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SUMMARY

The present paper reporte the results of a series of flutter
studies including comparisons of experimental results with calculations
based on a Rayleigh type analysis, in which chosen modes are assumed.
The model studled was a straight uniform cantllever wing of high aspect
ratio and carried a single concentrated weight. An extensive set of
experimental flutter data existed in which the mass coupling varied
over a wide range. The theoreticel results of a differential-equations
approach, not requiring chosen modes, in which good agreement with
experimental results had been obtalned were also available for a number
of these cases. An unusual opportunity was therefore afforded to
appraise the validity of the assumptions involved in the more universally
applicable Rayleigh type analysis. In general, a deterloration 1n agree-
ment between the experimental and the approximate theoretical results is
noted as mass coupling increases. Computed results are found to be high,
that is unconservative, for weights ahead of the elastic axis but con-
servative for weights behind the elastic axis. :

INTRODUCTION

The study of flutter embraces two main categories: the aerodynamics
of unsteady flows and the mechanics of vibrating structures. In order to
obtain practical solutions to the flutter problem, many simplifying
assumptions are necessary in each category. In particular, the aero-
dynamic part of the problem has customarily been simplified by the use
of theoretically derived two-dimensional air forces. Imn the structural
part of the problem, it has been found convenient to assume that the
motion of the wing during flutter may be represented by a finite number
of terms of a series of chosen modal functions.

Various investigators have indicated that the validity of these
assumptions has never been conclusively established. Jordan (reference 1)
discusses the problem in relation to the German research effort both
before and during the war and states that many theoretical results. have
been obtained, but that they lack adequate experimental backing. Many
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papers exist in British literature in which the problem has been con-
sidered. (See, for example, reference 2.) The problem has also been
under study in the United States. Among the investigators was Loring
(reference 3), who made a Rayleigh type analysis, in which certain modal
shapes were assumed, and compared his resulte with experimental results
in reference 4. A similar comparison with experimental results was made
in reference 5. More recently, Goiand and Luke (reference 6) have
published a solution involving a differential-equation analysis not
requiring the assumption of modal shapes. Their analysis was applied
numerically to a few examples and compared with the results of the
Rayleigh type analysis but included no comparison with experiment. In
all of these cases, satisfactory agreement was found between theoretical
and experimental results or between one theory and another. The experi-
ments serving as bases for comparison consisted, however, of isolated
cases in which 1l1ttle or no mass coupling was involved. The need
exlisted, therefore, for a systematic study of a more general nature, which
involved both experiment and theory for cases of larger mass coupling.
Such a systematlc study forms the basis of three closely related papers
(references 7, 8, and the present paper). The experimental basis is
glven in reference 7, in which are reported the results of an extensive
testing program intended to provide a sufficient number of flutter cases
covering a range of mass coupling that might serve to apprailse aspects
of the various analytical methods. The wing used in this experimental
work was a straight wmiform cantilever of fairly high aspect ratio.

In the second paper of the series (reference 8), the differential-
equation type analysis of reference 6 was used and extended to include
a welght at any spanwise and chordwise station. Good agreement between
theory and experiment was obtalned for all cases studled. The results
indicated that the differential-equation approach properly accounted
for the structural part of the problem and that the theoretical two-
dimensional air forces were sufficient for the conditions investigated.

The differential-equation procedure, not requiring the assumption
of modes, ylelds most satisfactory results for a uniform wing but
becomes unwieldy when applied to a nonumiform wing. Careful examination
of the commonly used approximate methods, in which selected modes are
employed and which are of more universal applicability, 1s therefore
necessary and desirable. The purpose of the present paper is to give
the results of such an investigation in which a Rayleigh type analysis
is employed and which uses the experimental data of reference 7.

Since the two-dimensional air forces were adequate in the differential-
equation analysis of the problem for these data, presumably their use
herein will permit a separation and examination of the mode approxi-
mations involved.

In the Rayleigh type analysis the assumption is made that the
flutter mode may be approximated by use of a finite number of terms of
a series of certain selected modal functions. The accuracy of the
result depends, in general, on the cholce of the modal shapes that
make up the series and on the number of terms of the series used. -
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These shapes may be any arbitrary set of fumctions; the usual choice is
elther the coupled or the uncoupled modes of oscillation of the system
in a vacuum since these functions satisfy structural boundary conditions.
The choice between coupled and uncoupled modes at present remains a
matter of preference of the individual investigator. ‘The problem also
arises as to the number of terms of the series required.to obtain a
rractical answer sufficiently reliable for use in the prediction of
flutter in aircraft. The amount of computation increases rapidly as
additional degrees of freedom, or modes, are considered. Certain basic
theoretical questions of the convergence of iterative methods remain an
unsettled problem. Wielandt (reference 9) has initiated some theo-
retical work along these lines. Although none of these theoretical
considerations are dealt with herein, some quantitative information on
the problem is given and some of the parameters upon which the required
number of modes depends are indicated.

SYMBOLS

Achs Acqs Aahs Aaq alr-force coefficients as given in reference 3

b wing half-chord

c dimensionless square matrix describing dynamic air
forces acting on system

ey nondimensional distance between center of gravity
of concentrated weight and elastic axis based
on half-chord, positive for center-of-gravity
positions behind the elastic axis

ET bending rigidity of wing

£ ' flutter frequency, cycles per second

GJ _ torslional rigidity of wing

I. reference moment of inertia (moleD

I' mass moment of inertia of wing section about elastic

: axis per unit length, including moment of inertia

of concentrated weight at its proper spanwise
station

IEA mass moment of inertia of wing about elastic axis

I, mass moment of inertia of concentrated weight about

wing elastic axis
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reduced-frequency parameter (Eé)
v

semispan of wing (denoted by s in reference 4) ,

reference mass, taken as mass of wing per unit
length

mass per unit length, including mass of concentrated
weight

nondimensional radius of gyration relative to elastic

gy

mob?

flutter velocity

experimental flutter speed for wing without weight

welght of model wing

weight of concentrated weight

spanwise coordinate measured from wing root

nondimensional distance from elastic axis to wing-
section center of gravity based on half-chord,
including chordwise displacement of concentrated-
welght center of gravity at its proper sgpanwise
station

dimensionless matrix describing the elastic
properties of system (denoted by f in reference 4)

mass ratio ( Ir )
. nobHy

mass density of air

angular flutter frequency, radians per second

reference angular flutter frequency, radians per
second

dimensionless square matrix describing inertia
properties of system (denoted by a .in reference 4)
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2
T dimensionless frequency ratio ((%—))
v ' stiffness parameter | &L 12
. ET 12
V. reference stiffness (denoted by Kf in reference 4)

b2
()

¢hl’ ¢h2’ a2 ¢a2 modal functions in first bending, second bending,
‘ first torsion, and second torsion, respectively

ANALYSTS

A mechanical system such as a wing, considered as a continuous
structure, possesses an infinite number of degrees of freedom and is
therefore. capable of vibrating in any of an infinite number of dis-
‘placement forms. In order to describe the flutter of a wing in which
the true displacement form is unknown, a correct analysis should,
theoretically, therefore be carried out by considering an infinite
series of harmonic modes.

An analysis of the Rayleigh type presumes that a good approxi-
mation to the flutter mode may be achieved by including the first few
terms of the infinite series. The problem exists as to what constitutes
a sufficlent number of terms. The choice of modal functions to be
employed is arbitrary; the usual preference is either the coupled or
the uncoupled modes of vibration of the structure since these functions
satlisfy the structural boundary conditions. An interesting exchange
of 1deas concerning this preference was made between R. H. Scanlan
and Goland and Luke in the Discussion cited with reference 6. (The
term "uncoupled mode," as employed in the present paper, refers to an
imagined constrained mode in which, for pure bending, the chordwise
distribution of mass is considered to act at the elastic axis of the
wing with no torsional deformation occurring. For pure torsibn, the
elastic axis is considered restrained against bending. The term
"coupled mode" 1is employed herein in a limited sense and refers
to a combination of bending and torsional deflections appropriate to
the natural normal harmonic vibrations of the freely oscillating
(undamped) system.) For the purpose of the present analysis, uncoupled
modes have been selected; however, the use of coupled modes should be
investigated further. Of course, for actual airplane structures the
choice of the active modes for the complete structure, particularly
for the empennage, may be extremely difficult.
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The purpose of the present paper 1s essentially that of appraising
the accuracy of the use of uncoupled modes in a Rayleigh type analysis
with a study of the number of modes required to indicate a reasonable
approach to the experimental result. The primary interest is in the
results and significance of a number of numerical applications of such
an analysis in which uncoupled modes are used. No attempt has been made
in this paper, therefore, to present either derivation or details of
the method.  The form given in the analysis is that given by Loring in
references 3 and 4., Although matrix notation is used for consistency with
references, no knowledge of matrix methods other than of the solution of
a determinant is required. Of course, other procedures, also based on
Lagranglan equations, lead to the same results as the procedure of
Loring; for example, that given by Smilg and Wasserman in reference lO

The matrixes assoclated with the energles of system may be of
order n, which makes the analysis adaptable to any desired number of
degrees of freedom. The form given is for order 4, which is the
maximum number of uncoupled modes employed in the present analysis.

The matrix agsoclated with the klnetic energy of the system for »b
the variable mass due to the additlon of a concentrated weight is
as follows:

1 2 mn' dx 1 Pﬁ dax 1 m -i“ dx fl m'ia g
j; P mg v j; PPy mo 2 _/(;¢h1¢°'1 mo 1 Poylar 55 1
1 ml ax 1 m' dx 1 m'fa g 1 m'?u g
/; #nyPno oo T j; ¢h22 m 1 \/; Profay mg 1 f Probap mo 1
Ipt = I, '
1 n'%y ax 1 n'Ty gy 1, 5, 1' ax 1 I' ax
f Py foy moa T _/; Pnofay m, U _/; Poy mb2 U f By Py mob2 1
1 n'Yy ax 1 B'Ty g 1 I' dx 1 2 1' ax
f oy oo T f Pofor oo T f bonfor 235 T f Poy” 22 1
1
vhere TI_ =m 1b2 and —l;—_= r,2.
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The métrix assoclated with the potential energy is

1-
2 dx o
P2 & 0 0
Jo s
0 fl' 2 dx 0 0
0o 2 1
VrA' =Vr
1- dx
0 2 6x 0
0 ‘[/¢a1 7
0
1.
; 0 0 0 Vf¢2d_x
C
\

vhere, as in reference k4,

EI/b\°
V = == - /
r 1(1)

and

<
|

, @.(1)2
EI\b

The dots above ¢ indicate the derivatives with respect to time. Observe
that this i1s a diagonal matrix, which implies that the potential energy

is expressible as a quadratic form involving no cross-stiffness terms.
Structural damping terms can be included in this matrix or in a separate
matrix associated with dissipative forces. However, as in reference 8,
for the purpose of the numerical work the structural damping has been
kept zero.
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The matrix assoclated with the air forces is as follows:

[hgupan [tttz [

fo l¢h12Ach % f ¢h1¢h2Ach = f nghlgz&mlAc(JL f ¢hl¢a2Aca, ax

. 1 1 2 1 1
/; ¢h1¢h2Ac§ de /; Pno Ach %5 A ¢h2¢a1-‘_\co. 915 L Pnofaphca %

s ooy o & [ogopan s [o2rats [ 1¢al¢a2Aaé &

aeAa.a f¢A_

where the air-force coefficients A,p, A.y, Agp, &nd Ay, are, as in

reference 3, the two-dimensional coefficients developed by Theodorsen

(see reference 11).

The determinantal flutter equation is formed by a linear combination

of the three matrixes and 1es given as

I-l"§+c+-rA'

vhere, as in reference 3,
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The solution of the determinant results in the flutter condition
and yields the critical values of k and T; therefore, flutter
velocity and frequency may be found from the relations

.
k¥
and
a):cir_
VT

APPLICATION AND DISCUSSION OF RESULTS

The actual computation of the uncoupled modes needed in the
application was accomplished by the use of the differential-equation
development given in reference 8. For a nonuniform structure, however,
a more general method would have to be employed and an iteration process
such as that of reference 12 could be used.

Many procedures exist for solving the flutter determinant. In the
procedure employed hereln, the structural parameters were assigned
their values in the various matrixes. Tke expansion of the flutter
determinant resulted in simultaneous real and imaginary equations which
were solved for the pair of values k (the reduced frequency parameter)
and T (containing the flutter frequency) which also satisfied the
flutter determinant.

Initial analyses were made by use of two uncoupled modes and, in
certain selected cases, three or four uncoupled modes were used. The
calculated results are compared with experimental results in table I
and figures 1 to 4. Values are given for both velocity and frequency
at flutter.

Attention- 18 first directed to the calculated results obtained by
employing two degrees of freedom, namely, first bending and first torsion.
For the wing alone, reasonable agreement between calculated and experi-
mental results was obtained as shown by case 1 of the table. Also, for
cases 1In which. the center of gravity of the weight was located close to
the wing elastic axis (e, = 0.034k) and moved spanwise (cases 2 to 7),
very good agreement was found; the calculated results were not more

than 5 percent from those obtained experimentally. For the cases in
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which the center of gravity of the welght was slightly ahead of the
elastic axis (ey = -0.360) and for various spanwise positions (cases 8
to 10), a loss 1n accuracy was noted with a maximum discrepancy of

23 percent. For the cases in which the center of gravity of the weight
vas near the leading edge (ey = -0.818), no solution to the flutter

determinant could be obtained for any of the spanwise positions _
represented in the table by cases 12 to 15. For cagse 11 with the weight
at the 11-inch spanwise station and the same leading-edge chordwise
position (ey = -0.818), a solution was obtained which was 14 percent high.
For the cases in which the center of gravity of the weight was behind

the wing elastic axis (ew = 0.500),-the spanwlge varlations are

- represented by cases 16 to 18. For the most inboard position (case 16)
good agreement with experiment was obtained. The analyses of cases 17

and 18 yielded values which were below the experimental value and from
flutter considerations, therefore, were conservative. In general,
increased mass coupling reduces the agreement between experimental results
~and those obtalned from calculations when two degrees of freedom were
used. For cases with large mass coupling the structure should be allowed .
greater flexibility and, therefore, would require the use of more modes.

Of the previous cases considered a certain number have been selected
for further investigation. For the continued analyses of these cases s
third degree of freedom, the uncoupled mode in second bending, was added.
With this addition the analyses of cases 1, 4, and 10 yielded values
closer to the experimental values, although the reduction in the discrep-
ancy for case 10 was only slight. The analyses using three degrees of
freedom were also exténded to three cases for which no solution to the
flutter determinant could be obtained. Solutions resulted in each
case, but the agreement varied with experimental results. The
flutter speed calculated for case 12 was over 80 percent above the
experimental value. The results obtained for cases 13 and 15 were
within 14 percent and 11 percent, respectively, of the experimental values.
Figure 1 shows, however, that the trend of the calculated curve for these
.two cases was similar to the unusual trend of the experimental curve.

A further extension of the analysis to include a'fourth degree of
freedom, namely, the uncoupled mode in second torsion, was applied tq
cases 12, 13, and 15. The analysis of case 12 employing the fourth
degree of freedom reduced the discrepancy between theory and experiment
from 80 percent to approximately 30 percent. The differential-equation
approach of reference 8 yielded a value that wag only 7 percent above the
experimental value and was the maximum discrepancy obtained by this method.
The addition of the fourth degree of freedom to the analyses of cases 13
and 15 had no appreciable effect on the value of the calculated flutter
velocity. Although the percentage error has been discussed at a glven
spanwise station, the large value of the slope of -the experimental curve
for cases 12 to 15 may make such & discussion somewhat misleading, since
a small displacement in the spanwise weight position may affect the
result. Another basis for comparison could be used, for example some
other distance between the theoretical and experimental curves. '
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1

For all cases in which the center of gravity of the welght was
located forward of the elastic axis the results were unconservative,
but for most cases with the center of gravity of the welght located
behind the elastic axis the results were conservative.

CONCLUSIONS

Comparisons of experimental results of the cases studied with
calculations based on a Rayleigh type analysis, in which chosen modes
- are assumed, give the following conclusions:

1. The use of two uncoupled modes in the theoretical analysis gave
good agreement with experiment for the wing alone or for the wing
carrying a concentrated weight near the elastic axis.

2. Increased mass coupling, obtained by placing the weight either
ahead of or behind the elastic axis, required the consideration of more
degrees of freedom to produce satisfactory results. _ '

3. With the weight forward of the elastic axis the calculated
results based on theory were high and, therefore, wunconservative. With
the welght behind the elastic axis the calculated results based on
theory were conservative. :

L. The analysis indicated that’the degree of approximation to the .
experimental value generally improved with the addition of more degrees
of freedom to the analysis.

Langley Aeronautical Laboratory ' ,
National Advisory Committee for Aeronsutics
Langley Air Force Base, Va., March 28, 1949
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