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NATIONAL ADVISORY CO}4MITE FOR AERONAIY2ICS 

TRCBNICAL NOTR 1899 

VElOCITY DISTRIBUTIONS ON ARBITRARY AIRFO]1S 


IN CLOS1 TUNNELS BY CONFORMAL MAPPING


By H. E. Moses 

SUMMARY 

Conformal mapping methods are applied, to the calculation of 
the effect of channel (two-dimensional tunnel) walls on the ideal 
flow past arbitrary airfoils situated anywhere within the ch'nne1. 
The walls of the channel need. not be plane but may have any shape. 
The results are compared in specific cases with those obtained. by 
two approximate methods, of which the first is a first-order treat-
ment using image vortices and. doublets and the second is a higher-
order correction developed. by Goldstein. 

INTRODUCTION 

In reference 1 a conformal mapping method. wa'ë developed. whereby 
the zero-lift velocity distribution could be found for a symmetrical 
airfoil symmetrically located in a plane-walled channel. The purpose 
of the present paper is to extend the previous investigation to the 
case of an arbitrary airfoil situated anywhere within an arbitrarily 
shaped chpnnel (two-dimensional tunnel). 

The Cartesian mapping function (CMF), introduced in reference 2 
and. used In the method of reference 1, is also used for the problem 
of the present paper. The velocity at any point on the airfoil in 
the channel ia found in terms of the CMF and. the known conformal 
tranaformat ion of a flat plate in a channel. The difference between 
thia velocity and. the velocity at the same point on. the Isolated 
airfoil at the same angle of attack represents the effect of the 
chinnel walls. In order to obtain the velocity distribution on the 
airfoil within the ch,nnel, the CI is applied to doubly connected 
regions analogously to the manner in. which Theodorsen t s mapping 
function Is applied in reference 3. 

The method. is given, illustrated numerically by examples, and. 
compared with corresponding results by the first-order image theory
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and. by the second-order image theory of Goldstein (reference 4). 
In addition to the velocity on the airfoil, the velocity on the chan-
nel walls is obtained, by the conformal mapping method. 

SYMBOLS 

The more important sinbols used in this paper are listed as 
follows: 

o	 chord of airfoil 

Cl	 section lift coefficient for isolated airfoil 

c .,' section lift coefficient for airfoil in channel 

h	 distance between channel walls 

t	 thickness of airfoil 

V	 undisturbed velocity at great distance from airfoil 

Tcl velocity on surface of airfoil in channel 

v 2 velocity on channel walls 

v1	 velocity on isolated airfoil 

v	 velocity correction, V01 - Vi 

a.	 angle of attack of airfoil 

angle of attack of flat plate 

a1 effective angle of attack of airfoil with respect to curved 
stream 

plane of straight lines 

z	 physical plane 

p	 circle plane
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METHOD OP COWORMAL MAPPING 


The C1 for One Contour 

In previous applications of the coiormal mapping method used. 
in the present paper (for example, references 1 and. 2), a single 
contour such as an airfoil in the physical plane (z-plane) was 
transfor!ned into a single straight line contour (airfoil chord) in 
another plane (-plane). The line in the -plane is related to a• 
circle in a third plane, the p-plane, by a known transformation 
that maps the unit circle with its center at the origin into the 
straight line such that the region out side the circle is mapped 
into the region outside the straight line. Because the contour in 
the z-plane also transforms into the same circle in the p-plane in 
such a manner that the regions exterior to the contours. correspond., 
the function z - is regular everywhere on and. outside the circle 
in the p-plans. This vector difference z - between conformally 
related points is called the Cartesian mapping function (CMF). 

The real and. imaginary parts of the C are denoted by Ax 
and. Ay, respectively. Because of the regularity of the CMF outside 
the circle,

Z -	 = Ax () + y (p,) =	 C_p	 (1) 

where 

p = pe 

a_n + ib_ 

On the circle p = e	 the following relations hold: 

Ay (l,) =

	

Ax (l,') cot

(2) 

Ax (l,IV) = -	 Ay (i,Cp') cot	 dp' 

0 

Equations (2) are the funhiRn,ental equations whereby the transforma-
tion between the z- and. -planes can be calculated.. 

The C' for Two Contours 

In general, two contours in the physical plane can be trans-
formed into two straight-line contours in the -plane. The lines
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in the -p1ane can, in turn, be transformed into two concentric 
circles in the p-plane, whose centers are at the origin and. whose 
radii are equal to 1 and. q (q<i). The transfoxtion is such 
that the region between the two circles is transformed into the 
region between the contours. 

In the case discussed. in the present paper one of the contours 
in the z-plaxie is the airfoil itself; the other contour consists of 
the channel walls, both walls together being considered. as one con-
tour extending to Infinity In two directions. The contours in the 
-plane consist of a finite straight line into which the airfoil 

is transformed and. a transformed ch-rinel whose walls are plane and. 
parallel to the real axis. In the p-plane, the finite straight 
line, and. hence the airfoil, are mapped Into the outer circle whose 
radius is unity, and. the channels of both the - and. the z-planes 
are mapped. into the Inner circle whose radius is q. Thus, as the 
outer circle Is traced. in a counterclockwise direction, the airfoil 
and. the finite straight line are traced. in a clockwise direction. 
In the same 1nner, as the inner circle is traced. counterclockwise, 
the channel is traced. clockwise. 

As in the case of the single contour, the region9 at infinity 
in the z- and. -planes correspond., but the vector difference z - 
Is regular on the boundary of both circles and within the annulue 
formed. by them. As before, z - Is the CMF and Ax and Ay are 
its real and. Imaginary parts. Because of the regularity of z - 
In the annulus, the C}W may be expanded as follows (cf. equation (1)): 

z -	 Ax (p,(p) + lAy (p,cp) 	 Cp	 (3)


where 

p =pe 

= a + lb 

Inasmuch as the full Laurent series Is used In equation (3), the 
relations between Ax and. Ay on the two circles differ from the 
simple relations given by equations (2). 

Appendix C of reference 2 provides relations between the com-
ponents of the C' on the two circles, but the expressions are not 
easily used. for the purpose of calculation. More convenient rela-
tions have been derived in reference 3. Althogh the correct result 
is obtained., the method. of derivation is not fully given. The rela-
tions are derived. in more detail In appenM r A of the present paper. 
These relations between the components of the C are the following.
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The subscripts 1 and 2 indicate the values of the CMF on the 
circle of unit radius and the circle of radius q, respectively. 
That is:

Ax1(cp) = x(l,cp) 

= y(1,cp) 

x2 (cp)= x(q,cp) 

Ay2 (cp) = Ay(q.,cp) 

Then, as shown in appendix A:

sin 
2n	

,)E cot (cp'_cp) '' 2q 
Ax1(CP) = a0 +	 y1	 -	 2 + '-'	 2n


1 1-q 
2n 

r	 _	
2n sin n(cp'-cp) dq' 

-	 1 1-ci 

1 2n >I 22n 
=a0- S0	

cot	
+	

in fl ( t _)]d t + 

S	 y1(cpt)II	 2q	 sin n(cp'-cp) dcp' 2n 
1-i 

1	 2n	
cot 

(cpt_)	 n(_)]t + 
(cp,){ 

Ay1()=b0- 5 AX	
2	 2	 1	 2n l-q 

2n 5 Ax2(cP')>I	
2	 sin n(CP'_rp) dep'	 I


1-q 

=b0+ 5	 cot	 sin n(cpL)]d t -

2n 

1 2n	 2q' 5 AX1	 12n sin n(cp'Jp)

(4) 

(5) 

and
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x1 (cp) dcp =	 ax2(cp) dq'

(6) 

dcp =
	

) dcp 

The Introduction of elliptic functions simplifies equations (5). 
The elliptic functions introduced, at this point and. used. at other 
places in this paper are treated. In various texts with varying nota-
tions. The notation used. throughout this paper is that of Tannery 
and. Molk (reference 5). From reference 5 (t. IV, p. 100), the fol-
lowing series for the -functIons are obtained: 

1	 i	 ____ = cotn	 2q sin 2gni,	 (7)

1q211 

4'') =>

	
1q2 sin 2,ai	 (8)
1)4(D)

1



2i 1 

2n 
=	 +

(cp'-q 
1 '.	 2	 I 

(.cp'-(p\ 
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Hence, from equation (5):

2it 1 x1 (cp) = a0 +
2

y1(cp') ]. \ 2it ) d.cp' - 

1 () 

(cp'cp\ 
1	 '4 \2n) 

	

; j0	
y2(cp')	

Icp'-cp\ 
4 k, 2n ) 

2i	
, fcp'—cp\ 

1	 ____________ 

	

x2 (cp) = a0 - - S	 1	 2t I	 + 
(cp'-cp\ 

1'\2n) 

1	 _________ 

	

; J0 	 i(')	
2n 

1q'-cp\ 
84 2n I 

fcp'—cp\ 
1	 ax1 (cp')1 \ 2t ) =	

- ; Jo 	 (cp'-cp\ 
1'\21t) 

Icp_'p\ 
1	 2t	 84 .. 2 ) 

Icp'-e

(9) 

2,t 4	 2n I ax1 (cp')	 f\•qD' 
t 4 I	

)
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In the same way that the relations expressed. by equations (2) 
are a limiting form of Poisson's integral, the i.ntegrals in equa-
tions (5) or (9) are limiting forms of Villat's analog to Poisson's 
integral. Villat's integral (reference 6) gives the value of a 
function within an annulus when the real part of the function is 
known on the bounding circles. 

The relations expressed. by equations (5) reduce to those 
expressed. by equations (2) when the radius of the inner circle 
approaches zero; that is, when the chpnnel walls move to infinity. 
The signs differ, however, because the C that is defined within 
the annulus in equations (5) is defined within the outer circle as 
the radius of the inner circle goes to zero, whereas, in the case 
of equations (2), the C)' is defined outside that circle. 

The -P1ane and Its Tran.sfonnation into the p-Plane 

As already described, the c-plane contains a plane-walled, chan-
nel within which there is a flat plate. The transformation mapping 
these, contours into two concentric circles has been obtained by 
Tnotika (reference 7), who has also obtained the velocity poten-
tial for this case. Tomotika's results will be briefly presented 
and. the form in which they are most useful in applying the CMF 
method will be given in more detail. 

Let a. be the angle of attack of the flat plate. The trans-
formation between the c-plane and the p-plane is shown in figure 1 
and. given mathexnatiôally as

q." sin ncP2 2h I	 ______________________
x = -	 e	

n(	
2n	 4n l+2q cos2ö+q ) 

1 

	

+ q211e) + p(e' 18 + q2ne)J +T	 (10) 

or in another form 

I log i2h	
q2fl sin nç 

e	 I2	 n(l-2q2 COS 2 + q4n) X p-qe
1 

[((e-2i - q2n) - (U (e2 - q2fl)] +T	 (11)
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where h is the distance between the channel walls, ô = - 

and. T is a constant. The substitution of p = e 1 in equa-
tion (10) yields the equation of the flat plate; the substitution 

of p = qe' in eq.uation (ii) yields the equation of the channel 
walls, which are parallel to the real axis. The use of the two 
forms of the tranefoition sflnplif lee the resulting equations in 
cp for the flat plate and. channel walls. 

Four values of the central angle cp (cp1 ,cp2,c, .andcp4 ) are 

important in the mapping. From reference 7 the points p = e 

denoted by B and B' map into the stagnation points 

on the flat plate for zero circulation; the points p = qe12, 
l(2n-q) - 

qe	 , denoted by H and H' map into 	 , respectively; the 
lq)	 iq 

points p = e 3, e ' , denoted by A' and. A, map Into the 
extremities of the plate. The points are shown in figure 1. 

The values of q and. cp2 In equatIons (9) and (10) are deter-
mined by the length of the plate, its position, and. the various rela-
tions between the four special values of p. From equation (10) or 
equation (11)

(12) + cp4 = 

_____	
(lc°2 

_____ I	 t( 

	

V4\ 2it /	 4\2i	 -0 
(Pi+Ci 	 -	 ( l-	 - 

	

V4\2, 
/	 4\2,t I

or

(13)

(14) 

l2fl	
nq sin nCf = 0 

(cp3 cP2\ (cP4_cP	 (cp3-j.cç	 (q'4p2 
2	 2, ,1 - 4\\ 2	 )4\ 2 

n(P3C4) 

8	 q' sin n sin	 - 
- = -	 [cos(n-l) a. - q cos(n+l) a.3 h	 2	 - 4n n(l-2q. cos 2a. +q )

(15)



d.	 i / sc	 " 
=(-cP2)

1

n(q)3-q'4) 

2 °°	 2	
x 

n(1-2q. COB 
2a. + q4fl) 

10
	

NACA TN 1899 

[sin(n-l) - 2n sin(n+1)2]
	

(16)


where L is the length of the plate and d. is the vertical distance 
of the mid.point from the center line of the hhannel. 

In order to find, the values of q,cp 1,cp2 ,q 3, and.. q 4 for a 

given length and. position of the plate, equations (12) to (16) should. 
be solved siinultaneoualy.ç 

In principle, it is possible to transform the flat plate at 
any value of	 into the airfoil at angle of attack set at a.. 
The value of E is fixed at the value that accomplishes the trans .-
formation with the least labor. In the case to be calculated., 
is set equal to zero. For this value of , Tomotika's formulas 
(reference 7) are considerably simplified.. If, the distance between 
the channel walls is taken as unity, the equations simplify as 
follows:

jfl 
=

	

	 (f_p_fl) + r	 (17)

n(l-q2') 

1 

or equivalently 

I	 icp2	 q, sin rp2 r	 n	 -n 2i11	 p-q.e	 ______ _____ ______	 - =	
1 lO€e	 - 2 +	

2n L i I ()	 +1' (18) 

I	 pqe	
z_i n(1-q ) 

--	 1 

and. (p2 can be found by using the equation

(19) 

The quantities q, 'P1,	 and. (p may be found. by solving 
simultaneously equations (12), (].3, (14), and. (15), WhICh also 
become simpler than the equations for the general case. The 
constant T may be restricted. to real values, because it merely 
determines the position of the oharniel and. the flat plate with 
respect to the axes in the -plane.
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A special case useful for numerical work is that for which 
d. = 0. For this position of the flat plate q1 = 2 = 3 =	 = 2

and

(20)L= 
1 (2n_i)[1_q2(_1)] 

Hence, q can be found. from equation (20) alone when the length of 
the plate is prescribed. 

	

If	 is separated into its real and. imaginary parts, 
= + ftj,	 and. i can be found. as functions of q. The equa-




tion of the flat plate Is found by setting p 
= 0jq, 

in equa-
tion (17). Then, when the subscripts 1 and 2 denote the values of 
the function on the plate and. on the channel, respectively, 

= -
	

n sin ncp2 sin ncp 
+ T	 (21) 

1	 n(l-q.2')

(22) 

Thus the flat plate lies on the real axis of the -plane. The 

equation of the channel walls is found by setting p = qe	 in 
equation (18). Then 

	

2	

Isin () q2fl n	
sin n}^T	 (23) loge1 	 1

	

(cp+c22)l	 n(1-q21) 

=	 =	
- d.	 (2i-cp2>cp >2

(24) 

=	
- 1 

= - ( 
+	 2>cp>
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Airfoil Position and. Adjustments in Terms of the CMF 

The z-plane and. the -p1ane are shown superimposed in figure 2 
in which the geometric meaning of the C4F is also indicated.. If 
the abscissas and. ordinates of the airfoil are denoted. by x 1, y1 
and. the abscissas and ordinates of the channel walls by x2, 2' 
the definition of the CMF shove that 

x1(cp) = t1(ci) + x1(cp) 

y1 (cp) =
(25) 

x2(cp) =
	 + x2(cp) 

= '2 + y2(q)) 

In order to determine the constants q and. CP 2 that appear 
explicitly in the expressions for	 and. i and. also the angles CPN 
and. CPT that correspond to the. leading and. trailing edges of the 
airfoil, the airfoil is placed in a normal position with respect to 
the y-axie. If c Is the chord. of the airfoil and. a Is the angle 
of attack, the normal position Is given by 

Xl(cpN ) =_cosa1
(26) 

xl (cpT ) =cosa 
J 

From equations (25) and. (26), the following formula is obtained: 

l(cpT) - 1(cp) = c cos a. - xl (cpT) + Axl (cpN)	 (27) 

The angles CPN and. CPT corresponding to leading and. trailing edges 
are obtained from the condition of a mA.Timum for the abscissa x1(cp), 

dx1(q)	 ___ 

dcp	 =0	 =0	 (28) 

or, by equations (20) and. (24), 

d.xl(cP) .	 q' sin nq 

=	
2n cos ncp	 (29) 

1 

for q = N or
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The value of 
found from

2 

0

or what is equivalent the value of 

= S	 y2() dp
d., is 

(6) 

as follows: Let r(cp) denote the value of the ordinate of the air-
foil measured from the center line of the channel. in the -plane. 
From the definition 	

0 

r(cp) = Ay1 (cp) + d.	 (30)


Hence, using equation (6), 

2t 

	

= ..i r	 r(cp) .cp - .. 5 	 y2(cp) d.cp 	 (31) 
2

	

U0	 0 

and.	 is obtained from equation (19). 

The constant T is obtained, by adding the equations of (26). 
The resulting formula Is 

	

= >i1
q,'1 sin. ncl si
	

(N-'P)	 X1(cpN) +
11 n(1-q2)	 2	 2	 2

1	 (32) 

These equations completely determine the constants q, 'r, CpN, 

q), and. cp2 in terms of the CMF. The value of is calculated 
from equations (31) and. (19); the use of this value in equations (27) 
and. (29) permit these equations to be solved simultaneously for q,, 
(p. cp; and. finally 1' can be determined from equation (32). 

Velocity Distribution on the Airfoil 

and. on the Channel Walls 

The complex velocity potential W, derived from the results of 
reference 7, is

t4 (I 1 e P+2'\ e4 
(q'1+2 

	

2g	 I	 2t I	 it' W =	 1°e (i	 pP2	 (l-2 -	
loge	 (33) 

	

4\	 2i	 )42) 

where V is the velocity at infinity and, t' is the circulation.
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The velocity distribution on the airfoil and on the channel 
walls is obtained, from the velocity potential given by equation (33). 
The formula for the velocity in the z-plane is 

d.W 
d.p = 

Z	 d.z 
d.p 

On the airfoil, from equations (8) and. (33) 

008 1e1 [f'8.	
qfl .8ifl nc 

2	 l_q2n	
]	

(35) 

The circulation r in equation (35) is adjusted to satisfy the 
Kutta condition at the trailing edge of the airfoil () 	 = o. 
The result j

qsinncp2 
-	 2ii	 CO8Th 

1	 l-q 
Also

	

dx1 _	 y1(p) e' 
= ()	 -	 d•p e	 +	 d.cp 

p=e	 p=e 

= 4ieV' qA sin 
2	

idx1(cp)
e


	

2n	 coancp- -	 d.q' l-q, 

dAy,(cp) ______ iq 
dq 

Hence, the velocity distribution on the airfoil is 

q, sinnCP
2 (cos nq- cos nm) 

1-q, - 4

' q' sin 2 -	 Ltxl (cp)1	 kyi ( q)]2 
,	 2n	 - thp ] .f[ dcp J - 1	 l-q, 

'where v01 has been written for v.

(34)

(36)

(37)

(38)
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Lift on the Airfoil in the Channel 

The lift on the airfoil in the channel can be found by evalu-. 
ating a modified form of Blaslus' integral in the p-plane. The 
expression for the lift involves the C}4F and: the radius of the inner 
circle; that is, the lift depends on the shape and. the position of 
the airfoil and. on the shape of the channel walls as well as on the 
circulation. This dependence is in contrast to the case of the 
isolated airfoil, in which the lift on any body is the same for a 
fixed circulation. The . depend.ence of lift upon the airfoil shape 
for the case of the airfoil in a plane-walled channel has also been 
shown by Havelock (reference 8) who finds the potential function 
directly without the use of ôonformal mapping. 

The expression for the lift is too complicated for numerical 
calculation. A more convenient way of obtaining the lift is to 
integrate the pressure distribution on the airfoil or the pressure 
distribution on the walls. 

Method of Successive Approximations for Obtaining CMF 

The C can now be calculated. for a given configuration by a 
method of successive approximation analogous to that of reference 2. 

1. The airfoil and. the channel walls are drawn such that the 
airfoil is in the normal position, as shown in figure 2.. The center 
line of the channel in the -plane is located on the figure in order 
that the airfoil ordinates r(cp) may be read. The scale is so 
chosen that the distance between the channel walls in the -plane 
is unity.

2. om a previous approximation, approximate values of q, 
T,q)2I.p, and T are known, as well as approximate values of the 
abscissas x1(cp) and. x(cp) at a convenient set of values of cp 
from 0 to 2t radians. Through the use of the known values of x1(cp), 
r(p) is measured. A set of values of ti y2 (CP) are also measured 

through the use of the known values of x2 ('p). A value of d and. 
a new value of 2 

are obtained from equations (31) and. (19). 

If no better values are available, the initial approximation 
for x1 (CP) and. x2 (cp) may be that obtained for the flat plate 
situated. along the center line of a plane-walled channel. In this 
case x1 and. x2 are given by equations (21) and (23) for
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and. 2• The value of q is obtained from equation (20), where L 
Is replaced by c COB . Both q and.	 equal t/2 and. 
equals 3it/2. The constant I equals zero. 

3. The functions x1 and. x2 are calculated by means of 
the first and. second. equations of (5). The value of q used. is 
the approximate value of step 2. The numerical details of the 
calculation are given In appendix B. 

4. New values of CPN, CPT, and q are obtained by solving 
equations (27) and. (29) simultaneously for these quantities. 

An alternative method of determining N' T' and q is a 
purely graphical one. The approximate function x1 (q'), which Is 
also a function of .q, is plotted against q in the regions of 
the extreme values of x1 . From this graph q) and. CPT are 
determined. These values are substituted. in equation (27), from 
which a new value of q is obtained that is used to re-evaluate x1. 
The procedtre is continued until sufficient accuracy is obtained. 
Finally I is calculated from equation (32). 

5. A new set of values for x1 (q)) and. x2 (cp) are calculated. 
using the new values of the constants and the values of x 1 and. 
calculated in step 3. 

Steps 2 through 5 are repeated until a plot of y(cp) against 
x(cp) for both the airfoil and. the channel walls yield shapes, that 
are as close as desired to the shapes plotted in step 1. 

If the walls of the channel in the z-plane are flat, Ay2(cp) 
is set equal to zero, and. a considerable simplification In the 
numerical procedure results. This case is the most coimnon and. the 
method is not at all difficult to apply. The discussion of numerical 
results will provide an idea of the actual work involved. 

After the components of the CMF and the various constants 'have 
been evaluated by the method. of iteration just described, the veloc-
ity distribution may be found. from equations (38) and (41) for the 
airfoil and. for the channel walls, respectively. The derivatives 
of the CMF in the formulae for the velocity distribution were 
measured. in the cases calculated; although an expression exists 
that gives the values of the derivative in terms of the CMF as in 
reference 1, it is too cumbersome to use.
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IlLUSTRATIVE EXAMPLES USING CONF0I4AL MAPPING 

The method of conformal mapping outlined has been applied, to 
the 12-percent symmetrical airfoil treated in reference 1. The 
ordinates of this airfoil are given in table I and. the airfoil shape 
is shown in the figures in which the velocity distributions are 
plotted. For the calculations of the present paper the airfoil was 
assumed. to be placed at the center of a plane-walled channel. The 
chord to height (c/h) ratio was taken to be 0.5. Velocity correc-
tions were calculated, for angles of attack of 00 and. 4. 

For the case of a = 0° the range of 	 from 0 to 2 radians 
was divided into 24 equal intervals. Two approximations, starting 
from the x(cp) of the flat plate, were necessary for the derived 
airfoil contour to coincide with the given contour for a scale of 
chord length of 20 inches and ordinate scale five times that of the 
abscissa scale. In no case were more than six terms used in any of 
the infinite series in the preceding formulas, for the series con-
verge rapidly. The velocity distribution for the case of a = 00 
is shown in figure 3. The velocity distribution on the walls of the 
channel is included. In the figure and. Is drawn to a scale five times 
as large as the scale for the velocity distribution on the airfoil. 
The CMF together with the velocity distribution is given in table II. 
The velocity distribution on the airfoil for this case had been 
previously calculated by the method of finite chord in reference 1. 
The results are compared in figure 4 and. are in close agreement, 
which indicates that the numerical methods used in both processes 
were sufficiently accurate. 

The velocity distribution for the case of angle of attack of 40 
is plotted in figure 5. Figure 6 shows for the purpose of compari-
son the velocity distribution for the airfoil in the free stream at 
a. = 4. In this case four approximations, starting from the flat 
plate, were necessary to obtain coincidence between the derived. air-
foil and. the given airfoil to the same ordinate and. abscissa scale 
as in the case of a = 00. In the first three approximations the 
cp range was divided. into 24 eq,ual intervals, but in the fourth 
approximation the length of the intervals was halved so that the 
CMF was evaluated at 48 points. The mapping data and velocity dis-
tribution are given in table III; the nature of the CMF is shown by 
figure 7 where the component functions are plotted. The velocity 
distribution for the airfoil in the free stream was obtained by the 
method of reference 2. 

The velocity correction for the airfoil at an angle of attack 
of 00 was discussed in reference 1. The velocity corrections for 
the airfoil at the angle of attack of 40 are plotted. in figure 8.
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The irregularities of the correction are clue to local curvature 
fluctuations of the airfoil surface and. correspond. to the irregu-
larities found. in the corrections for the same airfoil at a. = 00. 
(See reference 1.) 

The velocity corrections are positive on the upper surface of 
the airfoil but are for the most part very nearly zero on the lower 
surface. This behavior of the correction indicates that the lift 
on the airfoil in the channel is greater than that on the airfoil 
in the free stream. The increase in lift has been shown by other 
authors through the use of approximate methods (see references 4, 
7, 8, and. 9) and. will be further discussed.. 

The influence of the airfoil on the velocity distribution on 
the channel walls is shown in figures 3 and. 5. The velocity dis-
tribution on the walls is very sensitive to the angle of attack. 
When the angle of attack is 0° (fig. 3) the nond.imensional velocity 
on both the walls is greater than unity. The velocity rapidly 
approaches unity both upstream and. downstream of the airfoil until 
at 1.75 chord lengths upstream and. downstream of the origin the 
velocity has decreased. from its maximum value 1.03 to substantially 
the value 1. 

In contrast, when the angle of attack is 40 (fig. 5), the 
velocity is less than unity on the lower wall, and. on the upper wall 
the velocity markedly Increases over the velocity for the case of 
a. = 00 . The maximum velocity on the upper wall moves forward toward 
the position at which the airfoil approaches closest to the wall; at 
the same time the minimum value on the lower wall is located. at the 
position near the leading edge where the zero streamline rises to 
meet the airfoil at the stagnation point. On both the upper and. 
lower walls the velocity approaches unity less rapidly than in the 
case of a. = 00. On the upper wall the maximum velocity is 1.095; 
the velocity 1.75 chord lengths upstream of the origin is 1.013; the 
velocity 1.75 chord. lengths downstream is 1.010. On the lower wall 
the minimum velocity is 0.965; the velocity 1.75 chord lengths both 
upstream and. downstream is 0.990. 

APPROXfl4ATE VElOCITY CORCTIONS FOR AN AIRFOIL PLP..C)


ALONG CENTER LflE OF A PIAAIE-WAT.Tfl CEAIEL 

If an airfoil is placed midway between the walls of a plane-
walled channel, simple approximate velocity corrections may be 
derived under the conditions that the angle of attack is small and 
that the thickness, chord, and. camber are small in comparison with
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the dimensions of the channel. Two such corrections will be 
explained. Both corrections depend upon the successive reflection 
of the airfoil in the channel walls by which a cascade of airfoils 
alternately upright and. inverted is obtained. As is well known 
(see reference 9), the flow through such a cascade is equivalent 
to the flow about the airfoil in the plane-walled channel. In the 
first-order approximate theory, the image airfoils are replaced by 
doublets and. by vortices; in the more elaborate treatment developed 
by Goldstein (reference 4), higher-order singularities are included. 
Inasmuch as the method of conformal mapping developed in the present 
paper is applied numerically to a symmetrical airfoil at the center 
of the channel, the approximate theories will be quantitatively 
discussed only for such airfoils. A more general treatment would 
follow along similar lines. 

First-Order Theory 

In the development, of the first-order theory the vortex and. 
the doublet are assumed to contribute independently to the velocity 
correction. The effect of the image vortices is to curve the stream 
and to increase the effective angle of attack and. lift on the air-
foil in the channel. The image doublets increase the velocity at 
the center of the channel and. thus take Into account the constricting 
effect of the channel walls. Glauert (reference 9, p. 49) obtained 
a formula for the ratio of the lift in the free stream to the lift 
in the channel. If it I assumed that the vortices merely change 
the angle of' attack, the Kutta condition combined with Glautert's 
formula yields the following result: 

sina.	
1 sin	 - - 24h) 

where a.. is, as before, the angle of attack with respect to the 
direction of the flow at infinity and 	 is the effective angle 
of attack due to the curved stream. 

The increase of velocity at the center of the channel Induced 
by the image doublets Is assumed to be that due to the airfoil at 
its angle of zero lift. If this increase is denoted by u and, 
as before, V is the velocity at infinity in the channel, the fol-
lowing relation is true:

u	 2 

v = i	 s)	 (43) 

(42)
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where for synnnetrical airfoils 
4c

(44) 

as in reference 9 (p. 55). Here V( ' is the velocity on the air-
foil when the airfoil is in the channel at an angle of attack of 00 

and. y is the distance to the upper surface of the airfoil measured. 
normally from the chord line. The integral in equation (44) is 
taken with respect to the surface distance s along the upper sur-
face of the airfoil from leading to trailing edge. 

In the calculation of the strength of a doublet that is to 
replace an isolated airfoil, v1 rather than vc t should be used. 
However, inasmuch as the strength of the doublet must be increased 
when it is used. to replace the same airfoil in cascade, the use of 
'' which is greater than v1 , will change the value of ? in 
the right direction. 

The velocity correction is defined as 

- (c	 (vj'\ 

v \vJ 1 \VIct 

where (-i)
	

is the velocity on the airfoil in the channel expressed 
" 

as a fraction of the ultimate upstream velocity when the airfoil is 
f v\ 

at an effective angle of attack a.1 and. where --) is the isolated 
\ ' /CL 

airfoil velocity for the angle of attack a.. Since the airfoil is 
small compared with the breadth of the channel, the flow about the 
airfoil in the channel is equivalent to the flow about an airfoil at 
an angle of attack	 in a free stream whose velocity at a great 
distance away Is V + u. Therefore the following relation is true 

( Vc \\	 (v\ 

or	

'\V+U) =	
( 46) 

(V\	 (vI\ (	 u\ 

"a.]• - '\' Ll 	 + V)	
(47) 

The result is that

(45)



vc (U\,[P(e) 

vi

- p(s) + sIn (0 + a.1) + sin a.1J 
[sin (e + a.) + sin a.]

(49)
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. fv1\	 I vj\	 (v1\ 
=	 - T) +	 V	 (48) 

The formula for the velocity correction shows the importance of the 
changed. angle of attack, for one part of the correction is the 
difference in the isolated airfoil veloóity distributions at angles 
of attack a. and. a.1; the other term of the correction is propor-
tional to the isolated. velocity distribution at the increased angle 
of attack. 

The correction obtained by the use of vortices and. doublets 

is valid, to the first order jj (c)2 and. tc/'h 2 . When the angle 

of attack is 00, the parameter. (2)2 does not appear (reference 1). 

Goldstein's Second-Order Velocity Correction 

Goldstein (reference 4) first replaces the image airfoils by 
the doublet, the vortex, and. the higher-order singularities given by 
the potential function of the airfoil in a uniform free stream. The 
nonuniform disturbance velocity produced. by these singularities in 
thephysical region, in particular at the location of the physical 
airfoil, is calculated, taking into account the change in direction 
of the stream. This first-approximation nonuniform disturbance 
velocity (a) changes the velocity distribution on the airfoil from 
its isolated free-stream value and. (b) changes the value of the 
singularities that are to be imaged. Change (b) is evaluated and 
a second-approximation nonuniform distribution of the airfoil in the 
final nonuniform stream is calculated. 

In principle, Goldstein's method is capable of yielding to any 
degree of accuracy the effect of a plane-walled channel on the two-
dimensional velocity distribution of an arbitrary airfoil, arbitrar-
ily situated.. The successive approximations become increasingly 
laborious, however, and. only the second-approximation formulas are 
given in reference 4. 

The second-approximation formula for the constriction correc-
tion for the symmetrical airfoil situated in the center of the chan-
nel at a small angle of attack Is obtained as: 
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so that

(50) 
VV\Vi ) 

where U here represents the sum of the ultimate upstream velocity 
and. the velocity at the center of the channel Induced, by the singu-

U 
larities so that 	 - 1 corresponds to u/V of the first-order 

theory; ct-1 Is, as in the previous approximate theory, an effective 
angle of attack with respect to the direction of the stream; the 
function p(e) is a measure of the distortion of the stream caused 
by the singularities. 

The Go.d.stein second-order image correction is accurate to the 

c 2 tc	 2 c	 c3t c2t2 ct3 
orders (i) ,	 '	 ' () '	 ' h4	

and. 
()4•	

en the 

2 (t\2	 c\4	 /t\4 
angle of attack is zero, the terms () ,	

() , and.	 do


not appear.

Discussion of Numerical Results 

of Approximate Theories 

The first-order and. second-order corrections were calculated 
f or the 12-percent-thick symmetrical airfoil. The corrections for 
the airfoil at zero lift have been discussed in reference 1. The 
results for the angle of attack of 4 are plotted in figure 8. The 
constants used. in the first-order correction are 

?	 u/V 

3.93 0.0116 4.459° 

Those for the second-order correction are 

C1 C2 03 04 a1 U --1 

p.08722 0.05534 -0.02401 0.00455 0.00475 4.200° 0.0108

The first-order theory yields good results for the upper sur-
face of the airfoil In that the correction so derived shows the same 
over-all trend. as the correction obtained. by conformal mapping. The 
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approximate correction appears to be a mean curve to which are added. 
components due to the curvature of the airfoil. For the lower sur-
face, the approximate correction is not quite so good a mean line as 
It is for the upper surface. For both upper and. lower surfaces, the 
contribution to the velocity correction due to the doublets and that 
due to the change in angle of attack are equally effective in form-
ing the total correction. 

For the upper surface of the airfoil, the Goldstein second-
order image correction follows the same trend as the first-order 
Image correction, but the values are more nearly constant. The 
second-order correction for the lover surface follows more closely 
the trend of the mapping correction than the first-order correction. 
From this example, the second-order correction appears to be more 
accurate than the first-order correction. 

The incremental velocities u/V and.	 - 1 of the first- and. 
second-order corrections, respectively, are in good agreement but 
the values of the effective angles of attack 	 differ markedly. 
This difference accounts for the difference In the nature of the 
correction curve of figure 8 near the leading edge of the airfoil. 

CALCULATION OF LIFT AND MOMENT 

For the case of angle of attack of 4, the lift coefficient c1t 
for the airfoil in the channel was calculated by integrating the 
pressure distribution about the airfoil. The calculation for c1' 
was also carried out by means of the two approximate theories. 

The isolated airfoil lift coefficient Cl was 0.478. The 
value of c 1 ' Obtained, by the integration of the pressure distri-
bution is 0.537; that value obtained from the second-order theory, 
0.522 by the formulae of reference 4; and. that value obtained from 
reference 9 (p. 49), 0.532. All the values of c 1 ' obtained indi-
cate the expected increase in lift for the airfoil in the channel 
and. also show good agreement among themselves in that they do not 
vary more than 3 percent. The lift-coefficient correction, c 2 ' - 
varies, however, about 30 percent among the different theories. 

The lift coefficient c 2 ' was also calculated by integrating 
the pressure distribution on the walls of the channel. Theoretically, 
the integration s1iou1d be carried out to Infinity on either side of 
the airfoil. The practical calculation Is, of course, impossible.
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The Integration Is therefore carried out only over a finite range 
to yield the lift coefficient c i ", anda correction factor used 

to take Into account the effect of the rest of the channel. 

The correction factor i, which is equal to c 1 "/c', has 

been derived in an approximate form in the appendix of reference 10. 
The airfoil is replaced. by a row of vortices, which are imaged in 
the walls of the channel. The t factor for an individual vortex is 
calculated. The final factor is obtained by averaging 	 for 
each vortex with a loading derived. from thin airfoil theory as a 
weighting factor. 

In figure 9 the lift coefficient 01" is plotted as a function 

of the limits of Integration, which were taken symmetrically about 
the origin. The value of 01", obtained, by Integrating the pres-
sure distribution 1.75 chord lengths upstream and. downstream of the 
origin, is 0.493. When this value is divided. by the value of c1t, 
derived. by Integrating the pressure distribution on the airfoil, a 
value r of 0.918 is obtained. The value of 	 obtained, by the 
method of reference 10 is 0.900. The value of Cl', obtained from 
the approximate value of , is 0.548. The correction factor 
obtained by the approximate method. is satisfactory to the order of 
the approximate theories previously discussed. 

It is also possible to obtain the moment on the airfoil about 
any point by integrating the moment of the pressure (accurately 
calculated) on each element of area on the channel walls. A factor 
analogous to the 1) factor can be so determined that the Integration 
for the moment over a finite range may be extended to take into 
account the regions on the channel walls a great distance away. 

CONCLUSIONS 

Tha analysis and numerical calculations of' the present paper 
lead to the following conclusions: 

1. The method of conformal transformation by means of the 
Cartesian mapping function provides a satisfactory numerical solu-
tion to the problem of obtaining the local velocity corrections for 
an arbitrary airfoil In a channel for the case of two-dimensional 
frictionless Incompressible flow. 

2. If closeness to the velocity corrections obtained by con-
formal mapping is used as a criterion, the second order Goldstein



26
	

NACA TN 1899 

correction is more accurate than the first-order image vortex and. 
doublet correction for thin airfoils at small angles of attack in 
giving velocity corrections in the examples calculated. 

3. if it is necessary to obtain a higber-order correction than 
the second., the method of the Cartesian mapping function is probably 
more convenient to use than the Goldstein type correction. 

4. The channel lift coefficients obtained by the two approxi-
mate theories are in good. agreement with the lift obtained from the 
mapping velocity distribution; the lift corrections obtained by the 
two approximate theories are not in good agreement with the correc-
tion obtained by mapping results. 

5. The existing method of finding the lift coefficients from 
the velocity distribution on the channel walls has been satisfac-
torily checked. 

Lewis Flight Propulsion Laboratory, 
National Mvlsory Committee for Aeronautics, 


Cleveland, Ohio, December 4, 1946.
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AND IMAGINARY PARTS OF T C). 

Inasmuch as the C}' z4 is regular within the annulus aM 
also on the bouMing circles in the p-plane, it may be expathed. in 
a Laurent series, which is valid. in the annulus and. on the circles 
bounding the annulue • Thus 

z -	 = x(p,cp) + iy(p,cp) = i:i Cp"	 (Al) 

From equation (Al) the following expressions are obtained.: 

Ax1(cp) = a0 +L(a + a_a) COB ncp -	 (b - b_a) sin nq 
1	 1 

Ay1(cp) = b0 +E(a - a_a) sin x.p +	 (b +b_) 005 flCP 

1	 1 

.x2
(cp) = a0 +>(aqn1+aq_n)	 sinncp 

= b0 +(aq"-a_q) sin ncP+(bqfl+b..q) cosi 

The values of a aM b can be found by means of Fourier' a rule 
in terms of the CMF. 

When a0 and. b0 are evaluated., the conditions of consistency 

that are necessary conditions for the regularity of the C}' in the 
annulus appear as 

23o	 Ax1(p) d.cp 
j2	

ax2 (cp) d.cp

(A3) 

2tb0	 d.cp

(A2)
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Four relations are desired: Ax1 and. Ax2 expressed in terms 
of Ay1 and. Ay2 and., conversely, Ay1 and. Ay2 expressed in 
terms of Ax1 and. Ax2 . The derivation of the expression for 
in terms of Ax1 and. Ax2 will now be carried out. The other 
relations will follow analogously. 

Through the use of the first and. third equations of (A2) and. 

through the use of Fourier's rule, the coefficients a and. b are 
evaluated. As a result of the calculation, the following equations 
are obtained:

-n -D1q	 + D2 n D1q	 - D2 
a	 =	 -n q . -q

a_n =
qq

(A4) 
-n K1q, K1q	 -K2 

qfl_ q_fl b 
S	 _nqn_q...n 

where 

= 1	
2t

Ax1 (p) cos ip dq' K] = 1 i2	 Ax1 cp) sin np dq

(A5) 

D2 = 1	
2n

Ax2 (q) cos n	 d K2 =	 S	 Ax2 () sin n d 
The values of the coefficients a	 and	 b	 are substituted in the 
infinite series expression for Ay1 given by equations (A2). The 
values for K1, K2, D1,	 and	 D2 as given by equations (A5) are 
also used. TEus

qUqflJ 

Sqfl_q_flJ0 âx1 ( p ')(sinrW'cos n-cos•n' sin rw)dc'+ 

1' "	 2 
-)	

Ax2(cp')(cos nq" sin '- sin zip' cos nq,)dcp' 
-qJ0 
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i	 2n 
y1(q) = b0 +	 -	 x(PI) sin n(cp' - cp) dep' - 

1

r2 

	

iii
2
 -n /	

Ax2 (cp') sin n(cp' - cp) d q"	 (A6) 
1 

Now let f(q') be a function that can be d.eveloped. in a Fourier 
series for 0 5 p5 2g . Then

2g 2g 

5 f(cp')	 cot (q')	 =	 r f(Cp t ) sin n(cp'-cp) &p'	 0 

(Al) 

Hence,

	

2glrn	 -n 1	 C	 i	
+ ci_n 1(p') sin n(cp' - ce)] - =	 +

1 0 

	

Ax1(') [cot	 '	 - sin n(' _)]} d' 2 

	

n-nj 2g

	
sin n(cp'_rp) diP' 

1 
or 

y1 (p) =b0 - >J' x1(c)[ cot	 + 22n sin n(cP t _CP)] pt + 2 

1ç2	
x2(cp') sin n(p'-cp) dcp' 	 (AB) 

Inasmuch as the series of equation (A8) are unifonuly convergent as 
are the series of equations (5), the summation and. integration may 
be interchanged in equation (A8) to yield equation (5).
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Ai'WIX B 

NLICAL EVALUATION OF TEE CARIAN MAPPING FUNCTION 

The determination of the functions Ax1 and. Ax2 from the 
given functions Ay1 and. Ay2 was based. in this paper on numerical 
integration of the first twoequations (5). The equations for Ax1 

and. Ax2, when the constant a0 has been set equal to zero, are 

r23t 

= I
	

Ay1(P,)[ cot

	 +	 2q2	 n(P?_)] d'-2	 Zj•#i_q2fl 

2t
Ay2(cp') >_: 2q' sin n(cp'_cp) d.qY 

____	 2n 1-q 

r2' 

Ax2(cP)=_j	 Ay (ept ) hi cot	 sin n(Pt_P)]dcPt+ 
Jo	 2	

[2 1-q 

>	

.2n 
jfl n(cp'.) d.cp' __ 2n 

JO	 1 l-q 

If the range of q) is divided into 2n equal intervals whose length 
ie 8, if the values of, Ay are given at the end. points of the 
intervals, and. if Ax is desired at the same points, approximate 
integration will yield expressions of the following form:

(Bi) 

2n-1 
Ax1 (CP) = ____ ( °k + d.k) Ay1(cp + kb) + 

k=O

2n-1 
> e ay2 (p + kZ) 
k=0

(B2) 
2n-1 

Ax2(cP) =->j (c + dk) Ay2 (cP + kb) -
	

Ay(cP + 
k=O 

The values of ck have been calculated in reference 1 by means of 
Simpson t s rule and. other simplifications for use with the CMF of
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simply connected. regions. The values of d.k and. ei may be sim-

ilarly obtained. The value of ck as calculated. in reference 1 is 

Co = 0

8 8+sinô


	

Cl =	 cot	 2i sin 8 

-8	 8 8+sin8 

	

=	 cot - 2n sin 8 

	

Ck =	 cot	 (k odd.) 

	

ck =	 cot	 (k even) 

In the present paper, because the number of intervals was an inte-
gral multiple of 6, Wed.d.le's rule was used. for the evaluation of d.k 
and ek. 

The values of ck are given in table IV for the cases of 
2n = 24 and. 2n = 48. The values of d.k and e contain the 

parameter q. . Hence, these coefficients must be evaluated. anew for 
each approximation. 
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(B3)
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TABLE I - OBD]iAS OF 12-PERCENT THICK AIRFOIL 


[From table 1 of reference 1] 

Station 
(percent 

chord 
from 
nose)

Ordinate Station 
(percent 

chord 
from 
nose)

Ordinate 

0 0 50 5.880. 
1.25 1.425 55 5.540 
2.5 1.900 60 5.025 
5 2.585 65 4.415 

10 3.540 70 3.750 
15 4.250 75 3.060 
20 4.820 80 2.350 
25 5.295 85 1.685 
30 5.655 90 1.060 
35 5.900 95 . .510 
40 6.000 97.5 .260 
45 6.010 100 0
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TABLE III - V0CITY DISTRThTJPION AND CAEi!&9IAN MAPPflG


FUNCTION FOR AIRFOIL AI' ANGLE OF A!L'AK OF 40 

= 0.2041; cpN = 94; T 274°;	 2 = 89.91°; T = -0.0063] 

Airfoil Channel walls 

P 
(cIe) 4xl

V01 

.--
r(p) x1

d.x1 dYi
4x2

V02 
-v- 2

dx2 42 
-- -- 

0 x 7.5 0.0152 1.0735 -0.02940 0.01005 0.0376 0.0033 0.0236 0.9730 0 0.00591 0.0114 0 
1 - .1010 1.0709 - .02840 .01511 .0372 .0110 - .1917 .9719 0 .00739 .0109 0 
2 - .2168 1.0617 - .02645 .01983 .0355 .0185 - .3850 .9703 0 .00875 .0101 0 
3 - .3308 1.0419 - .02380 .02415 .0316 .0244 - .5838 .9686 0 .01000 .0090 0 
4 - .4417 1.0133 - .02028 .02795 .0260 .0291 - .7920 .9670 0 .01107 .0070 0 
5 - .5486 .9822 - .01622 .03095 .0203 .0330 -1.0134 .9659 0 .01198 .0062 0 
6 -.6493 .9464 -.01182 .03317 .0145 .0356 -1.2549 .9657 0 .01267 .0045 0 
7 - .7415 .9036 - .00720 .03465 .0088 .0369 -1.5261 .9668 0 .01316 .0027 0 
8 -.8234 .8247 -.00242 .03528 -.001.3 .0355 -1.8436 .9697 0 .01340 .0010 0. 
9 - .8928 .7729 .00212 .03502 -.0020 .0313 -2.2367 .9743 0 .01342 - .0009 0 

10 - .9448 .6579 .00598 .03464 - .0030 .0303 -2.7752 .9810 0 .01319 - .0027 0 
11 -.9776 .3130 .01035 .03418 -.0082 .0347 -3.6780 .9896 0 .01272 - .0045 0 
12 - .9950 .5485 .01525 .03241 - .0194 .0338 -9.2779 1.0001 0 .01202 - .0062 0 
13 -.9963 1.7756 .01925 .02947 -.0229 .0299 -3.6554 1.0121 0 .01109 - .0079 0 
14 - .9777 1.6934 .02312 .02634 - .0252 .0250 -2.7736 l.0a49 0 .00997 - .0094 0 
15 - .9407 1.5167 .02600 .02294 - .0275 .0210 -2.2462 1.0379 0 .00864 - .0106 0 
16 - .8875 1.4150 .02862 .01915 -.0295 .0183 -1.8613 1.0506 0 .00718 -.0118 0 
17 - .8188 1.3589 .03075 .01518 - .0315 .0155 -1.5513 1.0624 0 .00555 - .0127 0 
18 - .7375 1.3249 .03252 .01096 - .0333 .0121 -1.2863 1.0731 0 .00384 - .0135 0 
19 -.6456 1.3042 .03390 .00652 -.0350 .0085 -1.0503 1.0817 0 .00203 -.0140 0 
20 - .5455 1.2910 .03475 .00184 - .0365 .0048 - .8330 1.0883 0 .00021 - .0142 0 
21 - .4391 1.2843 .03522 - .00305 - .0380 .0005 - .6288 1.0926 0 - .00164 - .0141 0 
22 - .3287 1.2803 .03502 - .00824 - .0392 - .0047 - .4326 1.0948 0. - .00343 - .0138 0 
23 -.2152 1.2790 .03402 -.01349 -.0402 -.0101 -.2414 1.0944 0 -.00518 -.0131 0 
24 - .1004 1.2772 .03235 - .01883 - .0406 - .0162 - .0272 1.0918 0 - .00680 - .0120 0 
25 .0143 1.2652 .02970 - .02423 - .0390 - .0250 .1375 1.0874 0 -.00831 - .0107 0 
26 .1287 1.2392 .02558 - .02926 - .0350 - .0364 .3303 1.0814 0 - .00963 - .0092 0 
27 .2439 1.1935 .02036 - .03325 - .0263 - .0428 .5290 1.0745 0 - .01079 - .0077 0 
28 .3592 1.1455 .01438 - .03590 - .0160 - .0456 .7370 1.0667 0 - .01171 - .0061 0 
29 .4732 1.0927 .00828 - .03712 - .0041 - .0462 .9585 1.0576 0 -.01243 -.0042 0 
30 .5834 1.0475 .00215 - .03695 .0065 - .0441 1.2000 1.0491 0 - .01290 - .0027 0 
31 .6871 1.0093 -.00325 - .03558 .0153 - .0395 1.4711 1.0400 0 - .01314 -.0010 0 
32 .7812 .9805 - .00815 - .03317 .0216 - .0314 1.7876 1.0308 0 - .01315 .0008 0 
33 .8621 .9564 - .01178 -.03007 .0253 -.0240 2.1793 1.0221 0 - .01294 .0023 0 
34 .9260 .9328 - .01450 - .02674 .0269 - .0175 2.7132 1.0139 0 - .01252 .0039 0 
35 .9708 .9223 - .01642 - .02332 .0254 - .0110 3.6019 1.0066 0 - .01190 .0053 0 
36 .9948 .9246 - .01742 -.01996 .0225 - .0043 9.2833 1.0001 0 - .01112 .0066 0 
37 .9953 .8741 -.01750 - .01723 .0185 0 3.6385 .9946 0 - .01016 .0078 0 
38 .9723 .8882 - .01760 - .01526 .0140 - .0012 2.7416 .9900 0 - .00907 .0088 0 
39 .9280 .9050 -.01792 - .01370 .0115 -.0030 2.2091 .9864 •0 -.00785 .0096 0 
40 .8653 .9190 - .01850 - .01229 .0102 - .0051 1.8208 .9836 0 - .00654 .0104 0 
41 .7861 .9307 -.01932 - .01099 .0099 -.0080 1.5084 .9814 0 -.00511 .0110 0 
42 .6932 .9427 - .02050 - .00968 .0107 - .0116 1.2411 .9800 0 - .00362 .0116 0 
43 .5898 .9608 - .02218 - .00813 .0136 - .0141 1.0030 .9789 0 - .00206 .0120 0 
44 .4796 .9876 - .02425 - .00594 .0190 - .0148 .7842 .9780 0 - .00048 .0123 0 
45 .3653 1.0142 - .02620 - .00300 .0248 - .0146 .5784 .9772 0 .00116 .0124 0 
46 .2485 1.0414 - .02788 .00061 .0308 -.0127 .3809 .9762 0 .00276 .0123 0 
47 .1314 1.0669 -.02920 .00501 .0362 -.0064 .1887 .9748 0 .00437 .0120 0
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TABLE IV - COIC]ITS FOR CALCULATION OF CARTESIAN 

MAPPING FUNCTION FOR SINGLE COI1TOt 

(a) 24-point scheme 

°k 
00 120 

_______ 

1 .42564 13 -.00366 
2 .20734 14 -.01489 
3 .06706 15 -.01151 
4 .09623 16 -.03208 
5 .03620 17 -.02131 
6 .05556 18 -.05556 
7 .02131 19 -.03620 
8 .03208 20 -.09623 
9 .01151 21 -.06706 

10 .01489 22 -.20734 
11 .00366 23 -.42564 

(b) 48-point scheme 

_______ Ck 

00 240 
1 .42470 25 -.00091 
2 .21099 26 -.00366 
3 .06982 27 -.00276 
4 .10367 28 -.00744 
5 .04092 29 -.00472 
6 .06706 30 -.01151 
7 .02816 31 -.00685 
8 .04811 32 -.01604 
9 .02079 33 -.00928 

10 .03620 34 -.02132 
11 .01584 35 -.01218 
12 .02778 36 -.02778 
13 .01218 37 -.01584 
14 .02132 38 -.03620 
15 .00928 39 -.02079 
16 .01604 40 -.04811 
17 .00685 41 -.02816 
18 .01151 42 -.06706 
19 .00472 43 -.04092 
20 .00744 44 -.10367 
21 .00276 45 -.06982 
22 .00366 46 -.21099 
23 .00091 47 -.42470
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Channel wall	 H'—... 

Ii	 Center line of channel 

Channel wall 

- plane 

A' 

p-plane 

Figure 1.- Transforniation of flat plate and 
channel into two concentric óircles,
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Figure 4. - Comparison of velocity distributions in channel obtained by two methods. 
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FIgure 6. - Comparison of velocities on airfoil In free strealE ath on airfoil in channel 

for = 40 
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Figure 7. - Cartesian mapping function for airfoil in a channel at a. = 40•



____ ____ ____ ____ ____ CrrecIori 
IConf 

Firs
>rmal 
;—orc

maps 
r	 In

____ 
Ing 
ge

___ 

- - - 
-- Secod—or er inage

____ ____ ____ 

-

T2 -- ___ ___ 
-

___ ___ ___ ___

. oe 

.04 

.	 0

44
	

NACA TN 1899 

(a) Upper surface. 
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Figure 8. - Velocity correctiona for 12-percent-thick airfoil, 	 = 4°, c/h = 0.5. 
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