
- FILE .. , .

.-5" " "

I

r

• , / <Z..
- . = _- °

Washington :

..... _,_,:-j_ei_O_O-: .,/ ..... "" "!

:t Rt|,_O_UOEDsv " I r,-

.... :l NATIONAL TECHNICAL | , t" " !';_. INFORMATION SERVICE | ._ =....i" "_ U.S. DEPART_M._E._To.g COM,MERCE I _""% "
SPRINGFIELD, VA. _.2161

.. |

. . . ,. .,.?_,;- .._ - _,-_-- .

" ;"

https://ntrs.nasa.gov/search.jsp?R=19930082569 2020-06-17T22:18:33+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42803564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 1891

ELASTIC B_KLING OF A SIMPLY SUPPORTED PLATE

UNDER A COMPRESSIVE STRESS THAT VARIES

LINEARLY IN THE DIRECTION OF LOAD]]_G

By Charles Libove, Saul Ferdman, and John J. Reusch

i,

SUMMARY

Results are presented of calculations for the elastic buckling load

of a simply supported flat rectangular plate of uniform thickness subjected

to unequal compressive stresses at two opposite edges, with a linear

variation of stress between the two edges. The difference between the com-

pressive stresses at the two loaded edges is equilibrated by shear stresses

along the other two edges. The results show that a plate with a linear stress

gradient will buckle at an average stress that is lower, but at a maximum

stress that may be appreciably higher, than the uniform compressive

buckling stress of the same plate.

INTRODUCTION

In most studies of the compressive buckling of flat rectangular plates

the compressive stress has been taken as uniform throughout the plate.

Cases of practical interest exist, however, in which the compression is not

uniform but varies from one loaded edge to the other, as, for example, when

the plate forms part of the upper or lower skin of an airplane wing in

bending.

One case of plate buckling under a load gradient is considered in the

present paper. Th8 problem is that of determining the elastic buckling

load of a simply supported flat rectangular plate under a compressive

stress that varies linearly from one loaded edge to the other, the

difference in stress being equilibrated by uniform shears along the other

two edges. (See fig. 1.) That this stress condition is a possible one,

with regard to both equilibrium and continuity, is shown in the

appendix.

Solutions by the Rayleigh-Ritz method are obtained for several length-

to--wldth ratios from 0 to _. For each length--to--wldth ratio several

ratios of minimum compressive stress to maximum compresslve stress are

considered. Some negative values are included among these stress ratios.

These values correspond to a minimum stress that is tensile rather than

compressive.
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The influence off a loading gradient on the compressive buckling of
a simply supported plate has been considered previously in reference l.
The loading gradient was exponential and the plate was assumedto have a
thickness variation estimated to give minimumweight. Because economy
of construction may often preclude the use of taper, the analysis of the
constant--thickness plate in the present paper is felt to be of interest.

The results of the present investigation are described in the section
entitled "Results and Discussion." The theoretical derivations are included
in the appendix.

SYMBOLS

a

b

P

t

E

D

x, y

W

WnLrl, wi_

win, WlJ

_mln

plate length measured in compressed direction (x-direction)

plate width

length-to--width ratio (a/b)

plate thickness

Young's modulus of elasticity

Poisson's ratio

plate flexural stiffness

coordim_tes of plate, sho,_n in figure i

lateral deflection

coefficients of Fourier series for w

longitudinal compressive stress (stress in x-direction)

longitudinal compressive stress at more highly compressed end

when buckling occurs

longitudinal compressive stress at less highly compressed end

when buckling occurs

longitudinal compressive stress at center of plate when

buckling occurs
_av

v
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r load-gradient parameter_min_
_m_

k- _tb__2

- _2D I

kmax = _max _ --

I
k _ tb2 I

av= avTD D

dimensionless stress c_fficients in terms of b

k'-- ta__2

_2D I

k' ta21

Hk_X = _m_x -_D I

I

_D J

dimensionless stress coefficients in terms of a

F potential energy

Cx, _y middle--plane direct stresses in x-direction and y-direction,

respectively, prior to buckling, positive for tension

Txy

i, J, r_
m, n,

P, q,

middle--plane shear stress in x-direction and y-direction prior

to buckling

integers; also used as subscripts

Primes (') and double primes (") are used with subscripts i, m, n, p,

and r to indicate odd and even values of the subscripts, respectively.



4 NACATN1891

RESULTSANDDISCUSSION

Graphical PresentatLon

The results of the investigation are given graphically in figures 2
to 5. In the first three of these figures the solid circles represent
calculated points. The curves were obtained by fairing through the
calculated points. There is reason to believe that these curves should
theoretically contain slight discontinuities in slope corresponding to
sudden changes in the buckle pattern. The fairing of smooth curves,
however, was felt to be Justified by practical considerations.

The maximumcompressive stress in the plate whenbuckling occurs is
given in figure 2 for several different values of length-width ratio
where

a

= (1)

and a

width.
is the plate length in the compressed direction and b, plate

The stress appears in the parameter kmax, defined as

tb2

kma x = dma x _2 D
(2)

where

G
max

compressive stress at the more highly compressed end when

buckling occurs

t

D

E

plate thickness

plate flexural stiffness

Young's modulus

Poisson's ratio

For each value of _, kma x is plotted as a function of r, the ratio of

the minimum compressive stress _min to the maximum compressive

stress _max- This ratio is usually a known constant independent of the

absolute magnitude of the load. Negative values of r correspond to

tensile values of _min"
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Figure 2 cannot contain a curve for _ = 0 (b = _ because the

paramoter kma x involves b. The curves are therefore replotted in

figure 3 in terms of k'max, where

k' = ta2 (3)

Figures 2 and 3 show that the presence of a stress gradient (r / i)

permits the plate to develop a _max that is greater than the uniform

stress required for buckling (r = i). For a given value of r this

effect becomes less pronounced as _ increases. The effect vanishes

completely for _ = _.

Although the presence of a stress gradient permits the maximum stress

in the plate to exceed its critical uniform value, it causes a reduction in

the average stress at which buckling occurs. This reduction in the average

stress is illustrated in figure 4 through use of the parameter kay , defined

as

tb2 (4)
kay = qav _2--7

where Gay is the longitudinal compressive stress at the center of the

plate when buckling occurs.

The complete longitudinal dlrect-stress picture at buckling is shown

in figure 5 for several values of _, The longitudinal compressive stress

is plotted in terms of k for 8 other than zero and k' for _ = O,

where

k = _tb---_2 (5)
_2D

_2D

Figure 5 shows at the same time the reduction in the average critical

stress and the increase in the maximum critical stress produced by a stress

gradient, and how the increase in the maximum critical stress is diminished

as the length--to--width ratio increases.
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Tabular Presentation

The basic calculated information from which the curves of figures 2
to 5 were obtained is given in table i. In the first part of the table,
calculated values of kay are tabulated against given values of r
and _ for the general case (_ _ 0). The values of kmax and k'max
plotted in figures 2 and 3 were obtained from this basic information
through the relationships

2
_kav (7)k_

.ux i + r

k'max = kmax_2 (8)

In the second part of the table calculated values of

infinitely wide plate (_ = O) are tabulated against

defined by the equation

k'av for the

r, where k'av is

k' ta2av = Oar (9)
_2D

The values of k' plotted in figure 3 for the infinitely w_de platemax

were obtained from the tabulated values of k'av through the relationship

k' = _k' (lO)
max i+ r av

CONCLUSIONS

A theoretical investigation has been made of the buckling of a simply

suppgrted flat rectangular plate of uniform thickness under a compressive

stress that varies linearly in the direction of load_ng. The parameters

in terms of which the buckling stresses are plotted are the length--to--width

ratio _ and the ratio of minimum compressive stress to maximum compressive

stress r.
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The main conclusion to be drawn from the investigation is that when
buckling occurs the stress at the more highly loaded end of the plate may
bc appreciably greater than the uniform buckling stress of the sameplate.
For a given value of r, this effect becomesmore pronounced as 6 decreases.
At the sametime the average stress in the plate at buckling will be less
than the uniform buckling stress.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Air Force Base, Va., April 4, 1949
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APPENDIX

THEORETICALDERIVATION

General Case: _ _ 0 or

Energy expression.-- Of all conceivable buckle patterns satisfying
boundary conditions the actual buckle pattern is that for which the
potential energy F, as given by the following expression, is a
minimum (reference 2) :

  bfoa i
[_ +_V - L___

dy

_r cu_cdy
2 _ I x * C _y + 2Txy _X

(AI)

where

x, y

W

CX' _y

Txy

coordinates of the plate, shown in figure i

lateral deflection

middle--plane direct stresses in x-directlon and y-direction,

respectively, prior to buckling, positive for tension

middle--plane shgar stress in x-direction and y--dlrectlon _rior to

buckling
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Middle-plane stresses.-- Algebraic expressions for the mlddle--plane

stresses ax, _y, and Txy , needed in equation (Al_ can be obtained by

solving the plane-stress-equilibrium equations

8_x _Txy
_+ =0

bx by

i÷ :0
by _x

(Ag)

First, the following expression for _x, corresponding to a linear variation

of compresslv_ stress between _min and _max, is written

i -- r 2x 2___x = -°av_l--_Tr) a + i
(A3)

whe re

eav compressive stress in the x-direction at plate center

r = ami-----_n=Minimumc°moressive stre_
qmax Maximum compressive stress

a

2

a plate length

Substitution of the expression for qx from equation (A3) in equations (A2)

permits these equations to be integrated for Txy and _y. This integration,

subject to the conditions that no transverse compressive stress and no

component of pure shear exist on the plate, gives the following expressions

for Vxy and _y:

_xy = p \l + rjkb
(A_)

gy=0
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Through equations (A3) to (A5) the middle-plane stresses have all been
expressed in terms of a single stress parameter _av and the load--
gradient parameter r.

Expressions (A3) to (A5), beside satisfyiug equilibrium conditions,
also satisfy the condition of compatibility (reference 3) and, therefore,
represent a physically possible set of stresses for an elastic sheet.

Deflection function.- The buckle pattern of the plate may be

represented by the double Fourier series

M N

w = _ _-- Wmn sin m____xsin _ (A6)
m=l n=i a b

which satisfies the boundary conditions for simple support term by term.

Any arbitrary degree of accuracy is in principle possible by letting M

and N approach infinity. For practical purposes, however, the use of a

finite number of selected terms in equation (A6) is sufficient. Terms

that lie within the range m = i to M and n = i to N but that are

not used may be thought of as having been assigned zero values for the

coefficient Wmn.

The coefficients w m are at present undetermined. Their relative

magnitudes are subsequently chosen subject to the condition that F, as

given by expression (AI), be a minimum.

Stability determinant.-- Substituting equations (A3) to (A6) in

expression (AI) and performing the indicated integrations give

_2D _2 i
F = --_ kay _- Wren2 + _n --

= n=l

+2 W Wpn 2
n_hp = odd
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where

_ 4_i _r_,_ ,, M N MZ Z
m=l n=l p=l q=l

m+_p = odd

n_q = even

q_n

WmnWpq
mnpq

(q2- n2)(m 2 -- p2)

(A7)

tb 2
= (A8)

kav _av _2 D

The deflection coefficients Wmn must now be chosen such that F is a

minimum; that is, they must satisfy the equations

_wij i, 2, 3, • • •

In expanded form, equations (A9) can be written

wiJ -_ _ av\_ + _J -- i + 1 -- r = Wpj
p+--i=odd ( i2 - p2)2

M N

_ _.f1 - A s-- _ w i jpq
_ _

p+_i = odd

q+J = even

@J

=0

(AIO)

I_ = i, 2, 3, • • . M_

k

= i, 2, 3,

Equations (AlO) constitute a set of simultaneous equations to b8 solved for

the w's. Since these equations are homogeneous, they can have nonzero

solutions for the w's -- that is, the plate can buckle - only if the

determinant formed by the coefficients of the w's equals zero. This

determinant contains kay. The lowest value of kay for which the

determinant vanishes determines the buckling load. The order of the

determinant is equal to the number of terms used in the deflection function

(equation (A6)).
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The accuracy of a solution thus obtained maybe Judged in two ways.
The first consists in repeating the calculations several times, each time
including additional terms in the deflection function (A6), and noting
the sizes of successive changes in kay. Whenthese changes become
negligible, the solution may be assumedto be converged. The correct
buckle pattern, that is, the one for which F is a minimum, can also be
shownto be the buckle pattern for which kay is a minimum. Of several
buckle patterns, therefore, the most accurate is the one giving the
lowest kay. The successive changes in kay should therefore be negative.
The second _ay of Judging the accuracy consists in calculating the relative
values of the coefficients Wmn (their absolute values are indeterminate).
The maximum Wmn will occur for a particular set of values of m and n,
say mo and no, and the magnitudes of the other Wmn'Swill generally
decrease as m and n becomefarther and farther from mo and no.
The omission of any important terms from the deflection function (A6) can
be noted by systematically tabulating the relative values of the
coefficients.

Simplifications to stabilitF determinant.-- The preceding paragraph

describes in principle the use of the stability determinant to calculate

buckling stresses. Two simplifications to the determinant are feasible

and should be considered before calculations are made. The first

simplification follows from the fact that the equations represented by

equations (AlO) fall into two completely independent subsets, one

corresponding to even values of J and the otherj to odd values of J.

The first subset contains only those w's for which the second subscript

is even and the other subset contains only those w's for which the second

subscript is odd. The significance of the subscripts in the deflection

function (equation (A6)) indicates that the first subset corresponds to

buckling that is antisymmetrical about the line y = _ and the second,
2

to buckling that is symmetrical about that line. Calculations show that

the second subset gives the lower buckling loads, and attention is herein--

after confined to it. This subset is given as follows:
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J$2 12 l-r
p=l

pii =odd

ip_i2+ p2)

13

M N
-4 l-r K

p=l q=i, 3,5

phi=odd

q_J

Wpq

ijpq

(q2 _ j2)(i2 _ p2)

= 0 (All)

i, 3, 5, • •

These equations• instead of equations (AI0), can now be used to write a

stability determinant.

A second simplification is possible by noting that equations (All)

can be further divided into two subsets, one corresponding to even

values of i and the othe_ to odd values of i. These two sets are

written as follows• with prim_s on the odd subscripts and double primes

on the even ones to make them more readily distinguishable. (Since J

and q are always odd, the distinguishing mark is omitted from these

subscripts.)

w i' jA i' J + _ Wp" jBl.p"

" o 4,6p -----c-• • • •

M N

Z k
p"=2,4,6 . . . q = 1,3,5 • • •

q_J

: 0 (Al2a)
Wp,,qC i ,jp,,q

..k

i' = i, 3, 5_ • • • M 1J i, 3, 5, • - •
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and

wi,,JAi,,j + __ Wp, JBi,,p,
p'=i,3,5 • • •

Nz
p'=1,3,5 • • • q=1,3,5 • • •

Wp'Ji"Jp'q
= 0 (Al2b)

i, 3, 5, • •

where

Aij = -_-_av\ B +

= (i- r_iP( i2 + p2)

=ip t[-jT)(,i2 _ p2)2

i - r

CiJpq = (l-7_r) (q2_ j2)(i2 .. p2)

Equations (A12a) and equations (Al2b) are not independent since the

same w's appear in both sets; however, they afford the possibility of

eliminating roughly half of the unknowns. For example, equations (A12b)

may be solved for each coefficient of the type Wm,,n in terms of all the

coefficients of the type Wm, n and the resulting expressions used to

eliminate all the coefficients of the tyPe Wm,,n in equations (A12a).

Equations (A12a) then become a set of equations involving only the coef-

ficients of the type Wm, n explicitly. Th8 buckling stress is obtained

as bgfore by finding the lowest kay for which the stability determinant

of these equations vanishes. If desired, equations (A12a) and (A12b) can

be used to furnish an alternate set of equations in which only the coef-

ficients of the type Wm,,n appear explicitly.
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The Just described reduction of equations (A12a) and (Al2b) to a

single set of equations involving only the coefficients of the type Wm, n

is now shown in detail. Equations (A12b) are first solved for wi,,j to

obtain

M Bi,,p,

wi,,j = -- _ Wp, j Ai"
P'=1,3,5, • • • J

+

M N

Z
P'=1,3,5, • • • q= 1,3,5, • • •

Ci"Jp'q

Wp, q
Ai"J

(A13)

i, 3, 5, • •

In order to avoid confusion when equations (AI3) are substituted in

equations (Al2a), the index q in equations (AI3) is changed to r.

Furthermore, in order to obtain a general formula for the coefficient of

the type Wm,,n, the indices i" and J are changed to _' and n,

respectively. The result is

pt=l,'3,5, . . .
Wp, n --

Bm- p t

Am-n t

+

P'=1,3,5, • • • r=1,3,5, . • •

r/n

Cm" np ' r

Wptr Am,, n

(A 4)

m_ : 2, 4, 6, . . " _I
i, 3, 5, • • •
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In equations (Al2a) the coefficients Wp,,j and Wp,,q are of the

type w_, n and may therefore be eliminated by the use of equations (A14).

Equations (Al2a) then become

M

wi'jAi'J + 4,_,p" =2 _ . . . BI'p" P'=1,3,5, • . .

M N

+ _- __ Wp'r

p'=1,3,5, • . r=1,3,5, . . Cp"Jp'r 1Ap" j

+

M N

k_ Z
p"=2,4,6, . . . q=1,3,5,

q_J

M N Cp,,qp,r_
___ _ Wp'r

P'=1,3,5,... r=1,3,5, . . A--_q j
r_q

=0

Bp,,p,

Wp,q Ap,,q

i, 3, 5,
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A stability determinant is furnished by the coefficients of the w's in

equations (AIS).

The main advantage of equations (AI5) over equations (All) lles in

the fact that, no matter how many w's are included in the deflection

function (A6), the order of the stability determinant will be only equal

to the number of w's of the Wln,n type (first subscript odd, second

odd); wherea_ if equations (All) are used they furnish a stability

determinant the order of which is equal to the total number of w's. The

main disadvantages of equations (A15) are that each term in the stability

determinant is more complicated and that, if the relative magnitudes of

the w's are desired, a separate calculation for Wln,,n coefficients

(by using equations (A14)) is required after the wln,n coefficients have

been determined.

Calculations.-- Equations (All) rather than equations (A15) were chosen

as the basis of a stability determinant. The matrix iteration method

(reference 4) was used to obtain the maximum value of 1/kay (corresponding

to the minlmum value of kay and therefore the lowest buckling load) for

which nonzero solutions for the w's are possible. The matrix iteration

method at the same time furnished the relative magnitudes of the w's and

thus permitted the judgment of whether or not all the important deflection

coefficients had been included in the deflection function (A6). The

results of the calculations are summarized in table 2 which gives, for

different assumed values of r and _, the calculated values of kay and

the relative magnitudes of the Wmn'S.

Special Case: _ = 0

For the special case of an infinitely wide plate (b = _ and _ = 0),

equation (A6) has no meaning and the solution obtained is not valid. For

this case, the plate will be assumed to buckle as a column, with straight

lines in the y-direction. This buckle pattern can be represented by the
single Fourier series

M

w = _ wm sin m_-_X (AI6)
m=l a

Equation (AI6) is substituted in the energy expression (AI) in place of

equation (A6). The y integration in equation (AI) is now performed over
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a unit width instead of from 0 to b. Minimization of the potential
energy as before gives the following system of equations to replace
equations (All) :

wi-g \k'av + =

i = i, 2, 3, . . M)

The above system of equations was solved by matrix iteration to

obtain k' and the relative magnitudes of the Wm'S used inav

equation (AI6). The results are given in table 3.

Special Case: _ =

As for the case of _ = O, the buckle pattern of an infinitely long

plate (a = 6 = _) cannot be represented by equation (A6). The solution

for this case is, however, readily obtainable by physical reasoning.

Consider a plate having a length a much greater than its width b,

with a longitudin_l compressive stress at buckling varying from _min

at one end to _max at the other end. (See fig. 6.) The calculations

for the general case (_ _ 0) have shown that _max will b_ greater thanj

and _min less than, the uniform buckling stress of the plate, which in

this case is _.4_2D (See dash line in fig. 6.) The length of plate in

b2t

which the longitudinal compressive stress exceeds the uniform buckling

stress is denoted by d in figure 6.

Now assume that r = _ remains constant while a and, therefore,
_max

approach infinity° If qmax remained constant, the length d would

soon be many tin_s the buckle wave length of the uniformly compressed

plate. It is not physically plausible that a plate can sustain a stress
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greater than its uniform buckling stress over so great a length.
for a given value of r, the following conclusion can be drawnl

Hence,

4_2D
b2t

or

k -_4 (AI8)

rkmax + kmax
k =
av 2

k -_ 2(r + l)
8.V

(A19)

as _-_ ®.



NACA TN 1891 21

REFERENCES

i. Pines, Samuel, and Gerard, George: Instability Analysis and Design of

an Efficiently Tapered Plate under Compressive Loading. Jour. Aero.

Sci., vol. 14, nOo i0, Oct. 1947, pp. 59_-599.

2. Timoshenko, S.: Theory of Elastic Stability. McGraw--Hill Book Co., Inc.

1936, pp. 325--327.

3. Timoshenko, S.: Theory of Elasticity. First ed., McGraw--Hill

Book Co., Inc., 1934, equation (25).

4. Von K_rm_n, Theodore, and Biot, Maurice A.: Mathematical Methods in

Engineering. First ed., McGraw-Hill Book Co., Inc., 1940,

pp. 196--204.



22 NACATN 1891

TABLEi

CALCULATEDR_S_TLTSFOR kay AND

-1/3 -115 o

k !
av

112

o.5
.6

.7

i

2

3

5

0

4.55
3.66

3.13

2.43
2 .ii

i .93

1.76

i .63

1.33

0.823

k
a_

5.04

2.77

2.25

2.07

i .93

1.60

5.58

4.53

3.94

3.2o

2.92

2.7z

2.5z
2.36

2

5.91

3.53

3.12

2.92

2.77

2.40

6.16

5.05
4.44

3.85

3.86

3.63

3.47

3.33

3
L

k'
8_v

0.884 0.941 0.972 0.993

6.25

5.14

4.53

4

4.49
4

4

4

4
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CALCULATED VALUES OF Wren

_neral case :

TABLE 2

AND CORRESPONDING VALUES OF

or.]

k_v

23

r

-1/3

-1/5

0.5 0

1/5

1/2

-1/3

0.6 0

1/2

-i/3

0.7 0

1/2

-1/3

1

-115

n

"w"

m=l m=2 m=3

i -0.160 0.0103

-0.020 --.0524 .00705

i i -0.136 0.00741

3 -0.0145 --.0445 .OO5O

i -0.103 0.00418

-0.0082 --.0335 .00284

i

-0.0041

-0.074

-.024

0.0021

1 1 -0.037 0.0006

3 -0.0011 -.0126 .00040

i -0.18427 0.014519

-0.01748 --.044203 .0071321

i i -0.121 0.0062

3 -0.0073 --.0285 .00297

I i -0.047 0.0009

3 -0.ooi1 -.Oll

i I -0.214 0.0204

3 -0.0156 --.0373 .0074

i

-0.0010

1

-0.0125

I

3
5

i

3
5

-0.336
-.0226

-.00207

-0.31

--.020

--.0019

m=4

-0.00266

-0.0021

-0. oo151

-0.00053

-0.0032862

-0.00184

-0.0042

o.oo91 -0.00228
.00319

0.0014

o.o54

.00835

0.044

.0066

-0.0096

-0.008

kay

4.55

5.04

5.58

5.91

6.16

3.66

4.53

5.05

3.13

3.94

4.44

2.43

2.77
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TABLE 2 -- Continued

CAICULATED VALUES OF w_ AND CORRESPONDING VALUES OF k

r

Wmn

- Continued
av

n

m=l
m= 2 m= 3 m= 4 Ira= 5 m= 61E

First Approximation

i I -0.259 0.0297 -0.00532 1

3 -0.00654 --.0156
3.21

0 Second Approximation

1 1 -0.259 0.0296 -O.00518

3 -O.00644i --.0158 .00437

5 --.00154

First Approximation

3.20

i i -0.206 0.0174

3 -.0120
3.54

i i/9 Second Approximation

i I -0.209 0.0182 -0.00336

3 -0.00390 --.0120 .00265
3.53

First Approximation

i-i/3

0

i i

3

I I

3 -0.0013

5 -. 00013

I i

3 -0.0117

3 .00779

-0.123 0.0061 -0.0015

--.00672 .00086

Second Approximation

0.006

0.i76

.0i04

0.14

.007214

-0.039

-.OO55

0.0098

0.0058

3.85

3.85

-0.002" 2.11

-0.001( 2.92
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CALCULATED VALUES OF

TABLE 2 -- Continued

Wren AND CORRESPONDING VALUES OF k
av

--Continued

25

r n

w_

m--I

i I
1/2 3 -o.oo324

-i/3 1-o.845
3 .0102

i -O. 798
-1/5 3 •o0887

1 --0.718
0

3 .0070

i -o.62
1/5 3 .005

1/2 1 -0.42
3 .0030

4

-1/3 1 0.380
3 - .00469

-1/5 1 0.34
3 -.004

0 ii 0.27
3 -.0030

1/5! 1 0.20
3 --.0022

i/2 10.11
3 --.OOll

m=2

i

-o.oolo3

i

-0.0010

i

-o •0009

-0•926

.00596

-0•90
.0033

-o.85
•0044

m=3

0.0715

•003i3
L

-o.529
-•0086

i

i

i

-0.00O28

i

-0 •0002

m=4

-0.00785
-.00120

o.i82

.oo43o

o.164

.oo66

0.135

.OO5O

0.ii

•0036

0.05
•ooi6

-0•64

-.0044

-0.62

-.0037
.r

-0.50
--.0021

m=5

0.00201

-0.0547

-0.05

--0.03

-O.024

-O.O1

0.31

•oo5 71

0.29

.005i

0•21

.003i

0.13

m=6

-0.000518

0.0147

0.012

o.oo85

-o.118

-0.10

-o.o84

-o.o58

-o.o29

k
&v

m= 7

3.86

1.93

2.25

2.71

3.12

3.63

0"03c" i.76

0"°3-_ 0_.07

0.02_ 2.51

2.92

3.47
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TABLE 2 - Concluded

C_TED VALUF_ OF Wmn AND CORRESPONDING VALUES OF kay -- Concluded

r n

m=l

-1/3 1 0.084

-i/5 1 0.07

i o.o53
5 0 3

i 0.037

i/5

i/2 1 0.018
3 -.OOO26

m=2 _=3

-0,31 0.66

-43.27 0.62

-0.22 3.55

-.0025

-0.16 3.48

-. 0019

-0.083 D.33

•O006J .OOll

VNIII

m:4 m=5 m:6
J kav

m = 7 m = 8 m = 9 m = i0

-0.97 i -0.77 0.48

-0.95 i -0.76 0.46

-0.92 i -0.75 0.43

.0021 -.00i8 .002_

I-0.89 I -0.73 0.38

.0017 -.0015i .0020

i-0o80 i -0.67 0.28

.0011 -.00005 -.0011 .0012

-0.26 0.II -0.05 11.63

-0.23 0.i -0.04 11.93

-0.20 0.072

-0.16 0.05

-0.09
--.00]

[

2.36

2.77

3.33
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TABLE 3

CALCUIATED VALUES OF wm AND CO_SPONDI2NG VALUES OF k'

_pecial case: _ = O_

a7

r w I w 2 w 3 w 4 k'av

0

5

0.12

•097

.o7o

.o48

.o25

0.0069

.0046

.0023

.0011

.ooo29

o.oo19

.oo15

.0010

•ooo68

.00034

o.823
•884

•941

.972

•993
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12 \
,_=0.5_ , Calculated points

II _ Faired curve --
\

I0

f

9

3

-2.4 -2 0 .2 .4 .6 .8
r

1.0

Figure 2.-Coefficient kmax used in calculating buckling

stress O'max . o-max = k (_-_-_maxkb=t /
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Calculated points
Faired curve

I0
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Figure 3.-- Goefficient k_a x used in calculating buckling

s,ress_ox" _ox=_.x(__)
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i|

• Calculated points
I --- Faired curve

0.4 -.2 0 .2 .4 .6 .8 1.0
r

Figure 4.-- Coefficient kav used in calculating
.,. /'rr=O_

stress O'av. Crav- nav\_)

buckling
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l_ J _ :f- a -I - a

Figure 5.-- longitudinal direct-stress distributionscausing

buckling,
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