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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 1899

VELOCITY DISTRIBUTIONS ON ARBITRARY ATRFOILS
IN CLOSED TUNNELS BY CONFORMAL MAPPING

- By H. E. Moses

SUMMARY

Conformal mapping methods are applied to the calculation of
the effect of channel (two-dimensional tumnel) walls on the ideal
flow past arbitrary airfolls situated anywhere within the channel.
The walls of the channel need not be plane but may have any shape.
The results are compared in specific cases with those obtained by
-two approximate methods, of which the first is a first-order treat-
ment using image vortices and doublets and the second is a higher-
order correction developed by Goldstein.

INTRODUCTION

In reference 1 a conformal mapping method wa's developed whereby
the zero-lift velocity distribution could be found for a symmetrical
airfoll symmetrically located in a plane-walled channel. The purpose
of the present paper is to extend the previous investigation to the
case of an arbitrary airfoil situated anywhere within an arbitrarily
shaped channel (two-dimensional tunnel).

The Cartesian mapping function (CMF), introduced in reference 2
and used in the method of reference 1, 1s also used for the problem
of the present paper. The velocity at any point on the airfoil in
the channel is found in terms of the CMF and the known conformal
transformation of a flat plate in a channel. The difference between
this velocity and the velocity at the same point on the isolated
airfoil at the same angle of attack represents the effect of the
channel walls. In order to obtain the velocity distribution on the
airfoil within the channel, the CMF is applied to doubly connected
regions analogously to the manner in which Theodorsen's mapping
function is applied in reference 3,

The method 1s given, illustrated numerically by examples , and
compared with corresponding results by the first-order image theory
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and by the second-order image theory of Goldstein (reference 4).
In addition to the velocity on the alrfoil, the velocity on the chan-
nel walls is obtained by the conformal mapping method.

SIMBOLS

The more importent symbols used in this paper are listed as

follows:

c

¢

¢

chord of airfoil

section 1lift coefficient for isolated airfoil
section 1lift coefficient for airfoil in channel -
distance between channel walls

thickness of airfoil

wndisturbed velocity at great distance from airfoil

. veloclty on surface of airfoil in channel

velocity'on channel walls
veloclity on isolated airfoil
veloclity correction, Vo1~ V1
angle of attack of airfoil
angle of attack of flat plate

effective angle of attack of airfoll with respect to curved
stream '

plane of straight lines
physical plane

circle plane
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METEOD OF CONFORMAL MAPPING
The CMF for One Contour

In previous applications of the conformal mapping method used
in the present paper (for example, references 1 and 2), a single
contour such as an airfoil in the physical planse (z-plane) was
transformed into a single straight line contour (airfoil chord) in

another plane ({-plane). The line in the { -plane is related to a-
- circle in a third plane, the p-plane, by a known transformation
that maps the unit circle with its center at the origin into the
straight line such that the region outside the circle is mapped
into the region outside the straight line. Because the contour in
the z-plane also transforms into the same circle in the p-plane in
such a manner that the regions exterior to the contours. correspond,
the function 2z - { is regular everywhere on and outside the circle
in the p-plane. This vector difference 2z - { between conformally
related points is called the Cartesian mappin.g function (CMF).

The real and imaginary parts of the CMF are denoted by Ax

and Ay, respectively. Because of the regularity of the CMF outside
the circle, '

e
z -t =8z (p,p) + 187 (pyp) = 5 c_p? (1)
0
where
P = peiqp
C.np =8_p + 1b_n
On the circle p = eiq) the following relations hold:

2n
ay (1,9) = Elif ax (1,9') cot 19"‘—;—‘31 o’
0

‘ ex v oL
ax (1,9) = - zl-f Ay (1,9') cot ﬂ—gil ao'
o

T

’ (2)

n

/

Equations (2) are the fundamental equations whereby the transforma-
tion between the z- and { -planes can be calculated.

The CMF for Two Contours

In general, two contours in the physical plane can be trans-
formed into two straight-line contours in the {-plane. The lines .
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in the {-plane can, in turn, be transformed into two concentric
circles in the p-plane, whose centers are at the origin and whose
radii are equal to 1 and q (q<1). The transformation is such
that the region between the two circles is transformed into the
region between the contours. '

In the case discussed in the present paper one of the contours
in the z-plane is the alrfoil itself; the other contour consists of
the channel walls, both walls together being considered as one con-
tour extending to infinity in two directions. The contours in the"
{-plane consist of a finite straight line into which the airfoil
is transformed and a transformed channel whose walls are plane and
parallel to the real axis. In the p-plane, the finite straight
line, and hence the airfoil, are mapped into the outer circle whose
radius is unity, and the channels of both the {- and the z-planes
are mapped into the inner circle whose radius is q. Thus, as the
outer circle is traced in a counterclockwise direction, the airfoil
and the finite straight line are traced in a clockwise direction.
In the same manner, as the inner circle is traced counterclockwise,
the channel is traced clockwise. '

As in the case of the single contour, the regions at infinity
in the z- and {-planes correspond, but the vector difference =z =-{
is regular on the boundary of both circles and within the amnulus
formed by them. As before, z -!{ is the CMF and Ax and Ay are
its real and imaginary parts. Because of the regularity of z -¢
in the annulus, the CMF may be expanded as follows (cf. equation (1)):

2ot =0x (0,0 + 4y (00) =D Ci®  (3)
where -
p =pel?
Cn = an + 1b,

Inasmuch as the full Laurent series is used in equation (3), the
relations between Ax and Ay on the two circles differ from the
simple relations given by equations (2).

Appendix C of reference 2 provides relations between the com-
ponents of the CMF on the two circles, but the expressions are not
easlly used for the purpose of calculation., More convenient rela-
tions have been derived in reference 3. Although the correct result
is obtalned, the method of derivation is not fully given. The rela-
tions are derived in more detail in appendix A of the present paper.
These relations between the components of the CMF are the following.
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The subscripts 1 and 2 indicate the values of the CMF on the
circle of unit radius and the circle of radius q, respectively.
That is: N ‘
8%, (@) = 8x(1,0)

87, (@) = ay(1,0)

ax, (@) = ax(a,0)

Ay, (@) = ay(a,®)
Then, as shown in appendix A:

2n 2n ' )
Axl(CP) =8‘0+} f Ayl(Cp' [— cot -(Ll E : —2-1— sin n(cp'-m)Jdcp -
T VYo

q
2n
L f Ayz(cp')z = sin n(9'-p) ¢’

AXZ(CP) 880— ,-]; L

, )
i Ayz(q)' [— cot M Z—‘l— sin n(cp'-Cp)Jde'

q..

2n
2 j; Ayl(cp')zl —% sin n(P'-p) av'
1-q

: ' 2n
Ayl(CP)-_-bo.,.EJ; Ax.l(CP' [- cot (Cp -9) 7\ z‘lqz
,%L Axg(CP')El —2"3'-23 gin n(®P'-~p) dp'

‘ 2
Ay‘z(cp) =b°+i \f; " Ax.a(co' I:- cot -(9—92 z—‘l—- sin n(cp'-@{ld@'

2 2%
’}‘jc; i Axl(cp')Z: o sin n(er-7) dp*

‘sin n(o' -co)] aop' +

(4)

>(5)
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~N

A o
]_‘CP P 2\P

> (6)
nCT | 2n .
j; Ay, (9) 4o = Jg) 4y,(®) ao

/

The introduction of elliptic functions simplifies equations (S).

The elliptic functions introduced at this point and used at other

places in this paper are treated in various texts with varying nota-
tions. The notation used throughout this paper is that of Tannery
and Molk (reference 5). Fram reference 5 (t. IV, p. 100), the fol-
lowing serlies for the Jj-functions are obtained:

3,'(v) =~ .20 |
171 = l : 29._
2 5,000 " 2 cot m + E 7 sin 2mv (7)
. 1 -q
3,'(0) = n
13 2g°
5 W = 1-q2n sin 2mv (8)

1
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In the same way that the relations expressed by equations (2)
are a limiting form of Poisson's integral, the integrals in equa-
tions (5) or (9) are limiting forms of Villat's analog to Poisson's
integral. Villat's integral (reference 6) gives the value of a
function within an annulus when the real part of the function is
known on the bounding circles.

The relations expressed by equations (S5) reduce to those

expressed by equations (2) when the radius of the inner circle

approaches zero; that is, when the channel walls move to infinity.
The signs differ, however, because the CMF that is defined within
the annulus in equations (S) is defined within the outer circle as

the radius of the inner circle goes to zero, whereas, in the case

of equations (2), the CMF is defined outside that circle.

The {-Plane and Its Transformation into the p-Plane

As already described., the {-plane contains a plane-walled chan-

- nel within which there is a flat plate. The transformation mapping

these contours into two concentric circles has been obtained by
Tomotika (reference 7), who has also obtained the velocity poten-
tial for this case. Tomotika's results will be briefly presented

~and the form in which they are most useful in applying the CMF

method will be given in more detail.
Let a be the a.n%le of attack of the flat plate. The trans-
he

formation between t -plane and the p-plane is shown in figure 1
and given mathematically as

* n
q" sin n®.
(- - %13 ei(gm)z | P, «

n(l + 2q2n cos 25 + q4n)

[pP(el® + ¢%Pe™10) 4 pB(e~10 4 ¢20eB)) 41 (10)

6r in another form

' hd 2n
_ !._2_11_ —1- 108 E_geiqu . . q sin nsz «
x| 2178 p_qe-ifpz n(1-2¢°2 cos 2a + giP)
1l

(B2 - gy - (2™ (25 - g2 | o ()
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where h is the distance between the channel walls, & = g -a,

and T 1s a constant. The substitution of p = e1Cp in equa-
tion (10) yields the equation of the flat plate; the substitution

of p= qej'_cp in equation (11) yields the equation of the ‘channel
walls, which are parallel to the real axis. The usé of the two
forms of the transformation simplifies the resulting equations in
¢ for the flat plate and channel walls.

Four values of the central angle ® (CPI’CPZ’CPS , -and®, ) are
important in the mapping. From reference 7 the points p = e 1,
ei(Zn-cpl), denoted by B and B' map into the stagnation points

on the flat plate for zero circulation; the points p = qeiq)z,

i Zﬂ-ﬁ)z
( )
x 3 s 1 )4

points p = e e , denoted by A' and A, map into the
extremities of the plate. The points are shown in figure 1.

, denoted by E and H' map into o, respectively; the

The values of q and @, in equations (9) and (10) are deter-

mined by the length of the plate, its position, and the various rela-
tions between the four special values of ®. From equation (10) or
equation (11)

Py + Py = 20 - (12)

28 _/ . 2 L .o (13)
. <‘° 1+“°z> (‘%‘“’z)
Y4\ 2n S\ "2x
or ‘
, o .
8xn Iq-ﬁ cos n®; sin n® = 0
1 -q
g0\ (P4~ AR
“’4( r )%( 2n >= ’34< e T (14)
_ n(Pz-%) . ‘ '
L 8’°°'qn,_sinnqlasin——g—i- - ' -
e E — — [cos(n-1) @ - q22 cos(n+l) o]
n(1-2¢%2 cos 2a + qi%)

1
(15)
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1 . qnsinntpzcos—z—-
==(35 - +—-sina.g X
"<2 2> 2n - n

1~ n(1-29°" cos 2a + q4 )

Ble

[sin(n-1) & - g2 sin(n+1)Z) (16)

vhere L 1s the length of the plate and 4 1is the vertical distance
of the midpoint from the center line of the bhannel.

In order to find the values of Q4,9 ,P2,P3) and. @4 for a

given length and position of the plate, equations (12) to (16) should
be solved simultaneously,

In principle , 1t 1s possidle to transform the flat plate at
any value of & into the airfoil at angle of attack set at «.
The value of @ 18 fixed at the value that accomplishes the trans-
formation with the least labor. In the case to be calculated, &
is set equal to zero. For this value of &, Tomotika's formulas
(reference 7) are considerably simplified. If, the distance between
the channel walls is taken as unity, the equations simplify as
follows:

qn sin rth
t=2) —— 2 (PpD) (17)
n(1-¢%®) ~
1
or equivalently
ip, ®. q%? gin n -
21 )1 e E:‘l 8in 0P
§=? -ﬁlogem-:-ﬁp—'-l- T[(‘E) -(ﬁ) ] +7 (18)
p-qe 2 - n(l-q~)

and C£>2 can be found by using the equation

1 % ‘
d = iy (19)
The quantities gq, CP]_ P 37 ®, may be found by solving

simultaneously equations (12), (13), (14), and (15), which also
become simpler than the equations for the general case. The
constant T may be restricted to real values, because it merely
determines the position of the channel and the flat plate with
respect to the axes in the {-plane.



NACA TN 1899 1

A special case useful for numerical work is that for which
d = 0. For this position of the flat plate @, =Py = Pz = P, = 2
and

8 QZn-l
T Z (2n-1)[1-¢(20-1) -

Hence, q can be found fram equation (20) alone when the length of
the plate 1s prescribed.

If ! 1is separated into its real and imaginary parts,
t=t+1in, t and n can be found as functions of @. The equa-
tion of the flat plate is found by setting p = el® 1in equa-
tion (17). Then, when the subscripts 1 and 2 denote the values of
the function on the plate and on the channel, respectively,

® n
q" sin n®
§l=-%g ————Z?—Z-Sinnq)-»'r ‘ (21)
n(l-q)

Thus the flat plate lies on the real axis of the t-plane. The

equation of the channel walls is found by setting p =q_aw in
equation (18). Then

. .
sin 5 (@-P) g
to = .3.‘: log, i "2 Z sin sin np}+ T (23)
sin 5 (q>+q>2) n(1-4%%)
1 N
q2=?=-§-d (2ﬂ‘@2>CP>CP2)
L (24)
q2=%-1=-<%+d) @>® > - @)
J
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Alrfoil Positlion and Adjustments in Terms of the CMF

. The z-plane and the {-plane are shown superimposed in figure 2
in which the gecmetric meaning of the CMF is also indicated. If
the abscissas and ordinates of the airfoil are denoted by X, ¥1
and the abscissas and ordinates of the channel walls by x5, y¥o,
the definition of the CMF shows that

(@) = £1(®) + axp (o) |

¥4 ()
xp(®) = E5@) + axy(9)

A
Yl(q)) (25)

¥o(®) = ny + 45,(o)

7 - .

In order to determine the constants q and @5, that appear
explicitly in the expressions for { and 1 and also the angles Py
~and @p that correspond to the leading and trailing edges of the

airfoil, the airfoil 1is placed in a normal position with respect to
the y-axis, If c¢ 1s the chord of the alrfoll and a 18 the angle
of attack, the normal position is given by

Xy (CPN )

il

c
z % ¢
(26)

| xl(CP.I.) -% cos a
~ From equations (25) and (26), the following formula is obtained:
tyop) - E1(my) = ¢ cos a - Ax)(op) + 8y (py) | (27)

The angles CPN and Prp corresponding to leading and trailing edges
are obtained from the condition of a maximum for the abscissa X, (¢p),

dx; () dx; (Pp) ' '

& O & T (28)
or, by equations (20) and (24),

aaxy () = 4 A g? sin ne,

- ;2 ———1 - an cos n@ (29)

for o© = cpN or ®n.
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The value of ®,, or what is equivalent the value of 4, 1is
found from .

an 2n .
L e e [ a0 e (8)

as follows: Let r(p) denote the value of the ordinate of the air-
foil measured from the center line of the channel.in the §-p1ane.
From the definition ‘ . '

r(p) = Ay (@) +d - (30)
Hence, using equation (6), .
a=5 r(e) av - 5= f Ay, () do (31)

- 0 0
and @, 1s obtained from equation (19).

The constant T is obtained by adding the equations of (26).
" The resulting formula is A

*® n
42 q" sin n®, n(@Py+Pp) nfpy<Pp)  AXy (By) + Axy (Pp)
T == n(l—qzn) sin N—z— cos > - 3

1 (32)

These equations campletely determine the constants gq, T, Py

) and @, in terms of the CMF. The value of & is calculated

from equations (31) and (19); the use of this value in equations (27)
and (29) permit these equations to be solved simultaneously for g,
Py, ®p; and finally T can be determined from equation (32).

Velocity Distribution on the Airfoil
a_,‘nd on the Channel Walls

The camplex velocity potential W, derived from the results of

reference 7, is
3, (1 logg p+CPz> 8 <c,ol+®2>

Yh 2n 2n - i
W=— log - = log, P (33)
) © 11 LD D, -0, a2n e :
4 2n 2n

where V is the velocity at infinity and I' 1s the circulation.
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The velocity distribution on the airfoll and on the chamnel
walls is obtained from the velocity potential given by equation (33).
The formula for the velocity in the z-plane is

aw

’ dp
vy, = Tz (34)
dp

On the airfoil, from equations (8) and (33)

aw\ 1™ Em: q” sin n% |
<ai / = =—||ev ————— cos |- I (35)
P:e:mp . l-q '
The circulation I' in equation (35) is adjusted to satisfy the
Kutta condition at the trailing edge of the alrfoil %% = 0,
The result is P=Fp
2 n
q" sin ny,
I'= 87y ——;—— ¢o0s oy (36)
1 1
Also
N
dAx dAy, (o)
() o @) T
P= 1p péeicP
41617 @° sin 7, 1a8%, ()
= 226 . -—_— v
== > 5—— co8 nY 5 © + (37)
1 1
aay, (o) 19
Hence, the velocity distribution on the airfoll is
2\ ¢® sin n®, ' \
E --—I—-E— (cos nop - cos mpy)
Ta1 -4 1 2 (38)
v 7 -
'Z‘” q® sin op anx, (@)|%  [aay, (@]
4 4 8. c08 mp - 1\P A4y, \P.
¢ I l_an do do

where Vel has been written for A\
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Lift on the Airfoil in the Channel

The lift on the airfoil in the channel can be found by evalu-
ating a modified form of Blasius' integral in the p-plane. The
expression for the lift involves the CMF and the radius of the inner
circle; that is, the 1ift depends on the shape and the position of
the alrfoil and on the shape of the channel walls as well as on the
circulation. This dependence is in contrast to the case of the
-1solated airfoll, in which the lift on any body is the same for a
fixed circulation. The dependence of 1lift upon the airfoil shape
for the case of the airfoil in a plane-walled channel has also been
shown by Havelock (reference 8) who finds the potential function
directly without the use of conformal mapping. '

The expression for the lift is too complicated for numerical
calculation. A more convenient way of obtaining the 1ift is to
integrate the pressure distribution on the airfoil or the pressure
distribution on the walls.

Methéd of Successive Approximations for Obtaining CMF -

The CMF can now be calculated for a given configuration by a
method of successive approximation analogous t6 that of reference 2.

1. The airfoil and the channel walls are drawn such that the
airfoil is in the normal position, as shown in figure 2. The center
line of the channel in the C-plane is located on the figure in order
that the airfoil ordinates r(®) may be read. The scale 1s so
chosen that the distance between the channel walls in the {-plane
is unity. -

2. From a previous approximation, approximate values of q,
TP PNy and ®p are known, as well as approximate values of the

abscissas x(p) and x5(?) at a convenient gset of values of @
from O to 2n radians., Through the use of the known values of xl(Cp),
r(p) 1is measured. A set of values of Ay,(®) are also measured
through the use of the known values of xa(cp). A value of 4 and

a new value of @, are obtained from eguations (31) and (19).

If no better values are avallable, the initial approximation
for x,(®) and x,(®) may be that obtained for the flat plate

situated along the center line of a plane-walled channel. In this
case X, end X, are given by equations (21) and (23) for &, °
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and f,. The value of g 1is obtained from equation (20), where L
is replaced by c cos a. Both @, and ®y equal =/2 and Pp
equals 3n/2. The constant T eguals zero.

3. The functions Ax; and Axp; are calculated by means of
the first and second equations of (5). The value of q used is
the approximaete value of step 2. The numerical details of the
calculation are given in appendix B. . .

4. New values of @y, ®p, and gq are obtained by solving
equations (27) and (29) simultaneously for these quantities.

An alternative method of determining CpN, cpT, and q 1is a
purely graphical one. The approximate function x;(®), which is
also a function of .q, 1is plotted against ¢ 1in the regions of
the extreme values of x;. From this graph Py and Pqp are
determined. These values are substituted in equation (27), from
which a new value of q 1s obtained that 1s used to re-evaluate x;.

The procedure is continued wntil sufficient accuracy is obtained.
Finally T 1is calculated from equation (32).

5. A new set of values for x;(¥) and x,(P) are calculated

using the new values of the constants and the values of Ax; and AXp
calculated in step 3.

Steps 2 through 5 are repeated until a plot of y(¢) against
x(¢) for both the airfoil and the channel walls yield shapes that
are as close as desired to the shapes plotted in step 1.

If the walls of the channel in the z-plane are flat, Ayz(qﬂ

is set equal to zero, and a considerable simplification in the
numerical procedure results. This case is the most common and the
method is not at all difficult to apply. The discussion of numerical
results will provide an idea of the actual work involved.

After the components of the CMF and the various constants have
been evaluated by the method of iteration Just described, the veloc-
ity distribution may be found from equations (38) and (41) for the
airfoil and for the channel walls, respectively. The derivatives
of the CMF in the formulas for the velocity distribution were
measured in the cases calculated; although an expression exists
.that gives the values of the derivative in terms of the CMF as in
reference 1, it is too cumbersome to use.
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ILLUSTRATIVE EXAMPLES USING CONFORMAL MAPPING

The method of conformal mapping outlined has been applied to
the 1l2-percent symmetrical airfoll treated in reference 1. The
ordinates of this alrfoll are glven in table I and the airfoll shape
is shown in the figures in which the velocity distributions are
plotted. For the calculations of the present paper the airfoll was
assumed to be placed at the center of & plane-walled channel. The
chord to height (c/h) ratio was taken to be 0.5. Velocity correc-
tions were calculated for angles of attack of 00 and 4°.

For the case of a = 0° the range of ® from O to 2x radians
was divided into 24 equal intervals. Two approximations, starting
from the x(p) of the flat plate, were necessary for the derived
airfoil contour to coincide with the given contour for a scale of
chord length of 20 inches and ordinmate scale five times that of the
abscissa scale. In no case were more than six terms used in any of
the infinite series in the preceding formulas, for the serles con-
verge rapidly. The velocity distribution for the case of a = 0°
is shown in figure 3. The velocity distribution on the walls of the
channel is included in the figure and is drawn to a scale five times
as large as the scale for the velocity distribution on the alrfoil.
The CMF together with the velocity distribution is given in table II.
The velocity distribution on the airfoll for this case had been
previously calculated by the method of finite chord in reference 1.
The results are compared in figure 4 and are in close agreement,
which indicates that the numerical methods used in both processes
were sufficiently accurate,

The velocity distribution for the case of angle of attack -of 40
is plotted in figure S. Figure 6 shows for the purpose of compari-
son the velocity distribution for the airfoil in the free stream at
o = 49, In this case four approximations, starting from the flat
plate, were necessary to obtain coincidence between the derived air-
foil and the given airfoil to the same ordinate and abscissa scale
as in the case of a = 09, In the first three approximations the
® renge was divided into 24 equal intervals, but in the fourth
approximation the length of the intervals was halved so that the
CMF was evaluated at 48 points. The mapping data and veloclity dis-
tribution are given in table III; the nature of the CMF 1s shown by
figure 7 where the component functions are plotted. The velocity
distribution for the airfoil in the free stream was obtained by the
method of reference 2.

_ The veloclty correction for the airfoil at an angle of attack
of 0° was discussed in reference 1. The velocity corrections for
the airfoil at the angle of attack of 4° are plotted in figure 8.

4
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The irregularities of the correction are due to local curvature
fluctuations of the airfoil surface and correspond to the irregu-
larities found in the corrections for the same airfoil at a« = 0°.
(See reference 1l.)

The velocity corrections are positive on the upper surface of”
the airfoil but are for the most part very nearly zero on the lower
surface. This behavior of the correction indicates that the lift
on the airfoil in the channel is greater than that on the airfoil
in the free stream. The increase in lift has been shown by other
authors through the use of approximate methods (see references 4,
7, 8, and 9) and will be further discussed.

The influence of the airfoil on the velocity distribution on
the channel waells is shown in figures 3 and 5. The velocity dis-
tribution on the walls is very sensitive to the angle of attack.
When the angle of attack is 0° (fig. 3) the nondimensional velocity
on both the walls is greater than unity. The velocity rapldly
approaches unity both upstream and downstream of the airfoil until
at 1.75 chord lengths upstream and downstream of the origin the
velocity has decreased from its maximum value 1.03 to substantially
the value 1.

In contrast, when the angle of attack is 4° (fig. 5), the
velocity is less than unity on the lower wall, and on the upper wall
the velocity markedly increases over the velocity for the case of
a = 0°, The maximum velocity on the upper wall moves forward toward
the position at which the airfoil approaches closest to the wall; at
the same time the minimum value on the lower wall is located at the
position near the leading edge where the zero streamline rises to
meet the airfoil at the stagnation point. On both the upper and
lower walls the velocity apprcaches unity less rapidly than in the
case of o = 09, On the upper wall the maximum velocity is 1.095;
the velocity 1.75 chord lengths upstream of the origin is 1.013; the
velocity 1.75 chord lengths downstream is 1.010. On the lower wall
the minimum velocity is 0.965; the velocity 1.75 chord lengths both
upstream and downstream is 0.990.

APPROXTMATE VELOCITY CORRECTIONS FOR AN ATRFOIL PLACED
ALONG CENTER LINE OF A PLANE-WALLED CHANNEL
If an airfoil is placed midway between the walls of a plane-
walled channel, simple approximate velocity corrections may be

derived under the conditions that the angle of attack is small and
that the thickness, chord, and camber are small in comparison with
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the dimensions of the channel. Two such corrections will be
explained. Both corrections depend upon the successive reflection
of the airfoil in the channel walls by which a cascade of airfoils
alternately upright and inverted is obtained. As 1is well known
(see reference 9), the flow through such a cascade is equivalent

to the flow about the airfoil in the plane-walled channel. In the
first-order approximate theory, the image airfoils are replaced by
doublets and by vortices; in the more elaborate treatment developed
by Goldstein (reference 4), higher-order singularities are included.
Inasmuch as the method of conformal mapping developed in the present
raper is applied numerically to a symmetrical airfoill at the center
of the channel, the approximate theories will be quantitatively
discussed only for such airfoils. A more general treatment would
follow along similar lines,

First-Order Theory

In the development. of the first-order theory the vortex and
the doublet are assumed to contribute independently to the velocity .
correction. The effect of the image vortices is to curve the stream
and to lncrease the effective angle of attack and 1lift on the air-
foil in the channel. The image doublets increase the velocity at
the center of the channel and thus take into account the constricting
effect of the channel walls. Glauert (reference 9, p. 49) obtained
a formula for the ratio of the 1lift in the free stream to the 1lift
in the channel. If it is assumed that the vortices merely change
‘the angle of attack, the Kutta condition combined with Glautert's
formula yields the following result:

2 2
sin o P14 c
sin a; 1°-2‘Z<E> (42)

where o is, as before, the angle of attack with respect to the
direction of the flow at infinity and a; 1s the effective angle
of attack due to the curved stream.

The increase of velocity at the center of the channel induced
by the image doublets is assumed to be that due to the alrfoil at
its angle of zero lift. If this increase 1s denoted by u and,

- a8 before, V 1s the veloclity at infinity in the channel, the fol-
lowing relation is true:

i
[aV)

tl%

@ @

<le
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where for symetrical airfolls .
281 . J,5(8
rezt v ie(3) (44)

as in reference 9 (p. 55). Here v,' 1is the velocity on the air-
foil when the airfoil is in the channel at an angle of attack of 0°
end y 1is the distance to the upper surface of the airfoil measured
normally from the chord line. The integral in equation (44) is
taken with respect to the surface distence 8 along the upper sur-
‘face of the airfoil from leading to trailing edge.

In the calculation of the strength of a doublet that is tc
replace an isolated airfoil, v; rather than v,' should be used.
- However, inasmuch as the strength of the doublet must be increased
vhen it is used to replace the same airfoil in cascade, the use of
Vo', which is greater than v;, will change the value of A in
the right direction. '

The velocity correction is defined as

$-G,-F @
v

where <-‘-;-> is the velocity on the airfoll in the channel expressed
w

a8 a fraction of the ultimate upstream velocity when the airfoll is
v

at an effective angle of attack a; and where <—%‘> is the 1isolated
a

airfoil velocity for the angle of attack a. Since the airfoll is
emall compared with the breadth of the chamnel, the flow about the
airfoil in the channel is equivalent to the flow about an asirfoil at-
an angle of attack o in a free stream whose velocity at a great

distance away is V + u. Therefore the following relation is true

(), - @),
SON O N

or

The result is that
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¥-(3), (L@, .

The formula for the veloclity correction shows the importance of the
changed angle of attack, for one part of the correction is the
difference in the isolated airfoll velocity distributions at angles
of attack a and ay; the other term of the correction 1s propor-

- tional to the isolated velocity distribution at the increased angle
of attack,

The correction obtained by the use of vortices and doublets

is valid to the first order in (g)z and tc/mZ. When the angle

2
of attack is 0° , the parameter <%> does not appear (referenqe 1).

Goldstein's Second-Order Velocity Correction

Goldstein (reference 4) first replaces the image airfoils by
the doublet, the vortex, and the higher-order singularities given by
the potential function of the alrfoil in a uniform free stream. The
nonuniform disturbance velocity produced by these singularities in
the physical region, in particular at the location of the physical
airfoil, is calculated, taking into account the change in direction
of the stream. This first-approximation nonuniform disturbance
velocity (a) changes the velocity distribution on the airfoil from
1ts isolated free-stream value and (b) changes the value of the
singularities that are to be imaged. Change (b) is evaluated and
a second-approximation nonuniform distribution of the airfoil in the
final nonuniform stream is calculated.

In principle, Goldstein's method is capable of ylelding to any
degree of accuracy the effect of a plane-walled channel on the two-
dimensional velocity distribution of an arbitrary airfoil, arbitrar-
ily situated. The successive approximations become increasingly
laborious, however, and only the second-approximation formulas are
given in reference 4.

The second-approximation formula for the constriction correc-
tion for the symmetrical airfoil situated in the center of the chan-
nel at a amall angle of attack is obtained as:

Vo ) <H) [P(6) - P(n) >+ sin (6 + ap) + sin o]

v, \V [sin (6 + @) + sin a] (49)

vy
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go that
Vi /v
Av i c
v B v <vi - l> (50)

where U here represents the sum of the ultimate upstream veloclty
and the velocity at the center of the channel induced by the singu-

larities so that g - 1 corresponds to u/V of the first-order

theory; a, 1s, as in the previous approximate theory, an effective
angle of attack with respect to the direction of the gtream; the
function P(8) 1s a measure of the distortion of the stream caused
by the singularities.

The Goldstein second-order image correction is accurate to the
2 2
t

_c_:._) tc (E) (3>4 cst cztz ct3 L]
h/’ hZ’ h/’\h/”’ h4 ? n ’ n4 ’ h

4
orders ( and ( ) . When the

c\? /t\% /c\? £\
angle of attack is zero, the terms <H> , (E) s (E) , and <H> do
not appear. '

Discussion of Numerical Results

of Approximate Theories

The first-order and second-order corrections were calculated
for the 12-percent-thick symmetrical airfoil. The corrections for
the airfoll at zero lift have been discussed in reference 1. The
results for the angle of attack of 4° are plotted in figure 8. The
constants used in the first-order correction are

Al ufv ay
3.93 | 0.0116 | 4.459°

Those for the second-order'correction are

U
0.08722 | 0.05534 | -0.02401 | 0.00455 | 0.00475 4,200° | 0.0108

The first-order theory yields .good results for the upper sur-
face of the airfoil in that the correction so derived shows the same
over-all trend as the correction obtained by conformal mapping. The

!
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approximate correction appears to be a mean curve to which are added
components due to the curvature of the airfoil. For the lower sur-
face, the approximate correction is not quite so good a mean line as
it is for the upper surface. For both upper and lower surfaces, the
contribution to the velocity correction due to the doublets and that
.due to the change in angle of attack are equally effective in form-
ing the total correction.

For the upper surface of the airfoil, the Goldstein second-
order image correction follows the same trend as the first-order
image correction, but the values are more nearly constant. The
second-order correction for the lower surface follows more closely
the trend of the mapping correction than the first-order correction.
From this example, the second-order correction appears to be more
accurate than the first-order correction.

The incremental velocities u/V and % - 1 of the first- and
gsecond-order corrections, respectively, are in good agreement but
the values of the effective angles of attack aq differ markedly.

This difference accounts for the difference in the nature of the
-correction curve of figure 8 near the leading edge of the airfoil.

CALCULATION OF LIFT AND MOMENT

For the case of angle of attack of 4°, the lift coefficient '
for the airfoll in the channel was calculated by integrating the
pressure distribution about the airfoil. The calculation for cy'

was also carried out by means of the two approximate theories.

¢

The isolated airfoil 1lift coefficient ¢, was 0.478. The
value of cl' obtained by the integration of the pressure distri-
bution is 0.537; that value obtained from the second-order theory,
0.522 by the formulas of reference 4; and that value obtained from
reference 9 (p. 49), 0.532. All the values of c¢;' obtained indi-
cate the expected increase in 1ift for the airfoil in the channel
and also show good agreement among themselves in that they do not
vary more than 3 percent. The lift-coefficient correction, cy' - cp
varies, however, about 30 percent among the different theories.

The 1lift coefficient cz’ was also calculated by integrating .
the pressure distribution on the walls of the channel. Theoretically,
the integratlion should be carried out to infinity on either side of
the airfoil. The practical calculation is, of course, impossible.
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The integration is therefore carried out only over a finite range
to yield the lift coefficient c¢;", and-a correction factor used

to take into account the effect of the rest of.the channel.

The correction factor 1, which is equal to °l"/°l" has

been derived in an approximate form in the appendix of reference 10.
The airfoil is replaced by a row of vortices, which are imaged in
the walls of the channel. The 7n factor for an individual vortex is
‘calculated. The final n factor is obtained by averaging n for
each vortex with a loading derived from thin airfoil theory as a
weighting factor. '

In figure 9 the lift coefficient c;" 1s plotted as a function
of the limits of integration, which were taken symmetrically about
-the origin. The value of c;", obtained by integrating the pres-
sure distribution 1.75 chord lengths upstream and downstream of the
origin, is 0.493. When this value 1s divided by the value of c;',
derived by integrating the pressure distribution on the airfoll, a
value n of 0.918 is obtained. = The value of 7 obtalned by the
method of reference 10 is 0.900. The value of c¢;', obtained from
the approximate value of 1n, 1is 0.548. The correction factor
obtained by the approximate method is satisfactory to the order of
the approximate theories previously discussed.

It is also possible to obtain the moment on the airfoil about
any point by integrating the moment of the pressure (accurately
calculated) on each element of area on the channel walls. A factor
analogous to the n factor can be so determined that the integration
for the moment over a finite range may be extended to take into
account the regions on the channel walls a great distance away.

CONCLUSIONS

Tha analysis and numerical calculations of the present paper
lead to the following conclusions:

1. The method of conformal transformation by means of the
Cartesian mapping function provides a satisfactory numerical solu-
tion to the problem of obtaining the local velocity corrections for
an arbitrary airfoil in a channel for the case of two-dimensional
frictionless incompressible flow.

2. If closéness to the velocity corrections obtalned by con-
formal mapping is used as a criterion, the second order Goldstein
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correction is more accurate than the first-order image vortex and
doublet correction for thin airfoils at small angles of attack in
giving velocity corrections in the examples calculated.

3. If it is necessary to obtain a higher-order correction than
the second, the method of the Cartesian mapping function is probably
more convenient to use than the Goldstein type correction.

4. The channel 1lift coefficients obtained by the two approxi-
mate theories are in good agreement with the lift obtained from the
mapping velocity distribution; the 1lift corrections obtained by the
two approximate theories are not in good agreement with the correc-
tion obtained by mapping results.

5. The existing method of finding the lift coefficlents from
the velocity distribution on the channel walls has been satisfac-
torily checked.

Lewis Flight Propulsion laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, December 4, 1946.
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APPENDIX A

DERIVATION OF THE RELATIONS EEIWEEN THE REAL
AND IMAGINARY PARTS OF THE CMF
Inasmuch as the CMF z-{ 1s regular within the annulus and
also on the bounding circles in the p-plane, it may be expanded in

a laurent series, which is valid in the annulus and on the circles
bounding the annulus. Thus

2 - b= ax(p®) + 13(e,8) = D Cp® (a1)

From equatioh (Al) the following expressions are obtained:

0 (o]

8%, () = a5 +) (a,+a_y) cos nP -3 "(by-Db.p) sin no
1l 1l

. @ [+ )

A.‘Il(CP) = by +§‘J(an -a_,) sinnoP+ > (b +b_y) cos oo

1l . 1
 (A2)

o -n (-]
2 n -n ® '

Ayo(P) = b, +zl:(anq -a_,q ) sin nq7+zl(bnqn+b_nq‘n) cos nY

/

The values of &, and b, can be found by means of Fourier's rule
in terms of the CMF.

When a, and b, are evaluated, the conditions of consistency

that are necessary conditions for the regularity of the CMF in the
annulus appear as

2 )
2nay ==J; § ax, (9) dcp=j;2“ ax, () do

2n . ex
2xby = J; Ayl(CP) ao =J; Ayz((p) do
J
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Four relations are desired: Ax; and Ax, expressed in terms
of Ayl and Ay, and, conversely, Ayl and Ayz expressed in
terms of Ax, and ax,. The derivation of the expression for Ayl
in terms of 4X, and Ax, will now be carried out. The other
relations will follow analogously.

Through the use of the first and third equations of (A2) and
through the use of Fourier's rule, the coefficients a, and by are

‘evaluated. As a result of the calculation, the following equations
are obtained:

-n S ¢} A
. - —qu + D2 .. qu - ]J2
n - . - -n - -
" -q" " - ¢
T (A4)
et - K
Pn =3 -n -n n n
' B | Q9 -4q J

where

N

1 2xn . 1 2n
Dl = ;;j; Axl(@) cos nP do Kl =z \fc‘) Axl(tp) sin ny doy

> (A5)

a2n 1 2n
J; _ sz(cp) cos np 4P = RJ; sz(qo) sin n® <1¢pJ

! .
A=

Dz-

The values of the coefficients a, and b, are substituted in the
infinite series expression for Ayl given by equations (A2). The

values for K,, K5, Dj, and D, as given by equations (AS) are
also used. v :

Ayl(CP) =bg +- E AI._L(CP')(sin nP' cos n®- cos nP' sin nP)dY' +
(l - ‘1

® 2n
i 5 q—n-%;_—nf sz(tp')(cos n®' sin nP- sin o' cos nP)ay'
1l 0 :
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L 1 B 4 g"B pen
Ay,(®) = by + 3 E 4 f A%y (') sin n(P' - P) 49' -
s R I |
1< 2 em
% :>-_ F-a1) Axp(P') sin n(e'- ) d9'  (A6)
- 1 - ‘ )

Now let f£(9) be a function that can be developed in a Fourier
series for 0 < = 2x. Then

| J;zn £(9') % cot (l%ﬁ) ae! =i£2ﬁ £(®') sin n@'-@) dp' = 0

m=1

_( (a7)
Hence, .
= 2xn n -n'
Ayl(qJ) = by + ,-];Zf [ﬁAxl(cp') gin n(p'- cp)] -
o ¢ -d '
Axl(cp' [ cot M - s8in n(®' -@):I ao' -
1N _ 2 J‘z"' . . :
;21: et A 8x,(?') sin n(o' - @) dv
or
® 2n
Ayl(cp) =bo-%z\‘[‘o Axl(m')[é cot (@ '9?) 1 q2n sin n(Cp'-C,D)] ap' +
1
IZ f 2 sz(tv') sin n(9'-p) dp’ (a8)

Inasmuch as the series of equation (A8) are uniformly convergent as
are the series of equations (5); the summation and integration may
be interchanged in equation (A85 to yield equation (5).
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APPENDIX B

THE NUMERICAL EVALUATION OF THE CARTESIAN MAPPING FUNCTION

The determination of the functions Ax; and Ax, from the
given functions Ay, end Ay, was based in this paper on numerical
integration of the first two equations (S). The equations for Ax;
and AX,, when the constant ag; has been set equal to zero, are

T

n
* = 2n
ax, () = },J: by, (@)|5 cot {252, Z—i—?q—zﬁ s1n n(¥'-9) |aw'-
' 1

2x =2 n
2 f by, (®') E 24 sin n(@'-9) av"
0 1 1-q

Ax2(¢)=~%f Ay (9') % cot @,* Z ‘2'9"2_11 sin n(P'-0) |a9'+ :
0 2
1

1l-q ,

2n - 2qB
}f Ay, (¢') E —d_ sin n(p'+») a9’
1 1l 2n

0] 1 1-a _

If the range of ® 1s divided into 2n equal intervals whose length
is &, 1if the values of Ay are given at the end points of the
intervals, and if Ax is desired at the same points, approximate
iIntegration will yield expressions of the following form:

/

2n-~-1 2n-1 )
ax (P) = > (o + dy) Ay, (@ + kB) + > e A7, (® + kb)
k=0 k=0

| . (p2)
2n-1 2n-1
Ax5(?) =-§0: (o + dy) Ay (P + @) - Z o Ayl(cp + kb)

J
The values of ¢, have been calculated in reference 1 by means of
Simpson's rule and other simplifications for use with the CMF of
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simply connected regions. The values of dy and ey may be sim-
ilarly obtained. The value of ¢ as calculated in reference 1 is

- h
co-O
5 8 5 +8ind
°1"6_:r°°t 2* 21 s8in &

-5 5 © +8inbd
2n-1 =8x “°¥ Z ~ Zx 81n © $ (B3)
5 5 |
Cx =3, cot -2—_(1: odd)
25 kB
o =3, cot = (k even) j

In the present paper, because the numbei of intervals was an inte-
gral multiple of 6, Weddle's rule was used for the evaluation of dy
and  ey.

The values of c) are given in table IV for the cases of -
2n =24 and 2n = 48. The values of d and ex contain the

parameter gq. Hence, these coefficients must be evaluated anew for
each approximation.
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TABLE I - ORDINATES OF 12-PERCENT THICK ATRFOIL

[From table 1 of reference 1]

Station |Ordinate||Station | Ordinate
(percent (percent
chord chord
from from
nose) _ nose)
0 0 50 5.880.
1.25 1.425 S5 5.540
2.5 1.900 60 5.025
5 2.585 65 4.415
10 3.540 70 3.750
15 4,250 - 75 3.060
20 4.820 80 2.350
25 5.295 ¢ 85 1.685
30 5.655 90 1.060
35 5.900 95 510
40 6.000 97.5 .260
45 6.010 100 0

33
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NACA TN 1899

TABLE III - VELOCITY DISTRIBUTION AND CARTESIAN MAPPING

FUNCTION FOR ATRFOIL AT ANGLE OF ATTACK OF 4°

[q = 0.2041; @ = 94% oq = 274°; ©, = 89.91% T

-0.

0063]

35

Airfolil Channel walls
@ Vol dAx; | dayy Vo2 dAx, |dAyp
(deg) | 4z | | T@ |8 |55 | T | e | ¥ M M2 | TH [de

0 x 7.5/0.0152(1.0735(-0.02940|0.01005(0.0376|0.0033| 0.0236;0,9730| O |0.00591(0.0114( O
1 -,1010{1.0709| -.02840| .01511| ,0372{ .0110{ -.1917| .9719( O | .00739| ..0109| O
2 -.2168]1.0617| -.02645] .01983| .0355] .0185( -.3850| .9703| O | ..00875| .0101| O
3 -.3308{1.0419( -,02380| .02415| ,0316| .0244} -.5838| .9686| O .01000| ,00%0| O
4 -.4417|1.0133| -,02028; .0279s| ,0260| .0291| -.7920| .9670| O | .011l07| .0070| O
S -.5486| .9822| -.01622| .03095| .0203| .0330|-1,0134| .9659| O | .01198{ .0062| O
6 -.6493| .9464| -.01182{ .03317| .0145; .0356|~-1.2549| ,9657| 0-| .01267| .0045| O
7 -.7415{ .9036{ -.00720| .03465| .0088| .0369(-1.5261| .9668| O | .01316| .0027| O
8 -.8234| .8247| -.00242| .03528{-.0013| .0355|-1.8436{ .9697| O | .01l340| .0010| O
9 -.8928| .7729| .00212| .03502{-,0020 .0313|-2.2367| .9743} O ( .01342{~-.0009{ O
10 -.9448{ .6579| .00598| .03464(-.0030! .0303|-2,7752| .9810| O ( .01319{-.0027{ O
11 -.9776| .3130| .01035| .03418{-.0082| .0347(-3.6780| .9896| O | .01272|-.0045| O
12 -.9950| .5485| .01525| .03241)-.0194| .0338(-9,2779|1.0001| O | .01202}-.0062| O
13 -.9963|1.7756| .01925| .02947|-.,0229| .0299)}-3.6554(1.0121} O .01109|-.0079( O
14 -.9777|1.6934 .02312] .02634|-.0252( .0250}-2.7736|1.0249| O .00997|-.,0094{ O
15 -.9407|1.5167 .02600| .02294{-,0275{ .0210(-2.,2462|1.0379| O .00864{-.0106| O
16 -.8875[1,4150 .02862| .01915|-.0295| .0183{-1,8613|1.0506| O | .00718,-.0118| O
17 -.8188(1,3589 .03075| .01518(-.0315| .0155{-1.5513|1.0624| O .00555(~.0127( O
18 -.7375/1.3249| .03252| .01096(-.0333| .0121|-1.2863|1.0731( O | .00384|-.0135| O
19 -.6456|1,3042 .03390| .00652|-.0350{ .0085-1.0503/1.0817| O | .00203(-.0140]| O
20 -.5455(1,2910| .03475| .00184|-.0365| .0048( -,8330|1.0883| O | .00021|-.0142| O
21 -.439111.2843| .03522|-.00305|-.0380| ,0005| -.6288]1.0926{ O |-.00164|-.0141| O
22 -.3287/1,2803| .03502|-.00824|-,0392|-.0047| -.4326{1,0948| 0. |-.00343(-.0138| O
23 -.2152|1.2790| .03402|-.01349|-.0402)~.0101| -.2414|1.0944| O -.00518(~-.0131( O
24 -.1004|1.2772 .03235|-.01883(-,0406|~.0162| -,0272|1.0918| O |~-.00680!-.0120| O
25 .014311,2652 .02970(-.02423|-.0390(~.0250 .1375|1.0874| 0 |-.00831(-.0107| O
26 .1287(1.2392| ,02558|-,02926!~,0350(~.0364 .3303|1,0814| O |-.00963|-.0092| O
27 .2439|1.1935| .02038|~.03325|-,0263|-.0428 .5290(1.0745| 0 |-,01079|-.0077| O
28 .3592|1.1455| .01438]-.03590|-.0160(-.0456 .7370|1.0667| O |-,01171|-.0061( O
29 .4732]1.0927 .00828(-.03712|-.0041|~.0462 .9585(1.0576| O {-.01243}-.0042| O
30 .583411,0475| .00215(-.03695| .0065|-.0441| 1,2000{1.0491| O |-.01290|-.0027| O
31 ,6871)1.0093| -.00325-.03558| .0153|-.0395| 1.4711{1.0400| O |-.01314|-.0010| O
32 .71812| .9805| -.00815|-.03317{ .0216|-.0314| 1.7876|1.0308] O |-.01315; .0008| O
33 .8621| .9564| -.01178|-.03007| .0253|-.0240| 2.1793|1.0221| O |-.01294| .0023| O
34 .9260| .9328| -.01450{-.02674| .0269{-.0175| 2,7132|1,0139| O |-.01252| .0039| O
35 9708| .9223| -.01642(-.02332| .0254|-.0110( 3.6019|1.0066{ O |-.01190| .0033 0
36 .9948| ,9246 | -.01742]-.01996| .0225|-,0043| 9.2833|1.0001| O {-.01112| .0066| O
37 .9953| .8741| -.01750|-.01723| .0185|0 3.6385! ,9946| 0 |-,01016; .0078| O
38 .9725| .8882| -.01760{-.01526| ,0140|-.0012| 2.7416| .9900| O |-.00907| .0088| O
39 .9280| .9050| -,01792(-.01370{ .0115{-.0030{ 2,2091| .9864| -0 {-.00785( .0096} O
40 .8653| .9190! -.01850{-.01229| .0102|-.0051{ 1.8208| .9836{ O {-.00654| .0104| O
41 .7861| .9307| -.01932{-.01099| .0099|-.0080| 1,5084| .9814| 0 |-.00511| .0110| O
42 .6932| .9427 | -.02050|-.00968| .0107(-.0116( 1.2411| .9800| O |-.00362 .0l1l6| O
43 .5898| .9608 | -,02218|~.00813| .0136|-.0141| 1.0030| ,9789| O |-.00206| .0120| O
1144 .4796| ,9876 | -,02425|-,00594| .0190(-.0148 .7842| .9780| O |-.00048| .0123| O
45 .3653(1,0142 | -.02620(-,00300| ,0248|-.0146| .5784| .9772| O | .00116| .0124| O
46 .2485]1,0414 | -.02788| ,00061| .0308|-.0127 .3809| .9762( O | .00276; .0123| O
47 .1314|1,0669 { -,02920| .00501] .0362}-.0064 .1887| .9748( O | .00437] .0120] O
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TABLE IV - COEFFICIENTS FOR CALCULATION OF CARTESIAN
MAPPING FUNCTION FOR SINGLE CONTOUR

(a) 24-point scheme

w

Gk k ck '

0 12|10
.42564 |[13}-.00366
.20734 |14} -.01489
.06706 ||15} -,01151
.09623 || 16| -.03208
.03620 ||17| -~.02131
.05556 |118| -.05556
.02131 || 19 -,03620
.03208 |20 -.09623
.01151 |{21} -.06706
.01489 {|22| -,20734
.00366 || 23| -.42564

HOWO~NoWUniWNEO

-

- (b) 48-point scheme

» k ck k ck

: 24/ 0
.42470 || 25| -.,00091
.21099 {|26] ~.00366
.06982 |i27| -,00276
.10367 ||28] -.00744
.04092 (|29 -.00472
.06706 (/30| -.01151
.02816 (|31} -.00685
.04811 (32| -.01604
.02079 ||33| -.00928
10 | .03620 |{34| -.02132
11| .01584 ||35; -.01218
12 | .02778 ||36| -,02778
13| .01218 ||37| -.01584
14| .02132 ||38| -.03620
15| .00928 ||39| ~-.02079
16| .01604 ||40| -.04811
17 | .0068S ||41|~.02816
18 | .01151 ||42| -.06706
19| .00472 || 43| -.04092
20 | .00744 ||44|-.10367
21| .00276 |{45|-.06982
2z | .00366 (46| -.21099

23| .00091 47| -.42470|

OCO~NOUNdWNHO
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Figure 1l,- Transformation of flat plate and
channel into two concentric circles,
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Velocity distribution, v ,/V

NACA TN

1899
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Figure 4. - Comparison of velocity distributions in channel Aobtaihed by two methods..
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Figure 6. - Comparison of velocities on airfoil in free stream and on airfolil in channel
for a = 49,
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" ax1(0), Ayp(e)
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(b) CMF on outer surface.
Figure 7. - Cartesian mapping function for airfoil in a channel at « = 4°.
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Local velocity correction, Av/v
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_ (b) Lower surface. ‘
Figure 8. - Velocity corrections for 12-percent-thick airfoil. a = 4%, c¢/h = 0.5,
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