

S 

H0 

p 

q0 

V 

V 

LVa 

V
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DISCUSSION 

The equation given in reference 1 for obtaining the net velocity 
ratio v at some point on a symmetrical airfoil at a lift coeffi-
cient cj is

(1) 

Values of	 the velocity ratio for the symmetrical airfoil, at zero 
tVa 

lift, and -v-., the incremental velocity ratio due to angle of attack for 

a lift coefficient of 1.0, are tabulated in reference 1 for a large 
number of airfoils. The sign convention followed is that all velocities 
which cause a flow in the direction of the trailing edge are positive. 

A negative sign is therefore employed with - 	 when the net velocity 

ratio \/—S is calculated for the, lower surface at positive lift coeffi-
cients. 

The values of	 presented in reference 1 for the various basic 

thickness forma at zero lift were calculated by the exact theory of 

a 
Theodorsen and Garrick (reference 2). The values of 

Lv 
-i-- were calcu-

lated by means of the following relation:

(2) 
V	 2 

where	 and A are the upper-surface and lower-surface velocity 
' ratios, respectively, calculated by the exact theory for some lift coef-

ficient c 1 which is usually small. Values of -v- for a lift coef- 

ficient of 1.0 were obtained by linearly scaling the values given by 
equation (2). Two basic assumptions are implicit in equations (1) 
and (2): first, that the mean of the upper-and lower-surface velocity 
ratios at any lift coefficient, given by 

	

\/5meanU2	 (3) 

is the same as the velocity ratio calculated for the same point on the 
airfoil at zero lift	 and second, that the incremental velocity
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Va. 
ratio V is a linear function of lift coefficient. The validity of 
these two assumptions will now be Investigated.. 

From the exact potential-flow theory (reference 2), the following 
equations may be written for the velocity ratios on the upper and lower 
surfaces of a symmetrical airfoil: 

K[sln(cL +) + sin	 (4) 

FSL = K[Bin(a - ) + sin cj	 (5) 

where K and 0 are functions of only the airfoil geometry and have the 
same value at corresponding points on the upper and lower surfaces of a 
symmetrical airfoil. The angle of attack is given by a. The velocity 
distribution about the airfoil at zero lift is, of course, given by the 
equation:

/=Ks1n$	 (6) 

Since- 0 is negativeon the lower surface, equations (5) and (6) show 
that velocities which cause the flow to progress toward the trailing 
edge on the lower surface will have a negative sign. In order to be 
consistent with the previously defined sign convention, however, a nega-
tive sign must be placed in front of equation (5) . Thus - 

= -K[sin(cL - 0) + sin a]	 (7) 

-.	 An. indication of the accuracy of the assumption that 

= Voan 

can be obtained by substituting the expressions given by equations ( Ii-) - 
and (7) in equation (3) and determining the manner in which the resultant 
expression differs from the exact equation (6) for /. Performing 
the suggested substitution 

2	
= 4	 + + sin a] 2	

- $) + sin
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and expanding and simplifying give the following expression 

+ /? =
	 = K sin $ cos a	 (8) 

.2 

Equation (8) for the mean velocity ratio \[mean is seen to differ from 
the exact expression for the velocity ratio about the symmetrical airfoil 
at zero lift (given by equation (6)) only by the factor cos a. Since 
cos a is nearly 1.0 for relatively small values of a, such as would be 

of Interest, the assumption that J = Ime	 is seen to be justi-
fiable. Furthermore, the approximation is seen to be in no way dependent 
upon the chordwise position along the airfoil. 

In order to investigate the assumption that Va- varies linearly 

with lift coefficient, the expressions given by equations (1) and (7) are 
substituted in equation (2) for the incremental velocity ratio 

Ava =K 1_E in (a + 0) + sin a] + EIn (a - 0) + sin	
(9) 2 

where the upper-surface and lower-surface velocity ratios given by 
equations (4) and (7) are for some lift coefficient cl. Simplifying 
equation (9) and dividing both sides by the lift coefficient Cj yield 

Ava = K sin a(05 $ + 1) 
Vc 2	 c 

An expression relating sin a and ôj can be obtained from the following 
equation for the circulation r taken from reference 2 

r = tvae*osin a	 (11) 

where ulf is a constant for any given airfoil, V is the free-stream 
velocity, and a is a constant which is approximately one-quarter of 
the airfoil chord c. The relation between a and c varies slightly 
for different airfoils, but this variation has no bearing on the present 
discussion. The lift coefficient and the circulation are related by the 
following expression:

(10) 

r = 4vc,	 (12)
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Substituting from equation (12) In equation (U) gives the following 
relation between sin CL and c 

sin
Cl 

a. =

	

	 (13)
2te

LV 
The use of equation (13) with equation (10) for -a gives 

LVa K[cos $ +
(lit.) 

-	 2 ite 

Equation (iii. ) shows that the incremental velocity ratio does, in fact, 
vary In an exactly linear manner with lift coefficient. Equation (14) 
also provides a very convenient means for calculating the values 

L 
of v -., since all the parameters involved in equation (it-) must be 

evaluated for the calculation of the velocity distribution about the 
airfoil at zero lift. 

The analysis presented has shown that for symmetrical airfoils the 
mean of the exactly calculated upper-surface and lower-surface velocity 
ratios for any lift coefficient is related to the exactly calculated 
velocity ratio at the same point on the airfoil at zero lift by the 
following expression:

../Sinean= ..Jcosa	 (15) 

and that the incremental velocity ratio 
Lv

varies in an exactly linear 

manner with lift coefficient. The only error which will be incurred in 
the net velocity ratio as a result of employing equation (1) together with 

the values of	 calculated for the airfoil at zero lift and the values 

Av 
of - calculated from equation (2) or (lit. ) is therefore an increment in 

velocity ratio on the upper and lower surfaces which is given by (1 - cos a). 

With the aid of the results just obtained., the relation is now shown 
between the lift coefficient cz employed in equation (1), for which the 
pressure or velocity distribution is desired, and the lift coefficient which 
is obtained from an integration of the pressure distribution calculated 
according to equation (1). The resultant pressure coefficient at some 
point along the airfoil chord PR is defined as the difference between 

the upper-surface and lower-surface pressure coefficients at that point. 
An integration of PR along the chord of an airfoil at some angle of
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attack gives an expression for the normal-force coefficient en 

=f	 (i6) 

The lift coefficient is then given by the relation 

c=	 PBd 	 (17) 
cos a. Jo (C)  

since the drag is zero for perfect fluid. flow. In terns of the exactly 
calculated values of the velocity ratio for the basic thickness form at 

zero lift	 and. the values of 	 for the lift coefficient under 

consideration, the resultant pressure coefficient is given approximately 
by equation (1) as

7 

IFS0 LV ̂  
+

LV

Ava So

VI

(18) 

The substitution of the approximate expression for P (equation (18)) in 
equation (16) gives

Cn

fol, 
1Jd() (19) 

whereas the accurate expression for Cn would be 

JOl.0 

0n 	 11V'Slne	 (20) 

S 	

any (c)
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- Jmean Since	
-	 , equation (19) can be written Cos M

11-0 

 nean -d(

 

Thus, the use of the approximation	 4n an is found to result in 
the evaluation of the lift coefficient cZ instead of the normal-force

Cn coefficient Cn, inasmuch as c =
cos a 

CONCLUDING REMARKS 

The accuracy of the method described in reference 1 for rapidly 
calculating the increments in the velocity distribution about a symmet-
rical airfoil due to angle of attack is in error only by a factor cos a 
over the entire chord. In view of the discrepancies, resulting from 
the effects of viscosity, which are known to exist between airfoil 
velocity distributions calculated by any perfect fluid theory and those 
obtained experimentally, it is difficult to see how any situation might 
arise in which a theoretical, perfect-fluid velocity distribution about 
a symmetrical airfoil would be required to a degree of accuracy greater 
than that provided by the method described in NACA Rep. No. 824. 

Langley Aeronautical Laboratory 
National Advisory Ccmmdttee for Aeronautics 

Langley Air Force Base, Va., March 28, 1949 
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