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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 1891

ELASTIC BUCKLING OF A SIMPLY SUPPORTED PLATE
UNDER A COMFRESSIVE STRESS THAT VARIES
LINEARLY IN THE DIRECTION OF LOADING

By Charles Libove, Saul Ferdman, and John J. Reusch

SUMMARY

Results are presented of calculations for the elastic buckling load
of a simply supported flat rectangular plate of unlform thickness subjected
to unequal compressive stresses at two opposite edges, with a linear
varlation of gtress between the two edges. The difference between the com—
pressive stresses at the two loaded edges 1s equillibrated by shear stresses
along the other two edges. The results show that a plate with a linear stress
gradient will buckle at an average stress that is lower, but at a maximum
stress that may be appreciably higher, than the uniform compressive
buckling stress of the same plate.

INTRODUCTION

In most studies of the compressive buckling of flat rectangular plates
the compressive stress has been taken as uniform throughout the plate.
Cages of practical Interest exist, however, in which the compression is not
uniform but varles from one loaded edge to the other, as, for example, when
the plate forms part of the upper or lower skin of an airplane wing in
bending.

One case of plate buckling under a load gradient 1s considered in the
Pregent paper. Ths problem 13 that of determining the elastic buckling
load of a simply supported flat rectangular plate under & compressive
stress that varies linearly from one loaded edge to the other, the 7
difference 1n stress being equilibrated by unlform shears along the other
two edges. (See fig. 1.) That this stress condition is a possible one,
with regard to both equilibrium and continulty, 1s shown 1n the
~appendix.

Solutions by the Raylelgh-Ritz method are obtained for several length—
to—width ratios from 0 to «. For each length—to—width ratio several
ratics of minimum compressive stress to maximum compresaive stress are.
consldered. Some negative values are included among tnese stress ratios.
These values correspond to a minimum stress that is tensile rather than
compresgsive.
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The influence of a loading gradient on the compressive buckling of
a simply supported plate has been considered previously in reference 1.
The loading gradient was exponential and the plate was assumed to have a
thickness variation estimated to give minimum welght. Because economy
of construction may often preclude the use of taper, the analysis of the
constant—thickness plate in the present paper 1is felt to be of interest.

The results of the present investigation are described in the section

entitled "Results and Discussion.”
in the appendix.

The theoretical derivations are included

SYMBOLS
a plate length measured in compressed direction (x—direction)
b plate width
B length-to—wldth ratio (a/b)
t plate thickness
E Young's modulus of elasticity
U Poisgon's ratio
Et3
D plate flexural stiffness ———————7;-
12(1 - u%)

X, ¥ coordinates of plate, shown in figure 1
w lateral deflection
Wm, wi‘j

coefficients of Fourler series for w
Wm, Wi.
o longitudinal compressive stress (stress in x-direction)
Omax longitudinal compressive stress at more highly compressed end

when bucklling occurs
min longitudinal compressi%e stress at less highly compressed end
when buckling occurs

Oav longitudinal compressive stress at center of plate when

buckling occurs
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o3
r load—gradient parameter [ -2in
Omax
‘—'\
th2
k= 2
n=D
£b2
Kmax = Omax —5— > dimensionless stress coafficients in terms of b
n2D
2
Koy = Oay L
2
n“D .
k! = 0't8.2
ﬂ2D
ta2
k'max Omax — F dimensionless stress coefficients in terms of a
n2D
k! =0 EEE
av
av neD ’J
F potential energy
Oxs Oy middle—plane direct stresses in x—~direction and y—direction,
regspectively, prior to buckling, positive for tension
Txy middle—plane shear stress 1n x—direction and y—direction prior
to buckling
i’ J!
m, n, Integers; also used as subscripts
b, q, Tr

Primes (') and double primes (") are used with subscripts 1, m, n, p,
and r to indicate odd and even values of the subscripts, respectively.
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RESULTS AND DISCUSSION'

Graphical Presgentation

Tha results of the Investigatlon are given graphically in figures 2
to 5. In the first three of these flgures the solld clrcles represent
calculated points. The curves were obtained by fairing through the
calculated points. There 15 reason to believe that these curves should
theoretically contaln glight discontinulties in slope corresponding to
sudden changes 1in the buckle pattern. The falring of smooth curves,
however, was felt to be Justified by practical considerations.

The maximum compresslve stress 1n the plate when buckling occurs 1s

glven in flgure 2 for several different values of length—width ratio B8
where

(1)

™
1}
ol

and a 1s the plate length in the compressed direction and b, plate
width. The stress appears in the parameter k s, defined as

tb°
Kpax = Omax N (2)
n“D

where
o compresslve stress at the more highly compressed end when
max
buckling occurs
t plate thickness
' Et3

D plate flexural stiffness D=+

12(1 — u?)
E Young's modulus
U Polsson's ratlo

For each value of B8, kmax 1s plotted as a function of r, the ratio of
the minimum compressive stress opyn to the maximum compressive
gtress opgx- This ratlo 1s usually a kmown constant independent of the

abgolute magnitude of the load, Negative values of r correspond to
tensile values of opip-
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Figure 2 cannot contaln a curve for B = 0O (b = o) because the
parameter k., 1involves b. The curves are thsrefore replotted in

figure 3 1n terms of k'max’ where

n

K'iax = Opax i%g r (3)

Figures 2 and 3 show that ths presence of a stress gradient (r £1)
permits the plate to develop a Omax that 1s greater than the uniform

stress required for buckling (r = 1), For a given value of r this
effect becomes less pronounced as B increases. The effect vanishes
completely for B = .

Although the presence of a stress gradient permits the maximum stress
in the plate to exceed 1ts critical uniform value, 1t causes a reduction in
the average stress at which buckling occurs. This reduction in the average
stress is illustrated in figure 4 through use of the parameter kyys defined

asg

2
tb

koy = 0y 5= (L)
av av oo

. where og, 1s the longltudinal compressive stress at the center of the
plate when buckling occurs.

The complete longltudinal direct-stress picture at buckling is shown
in figure 5 for several values of B. The longitudinal compressive stress
g 1s plotted in terms of k for P other than zero and k' for B =0,
where

2
tb -
k = 02 (3)
n<D
2
k' = gta (6)
7D

Figure 5 shows at the same time the reduction in the average critical
stress and the increase in the maximum critical stress produced by a stress
gradient, and how the increase in the maximum critical stress is diminished
ag the length—to—width ratio increases.
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Tabular Presentation

The basic calculated information from which the curves of flgures 2
to 5 were obtained is given in table 1. In the first part of the table,
calculated values of k,, are tabulated agalnst given values of r
and B for the genmeral case (B # O). The values of k. and k'p o

plotted In figures 2 and 3 were obtained from this basic Information
through the relationships

kma}c=lfrka,v (7)
k' max = kmaxB2 (8)

In the second part of the table calculated values of k'av for the
infinitely wide plate (B = O) are tabulated against r, where k',, 1s
defined by the equation

2 .
ta
k'ay = Gay —5— (9)
ﬂED

The values of k’max plotted in figure 3 for the infinitely wide plate
were obtalned from the tabulated values of k', through the relatlonship

! = —a— k! (10)
max 1+ av
CONCLUSIONS

A theoretical investigation has been made of the buckling of a simply
supported flat rectangular plate of uniform thickness under a compresslve
stress that varies linearly in the direction of loading. The paramsters
in terms of which the buckling stresses are plotted are the length-to—width
ratio B and the ratio of minimum compresslve stress to maximum compressive

gtress r.
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The main conclusion to be drawn from the investlgation 1s that when
buckling occurs the stress at the more highly loaded end of the plate may
be appreciably greater than the uniform buckling stress of the same plate.
For a given value of r, this effect becomes more pronounced as [ decreases,
At the same time the average stress in the plate at buckling will be less
than the uniform buckling stress.

Lancley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., April L, 1949
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APFENDIX

THEORETICAL DERIVATION

General Case: B # 0 Or o

Energy expresslon.— Of all concelvable buckle patterns satisfyling
boundary conditlions the actual buckle pattern is that for which the
potential energy F, as glven by the following expression, 1s a
minimum (reference 2)

b pa |/52 2 D2 2 \?
=9£ f 9—‘21+§2-‘2—" -2(1—;1)6;’5;’-(5"’ dx dy
2 0 ox oy ox~ Jdy ox Oy
L e v v
+2 ‘j; [/(; l}x(a + cy< ) Y 3% 8 dx dy (A1)

X, ¥ coordinates of the plate, shown in figure 1

w lateral deflection

Ox» Oy middle—plane direct stresses in x—direction and y—direction,
respectively, prior to buckling, positive for tension

Txy ‘middle-plane shear stress in x—directlon and y~direction prior to

buckling
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Middle—plane stresgses.— Algebraic expressions for the middle—plane
stresses o, Oy, and Tyy, needed in equation (Al), can be obtained by

solving the plane-stress-equilibrium equations

do, T )
% + =X _ o
ox oy
> (s2)
EEX + BTX =0
oy ox P,

First, the following expression for Oy, corresponding to a linear varlation
of compressive stress between Omin &nd Opoy, 1s written

1 —-r\2x 2r
Ox = Ogy|l——) = + - (A3)
* av (; + r) & 1l4r
where
Oov compressive stress in the x—direction at plate center x = %

r = Jmin _ Minimum compressive stress

Omax Maximum compressive stress
a rlate length

Substitutlon of the expression for o, from equation (A3) in equations (A2)
permits these equations to be integrated for Txy and Oye Thils integration,

subJect to the conditions that no transverse compressive stress and no
component of pure shear exist on the plate, gives the following expressions

for Txy and Oyt

= Jav (1 —r)(2y _
Txy B (1 + r)(b 1) (a%)
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Through equations (A3) to (A5) the middle—plane stresses have all been
expressed in terms of a single stress parameter o,, and the load—

gradlent parameter r.

Expressions (A3) to (A5), beslde satisfying equilibrium conditions,
algo satisfy the condition of compatibility (reference 3) and, therefore,
represent a physically posgsible set of stresses for an elastic sheet.

Deflection function,— The buckle pattern of the plate may be
repregented by the double Fourler serles

N
w = E v, sin X gin Q%I (A6)

which satisfies the boundary conditions for simple suppert term by term.
Any arbltrary degree of accuracy 1s in principle possible by letting M
and N approach infinlty. For practical purposes, however, the use of a
finite number of selected terms in equation (A6) is sufficient. Terms
that lie within the range m =1 to M and n =1 to N bdbut that are
not used may be thought of as having been assligned zero values for the

coefficient Wine

The coefficlents Won

magnltudes asre subsequently chosen subJject to the condition that F, as
given by expression (Al), be a minimum.

are at present undetermined. Thelr relative

Stability determinant.— Substituting equations (A3) to (A6) in
expression (Al) and performing the indicated integrations give

m=1 n=1 Eav

7D L3 22 |_1_{(m? 2\2 2
F=—aj)-kav ZZWM—S———(T-FBII) —m
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~
M N M
1 — mnpgq
o G DI IR WD I (A7)
l+r Pq
m=1 n=1 p=1 g=1 (qz _ ne)( - pe)
mtp = odd
ntq = even
a#n J/
where
2
tb
Koy = Ogy — (A8)
av av neD
The deflection coefficients w must now be chosen such that F 13 a

mn
minimum; that 1s, they must satisfy the equations

X .o (*
oWy 4 J

In expanded form, equations (A9) can be written

2 g 2
2 2 _ 2 2
Wij%- L(i—+ BJE> —12+(l r)i Vo3 Ip\1” + p
kaV B l+1r p=1 <12 _ p2>2
pti=0dd

1l

1,2, 3, -« M\ 409
1,2,3,...N

_ M N 11 )
-4 (l__r) Z Ypq <q2 ~ j:)(12 ~ pg) =0 (A10)

¢

Equations (A10) constitute a set of simultaneous equations to be solved for
the w's. Since these equations are homogeneous, they can have nonzero
golutions for the w's — that 1s, the plate can buckle — only if the
determinant formed by the coefficients of the w's equals zero. This
determinant contains kgy. The lowest value of kgy for which the
determinant vanishes determines the buckling load. The order of the
determinant is equal to the number of terms used in the deflection function
(equation (A6)).
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The accuracy of a solutlon thus obtalned may be Judged in two ways.
The first consists in repeating the calculations several times, each time
including additional terms in the deflection function (A6), and noting
the sizes of successlve changes in k,,. When these changes become

negligible, the solutlon may be assumed to be converged. The correct
buckle pattern, that is, the one for which F is a minimum, can also be
shown to be the buckle pattern for which kav 1s a2 minimum. Of several

buckle patterns, therefore, the mogt accurate 1s the one giving the
lowest kav' The successive changes in kav gshould therefore be negative.

The second way of Judging the accuracy consists in calculating the relativs
values of the coefficlents von (their absolute values are indeterminate).

The maximum Yn

say m, and n,, and the magnitudes of the other wp,'s will generally
decrease as m and n Dbecome farther and farther from Mg and Ny

will occur for a particular set of values of m and n,

The omission of any important terms from the deflection function (A6) can
be noted by systematically tabulating the relative values of the
coefficlents,

Simplifications to stabllity determinant.— The preceding raragraph
describes in principle the use of the stabilf%y determinant to calculate
buckling stresses. Two simplifications to the determinant are feasible
and should be consldered before calculations are made. The first
simplification follows from ths fact that the equatlons represented by
equations (Al0) fall into two completely independent subsets, one
corresponding to even values of |J and the other, to odd values of j.
The first subset contains only those w's for which the second subscript
1s even and the other subset contains only those w's for which the second
subscript 1s odd. The significance of the subscripts in the deflection
function (equation (A6)) indicates that the first subset corresponds to

buckling that 1s antisymmetrical about the line y = s and the second,
to buckling that 1s symmetrical about that line., Calculations show that

" the second subset gives the lower buckling loads, and attention is herein-—

after confined to 1t, This subset 1s given as follows:
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(A1)
<i =1,2,3, . ..M
3=1,3,5,...N

These equations, instead of equations (Al0), can now be used to write a
stability determinant. -

A second simplification is possible by notling that equations (A11l)
can be further divided into two subsets, one corresponding to even
values of 1 and the other, to odd values of 1, These two sets are
written as follows, with primes on the odd subscripts and double primes
on the even onss to make them more readily dlstinguishable. (Since
and q are always odd, the distinguishing mark is omitted from these
gsubscripts.) .

Vo Catgphq = © (Al12a)

1, 3,5 « o « 2)
=1, 3,5, «  «

P
fmde

u --
1 Ll



14 NACA TN 1891

and
Wyn Ry + i Wpl JBi"p'
1 JA J p'=l,3,5 . . .
>N: ( )
B ¥prgCimyprq = © A12Db
p'=1,3,5 « « » @=1,3,5 . . . P'qg 1" Jp'aq
a#d
i" =2, 4,6, . . .M
3_1:3:5,---1\7
where

2 2

8 |kay \P
5 o fl- r'ip(19 + p?)
ip 1+r(12_p2)2

c - h(l - i) 1jpq
13pq l+r (q2 N 32)(12 - p2)

Equations (Al2a) and equations (Al2b) are not independent since the

same w's appear in both sets; however, they afford the possibility of
elimlnating roughly half of the unknowns. For example, equations (Al2b)
may be solved for each coefficient of the type w.n in terms of all the

mn
coefflclents of the type Vitn and the resulting expressions used to

eliminate all the coefficients of the type wpm, 1in equations (Al2a).

Equations (Al2a) then become a set of equations involving only the coef—
ficlients of the type Votn explicitly. Ths buckling stress 1s obtained

ag bsfore by findlng the lowest k,, for which the stability determinant
of these equations vanishes. If desired, equations (Al2a) and (Al2b) can
be used to furnish an alternate set of equations in which only the coef—

ficients of the type wahn appear explicitly.
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The Just described reduction of equations (Al2a) and (Al2b) to a
single set of equatlons involving only the coefficlents of the type LN

1s now shown in detail. Equations (A12b) are first solved for Wi"J to
obtain

M N Ci"J t

P'q

+ . E 2 Wplq —X—:-——
P =l,3,5, " . = 1,3,5, e o » i J

c;#a (A13)

=2, 4,6, ... N?
=1,3,5 .. .N

TN
e

. =
{ {

In order to avoid confusion when equations (Al3) are substituted in
equations (Al2a), the index q 1in equations (A13) is changed to r.
Furthermore, in order to obtain a general formula for the coefficient of

the type wpn,, the indices 1" and J are changed to m" and n,

respectively. The result is

M an t
E P
Wm”n = - . wp!n

b =1:3:5: LA Am”n'

M. lel np Ty

+ a Wplr —_——

p'=1,3,5, . . . r=1,3,5, . .. An"n
r#n (ALk)

il

(hﬁ =2, 4,6, ... %)
n 1, 3,5 .. .N
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In equations (Al2a) the coefficients wpty and wyn, are of the

type wynn and may therefore be eliminated by the use of equations (Alk).
Equations (Al2a) then become

M Eg: B!
Wi'JAi‘J + N E B1|pn - , WPIJ A—E-—
=2,l|—, 3 ¢ e+ . P =l’3,5’ » s » P".j
M N Cpm st
pPJpr
+ > > Vptr J
pI=1’3’5, . . r=1,3’5’ . AP"J
r#)
- Covapn [— Wy
1'Jr'q — p'q
p'=2,4,6, . . g=1,3,5, . p'=1,3,5, "
afd
M N C.n. ¢t
; bpgp'r
+ Z > WP'I‘ n =0
p'=1,3,5, . . r=1,3,5, . p'q
T#q

i‘=1,3,5,...M>
J=1,3,5,...N
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A stability determinant 1s furnished by the coefficlents of ths w's 1in
equations (Al5).

The main advantage of equations (Al5) over equations (All) lies in
the fact that, no matter how many w's are included in the deflection
function (A6), the order of the stability determinant will be only equal

to the number of w's of the Wntn type (first subscript odd, second

odd); whereas, 1f equations (All) are used they furnish a stability
determinant the order of which is equal to the total number of w's. The
main disadvantages of equations (Al5) are that each term in the stability
determinant is more compllicated and that, 1f the relative magnitudes of

the w's are desired, a separate calculation for W, coefficients

(vy using equations (Al4)) 1is required after the Wmtn coefficlents have
been determined.

Calculations.— Equations (All) rather than equations (Al5) were chosen
as the bagis of a stability determinant. The matrix iteration method
(reference 4) was used to obtain the maximum value of 1/ky (corresponding

to the minimum value of k., and therefore the lowest buckling load) for

which nonzero solutlons for the w's are possible. The matrix iteration
method at the same time furnished the relative magnitudes of the w's and
thus permitted the Judgment of whether or not all the important deflection
coefficients had been included in the deflection function (A6). The
results of the calculations are summarized in table 2 which glves, for
different assumed values of r and B, the calculated values of kpy and

the relative magnitudes of the w,_'s.

mn

Special Case: B =0

For the speclal case of an infinltely wide plate (b =« and B = 0),
equation (A6) has no meaning and the solution obtained is not valid. For
this case, the plate will be assumed to buckle as a column, with straight
lines in the y—direction. This buckle pattern can be represented by the
single Fourler series

M
W =2 wpsin % (A16)
m=1

Equation (Al6) 1s substituted in the energy expression (Al) in place of
equation (A6). The y integration in equation (Al) is now performed over
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a unit width instead of from O to b. Minimization of the potential
energy as before gives the following system of equations to replace
equations (All):

Wy £12<12 _ )_(l;ﬁ) il pr: 0 (AL7)
P:

T pri=odd (12 - P2)2
(1-1,2,3 ... M)

The above system of equations was solved by matrix iteration to
obtain k', and the relative magnitudes of the w,'s used in

m
equation (Al16). The results are given in table 3.

Special Case: B = o

As for the case of B = O, the buckle pattern of an infinitely long
plate (a = B = w) cannot be represented by equation (A6). The solution
for this case 1s, however, readily obtalnable by physical reasoning.

Consider a plate having a length a much greater than lts width D,
with a longitudinal compressive stress at buckling varyling from opip

at ons end to o, &t the other end. (See fig. 6.) The calculations

for the general case (B # O) have shown that o will be greater than,

and Opyn less than, the uniform buckling stress of the plate, which In
4x=D :

this case is . (See dash line in fig. 6.) The length of plate in
b2t

which the longitudinal compressive stress exceeds the uniform buckling

gtress 1s denoted by 4 in figure 6.

o
Now assume that r = amiﬂ remains constant while & and, therefore,
max

B approach infinlty. If o remalined constant, the length d would

goon be many times the buckle wave length of the uniformly compressed
plate. It 1s not physically plausible that a plate can sustaln a stress
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greater than 1ts uniform buckling stress over so great a length. Hence,
for a given value of r, the following conclusion can be drawnt

Opax > Lx2D
b°t
or
L (A18)
as B> w.

Also, since

T¥max + Kmay
av )

ko =>2(r + 1) (A19)

as B w.
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TABLE 1

kyy AND k' o

CAICULATED RESULTS FOR

1/2

1/5

_1/5

_1/3

r

av

N\ =k M (o)
(AU BT =

. s e .
\O N\ = & & & o o

--------

av

1

0.993

0.972

0.941

0.88k4

0.823
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TABLE 2
CALCULATED VALUES OF wg, AND CORRESPONDING VALUES OF kg,
[General case: B #0 or =]
w
B r |n = Ky
m=1 m= 2 m =3 m=5
1 1 ~0.160 0.0103 —0.00266
“1/3 |3 [ =.000 —.0524 .00705 h.55
1 1 -0.136 0.00741 -0.0021
/513 [ o.0145 | —.okis .0050 5.0k
1 1 -0.103 0.00418 -0,00151
0.5 1 © 3 | —0.0082 ~.0335 .0028Y 5.58
1] 1 —0.07k 0.0021
1 .
/5 3 | -0.0041 —-.024 591
1 1 -0.,037 0.0006 -0.,00053
/2 | 3 | 50011 —.0126 .00040 6.16
/3 1)1 -0.18k27 | 0.014519 | -0.0032862 3.66
3 | —0.01748 | —.04k203 .0071321 y
1 1 - —0.121" 1 0.0662 -0.00184
0.6 [ © 3 | —0.0073 —.0285 .00297 k.53
1] 1 —~0.047 0.0009
1/2 1 3 | —0.0011 —.011 5.05
1] 1 -0.21k4 0.0204 | —0.0042
1313 | o.0156 | —.0373 -007 3.13
141 ~0.145 0.0091 —-0.00228
0.7 0 3 | —0.00568 —.0245 .00319 3.9k
1 1 -0.058 0.001%
1/2 | 5 | —0.0010 —.009k bbb
1 1 ] -0.336 0.05k -0.0096
-1/3 | 3 | ~0.0125 —-.0226 .00835 2.143
5 —.00207
1 —
1 1 -0.31 0.0hk -0.008
-1/51 3 | -0.0098 -.020 .0066 2.77
5 —.0019

23
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CALCULATED VALUES OF Wmn AND CORRESPONDING VALUES OF kav — Continued

TABLE 2 — Continued

NACA

TN 1891

B T K
r n
m=1 m=2 m=3|m=». m=5| m=26| >
First Approximation
11 -0.259 [0.0297 [-0.00532 5.21
3 }-0.00654| —.0156 )
0 Second Approximation
1)1 -0.,259 |0,0296 |-0,00518
3 [-0.0064k4| —,0158 | .00437 3.20
5 —. 00154
First Approximation
111 -0.206 0.017%
1{1/5 Second Approximation
111 —0.209 [0.0182 |-0.00336 )
3 -0.00390| —.0120 | .00265 3.53
First Approximation
1] 1 ~0.123 0.0061 -0.0015 3.8
3 —-.00672| .00086 -5
1/2 _ Second Approximation
1] 1 -0.12 0.006
3 10,0013 -, 0067 3.85
5| —.00013
1] 1 —-0.607 |0.176 |-0.039 0.0098 |-0.0027 5.11
-1/3 31-0.0117 | —.0102 0104 | —.0055 ’
VB . ,
1i1 ~0.584 10.1k 1-0.02k 00058 [-0.0014 , 92
O -
3 |-0.00779f —.00788] .00724] —.00343

AR




NACA TN 1891

CAICULATED VALUES OF w

TABLE 2 - Continued

25

AND CORRESPONDING VALUES OF kav — Continued

mn
¥mn
Bl r |n ka,v
m=1 m=2 m= 3 m=14 m=5 m=6 |m=7
1] 1 -0,550 0.0715 |[=0.00785] 0.00201 |~0.000518 86
2| 1/2 3}=-0.00324| —,0040 .00313| —.00120 3
1/ 1{—0.845 1 ~0.529 0.182 }-0.0547 | 0.0147 1.93
—/3{3] L0102 |-0.00103| —.0086 | .00k30 -9
_1/5 1]-0.798 | 1 -0.513 0.164 }-0.05 0.012 2.25
3 .00887!-0.0010.] —.00791] .0066 :
ol o [* -0.718 1 —0.48 0.135 [-0.03 0.0085 .71
3] .0070 |-0.0009 | —,0067 .0050 :
1} -0.62 1 -0.544 0.11 —0.024
/5 31 .005 —.005 .0036 3.12
1/ 0.4 1 -0.34 0.05 -0.01
172131 0030 —.0035 | .o016 | 363
’ 1/3 1| 0.380 |-0.926 1 -0.656 0.31 -0.118 0.03¢ ; 76
/2131~ L0069  .00394 —.0048 .00571 .
_ 1l 0.34 -0.90 1 -0.64 0.29 -0.10 0.037
/5 3] -.004 .0033 —. 00k .0051 2.07
3} o |3 0.27 |-0.85 1 -0.62 0.26  |-0.084 0.023 5 51
3] —.0030 .00k —.0037 .00kl
3] —.0022 .0035 | =0.00028| -.0031 .0031
1/2{1f 0.11  -0.64 1 -0.50 0.13  |-0.029 3.47
3] -.0011 .0021 | —0.0002 | —.0021
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TABLE 2 - Concluded
CALCULATED VALUES OF w,, AND CORRESPONDING VALUES OF k.  — Concluded
an

Bl r [n . = k
n=1{m=2 mMm=3|m=4]m=5|m=2¢6 m=7m=8lm=9m=10 av
-1/3f 1]o.08k {-0.31 [j0.66 |-0.97 |1 -0.77 (0.48 [-0.26]0.11 |-0.05 [1.63
-1/9 1fo.07 -0.27 0.62 [|-0.95 |1 -0,76 j0.46 |-0.23} 0.1 }O.0k {1.93
5| o 1{0.053 |-0.22 .55 [|-0.92 |1 0,75 10,43 |-0.20] 0.079 2.36

3 . 0025 .0021 -.0018} .0025 *

1/ 1]0.037 |-0.16 jo.48 |-0.89 |1 -0.73 }0.38 |-0.16] 0.05 -
13 | 0019| .0017 —.0015| .0020 a
1/2 110.018 [-0.083 [0.33 |-0.80 |1 —0.67 |0.28 |-0.09 3.33

3|-.00026| .0006} .0011| ,0011{-.00005| —.0011] .0012| —,003 :

~NACA —
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TABLE 3

v

CAICULATED VALUES OF W, AND CORRESPONDING VALUES OF k'y

Epecial cage: B = (ﬂ

r Wy Vs w3 Wy, k! av
-1/3 1 0.12 0.0069 0.0019 0.823
-1/5 1 .097 L0046 .0015 .884

0 1 .070 .0023 .0010 .91

1/5 1 .048 .0011 .00068 .972

1/2 1 .025 .00029 .00034 .993
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Figure 2.— Coefficient kp gy used in
stress Omax °

calculating buckling

Omax ~ kmax(L'r?a}D)
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Figure 3.— Goefficient Kimax used in calculating buckling

2
7D
sfreSS o-mcx . o-mox =k 'fnax ( 02 t )
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Figure 4.— Coefficient kqy used in calculating buckiing
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NACA TN 1891
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